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CHAPTER

Parabolic Anderson model on a
Galton-Watson tree revisited

This chapter is based on the following paper:
F. den Hollander and D. Wang. The parabolic Anderson model on a Galton-Watson
tree revisited. J. Stat. Phys., 189(1):Paper 8, 2022.

Abstract

In [@] a detailed analysis was given of the large-time asymptotics of the total mass of the
solution to the parabolic Anderson model on a supercritical Galton-Watson random tree
with an i.i.d. random potential whose marginal distribution is double-exponential. Under the
assumption that the degree distribution has bounded support, two terms in the asymptotic
expansion were identified under the quenched law, i.e., conditional on the realisation of the
random tree and the random potential. The second term contains a variational formula
indicating that the solution concentrates on a subtree with minimal degree according to a
computable profile. The present paper extends the analysis to degree distributions with
unbounded support. We identify the weakest condition on the tail of the degree distribution
under which the arguments in [@] can be pushed through. To do so we need to control the
occurrence of large degrees uniformly in large subtrees of the Galton-Watson tree.



CHAPTER 4

4. The PAM on a Galton-Watson tree revisited

§4.1 Introduction and main results

Section provides a brief introduction to the parabolic Anderson model. Sec-
tion introduces basic notation and key assumptions. Section states the
main theorem and gives an outline of the remainder of the paper.

§4.1.1 The PAM and intermittency

The parabolic Anderson model (PAM) is the Cauchy problem
Owu(z,t) = Agu(z,t) + &(z)u(z, t), t>0,ze 2,

where £ is an ambient space, A g is a Laplace operator acting on functions on 2,
and £ is a random potential on 2 . Most of the literature considers the setting where
Z is either Z? or R? with d > 1 (for mathematical surveys we refer the reader to [3],
[29]). More recently, other choices for 2 have been considered as well: the complete
graph [16], the hypercube [5], Galton-Watson trees [12], and random graphs with
prescribed degrees [[12].

The main target for the PAM is a description of intermittency: for large ¢ the
solution u(-, t) of (g@) concentrates on well-separated regions in 2, called intermittent
islands. Much of the literature has focussed on a detailed description of the size, shape
and location of these islands, and the profiles of the potential £(-) and the solution
u(-,t) on them. A special role is played by the case where £ is an i.i.d. random potential
with a double-exponential marginal distribution

P(£(0) > u) = e_eu/g, u € R,
where ¢ € (0,00) is a parameter. This distribution turns out to be critical, in the
sense that the intermittent islands neither grow nor shrink with time, and therefore
represents a class of its own.

The analysis of intermittency typically starts with a computation of the large-time
asymptotics of the total mass, encapsulated in what are called Lyapunov exponents.
There is an important distinction between the annealed setting (i.e., averaged over the
random potential) and the quenched setting (i.e., almost surely with respect to the
random potential). Often both types of Lyapunov exponents admit explicit descrip-
tions in terms of characteristic variational formulas that contain information about
where and how the mass concentrates in 2°. These variational formulas contain a
spatial part (identifying where the concentration on islands takes place) and a profile
part (identifying what the size and shape of both the potential and the solution are
on the islands).

In the present paper we focus on the case where 2 is a Galton-Watson tree, in the
quenched setting (i.e., almost surely with respect to the random tree and the random
potential). In [12] the large-time asymptotics of the total mass was derived under the
assumption that the degree distribution has bounded support. The goal of the present
paper is to relax this assumption to unbounded degree distributions. In particular, we
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§4.1. Introduction and main results

identify the weakest condition on the tail of the degree distribution under which the
arguments in [[12] can be pushed through. To do so we need to control the occurrence
of large degrees uniformly in large subtrees of the Galton-Watson tree.

§4.1.2 The PAM on a graph

We begin with some basic definitions and notations (and refer the reader to [3], [29]
for more background).

Let G = (V, E) be a simple connected undirected graph, either finite or countably
infinite. Let Ag be the Laplacian on G, i.e.,

(Acf)(x) = Y [fy)—f@)], =x€V,f: V=R (4.1)

yeV:
{z,y}€E

Our object of interest is the non-negative solution of the Cauchy problem with localised
initial condition,

Oru(z,t) = (Agu)(z,t) + &(x)u(z,t), =€V, t>0,

u(z,0) = do(z), z eV, (4.2)

where O € V is referred to as the root of G. We say that G is rooted at O and call
G = (V,E,0) a rooted graph. The quantity u(x,t) can be interpreted as the amount
of mass present at time ¢ at site x when initially there is unit mass at O.

Criteria for existence and uniqueness of the non-negative solution to (@) are well
known (see [24], [25] for the case G = Z?), and the solution is given by the Feynman-
Kac formula

u(z,t) = Eo {efotg(xs)ds X, = x}} , (4.3)

where X = (X;);>0 is the continuous-time random walk on the vertices V' with jump
rate 1 along the edges E, and Py denotes the law of X given Xg = O. We are
interested in the total mass of the solution,

U(t):== Y ulx,t) =Eo l:efot f<Xs>dS] . (4.4)

zeV

Often we suppress the dependence on G, ¢ from the notation. Note that, by time
reversal and the linearity of (@), U(t) = 4(0,¢) with 4 the solution of (@) with a
different initial condition, namely, 4(x,0) =1 for all x € V.

Asin [12], throughout the paper we assume that the random potential £ = (£(x)),ev
consists of i.i.d. random variables with marginal distribution satisfying:

Assumption 4.A. [Asymptotic double-exponential potentiall
For some g € (0, c0),

P(£(0) >0) =1, P(£(0) > u) = e’ for u large enough. (4.5)

¥ HALIVH))



CHAPTER 4

4. The PAM on a Galton-Watson tree revisited

The restrictions in (| are helpful to avoid certain technicalities that require no new
ideas. In particular, ) is enough to guarantee existence and uniqueness of the non-
negative solution to (4.4) on any graph whose largest degrees grow modestly with the
size of the graph (as can be inferred from the proof in [25] for the case G = Z9; see
Section for more details). All our results remain valid under milder restrictions
(e.g. [25, Assumption (F)] plus an integrability condition on the lower tail of £(0)).

The following characteristic variational formula is important for the description of
the asymptotics of U(t) when ¢ has a double-exponential tail. Denote by P(V') the
set of probability measures on V. For p € P(V), define

)= Y (Ve — Vo)) . Hvl) =~ Y pla)logale),

{z,y}eFE zeV

xa(o) = peig(fv)[IE(p) + oJv (p)], 0 € (0,00). (4.6)

The first term in (@) is the quadratic form associated with the Laplacian, describing
the solution u(-,t) in the intermittent islands, while the second term in ({.6) is the
Legendre transform of the rate function for the potential, describing the highest peaks
of £(+) in the intermittent islands.

§4.1.3 The PAM on a Galton-Watson tree

Let D be a random variable taking values in N. Start with a root vertex O, and
attach edges from O to D first-generation vertices. Proceed recursively: after having
attached the n-th generation of vertices, attach to each one of them independently a
number of vertices having the same distribution as D, and declare the union of these
vertices to be the (n 4+ 1)-th generation of vertices. Denote by GW = (V| E) the graph
thus obtained and by ‘B its probability law and & the expectation. Write P and £ to
denote probability and expectation for D, and supp(D) to denote the support of P.
The law of D can be viewed as the offspring distribution of GW, and the law of D 41
the degree distribution of GW.
Throughout the paper, we assume that the degree distribution satisfies:

Assumption 4.B. [Exponential tails]
(1) dmin := minsupp(D) > 2 and £[D] € (2, ).
(2) £[e*P] < oo for all a € (0, 00). |

Under this assumption, GV is B-a.s. an infinite tree. Moreover,

r—00 r

=log &£[D] =: ¥ € (0,00) B —a.s., (4.7

where B,(0O) C V is the ball of radius r around O in the graph distance (see e.g.
B0, pp. 134-135]). Note that this ball depends on GW and therefore is random.
Furthermore, under this assumption on the tail of D, the solution to the PAM exists
and is unique.

