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APPENDIX A
Appendix: Part I

§A.1 Large deviation principle for the local times of
Markov renewal processes

The following LDP, which was used in the proof of Lemma 2.3.7, was derived in [31,
Proposition 1.2], and generalises the LDP for the empirical distribution of a Markov
proceses on a finite state space derived in [15]. See [11, Chapter III] for the definition
of the LDP.

Proposition A.1.1. Let Y = (Yt)t≥0 be the Markov renewal process on the finite
graph G = (V,E) with transition kernel (πx,y){x,y}∈E and with sojourn times whose
distributions (ψx)x∈V have support (0,∞). For t > 0, let LY

t denote the empirical
distribution of Y at time t (see (2.12)). Then the family (P(LY

t ∈ ·))t>0 satisfies the
LDP on P(V ) with rate t and with rate function I†

E given by

I†
E(p) = inf

β∈(0,∞)
inf

q∈P(V )

[
K̂(βq) + K̃(p | βq)

]
(A.1)

with

K̂(βq) = sup
q̂∈P(V )

∑
x∈V

βq(x) log
(

q̂(x)∑
y∈V

πx,y q̂(y)

)
, (A.2)

K̃(p | βq) =
∑
x∈V

βq(x) (Lλx)
(

p(x)
βq(x)

)
, (A.3)

where
(Lλx)(α) = supθ∈R[αθ − λx(θ)], α ∈ [0,∞),

λx(θ) = log
∫∞

0 eθτψx(dτ), θ ∈ R.
(A.4)

The rate function I†
E consist of two parts: K̂ in (A.2) is the rate function of the

LDP on P(V ) for the empirical distribution of the discrete-time Markov chain on
V with transition kernel (πx,y){x,y}∈E (see [11, Theorem IV.7]), while K̃ in (A.3) is
the rate function of the LDP on P(0,∞) for the empirical mean of the sojourn times,
given the empirical distribution of the discrete-time Markov chain. Moreover, λx is the
cumulant generating function associated with ψx, and Lλx is the Legendre transform
of λx, playing the role of the Cramèr rate function for the empirical mean of the i.i.d.
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sojourn times at x. The parameter β plays the role of the ratio between the continuous
time scale and the discrete time scale.

§A.2 Sojourn times: cumulant generating functions
and Legendre tranforms

In Appendix A.2.1 we recall general properties of cumulant generating functions and
Legendre transforms, in Appendices A.2.2 and A.2.3 we identify both for the two
sojourn time distributions arising in Lemma 2.3.7, respectively.

§A.2.1 General observations
Let λ be the cumulant generating function of a non-degenerate sojourn time distribu-
tion ϕ, and Lλ be the Legendre transform of λ (recall (2.25)). Both λ and Lλ are
strictly convex, are analytic in the interior of their domain, and achieve a unique zero
at θ = 0, respectively, α = αc with αc =

∫∞
0 τϕ(dτ). Furthermore, λ diverges at some

θc ∈ (0,∞] and has slope αc at θ = 0. Moreover, if the slope of λ diverges at θc, then
Lλ is finite on (0,∞).

The supremum in the Legendre transform defining (Lλ)(α) is uniquely taken at
θ = θ(α) solving the equation

λ′(θ(α)) = α, α > 0.

The tangent of λ with slope α at θ(α) intersects the vertical axis at (−Lλ)(α), i.e.,
putting

µ(α) = λ(θ(α)) (A.5)

we have
µ(α) = α(Lλ)′(α) − (Lλ)(α). (A.6)

(See Fig. A.1.) Note that by differentiating (A.6) we get

µ′(α) = α(Lλ)′′(α),

which shows that α 7→ µ(α) is strictly increasing and hence invertible, with inverse
function µ−1. Note that by differentiating the relation (Lλ)(α) = αθ(α) − λ(θ(α)) we
get

(Lλ)′(α) = θ(α). (A.7)

A further relation that is useful reads

(Lλ)′ ◦ µ−1 = λ−1, (A.8)

which follows because µ = λ ◦ θ by (A.5) and (Lλ)′ = θ by (A.7).
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Figure A.1: Picture exhibiting the link between λ(θ), (Lλ)(α), θ(α), µ(α). The dotted line is
the tangent of λ with slope α, crossing the horizontal axis at −(Lλ)(α), and touching λ at
the point (θ(α), µ(α)). All are analytic on the interior of their domain.

