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CHAPTER 3
The parabolic Anderson model on a

periodic Galton-Watson tree

Abstract

In [14], the annealed total mass of the solution to the parabolic Anderson model on a regular
tree with an i.i.d. double-exponential random potential was studied. The first two terms in
the asymptotic expansion for large time of the total mass was identified. This chapter extends
the analysis to a periodic Galton-Watson tree with large periodicity and is therefore a crucial
step towards understanding the annealed total mass on the regular Galton-Watson tree. To
do this we need to carefully deal with the non-homogeneity of the periodic Galton-Watson
tree.
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§3.1 Introduction and main results

In [12], the quenched asymptotic growth rate of the total mass of the PAM on a
Galton-Watson tree was indentified. The ultimate goal in this chapter is to obtain
the corresponding result in the annealed setting, i.e. the growth rate when averaged
over the potential. Chapter 2 made the first step in this direction by considering the
regular tree. This chapter considers the Galton-Watson tree with large periodicity,
which approximates the full Galton-Watson tree and is therefore another step towards
our goal. The periodicity allows us to build on the previous chapter, where the key
techniques developed heavily rely on an underlying periodic structure. The main
challenge here is to navigate the non-homogeneity of the periodic Galton-Watson tree,
which has to be dealt with carefully.

In Section 3.1, the periodic Galton-Watson tree is defined, and the PAM and key
quantities are introduced. In Section 3.2 the main theorem is stated. Sections 3.3 and
3.4 concern the proof of the main theorem through a lower, and respectively an upper
bound.

§3.1.1 Definition of the periodic Galton-Watson tree
We analyse the PAM on the graph generated by a ‘periodic’ Galton-Watson tree. The
graph is generated by first taking Z, and looking at [N ] = {0, 1, · · · , N} ⊂ Z. From
each x ∈ [N ], independently generate a Galton-Watson tree with offspring distribution
D, except at the roots x ∈ [N ] where the offspring distribution is D − 1. Let the tree
rooted at x be denoted by Tx. For x ∈ Z \ [N ], repeat the same Galton-Watson tree
that was generated at x mod (N + 1). In other words, the trees Tx and Ty are equal
if x = y mod (N + 1). This can be equivalently viewed as the infinite concatenation
of [N ] with all the generated Galton-Watson trees hanging off. Denote the resulting
tree by GW = (V,E, 0) and the probability with respect to GW by P. Note that the
standard Galton-Watson tree corresponds to N = ∞, so that there is no periodicity,
or alternatively, each vertex in Z has an independent Galton-Watson hanging off it,
and not just the vertices [N ].

§3.1.2 The PAM on a periodic Galton-Watson tree
See (1.14) for the definition of the PAM on a general (locally-finite) graph and other
relevant notation. Recall that the annealed total mass is given by the Feynman-Kac
representation

〈U(t)〉 =
〈
E0

(
e
∫ t

0
ξ(Xs)ds

)〉
. (3.1)

where 〈·〉 denotes expectation with respect to the potential ξ = (ξ(x))x∈GW , X =
(Xt)t≥0 a continuous-time random walk on the vertices V with jump rate 1 along the
edges E, and P0 denotes the law of X given X0 = 0.
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§3.1.3 Assumptions on the potential
We make the same assumptions as in the previous chapter. Throughout the paper we
assume that the random potential ξ consists of i.i.d. random variables with a marginal
distribution whose cumulant generating function

H(u) = log
〈

euξ(O)
〉

(3.2)

satisfies the following:

Assumption 3.A. [Asymptotic double-exponential potential]
There exists a ϱ ∈ (0,∞) such that

lim
u→∞

uH ′′(u) = ϱ. (3.3)

■

It will be useful later on to observe that, since ξ is assumed to be i.i.d., we have from
(3.1)-(3.2) that

〈U(t)〉 = EO

(
exp

[∑
x∈V

H(ℓt(x))
])

, (3.4)

where
ℓt(x) =

∫ t

0
1{Xs = x} ds, x ∈ V, t ≥ 0,

is the local time of X at vertex x up to time t. See Chapter 2.1.2 for further details.

§3.2 Main theorem: annealed total mass for large
times

To state the main theorem, we introduce the following characteristic variational for-
mula. Denote by P(V ) the set of probability measures on V . For p ∈ P(V ), define

IE(p) =
∑

{x,y}∈E

(√
p(x) −

√
p(y)

)2
, JV (p) = −

∑
x∈V

p(x) log p(x), (3.5)

and set
χGW(ϱ) = inf

p∈P(V )
[IE(p) + ϱJV (p)], ϱ ∈ (0,∞). (3.6)

The first term in (3.5) is the quadratic form associated with the Laplacian, which is
the large deviation rate function for the empirical distribution

Lt = 1
t

∫ t

0
δXs ds = 1

t

∑
x∈V

ℓt(x)δx ∈ P(V ). (3.7)

The following lemma links the Feynman-Kac formula (3.4) to the main theorem, as
well as introduces several quantities that are used later on in the proof. The lemma
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pulls the leading order term out of the expansion and shows that the second order
term is controlled by the large deviation principle for the empirical distribution of the
normalised local times.