80
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Theorem 4.1.1. Let G = GW. Subject to Assumption @(2), (@) has a unique
non-negative solution (P xP) almost surely. This solution admits the Feynman-Kac
representation (1.3).

For our main result we need an assumption that is much stronger than Assump-
tion @(2)

Assumption 4.C. [Super-double-exponential tails] There exists a function f: (0,00) —

(0, 00) satisfying lims_,o f(s) = 0, lims_, 00 f'(s) = 0 and lims_, » f(s)log s = co such
that
limsupe*log P(D > s/(9)) < —29. (4.8)

5—00
|
To state our main result, we define the constant
X(o) :=inf {xr(0): T is an infinite tree with degrees in supp(D)}, (4.9)
with x¢(0) defined in (@)7 and abbreviate

__ o
~ loglogt’

T (4.10)

Theorem 4.1.2. [Quenched Lyapunov exponent] Subject to Assumptions @«@,
1 ~
n logU(t) = olog(Vrr) — 0 — X(0) + o(1), t— o0, (P xP)-a.s. (4.11)

With Theorem we have completed our task to relax the main result in [12]
to degree distributions with unbounded support. The extension comes at the price
of having to assume a tail that decays faster than double-exponential as shown in
(@) This property is needed to control the occurrence of large degrees uniformly in
large subtrees of GW. No doubt Assumption is stronger than is needed, but to
go beyond would require a major overhaul of the methods developed in [12], which
remains a challenge.

In (@) the initial mass is located at the root. The asymptotics in ( is robust
against different choices. A heuristic explanation where the terms in () come
from was given in [[12, Section 1.5]. The asymptotics of U(¢) is controlled by random
walk paths in the Feynman-Kac formula in (@) that run within time t;/plogt; to an
intermittent island at distance ry; from O, and afterwards stay near that island for the
rest of the time. The intermittent island turns out to consist of a subtree with degree
dmin Where the potential has a height plog(t;) and a shape that is the solution of a
variational formula restricted to that subtree. The first and third term in () are
the contribution of the path after it has reached the island, the second term is the cost
for reaching the island.

For d € N\ {1}, let 74 be the infinite homogeneous tree in which every node has
downward degree d. It was shown in [12] that if o > 1/log(dmin + 1), then

X(0) = x7a._. (0). (4.12)

min
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4. The PAM on a Galton-Watson tree revisited

Presumably 7, . is the unigue minimizer of (@)7 but proving so would require more

work.

min

Outline. The remainder of the chapter is organised as follows. Section @ collects
some structural properties of Galton-Watson trees. Section @ contains several pre-
paratory lemmas, which identify the maximum size of the islands where the potential
is suitably high, estimate the contribution to the total mass in ({.4) by the random
walk until it exits a subset of GW, bound the principal eigenvalue associated with the
islands, and estimate the number of locations where the potential is intermediate. Sec-
tion Q uses_these preparatory lemmas to find the contribution to the Feynman-Kac
formula in (4.4) coming from various sets of paths. Section 1.5 uses these contributions
to prove Theorem . In Section we prove Theorem .

Assumptions ) are needed throughout the paper. Only in Sections @«@

LA
L4

do we need Assumption

§4.2 Structural properties of the Galton-Watson tree

In the section we collect a few structural properties of GW that play an important
role throughout the paper. None of these properties were needed in [12]. Section
looks at volumes, Section at degrees, Section at tree animals.

§4.2.1 Volumes
Let Zy be the number of offspring in generation k, i.e.,
Zy =z eV: d(z,0) =k}, (4.13)

where d(x, O) is the distance from O to z. Let u = £[D]. Then there exists a random
variable W € (0, 00) such that

Wy = e—kﬂzk — ,u_ka — W P-a.s. as k — oo. (4.14)

It is shown in [, Theorem 5] that

2/3,k/3

IC <o00,c>0: P(Wp—-W|>¢e) <Ce “* Ve>0,keN.  (4.15)

In addition, it is shown in [6, Theorems 2-3| that if D is bounded, then

—logPBW >z) = SARA SR [LT(z) + o(1)] x — 00, (4.16)
)+

—logP(W <z) = 277 /O [L7(x)+0(1)], /0, (4.17)
where v € (1,00) and v~ € (0,1) are the unique solutions of the equations

+ —

NJ’Y :dmax; M’Y :dmina (418)
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with L*, L™ : (0,00) — (0, 00) real-analytic functions that are multiplicatively periodic
with period ,u7+’1, respectively, 4!~ . Note that Assumption (1) guarantees that
v # L

The tail behaviour in (4.16) requires that dmax < 0. In our setting we have
dmax = 00, which corresponds to ¥ = oo, and so we expect exponential tail behaviour.
The following lemma provides a rough bound.

Lemma 4.2.1. [Ezxponential tail for generation sizes] If there exists an a > 0 such
that E[e*P] < oo, then there exists an a, > 0 such that €[e®V] < .

Proof. First note that if there exists an a > 0 such that £[e*P] < oo, then there exist
b > 0 large and ¢ > 0 small such that

pla) := E[eP] < enatba’ VOo<a<ec. (4.19)

Hence 5
€le"Pm 1] = Elp(a)?n] < glelrarbe)in] (4.20)

and consequently, because pu > 1,

¢len] < e [e<a+ba2“’("”)>wn] <e {e“exp(bw""”))ww} . (4.21)
Put a, := cexp(—be Y p—y u~*#*2), which satisfies 0 < a,, < ¢. From the last in-
equality in () it follows that
¢ [etntWnit] < @[], (4.22)
Since n + a,, is decreasing with lim,,_, o, a, = a, > 0, Fatou’s lemma gives
¢ [em W] < & [e®™0]. (4.23)
Because E[e®"0] = e < oo, we get the claim. O

The following lemma says that B-a.s. a ball of radius R, centred anywhere in
B, (O) has volume eVBrto(Br) a5 1 — 00, provided R, is large compared to log .

Lemma 4.2.2. [Volumes of large balls] Subject to Assumption @(1), if there exists
an a > 0 such that E[e*P] < oo, then for any R, satisfying lim, o R,/logr = oo,

1 1
lim infR— log ( inf |Bg, (x)\) = lim sup = log( sup |Bg, (:E)|> =1 B—a.s.

T—00

- z€B,(0) r—00 T z€B,(0)

(4.24)

Proof. For y € GW that lies k generations below O, let y[—i], 0 < i < k be the vertex
that lies ¢ generations above y. Define the lower ball of radius r around y as
Bi(y) :={z € V: 30 <i <r with z[—i] = y}. (4.25)

T

Note that B} (O) = B,.(0).

83
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We first prove the claim for lower balls. Afterwards we use a sandwich argument
to get the claim for balls.

Let Zj denote the vertices in the k-th generation. To get the upper bound, pick
6 > 0 and estimate

gp( sup |B¢ ( )‘ Ze(l“‘&)ﬁRT) Zm( sup \Bi ( )‘ > e(1+6)19RT)
z€B,(0) €2,

- ZZ‘I‘( sup B (z)| > (4908

k=0 leN TEZy

= 1)P(Z =1)
(4.26)
< ZZZ (1B, (0)] = 07 ) (2, = 1

k=0 1eN

= (184, (0)] = ) " ez,

k=0

By (@), S0 €(Zk) = % = 0(e”"), and so in order to be able to apply the
Borel-Cantelli lemma, it suffices to show that the probability in the last line decays
faster than exponentially in r for any § > 0. To that end, estimate

P(1BL, (0)] > 107 = qs(fj 21 > oo,

_m(§Wk>ewR 9(R )<Z‘J3( .

e&ﬂR,,.eﬁ(R,,fk))
r+1

R,
- Z‘B(W + (Wi —W) > Rr1+ 16519&,619(3,.%))

< S(1 2 gt

+ 2513(|Wk —-W| > mewmeﬁ(mw)) (4.27)
1 -
kzoexp( ﬁ eI Er (R k))

¢ [ sem, ﬁ(erk)}wg
+I;C'exp( 6[2(Rr+1)e e

< ¢e™W(R, + 1) exp ( —a

(eﬂ)k/{S)