§A.2.2 Exponential sojourn time
If ϕ = EXP(d+ 1), then the cumulant generating function λ(θ) = log

∫∞
0 eθτψ(dτ) is

given by

λ(θ) =

{
log
(

d+1
d+1−θ

)
, θ < d+ 1,

∞, θ ≥ d+ 1.

To find (Lλ)(α), we compute

∂

∂θ
[αθ− log( d+1

d+1−θ )] = α− 1
d+ 1 − θ

,
∂2

∂θ2 [αθ− log( d
d+1−θ )] = − 1

(d+ 1 − θ)2 < 0.

Hence the supremum in (2.24) is uniquely taken at

θ(α) = d+ 1 − 1
α , α > 0,

so that
(Lλ)(α) = α(d+ 1) − 1 − log[α(d+ 1)], α > 0. (A.9)

Thus, λ and Lλ have the shape in Fig. A.2, with θc = d+ 1 and αc = 1
d+1 , and with

limθ↑θc
λ(θ) = ∞ and limθ↑θc

λ′(θ) = ∞.
Note that µ has domain (0,∞) and range R.

§A.2.3 Non-exponential sojourn time
For ϕ = ψ the computations are more involved. Let T ∗ = (E, V ) be the infinite rooted
regular tree of degree d+ 1. Write O for the root. Let X = (Xn)n∈N0 be the discrete-
time simple random walk on T ∗ = (E, V ) starting from O. Write τO to denote the
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Figure A.2: Picture of θ 7→ λ(θ) (left) and α 7→ (Lλ)(α) (right) for ϕ = EXP(d+ 1).

time of the first return of X to O. Define r = PO(τO < ∞). It is easy to compute r
by projecting X on N0: r is the return probability to the origin of the random walk on
N0 that jumps to the right with probability p = d

d+1 and to the left with probability
q = 1

d+1 , which equals p
q (see [33, Section 8]). Thus, r = 1

d .
For y ∈ T ∗, define hy = Py(τO < ∞). Then hy can be explicitly calculated, namely,

hy =

{
d−|y|, y ∈ T ∗ \ {O},
1, y = O.

Note that h is a harmonic function on T ∗ \ O, i.e., hy =
∑

z∈T ∗ π̂y,zhz, y ∈ T ∗ \ O.
We can therefore consider the Doob-transform of X, which is the random walk with
transition probabilities away from the root given by

σ̌y,z =


d

d+1 , z = y↑,

1
d

1
d+1 , z 6= y↑, {y, z} ∈ E,

0, else,
y ∈ T ∗ \ {O},

and transition probabilities from the root are given by

σ̌O,z =

{
1
d , {O, z} ∈ E,

0, else.

Thus, the Doob-transform reverses the upward and the downward drift of X.
Recall from Lemma 2.3.7 that ψ is the distribution of τO conditional on {τO < ∞}

and on X leaving O at time 0.

Lemma A.2.1. Let λ(θ) = log
∫∞

0 eθτψ(dτ). Then

eλ(θ) =

{
d+1−θ

2

[
1 −

√
1 − 4d

(d+1−θ)2

]
, θ ∈ (−∞, θc],

∞, else,
(A.10)
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with θc = (
√
d−1)2. The range of exp ◦λ is (0,

√
d ], with the maximal value is uniquely

taken at θ = θc.

Proof. To compute the moment-generating function of τO, we consider the Doob-
transform of X and its projection onto N0. Let p2k = P (τO = 2k). It is well-known
that (see [33, Section 8])

Gp,q(s) = E(sτO | τO < ∞) =
∑
k∈N

s2kp2k = 1
2p

[
1 −

√
1 − 4pqs2

]
, |s| ≤ 1.