_ L swr )
"2(R, +1)

+C(Rr+1)exp<_c[2(R:~+l)eéﬁRr}Q/?,),

where we use () with p = e”. This produces the desired estimate.
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To get the lower bound, pick 0 < § < 1 and estimate

’B( inf By, (z)| <el'” 5%) Z‘B( inf By, (z)| ge(1—5)ﬁRr>

z€B,(0) T€Zk
= ZZ‘B( inf |Bl, (2)] < =0 | Z, = 1)3(Z = 1)

k=0 leN (428)
<3 S 11}, ()] < - )z, = 1)

k=0 leN

= (1B, (0)] < (=075 Z €(Z1).
k=0

It again suffices to show that the probability in the last line decays faster than expo-
nentially in r for any 6 > 0. To that end, estimate

P (1B, (0)) < 1077 ) = gp (e S 2 < o)

k=0

< ‘13<WRT < eﬁﬁRT) <PW < 2e709R) L P(W — Wg, > e 098 (4.29)

< exp (= (2P T (Lt o(1)]) + Cexp (- cle 17 (") H)),

where we use (), () with = e, and put ¢~ := inf L~ € (0, 00). For ¢ small
enough this produces the desired estimate. This completes the proof of (4.24) for lower
balls.

To get the claim for balls, we observe that

Bi(z) C By(x) C | B (al—H)), (4.30)

k=0

and therefore .
|Bf(z)| < |B(2)] < > [BH(x[—K])I- (4.31)

It follows from () that

1nf |B¢( )< inf  |Bu(z)| < sup  |Be(z) < (r+1) sup |Bi(x)|. (4.32)
z€B-r( z€B-(0) z€B,.(0) z€B,.(0)

Hence we get () O

§4.2.2 Degrees

Write D, to denote the degree of vertex x. The following lemma implies that, 3-a.s.
and for r — oo, D,, is bounded by a vanishing power of logr for all z € Ba,.(O).
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Lemma 4.2.3. [Mazimal degree in a ball around the root]
(a) Subject to Assumption @(2), for every § > 0,

> B3z € By (0): D, > dr) < oo (4.33)
reN
(b) Subject to Assumption @ there exists a function §,: (0,00) — (0,00) satisfying
lim, 00 6, = 0 and lim, o 73 5,» =0 such that
> B3z € By(0): Dy > (logr)’) < 0. (4.34)
reN
Proof. (a) Estimate

2r

P(Fz € By (0): Dy >0r) <> Pz € Z,: Dy > or)

k=0
2r
=> > PEx€ 2k Dy >0r| Ze =1)P(Zp =1) (4.35)
k=0 leN
2r
P(D > br) ZZW =P(D>6r)> &(Z).
k=0 leN k=0
Since Y2 €(Zy) = % = 0(e?), it suffices to show that P(D > ér) =

O(e™") for some ¢ > 29. Since P(D > 6r) < e~ "E(e?P), the latter is immediate
from Assumption §.B(2) when we choose a > 29/0.
(b) The only change is that in the last line P(D > ér) must be replaced by P(D >
(logr)°). To see that the latter is O(e™°") for some ¢ > 20, we use the tail condition
in (U.§) with 6, = f(s) and s = logr. O
§4.2.3 Tree animals
For n € Ny and z € B.(0), let

A, (xz) ={A C B,(z): A is connected, A > z,|A| =n+ 1} (4.36)
be the set of tree animals of size n + 1 that contain z. Put a,(x) = | A, (z)|.

Lemma 4.2.4. [Number of tree animals] Subject to Assumption @(2), B-a.s. there
exists an ro € N such that a,(x) <r™ for all r > rg, x € B.(0) and 0 <n < r.

Proof. For n € Ny and = € B¥(0), let
Al (z) = {A C B}(x): A is connected, A >z, |[A] = n + 1} (4.37)

be the set of lower tree animals of size n + 1 that contain x. Put a},(z) = | A} ()]
We first prove the claim for lower tree animals. Afterwards we use a sandwich
argument to get the claim for tree animals.
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Fix 6 > 0. By Lemma (a) and the Borel-Cantelli lemma, -a.s. there exists
an ro = ro(6) € N such that D, < dr for all z € B}, (O). Any lower tree animal of size
n + 1 containing a vertex in B}(0) is contained in BY +n(O). Any lower tree animal
of size n 4+ 1 can be created by adding a vertex to the outer boundary of a lower tree
animal of size n. This leads to the recursive inequality

at(z) < (0r)al_(¥) Ve BHO), 1<n<r (4.38)

Since af(z) = 1, it follows that
at(x) < (6r)" VYo € BHO), 0<n<r. (4.39)

n

Pick § <1 to get the claim for lower tree animals.

To get the claim for tree animals, pick § < —i— and note that a,(z) < Y_}_, a} (z[—k])

(n+1)
(compare with ())7 and so anp(z) < 7" forall z € B.(O) and all 0 <n < 7. O

§4.3 Preliminaries

In this section we extend the lemmas in [12, Section 2]. Section identifies the
maximum size of the islands where the potential is suitably high. Section es-
timates the contribution to the total mass in (4.4) by the random walk until it exits
a subset of GW. Section M gives a bound on the principal eigenvalue associated
with the islands. Section m estimates the number of locations where the potential
is intermediate.

Abbreviate L, = L,(GW) = |B,(O)| and put

Sy = (logr)®, a € (0,1). (4.40)

§4.3.1 Maximum size of the islands
For every r € N there is a unique a, such that
P(E(0) > a,) = % (4.41)
By Assumption @, for r large enough
a, = ologlogr. (4.42)
For r € Nand A > 0, let
O, 4 =11, 4(§) :=={z € B, (0): £(2) >ar, —2A} (4.43)
be the set of vertices in B,.(O) where the potential is close to maximal,

Dya = Dy a(€) = {z € B,(0): dist(z,1I,.4) < S} (4.44)
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be the S,-neighbourhood of II, 4, and €, 4 be the set of connected components of
D, 4 in GW, which we think of as islands. For M4 € N, define the event

Bra = {HCEQ:nA: |CﬂHT’A| >MA}. (4.45)

Note that I, 4, Dy a, B, 4 depend on GW and therefore are random.

Lemma 4.3.1. [Mazimum size of the islands] Subject to Assumptions @»@, for
every A > 0 there exists an M4 € N such that

SP(B.a)<oo  P-as (4.46)

reN

Proof. We follow [8, Lemma 6.6]. By Assumption @, for every z € V and r large
enough,
P(x €I, 4) =P(&(x) > ar, —24) = L4 (4.47)

I

with ¢4 = e~24/¢, By Lemma , P-a.s. for every y € B,.(O) and r large enough,
|Bsr(y)| < |Bo(r)(o)| = Lo(r) = Lg(l)a (448)

where we use that S, = o(logr) = o(r), and hence for every m € N,

B
P(|BST (y) A HT,A| > m) < <| S;n(y”)LTCAm < (|BST(y)|L;CA)m < L;CAm[l*‘rO(l)]_

(4.49)
Consequently, B-a.s.

P(3C € & a: [CNIL 4| =m) < P(3y € Br(0): |Bs, (y) N1lya] =2 m)

< ‘BT(O”LT — L"(nl—cAm)[l—‘ro(l)]. (4.50)

By choosing m > 1/ca4, we see that the above probability becomes summable in 7,
and so we have proved the claim with M4 = [1/ca]. O

Lemma, implies that (P x93)-a.s. B, 4 does not occur eventually as r — oo.
Note that J3-a.s. on the event [B, 4]°,

VC €, 4 [CNTL 4| < Ma, diamgy(C) < 2M4S,, |C| < e??Mad: (4.51)

where the last inequality follows from Lemma .

§4.3.2 Mass up to an exit time

Lemma 4.3.2. [Mass up to an exit time] Subject to Assumption (2), PB-a.s. for
any 6 >0, 7 >rg, y € A C B.(O), £ €[0,00)Y and v > Ay = M (£,GW),

TAC ) ds A
E, [efoA (&(Xs)=m)d ] <1+ (jr_) LA|. (4.52)
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Proof. We follow the proof of [25, Lemma 2.18] and [19, Lemma 4.2]. Define
JTA (e(X0) =) ds
u(z) :=E, {e 0 } . (4.53)

This is the solution to the boundary value problem

(A+&—7v)u=0 onA

u=1 on A°. (4.54)
Via the substitution u =: 1 4+ v, this turns into
(A+&—vy)v=7—& onA (4.55)
v=0 on A°.
It is readily checked that for v > Aj the solution exists and is given by
v =Ry (6 ~7), (4.56)

where R., denotes the resolvent of A + ¢ in ¢*(A) with Dirichlet boundary condition.

Hence
(o) [A]

Y=’

v(z) < (0r) (Ry1)(x) < (6r) (Ry1,1)4 < x €A, (4.57)

where 1 denotes the constant function equal to 1, and (-, -}, denotes the inner product
in /2(A). To get the first inequality, we combine Lemma (a) with the lower bound
in (@) from Lemma , to get € —v < Ay + 0r — v < dr on A. The positivity of
the resolvent gives

0 < [Ry(6r = (€ = ))(x) = (67) [Ry1](2) — [R+ (& — 7)](2). (4.58)

To get the second inequality, we write

(6r) (R, 1) (@) < (6r) S (Ry 1) () = (6r) 3 (R, 1) (@)1 () = (3r) (R, 1, D). (4.59)

zEA FASHIN

To get the third inequality, we use the Fourier expansion of the resolvent with respect
to the orthonormal basis of eigenfunctions of A + ¢ in ¢2(A). O

§4.3.3 Principal eigenvalue of the islands
The following lemma provides a spectral bound.

Lemma 4.3.3. [Principal eigenvalues of the islands] Subject to Assumptions @ and
(2), for any e > 0, (P xP)-a.s. eventually as r — oo,

all C € €, 4 satisfy: Ac(&GW) < ar, — Xe(GW) +e. (4.60)
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Proof. We follow the proof of [12, Lemma 2.6]. For € > 0 and A > 0, define the event

> {there exists a connected subset ACV with AOBT(O)#V),}

Br,A = |A\§e219MAST, A (&GW)>ay,. —;(\A(QW)-‘rE (461)

with My as in Lemma . Note that, by (@), et(®)/¢ is stochastically dominated
by Z V N, where Z is an Exp(1) random variable and N > 0 is a constant. Thus,
for any A C V, using [12, Eq. (2.17)], putting v = Ves/e > 1 and applying Markov’s
inequality, we may estimate

P(AA(&GW) > ar, —Xa(GW) +¢) <P (La(§ —ar, —€) > 1)

_ 4.62
—P (771£A(£) > ’YlOgLr) < e*’ylogl,rla[e,y 1£A(§)] < effylogLrKJyA\ ( )

with K, = E[eV_l(ZVN)] € (1,00). Next, by Lemma , for any = € B,(0O) and
1 < n < r, the number of connected subsets A C V with z € A and |[A| =n+1is
PB-a.s. at most (n + 1)r"™ < e2nlogr for > . Noting that eSr < r, we use a union
bound and that by Lemma log L, = 9r 4 o(r) as r — oo P-a.s., to estimate for
r large enough,

|e2?MaSr |
P(gr,A) < e—(’y—l) log L, Z eQn long"ryL
n=1

< e2MaSr oxp {=9(y = 1)r + o(r) + (2logr + log K ewMAST}

1
=r°Mexp {—19(7 —1)r+o(r) + (logr) r"(l)} < e 200 -Dr,

(4.63)

Via the Borel-Cantelli lemma this implies that (P x)-a.s. B, 4 does not occur even-
tually as r — oo. The proof is completed by invoking Lemma . O

Corollary 4.3.4. [Uniform bound Oﬁm'ncipal eigenvalue of the islands] Subject to
)

Assumptions , for ¥ as in (U.1), and any € > 0, (P xP)-a.s. eventually as
r— 00,
max A-(&G) <ar, —x(o) +e. (4.64)
Cel, a

Proof. See [12, Corollary 2.8]. The proof carries over verbatim because the degrees
play no role. O

§4.3.4 Maximum of the potential

The next lemma shows that ar. is the leading order of the maximum of § in B, (O).

Lemma 4.3.5. [Mazimum of the potential] Subject to Assumptions @»@, for any
9 >0, (PxP)-a.s. eventually as r — oo,

20logr
- < . 4.
plmax &z) —ar, | < =g (4.65)
Proof. See [12, Lemma 2.4]. The proof carries over verbatim and uses Lemma .
O
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§4.3.5 Number of intermediate peaks of the poten-
tial

We recall the following Chernoff bound for a binomial random variable with parameters
n and p (see e.g. [9, Lemma 5.9]):

P (Bin(n,p) > u) < e vlosGGE) =11y > 0. (4.66)

Lemma 4.3.6. [Number of intermediate peaks of the potential] Subject to Assump-
tions @ and (2), for any B € (0,1) and ¢ € (0,33) the following holds. For a
self-avoiding path m in GW, set

Ny = Na(€) i= [{z € supp(m): €(2) > (1 - e)ay, }. (4.67)

Define the event

there exists a self-avoiding path 7 in GW with
Br = { suppmb st [oupp(my (08 Loy i N | supp() b (4.68)
Then
Z P(B,) < oo B —a.s. (4.69)

reNg

Proof. We follow the proof of [12, Lemma 2.9]. Fix 8 € (0,1) and € € (0, 38). (@)
implies
pr:=P(£(0) > (1 —¢e)ar,) = exp{—(log L,)' °}. (4.70)

Fix x € B,(O) and k € N. The number of self-avoiding paths 7 in B,(O) with
|supp(n)| = k and my = z is at most e¥!°8" by Lemma E.2.4‘ for r sufficiently large.
For such a 7, the random variable N, has a Bin(k, p,)-distribution. Using (), we
obtain

P(EI self-avoiding 7 with |supp(7)| = k, 7o = z and N, > k/(log L,.)E)

_ 1+ ¢cloglog L,
S exp { - k((log Lrp)l 2 _ IOgT - W) }. (471)

By the definition of ¢, together with the fact that L, > r and  — (loglog x)/(log x)¢
is eventually decreasing, the expression in parentheses above is at least %(1og L)%,
Summing over k > (log L,)? and = € B,.(0), we get B — a.s.

P(B,) <2L, exp{ — 2(log LT)HB*QE} < exp{ — ¢o(log LT)H‘S} (4.72)
for some ¢y, c2,d > 0. Since L, > r, (4.72) is summable in 7. O

Lemma M implies that (P x%3)-a.s. for r large enough, all self-avoiding paths =

in GW with supp(7) N B, # () and |supp(n)| > (log L,.)? satisfy N, < |(T2§Iz(:;)!.
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Lemma 4.3.7. [Number of high exceedances of the potential] Subject to Assump-
tions @ and B.B(2), for any A > 0 there is a C > 1 such that, for all 6 € (0,1), the
following holds. For a self-avoiding path m in GW, let

Ny = [{x € supp(m): &(x) > ar, — 2A}]. (4.73)
Define the event
there exists a self-avoiding path w in G with
B, = {supp(‘n’)ﬁB,.yﬁ(Z), | supp(7)|>C(log L,)° and Nﬂ>%} . (474)

Then ), ey, SUPges, P(Br) < oo. In particular, (P x*B)-a.s. for r large enough, all
self-avoiding paths 7 in GW with supp(n) N B, # () and |supp(r)| > C(log L,)° satisfy

Ny = [{o € supp(m)s €(0) > ar, — 24 < PR (4.75)

Proof. Proceed as for Lemma , noting that this time
pr =P (£(0) > ap, —24) =L, (4.76)
where € = e=24/¢ and taking C' > 2/e. O

§4.4 Path expansions

In this section we extend [12, Section 3]. Section proves three lemmas that
concern the contribution to the total mass in (4.4) coming from various sets of paths.
Section proves a key proposition that controls the entropy associated with a key
set of paths. The proof is based on the three lemmas in Section .