(A.11)
Therefore we have

eλ(θ) = E(eθτO ) =
∑
k∈N

p2k

[
E
(

eθ EXP(d+1)
)]2k−1

=
∑
k∈N

p2k

(
d+ 1

d+ 1 − θ

)2k−1

=
(
d+ 1 − θ

d+ 1

)
Gp,q(s)

(A.12)

with
p = 1

d+1 , q = d
d+1 , s = d+ 1

d+ 1 − θ
.

Inserting (A.11) into (A.12), we get the formula for λ(θ). From the term in the square
root we see that λ(θ) is finite if and only if θ ≤ θc = d+ 1 − 2

√
d = (

√
d− 1)2.

There is no easy closed form expression for (Lλ)(α), but it is easily checked that
λ and Lλ have the shape in Fig. A.3, with θc = (

√
d− 1)2 and αc =

∫∞
0 τψ(dτ) < ∞,

and with λ(θc) = log
√
d < ∞ and λ′(θc) = ∞, i.e., there is a cusp at the threshold

θc, implying that Lλ is finite on (0,∞). It follows from (A.7) that

lim
α→∞

1
α

(Lλ)(α) = lim
α→∞

θ(α) = θc. (A.13)

0
θ

θc

λ(θ)

αc

r
0

α

(Lλ)(α)

αc

r

r

Figure A.3: Picture of θ 7→ λ(θ) (left) and α 7→ (Lλ)(α) (right) for ϕ = ψ.
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Lemma A.2.2. The function λ−1 ◦ log = (exp ◦λ)−1 is given by

(exp ◦λ)−1(β) = d+ 1 − β − d

β
, β ∈ (0,

√
d ]. (A.14)

The range of (exp ◦λ)−1 is (−∞, θc], with the maximal value θc uniquely taken at
β =

√
d.

Proof. We need to invert exp ◦λ in (A.10). Abbreviate χ = d+1−θ
2 . Then

β = χ

[
1 −

√
1 − d

χ2

]
=⇒ χ = β2 + d

2β
=⇒ θ = d+ 1 − β2 + d

β
.

Note that (
√
d,∞) is not part of the domain of (exp ◦λ)−1, even though the right-hand

side of (A.14) still makes sense (as a second branch). Note that µ has domain (0,∞)
and range (−∞,

√
d ] (see Fig. A.1).

§A.3 Large deviation estimate for the local time away
from the backbone

In this appendix we derive a large deviation principle for the total local times at
successive depths of the random walk on T Z (see Fig. 2.3). This large deviation
principle is not actually needed, but serves as a warm up for the more elaborate
computations in Section 2.4.

For k ∈ N0, let Vk be the set of vertices in T Z that are at distance k from the
backbone (see Fig. 2.3). For R ∈ N, define

ℓR
t (k) =

∑
x∈Vk

ℓZt (x), k = 0, 1, . . . , R,
ℓR

t =
∑

k>R

∑
x∈Vk

ℓZt (x), k = R+ 1,

and
LR

t = 1
t

(
(ℓt(k))R

k=0, ℓ
R
t

)
.

Abbreviate V ∗
R = {0, 1, . . . , R,R+ 1},

Lemma A.3.1. For every R ∈ N, (LR
t )t≥0 satisfies the large deviation principle on

P(V ∗
R) with rate t and with rate function I†

R given by

I†
R(p) =

[√
(d− 1)p(0) −

√
dp(1)

]2 +
R−1∑
k=1

[√
p(k) −

√
dp(k + 1)

]2
+
[√

p(R) + p(R+ 1) −
√
dp(R+ 1)

]2
.

(A.15)
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0 1 R R+ 1

u u u □
· · ·

Figure A.4: Depths k = 0, 1, . . . , R and k > R.

Proof. By monitoring the random walk on the tree in Fig. 2.3 and projecting its depth
on the vertices 0, 1, . . . , R, respectively, R + 1, we can apply the LDP in Proposi-
tion A.1.1 (see Fig. A.4).