We need various sets of nearest-neighbour paths in GW = (V, E, O), defined in
[12]. For ¢ € Ny and subsets A,A’ C V, put

AN 41, T € A,T{'e € A/a
yg(A,A).—{(WQ,...,Wg)EV : {7T1',7T1',1}€EV1§Z‘§€ R (477>
2(MN) = | 2uAN), '

LEeNy
and set
Py = PV, V), P =2V, V). (4.78)

When A or A’ consists of a single point, write = instead of {x}. For m € Z, set
|7| := £. Write supp(7) := {mo,..., 7|z} to denote the set of points visited by =.

Let X = (X;)¢>0 be the continuous-time random walk on G that jumps from x € V
to any neighbour y ~ z at rate 1. Denote by (Tj)ren, the sequence of jump times
(with Ty := 0). For £ € Np, let

7(X) := (Xo,...,X1,) (4.79)
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be the path in &, consisting of the first ¢ steps of X. For t > 0, let
m(Xjo,) = 7 (X), with ¢, € Ng satisfying Ty, <t < Ty, 41, (4.80)

denote the path in &2 consisting of all the steps taken by X between times 0 and t.
Recall the definitions from Section . For m € & and A > 0, define

Ara(m) = sup {Ae(& G): C € €, supp(m) NC NI 4 # 0}, (4.81)

with the convention sup() = —oo. This is the largest principal eigenvalue among the
components of €, 4 in GW that have a point of high exceedance visited by the path
.

Lemma 4.4.1. [Mass up to an exit time] Subject to Assumption @, P-a.s. for any
(e To, Y € AC B7(O)7 € € [ano)v and Y > /\A = AA(E,QW),

TAC or
E, {efoA (E(Xs)v)ds} <14 (10g7")A Al (4.82)
YT AA

Proof. The proof is identical to that of Lemma 7 with dr replaced by (logr)°"
(recall Lemma ) O

§4.4.1 Mass of the solution along excursions

Lemma 4.4.2. [Path evaluation] For £ € No, 7 € &y and v > maxo<;<|r{£(mi) —
Dﬂ'i}}

E, |efo (€X=ds (X)) =n| = ﬁ Dr, (4.83)
" 2oy~ E(m) = Dr ]’ '

Proof. The proof is identical to that of [12, Lemma 3.2]. The left-hand side of ()
can be evaluated by using the fact that T} is the sum of ¢ independent Exp(deg(m;))
random variables that are independent of 7¢(X). The condition on +y ensures that all
{ integrals are finite. O

For a path 7 € & and ¢ € (0,1), we write

Me = HO <i<|ml: &(m) < (1-— E)CLLT}

7 (4.84)

with the interpretation that M€ =0 if |x| = 0.

Lemma 4.4.3. [Mass of excursions] Subject to Assumptions @—@, for every A, e >
0, (P xP)-a.s. there exists an rg € N such that, for all v > ro, all v > ar,, — A and
all m e Z(B-(0), B, (0)) satisfying m; ¢ IL, a4 for all 0 < i < £ :=|n|,

)

E {e S e - ds
o

m(X) = W] < gl oME o8l1og ) far, a.00r.4] (4.85)
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where

A ~1
e 1= — A, A =1+ —-vr . 4.
ar, A, ear, Qr, A ( + (o r)5T> (4.86)

Note that mp € I, 4 is allowed.

Proof. The proof is identical to that of [12, Lemma 3.3], with dyax replaced by (log )"
(recall Lemma ) O

We follow [12, Definition 3.4] and [9, Section 6.2]. Note that the distance between

I, 4 and Dy 4 in GW is at least S, = (log L) (recall ()7())

Definition 4.4.4. [Concatenation of paths] (a) When 7 and 7’ are two paths in &
with 7 = 7, we define their concatenation as

mom = (7T0,...,7T|7r|,7r'1,...,7T|/7r/‘)69. (4.87)

Note that |7 o #'| = || + |7'|.
(b) When 7| # m(, we can still define the shifted concatenation of = and 7" as wo @,

where 7’ := (T|x|, x| + T — Ty o, W] + 7T|I7T,‘ — 7). The shifted concatenation of
multiple paths is defined inductively via associativity. |

Now, if a path m € & intersects I, 4, then it can be decomposed into an initial
path, a sequence of excursions between Il 4 and DJ ,, and a terminal path. More
precisely, there exists m, € N such that

A

T=7'oflo---0X™T 0 A" O, (4.88)

where the paths in () satisfy

e 2V, HTA) with 7} @14, 0<i< |t
7t € P (4, D5 4) with ¥ €Dpa, 0<i<|f*,1<k<m,—1,
7t € P(Dy 4,11 4) with 7r ¢ Il a, 0<i<|7*,2<Ek<mg,
At e P (1L, 4, ) with #7'€ Dpoa, 0<i<|am|,
(4.89)
while
e PD L V)and 7 @1, 4 Vi >0 if 77 € P(IL a4, DE ), (4.90)

Mo € Dya,|m| =0 otherwise.

Note that the decomposition in (Y )7() is unique, and that the paths 7', #™~
and 7 can have zero length. If 7 is contained in B,(O), then so are all the paths in
the decomposition.

Whenever supp(7) N1I, 4 # 0 and € > 0, we define

M M
ci= Y [FIHIRL kT = ) MU+ MET (4.91)
i=1 i1
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to be the total time spent in exterior excursions, respectively, on moderately low points
of the potential visited by exterior excursions (without their last point).

In case supp(m) NI, 4 = 0, we set my := 0, s; := |7| and kI := M2I°. Recall
from (4.81)) that, in this case, A, 4(m) = —o0.

We say that m, 71’ € & are equivalent, written ©’ ~ , if m, = m,,, #'* = & for all
i=1,...,mg and @ = 7. If 7’ ~ 7, then s/, k.7 and A\, a(7) are all equal to the

counterparts for 7.
To state our key lemma, we define, for m, s € Ny,

P —{re P my=m, sy =5}, (4.92)
and denote by
Cra=max{|C]: C€C, 4} (4.93)

the maximal size of the islands in €, 4.

Lemma 4.4.5. [Mass of an equivalence class] Subject to Assumptions @ and @,
for every Aje > 0, (P xB)-a.s. there exists an ro € N such that, for all r > r¢, all
m, s € No, all 7 € 2% with supp(r) C B.(O), all vy > A\ a(7) V (ar, — A) and all
t>0,

(E(Xu)—7) du
Er, |:ef° ! H{W(X[U,t])""ﬂ'}]

1y, 1 or C’r‘ m r s T, S
e (B () e

Proof. The proof is identical to that of [12, Lemma 3.5], with d,.x is replaced by
(log7)%" (recall Lemma ) O

§4.4.2 Key proposition

The main result of this section is the following proposition.

Proposition 4.4.6. [Entropy reduction] Let oo € (0,1) and k € (o, 1). Subject to
Assumption @, there exists an Ag(r) such that, for all A > Ag(r), with B-probability
tending to one as r — o0, the following statement is true. For each x € B,.(O),
each N C P (x, B.(0)) satisfying supp(m) C B,(O) and max;<<|r distg(me, z) >
(log L;)* for all m € N, and each assignment © v+ (yr,2:) € R X V satisfying

Yo > (Ara(m) + efs") V(ar, — A) VrmeN (4.95)
and
Zr € supp(m) U U C VwmeN, (4.96)
Cel, a:

supp(7)NCNII,., 4 #0
the following inequality holds for allt > 0:

logE, efo 5(Xs)ds]l{W(XW])@\/}] < suj;\)[ {t’yw—l—distg(a:,zﬂ)log[(logr)ér/aLMA)san]}.
e
(4.97)
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Proof. The proof is based on [12, Section 3.4]. First fix ¢ > 2 and define
Ao(r) = (log )™ (eteollosn™" — 1) (4.98)

Fix A > Ao(r), 8.€ (0,a) and £ € (0,30) as in Lemma . Let 7o € N be as
oiven in Lemma m7 and take r > rg so large that the conclusions of Lemmas ,
4.3.]], |43j and |43d hold, i.e., assume that the events B, and B, 4 in these lemmas
do not occur. Fix x € B,.(0). Recall the definitions of C,. 4 and &™), Note that
the relation ~ is an equivalence relation in 2("*) and define

é’:ﬁm’s) := {equivalence classes of the paths in 2(z,V) N @(m’s)}. (4.99)

The following bounded on the cardinality of this set is needed.

Lemma 4.4.7. [Bound equivalence classes] Subject to Assumption @, ‘I?-a.s.,|%m’s)|
< (20, 4)™ (logr)or(m+3) for all m, s € Ny.

Proof. We can copy the proof of [[12, Lemma 3.6], replacing dpyax by (logr)°r.

The estimate is clear when m = 0. To prove that it holds for m > 1, write OA :=
{z ¢ A: distg(z,A) = 1} for A C V. Then |0CUC| < ((logr)° +1)|C| < 2(log7)°"C;. 4
by Lemma . Define the map ®: %m’s) — Py(2,V) x {1,...,2(logr)° C\ A}
as follows. For each A C V with 1 < |A| < 2(logr)°"C, 4, fix an injection fr: A —
{1,...,2(logr)°"C,. o}. Given a path 7 € PN P(x, V), decompose 7, and denote
by T € P,(x,V) the shifted concatenation of #*,..., %™, 7. Note that, for 2 < k < m,
the point 7§ lies in JCj, for some C, € €, 4, while Ty € OC U C for some C € Croa.
Thus, it is possible to set

(I)(’/T) = (%a f@CQ (7?(2)% ey f@Cm (7VT6’L)7 fBC_U(?(ﬁO))' (4100)

It is readily checked that ®(7) depends only on the equivalence class of 7 and, when
restricted to equivalence classes, @ is injective. Hence the claim follows. O

Now take N’ C Z(z,V) as in the statement, and set
Nms) = {equivalence classes of paths in N'N @(m’s)} C %m’s). (4.101)

For each M € N(™#) choose a representative mpy € M, and use Lemma to

write
e(Xy)du _ b e(Xy)du
By {ef" ﬂ{w(X[o,tneN}] => > E {ef(’ ﬂ{w(x[o,t]ww}]
m,s€No pAfc N (m.s)
< Z (2(log T)JTCT,A)m((logr)(sr)s sup E, |:ef0 E(X“)d“]l{,r(xloyﬂ)wﬂ}}

m,s€Ng TeEN (m;s)
(4.102)
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with the convention sup® = 0. For fixed 7 € N(™9) by (), apply () and
Lemma to obtain, for all r large enough and with ¢g > 2,

m s b e(X0)du
(2(CIOgT)5T) (logr)5 Ex e-fo £(Xw) ]I{W(X[o,t])“’ﬂ'}:|

(4.103)
S et’y,r ecom logr[qT A<10g r)ér]s ek:‘_‘s log[(logr)‘s"'/aLT,A,EqT,A] )
We next claim that, for 7 large enough and © € N/ ("5)
s> [(m—-1)V1]S,. (4.104)

Indeed, when m > 2, |supp(#)| > S, for all 2 < i < m. When m = 0, |supp(w)| >

maxi<¢<|«| [T — x| > (log L,)" > S, by assumption. When m = 1, the latter as-

sumption and Lemma @ together imply that supp(m) N Dy 4 # 0, and so either

| supp(#')| > S, or | supp(7)| > S,. Thus, () holds by the definition of S, and s.
Note that q;s:”;4 < e deologr go

Z Z ecomlogr[an(lOgT)ér]s

m2>0s>[(m—1)V1]S,
[gr, a(log 7)°7]57 4 18T [g, 4(logr)°"]5" + 32, -, €m0 198 [g, a(logr)>r](m—1)Sr

1 — g, a(logr)o"

3e—C logr

— <1

~ 1— ¢y, a(logr)or <
(4.105)

for r large enough. Inserting this back into ()7 we obtain
t
logE, efo f(X"‘)db]I{W(XM)E/\/}] < sg\)f {t’yﬁ—l—k;’slog[(logr)‘s"‘/aLhAygth]}. (4.106)

Thus the proof will be finished once we show that, for some ¢’ > 0 and whp, respect-
ively, a.s. eventually as r — oo,

ke 2 dista(r, z)(1 - 2(log L) ™) Vr €N (4.107)

We can copy the argument at the end of [12, Section 3.4]. For each m € A define
an auxiliary path m, as follows. First note that by using our assumptions we can find
points z’, 2 € supp(w) (not necessarily distinct) such that

distg(z, 2') > (log L,.)", distg (2", 2x) < 2M4S,, (4.108)

where the latter holds by () Write {21, 22} = {2/, 2"} with 21, 25 ordered according
to their hitting times by , i.e., inf{f: mp = 21} < inf{l: 7, = 25}. Define 7, as the
concatenation of the loop erasure of m between x and z; and the loop erasure of w
between z; and z5. Since 7, is the concatenation of two self-avoiding paths, it visits
each point at most twice. Finally, define 7, ~ 7w, by replacing the excursions of .
from II, 4 to Dy 4 by direct paths between the corresponding endpoints, i.e., replace
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each . by |7l = 4, (7)o = i € Il 4, and (7})¢, = yi € D;. 4 by a shortest-distance
path 7. with the same endpoints and |7 | = diste(zi, y;). Since 7, visits each z € II,. 4
at most 2 times,

kit > kpl > My = 2| supp(my) N1 a|(Sy +1) = M7 — 4 supp(my) N 1L, 4] S
(4.109)

Note that M[>* > [{x € supp(m,): {(x) < (1 —€)ag, }|—1and, by (), | supp (7,
dist (z, 2/) > (log Ly )* > (log Ly )*+2¢" for some 0 < ¢’ < . Applying Lemmasﬁ

and using ( ) and L, > r, we obtain, for r large enough,

Y

2 45, 1
TE > _ _ > _—— ] .
k- > | supp(my)| (1 (logL,)°  (log LT)“+25') > |supp(my)| (1 (logLr)E/>
(4.110)
On the other hand, since | supp(m,)| > (log L,)", by (1.108) we have
|supp(my)| = (|supp(7r*)| + QMAST) —2My S,
2M 4 S,
= 2M 1-—
(|supp(7T*)| + ASr) < supp(m2)] + 2MAST>
2M A4S (4.111)
> . " IM 1 = 4rr
> (distg(z, 2") + 2M4 S;) ( (logLr)”>

1
> distg(z, 20) (1= ——— ),
= dis G({E7Z ) ( (IOgLT)E )

where the first inequality uses that the distance between two points on m, is less than
i

the total length of m,. Now () follows from ()f( ). O

§4.5 Proof of the main theorem

Define B
U*(t) := etlelos(¥re)—e—x(e)] (4.112)

where we recall () To prove Theorem we show that
1 1
n logU(t) — n logU*(t) = o(1), t— o0, (P xB)-a.s. (4.113)

The proof proceeds via upper and lower bound, proved in Sections and ,
respectively. Throughout this section, Assumptions ) (1) and m are in force.