1. The sojourn times have distribution EXP(d + 1) at vertices k = 0, 1, . . . , R and
distribution ψ at vertex k = R+ 1. The transition probabilities are

π0,0 = 2
d+1 , π0,1 = d−1

d+1 ,

πk,k+1 = 1
d+1 , πk,k−1 = d

d+1 , k = 1, . . . , R,

πR+1,R = 1.

Proposition A.1.1 therefore yields that (LR
t )t≥0 satisfies the LDP on on P(V ∗

R) with
rate t and with rate function I†

R given by

I†
R(p) = (d+ 1)

R∑
k=0

p(k) + inf
v : V ∗

R
→(0,∞)

sup
u : V ∗

R
→(0,∞)

L(u, v) (A.16)

with
L(u, v) = −A−B − C, (A.17)

where

A =
R∑

k=1

v(x)
{

1 + log
(
du(k − 1) + u(k + 1)

u(k)
p(k)
v(k)

)}
,

B = v(0)
{

1 + log
(

2u(0) + (d− 1)u(1)
u(0)

p(0)
v(0)

)}
,

C = v(R+ 1)
{

log
(

u(R)
u(R+ 1)

)
− (Lλ)

(
p(R+ 1)
v(R+ 1)

)}
.

Here we use (A.9) to compute A and B, and for C we recall that Lλ is the Legendre
transform of the cumulant generation function λ of ψ computed in Lemma A.10.

2. We compute the infimum of L(u, v) over v for fixed u.

• For k = 1, . . . , R,

∂A

∂v(k)
= log

(
du(k − 1) + u(k + 1)

u(k)
p(k)
v(k)

)
,

=⇒ v̄u(k) = p(k) du(k − 1) + u(k + 1)
u(k)

.
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The second derivative is 1/v(k) > 0.

• For k = 0,
∂B

∂v(0)
= log

(
2u(0) + (d− 1)u(1)

u(0)
p(0)
v(0)

)
,

=⇒ v̄u(0) = p(0) 2u(0) + (d− 1)u(1)
u(0)

.

The second derivative is 1/v(0) > 0.

• For k = R + 1, the computation is more delicate. Define (recall (A.6) in Ap-
pendix A.2)

µ(α) = α(Lλ)
′
(α) − (Lλ)(α).

The function µ has range (−∞, log
√
d ], with the maximal value uniquely taken at

α = ∞. Therefore there are two cases.

▶ u(R+ 1)/u(R) ≤
√
d. Compute

∂C

∂v(R+ 1)
= µ

(
p(R+ 1)
v(R+ 1)

)
− log

(
u(R+ 1)
u(R)

)
,

=⇒ v̄(R+ 1) = p(R+ 1)
αu(R+ 1)

with αu(R+ 1) solving the equation

log
(
u(R+ 1)
u(R)

)
= µ

(
αu(R+ 1)

)
.

Since µ′(α) = α(Lλ)′′(α) and Lλ is strictly convex (see Fig. A.3 in Appendix A.2), µ
is strictly increasing and therefore invertible. Consequently,

αu(R+ 1) = µ−1
(

log
(
u(R+ 1)
u(R)

))
. (A.18)

Putting (A.17)–(A.18) together, we get

L(u) = inf
v : V ∗

R
→(0,∞)

L(u, v) = −
R∑

k=1

Au(k) −Bu + Cu (A.19)

with

Au(k) = du(k − 1) + u(k + 1)
u(k)

p(k), k = 1, . . . , R,

Bu = 2u(0) + (d− 1)u(1)
u(0)

p(0),
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and
Cu = p(R+ 1)

αu(R+ 1)

[
(Lλ)

(
αu(R+ 1)

)
− log

(
u(R+ 1)
u(R)

)]
= p(R+ 1)
αu(R+ 1)

[
(Lλ)

(
αu(R+ 1)

)
− µ

(
αu(R+ 1)

)]
= p(R+ 1) (Lλ)

′(
αu(R+ 1)

)
= p(R+ 1) ((Lλ)

′
◦ µ−1)

(
log
(
u(R+ 1)
u(R)

))
.