§4.5.1 Upper bound

We follow [[12, Section 4.2]. The proof of the upper bound in () relies on two
lemmas showing that paths staying inside a ball of radius [¢7] for some v € (0,1) or
leaving a ball of radius ¢ logt have a negligible contribution to (4.4), the total mass of
the solution.
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Lemma 4.5.1. [No long paths] For any {; > tlogt,

. 1 fe(X.)ds
fli{rolo U*i(t) Eo l:efo £(Xs) H{T[thlc<t}:| =0 (P Xm) —a.s. (4.114)
Proof. We follow [12, Lemma 4.2]. For r > ¢;, let
B, = > 207 . 4.115
v { e €(0) > 20 (1.115)
Since lim; .o ¢; = 0o, Lemma gives that P-a.s.
U B, does not occur eventually as ¢t — oo. (4.116)
r>4

Therefore we can work on the event (1,5, [B-]°. On this event, we write

t t
&(Xs)ds _ &(Xs)ds
EO |:e-f0 ]l{T[BZt]C<t}:| = Z EO |:ef0 ll{supse[o,t] \Xs\:T}
r>4
< ngt Z egt log r+log(d, loglog r) Po (Jt > 7”), (4.117)
r>4

Opr

where J; is the number of jumps of X up to time ¢, and we use that | B,.(O)| < (logr)
Next, J; is stochastically dominated by a Poisson random variable with parameter
t(logr)? . Hence

/,1’[‘

Po (J, > 1) < let (log )" < exp {—rlog (M)} (4.118)

for large r. Using that ¢; > tlogt, we can easily check that, for r > ¢; and t large
enough,

r
tlogr —rlog [ ———— ) < —3r, >0, 4119
otlogr rOg(et(logr)‘Sr) T r >l ( )
Thus () is at most
e2gt Z e—3r+log(6r loglog ) < eZ,gt Z e—27' < 2629t e—2€t < e—Zt' (412())
>0 >0y
Since lim;_, o0 £r = 00 and limy_,o, U*(t) = 0o, this settles the claim. O

Lemma 4.5.2. [No short paths] For any v € (0,1),

lim L

Eo [efo 5<Xs>ds]1{n3rm]c>t}} =0 (Px%)—as. (4.121)

Proof. We follow [12, Lemma 4.3]. By Lemma with r = [t7], we may assume
that

2¢0log[t"
max &(x) < gloglog Ly + 20log[t"]

<yologt+0(1), t 4.122
L gfpq S elst+ (1), t—oo,  (4122)
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where the second inequality uses that log L4+ ~ log |Bv1(O)| ~ 9[t7]. Hence

1 [)e(x2)as 1
EOR Yo >0 | = 7y

e’y@tlogt—}—O(l) < e(l—’y)gtlogt—‘,—C’logloglogt7

(4.123)
for any constant C' > 1. O

The proof of the upper bound in () also relies on a third lemma estimating
the contribution of paths leaving a ball of radius [¢7] for some v € (0,1) but staying
inside a ball of radius tlogt. We slice the annulus between these two balls into layers,
and derive an estimate for paths that reach a given layer but do not reach the next
layer. To that end, fix v € (o, 1) with « as in ()7 and let

K= [t"""logt], v =k[0], 1<k<K,  f:=K[t"]>tlogt.
(4.124)
For 1 < k < K, define (recall ())

NE = {7r € 2(0,V): supp(r) C B,re1 (0), supp(m) N B (0) # @} (4.125)

and set
" e(X.)ds
Uk(t) = EO |:ef0 £(X5) ]I{W[O,t](X)ENtk}:l . (4126)
Lemma 4.5.3. [Upper bound on U*(t)] For any € > 0, (P xB)-a.s. eventually as
t — oo,
1 1
sup —logUf < =logU*(t) +e. (4.127)
1<k<K, t

Proof. We follow [12, Lemma 4.4] Fix k € {1,..., K;}. For 7 € N}, let
Yo 1= A gy () 4+ 750, 2z € supp(m), |zx| > 77, (4.128)

chosen such that ()—() are satisfied. By Proposition and (), (P x93)-

a.s. eventually as t — oo,

1 ™

glog Uf <vp — u <log[6glog(19rt(k+l))] d, log[log(r (k+1))] + 0(1)) . (4129)
Using Corollary and log L, ~ ¥r, we bound

v < 0log(9rFTY — (o) + & + o(1). (4.130)

Moreover, |z| > ri™' — [t7] and

—1 lo 197"<k+1) 6, logllo (k+1)
t ( glzolog( )] 6, logllog(r{** )] s
< —

log log(2tlogt) = o(1).
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Hence
e < B — K(0) + Le 4 0(1) (4.132)
with
Fy(r) := olog(9r) — g[log(sglog(ﬂr)) — 6, log(log )], r > 0. (4.133)
The function F} is maximized at any point r; satisfying
]
d
ot =r¢ |log(eolog(Vry)) — (0, + 1 5:0,) loglogry + m _ logrrt (4.134)
In particular, r; = t;[1 + o(1)], which implies that
sup Fi(r) < plog(dty) — o+ o(1), t — oo. (4.135)
>0

1 ~
Inserting (|4.13d) into (1.139), we obtain n log Ul < plog(Vr) — 0 — X(0) + €, which is
the desired upper bound because € > 0 is arbitrary. O

Proof of the upper bound in () To avoid repetition, all statements hold (P x P)-
a.s. eventually as ¢ — oo. Set

U°(t) :=Eo {efo E(Xs)dsll{r } , U=(t):=Eo {efo §(Xe)ds g

(Brevq1e>th B 0g 1St
(4.136)
Then
< 0 [=S] k . .
Uty <U°(t)+U (t)—l—Ktl%r@)%(tU (t) (4.137)
From Lemmas and the fact that K; = o(t), we get
1 1
lim sup { logU(t) — - log U*(t)} <e. (4.138)
t—o0 t t

Since € > 0 is arbitrary, this completes the proof of the upper bound in () O

§4.5.2 Lower bound

We first introduce an alternative representation for x in () in terms of a ‘dual’
variational formula. Fix ¢ € (0,00) and a graph G = (V, E). The functional

L(g;G) = Z e1@/e ¢ [0, o0l q: V= [—00,00), (4.139)
zeV

plays the role of a large deviation rate function for the potential £ in V' (compare with
(R.1). For A C V, define

Xa(G) == — sup A (g; G) € [0, 00). (4.140)
q: V—[—00,00),
L(g;G)<1

The condition £(g; G) < 1 under the supremum ensures that the potentials ¢ have a
fair probability under the i.i.d. double-exponential distribution. Write X(G) = Xv (G).
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Proposition 4.5.4. [Alternative representations for x] For any graph G = (V, E) and
any A CV,

Xa(o; G) > Xv(o; G) = Xa(o) = xa (o). (4.141)

Proof. See [12, Section A.1] O

For the lower bound we follow [12, Section 4.1]. Fix ¢ > 0. By the definition of ¥,
there exists an infinite rooted tree T' = (V’/, E’,)) with degrees in supp(D,) such
that xr(0) < X(0) + i&. Let Q, = BY(Y) be the ball of radius r around ) in T.
By Proposition |454] and (|4.14=d)7 there exist a radius R € N and a potential profile
q: BE — R with Lg,(q; 0) < 1 (in particular, ¢ < 0) such that

Aor(@T) > —Xqr(0;T) — 36 > —X(0) — &. (4.142)

For ¢ € N, let By = B¢(O) denote the ball of radius ¢ around O in GW. We will show
next that, (P x P)-a.s. eventually as £ — co, By contains a copy of the ball Qr where
the potentail ¢ is bounded from below by ploglog|By| + q.

Proposition 4.5.5. [Balls with high exceedances] (P x P)-almost surely eventually
as { — oo, there exists a vertex z € By with Bry1(2) C By and an isomorphism
¢ : Bry1(2) = Qry1 such that &€ > ploglog |Be| + q o ¢ in Br(z). In particular,

ABr(2) (& GW) > ploglog |By| — X (o) —e. (4.143)

Any such z necessarily satisfies |z| > ¢l (P x P)-a.s. eventually as £ — oo for some
constant ¢ = ¢(p,7, X(0),€) > 0.

Proof. See [12, Proposition 4.1]. The proof carries over verbatim because the degrees
play no role. O

Proof of the lower bound in () Let z be as in Proposition . Write 7, for the
hitting time of z by the random walk X. For s € (0,1), we estimate

U(t) > Eo [efo S0 du I <qy ]I{XuGBR(z)Vue[Tz,t]}}

)

=Eo [efo DAy R, [efﬂ §) ]I{XuGBR(z)VuG[(Lv]}} ‘v:t_T }

(4.144)
where we use the strong Markov property at time 7,. We first bound the last term in
the integrand in (\4.14%). Since £ > ploglog|By| + ¢q in Br(z),

y Xu)du vologlo, N Xu)du
E, [efo (&) H{XuEBR(z)VuE[O,U]}} > eveloslos B, {efo A Iix,eQn VuE[O’v]}}
> evgloglog\BeleMQR(q;T)%R(y)?

> exp {v (ologlog | Be| — X(0) — ¢) }
(4.145)
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for large v, where we used that Bry1(z) is isomorphic to Q41 for the indicators in
the first inequality, and applied Lemma lBlj and (|414j) to obtain the second and
third inequalities, respectively. On the other hand, since £ > 0,

Eo [efo T duy e o s}} > Po(r, < s), (4.146)

and we can bound the latter probability from below by the probability that the random
walk runs along a shortest path from the root O to z within a time at most s. Such
a path (yz)‘ “ has Yo =0, Yz = 2, yi ~ yi—1 for i = 1,..., 2], has at each step from
y; precisely deg(yi) choices for the next step with equal probability, and the step is
carried out after an exponential time E; with parameter deg(y;). This gives
|2l
. o0 =121 ppi
Po(. < 5) (H Fogy) (20 < 5) = (og ™)™ Pot (1], 2))

(4.147)
where Poi, is the Poisson distribution with parameter v, and P is the generic symbol
for probability. Summarising, we obtain

dmin =] v
U(t)Z((log|z|)5l)_|zle_d‘“i“s( |Z‘T) o(t=s)[eloglog | Be|—x(0)—¢]

~ log |2])% |2
> exp { ~duns + (¢~ 9 ologlog [Bi| - X(e) — o - sl 1og (L2
~ log €)% ¢
> exp {—dmins Tt 5) [ologlog |Bs| — X(e) <]  tlog ((dg)) } 7
(4.148)
where in the last inequality we use that s < |z| and ¢ > |z|. Further assuming that
¢ = o(t), we see that the optimum over s is obtained at

Y4
N dmin + QIOgIOg |BZ| - 5(1(9) —€

Note that, by Proposition , this s indeed satisfies s < |z|. Applying (@) we get,
after a straightforward computation, (8 x P)-a.s. eventually as t — oo,

= oft). (4.149)

1 l 14 ~ 4
n logU(t) > ploglog|By| — gloglogé - g(Sg loglog?¢ —X(0) —e+ O (t) . (4.150)

Inserting log | By| ~ 94, we get

1

ElogU(t) >F,—Xx(0) —e+0(1)+ 0O (f) (4.151)
with ’ ’

Fy = olog(9e) — glog log £ — E(SZ log log £. (4.152)
The optimal ¢ for F, satisfies

Loy 14
=L[1+ (8¢ + £L50)] log] — 4+ — 4.1
8[ + (60 + £ 3;60)] ogog€+log€+1og£, (4.153)
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i.e., £ = t;[1 + o(1)]. For this choice we obtain

%log U(t) > olog(dry) — 0 — X(0) — e + o(1). (4.154)
Hence (P x P)-a.s.
lim inf {1 logU(t) — 1log U*(t)} > —¢. (4.155)
t—oo | t t
Since € > 0 is arbitrary, this completes the proof of the lower bound in () O

Remark: It is clear from (|4134l) and (|4.153) that, in order to get the correct asymp-
totics, it is crucial that both d,. and r%(h tend to zero as r — oo. This is why As-
sumption @ is the weakest condition on the tail of the degree distribution under
which the arguments in [12] can be pushed through.

§4.6 Existence and uniqueness of the Feynman-Kac
formula

We follow the argument in [24, Section 2], where existence and uniqueness of the
Feynman-Kac formula in (4.3) was shown for G = Z<.

Theorem 4.6.1. Subject to Assumptions @ and @, (@) has a unique nonnegative
solution (P x B)-almost surely. This solution admits the Feynman-Kac representation

in (1.9).

We note that, due to the exponential growth of the Galton-Watson tree, the condition
on the potential needed here is stronger than the one required in [24] on Z.

The proof of Theorem requires several preparatory results. Lemmas
and m below show the existence and uniqueness, respectively, of the Feynman-Kac

solution for a deterministic potential. Lemma M extends this to a random potential.

Consider the problem

Owu(z,t) = (Agu)(x,t) + q(@)u(z,t), €V, t>0,

w(z,0) = dolx), zev., (4.156)

where q is a deterministic potential that is bounded from below. Without loss of gen-
erality, we may assume that ¢ is nonnegative.

Define
v(z,t) =Ep efo 9(X.)ds X ==x}]. (4.157)
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Lemma 4.6.2. [Existence] (4.156) admits at least one nonnegative solution if and
only if
v(z,t) < oo YV (t,x) e Ry x V. (4.158)

If (L.158) is fulfilled, then v is the minimal nonnegative solution of (#.154).

Proof. See [12, Lemma 2.2]. The proof relies on restricting the Feynman-Kac func-
tional in (@) to cubes of length 2N around the origin and letting N — oo. On the
tree we restrict to balls of radius R around the root and let R — oco. The arguments
carry over with this change. O

Lemma 4.6.3. [Uniqueness] If q is bounded from below, then (4.156) admits at most
one nonnegative solution PB-almost surely.

Proof. 1t suffices to show that () with initial condition u(z,0) = 0, € V, only
has the 0 solution. We follow the proof of [24, Lemma 2.3]. For R € N, define I'p to
be the set of paths

v:O=x9g—=>T1 > =Ty (4.159)

consisting of neighbouring vertices in V' such that zg, -+ ,2,-1 € Br(O) and z,, €
Zp+1. Furthermore, define

v+ ={x € v:q(z) > 0}. (4.160)

Let 7 be the first time when the random walk hits Zr1, and let v be a solution of
(m The Feynman-Kac representation of v reads

v(t,0) = Eo l:efo Fa(Xo)ds, (t — TR, X(TR)> 1{rg < t}} . (4.161)
We are done once we show that

T R—-1
U(T70)>(t) e~ (1os NI =)y, (¢ ) (4.162)

for all 0 < t < T and all R € N. Indeed, in that case the right-hand side tends to
infinity as R — oo, and therefore so does the left-hand side, which leaves v(t,0) = 0
for all ¢ € (0,77 as the only possible solution.

To prove (), fix an arbitrary path v € I'r. The contribution of the random
walk moving along the path v equals x-(t) with

X~(t) = (H g) Eo (exp {Z qial}v (t - Zai,mn> 1 {Z o; < t}) ,
=0 1=0 i=0 i=0 (4163)

where ¢; = ¢(x;) and the o; are the successive waiting times of the random walk, which
are independent and exponentially distributed with parameter D;. Letting m be such
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that ¢(z,,) = min g(x), we can rewrite () as

/ / stlexp{zo } <T Zs“xn> exp {nzé g —
/ / stlexp{zo logR} ( stn> exp{nzl (g —
e (4.164)

where the inequality uses Lemma (a), which shows that the maximal degree is
o(R) as R — oo. After some straightforward manipulations and making a change of
integration variables (for full details see [24, (2.14)—(2.15)]), we arrive at () O

Lemma 4.6.4. For eacht > 0,

Po (m[ax] | X,| = ) < e [HeWIRlos R B, P —as., (4.165)
se(0,t

where, for x € V, |z| = dist(O,x) denotes the distance between x and the root O.

Proof. For fixed R, let (Xt)t>0 be the random walk on the regular tree with offspring
Dp such that D, < Dpg for all x € Br(O). From Lemma }, Dr = o(R). Define
(N(t))i>0 to be the Poisson process with rate Dg, assomated Wlth the jumps of X.
We estimate

Po (max |X,| = ) <Po <max |X,| = R) <Po(N(t) = R).

s€[0,1] s€[0,t]
Since "
D
Po(N(t) = R) = ¢ g') e thm,
() follows from Stirling’s formula. O

Proof of Theorem . We follow the proof of [24, Theorem 2.1 a)]. We need to
check that the expression in (@) is finite for arbitrary (¢,z) € Ry x V. To that end
we estimate

Eo [efot aX)ds e, = x}} S Po <max 1X,| = )exp {t max )g(y)}.

Br(O
ReN yeBR(

We know from Lemma that maico)é(y) ~ plog(6R) as R — oo, (P x P)-a.s.
yEBR

(recall (@) and ()) Applying Lemma , we see that the sum on the right-hand
side is indeed finite. O
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