In (A.8) in Appendix A.2 we showed that (Lλ)′ ◦ µ−1 = λ−1. Moreover, in (A.14) in
Appendix A.2 we showed that (λ−1 ◦ log) = S with

S(β) = d+ 1 − β − d

β
, β ∈ (0,

√
d ]. (A.20)

Since S has domain (0,
√
d ], Cu(R+ 1) is only defined when u(R+ 1)/u(R) ≤

√
d, in

which case
Cu = p(R+ 1)S

(
u(R+ 1)
u(R)

)
. (A.21)

▶ u(R+1)/u(R) ≤
√
d. In this case ∂C

∂v(R+1) > 0, the infimum is taken at v̄(R+1) = 0,
and hence (recall (A.13))

Cu = p(R+ 1) (
√
d− 1)2 = p(R+ 1)S(

√
d). (A.22)

Note that the right-hand side does not depend on u. The expressions in (A.21)–(A.22)
can be summarised as

Cu = p(R+ 1)S
(√

d ∧ u(R+ 1)
u(R)

)
.

3. Next we compute the supremum over u of

L(u) = L(u, v̄u) = −Au −Bu + Cu. (A.23)

with Au =
∑R

k=1 Au(k). We only write down the derivatives that are non-zero.
• For k = 2, . . . , R− 1,

− ∂Au

∂u(k)
= −p(k + 1) d

u(k + 1)
− p(k − 1) 1

u(k − 1)
+ p(k) du(k − 1) + u(k + 1)

u(k)2 .

• For k = 1,

− ∂Au

∂u(1)
= −p(2) d

u(2)
+ p(1) du(0) + u(2)

u(1)2 ,

− ∂Bu

∂u(1)
= −p(0) d− 1

u(0)
.
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• For k = R,

− ∂Au

∂u(R)
= −p(R− 1) 1

u(R− 1)
+ p(R) du(R− 1) + u(R+ 1)

u(R)2 ,

∂Cu

∂u(R)
= p(R+ 1)

[
u(R+ 1)
u(R)2 − d

u(R+ 1)

]
1{u(R+1)

u(R) ≤
√

d
}.

• For k = 0,

− ∂Au

∂u(0)
= −p(1) d

u(1)
,

− ∂Bu

∂u(0)
= p(0) (d− 1)u(1)

u(0)2 .

• For k = R+ 1,

− ∂Au

∂u(R+ 1)
= −p(R) 1

u(R)
,

∂Cu

∂u(R+ 1)
= p(R+ 1)

[
− 1
u(R)

+ du(R)
u(R+ 1)2

]
1{u(R+1)

u(R) ≤
√

d
}.

All the first derivatives of Au +Bu + Cu are zero when we choose

ū(0) =
√

(d− 1)p(0), ū(k) =
√
dkp(k), k = 1, . . . , R,

ū(R+ 1) =

√
dR+1 p(R)p(R+ 1)

p(R) + p(R+ 1)
.

(A.24)

All the second derivatives are strictly negative, and so ū is the unique maximiser.

4. Inserting (A.24) into (A.19), we get

L(ū) = L(ū, v̄ū) = −
R−1∑
k=2

Aū(k) −
[
Aū(1) +Bū

]
−Aū(R) + Cū

= −
R−1∑
k=2

√
dp(k)

[√
p(k − 1) +

√
p(k + 1)

]
−
[
2
√
d(d− 1)p(0)p(1) + 2p(0) +

√
dp(1)p(2)

]
−

[√
dp(R− 1)p(R) +

√
p(R)

p(R) + p(R+ 1)
√
dp(R)p(R+ 1)

]

+ p(R+ 1)S

(√
dp(R+ 1)

p(R) + p(R+ 1)

)
.

Recalling (A.16), (A.20) and (A.23), and rearranging terms, we find the expression in
(A.15).
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Note that I†
R has a unique zero at p given by

p(0) = 1
2 , p(k) = 1

2 (d− 1)d−k, k = 1, . . . , R, p(R+ 1) = 1
2d

−R.

This shows that the fraction of the local time typically spent a distance k away from
the backbone decays exponentially fast in k.
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