Lemma 3.2.1. [Key object for the expansion] If G = (V,E) is finite, then

〈U(t)〉 = eH(t)+o(t) EO

(
e−ϱtJV (Lt)

)
, t → ∞, (3.8)

where JV is the functional in (3.6) and Lt is the empirical distribution in (3.7).

Proof. See Lemma 2.1.2 in Chapter 2

For the offspring distribution D, denote its support by supp(D). For technical reasons
we require the following assumption.

Assumption 3.B. [Offspring distribution]
There exist 4 ≤ d− ≤ d+ < ∞ such that supp(D) ⊆ [d−, d+]. ■

Theorem 3.2.2. Subject to Assumptions 3.A and 3.B, as t → ∞,

1
t

log〈U(t)〉 = ϱ log(ϱt) − ϱ− χGW(ϱ) + o(1), P-a.s. (3.9)

The variational formula depends on the realisation of GW and hence is a random
object. However, as will become clear from later analysis, it is actually deterministic
and equal to the one of the embedded regular tree with degrees d− + 1. The latter has
been studied in Chapter 2.5.

§3.3 Proof of main theorem: lower bound
A lower bound for (3.9) in Theorem 3.2.2 is obtained though a standard and straight-
forward argument. Let BR(0) ⊂ GW be the ball of radius R around 0 in the graph
distance. We consider a random walk that is killed when it leaves BR(0). This gives

1
t

log〈U(t)〉 ≥ ϱ log(ϱt) − ϱ− χ−
R(ϱ) + o(1), t → ∞,

with χ−
R(ϱ) the variational formula on BR(0) with zero boundary condition. It is easily

shown that χ−
R(ϱ) → χGW(ϱ) as R → ∞. Hence, letting R → ∞ we get the desired

lower bound. See Chapter 2.2 for technical details. The inhomogeneity of the periodic
Galton-Watson tree plays no role in the argument, which carries over exactly.

§3.4 Proof of main theorem: upper bound
In this section we prove the upper bound for (3.9) in Theorem 3.2.2. We try to follow
the argument used on the regular tree in the previous chapter. Again, the argument
is comprised of four steps:
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(I) Condition on the backbone of X (Section 3.5.1).

(II) Project X onto a concatenation of finite subtrees attached to this backbone that
have depth R and special tadpoles at the bottom. (Section 3.5.2).

(III) Periodise the projected X to obtain a Markov renewal process on a finite graph
(Section 3.5.3).

(IV) Use the large deviation principle for the empirical distribution of Markov renewal
processes derived in [31] to obtain a variational formula on a single subtree
(Section 3.5.4).

Finally, in Section 3.6 we derive the upper bound of the expansion by letting R → ∞
in the variational formula.

§3.5 Backbone, projection, periodisation and upper
variational formula

§3.5.1 Backbone
Although the intuition is the same as on the regular tree, the backbone has to be
defined more carefully due to the inhomogeneity. Since X is transient, it escapes to
infinity along a path in Tn for some n ∈ Z. We can assume n ∈ N0, for if not, we can
reflect the labelling in Section 3.1.1 so that this is the case. For k ∈ Z+, let Zk denote
all the vertices at distance k from 0 and belonging to ∪l∈Z+Tl. Similarly for k ∈ Z−,
Zk denotes all the vertices at distance k from 0, and belonging to ∪l∈Z−Tl. For fixed
k ∈ Z, define Tk to be the last time X visits Zk, i.e.

Tk = sup{t > 0 : Xt ∈ Zk}.

The backbone is the sequence of vertices (XTk
)k≥0 with the convention that XT0 = 0,

and can be interpreted as the path along which the random walk escapes to infinity.
The following lemma shows that we may assume that the backbone can be taken equal
to Z without loss of generality.

Lemma 3.5.1. For every t ≥ 0,

EO

exp
[ ∑

x∈V (GW)

H(ℓt(x))
] = EO

exp
[ ∑

x∈V (GW)

H(ℓt(x))
] ∣∣∣∣∣ (XTk

)k≥0 = Z


in distribution.

Proof. We apply the following permutations to GW that turns the backbone into Z.
We do the permutations inductively on k as follows:

• Since XT0 is already in Z by convention, we do not permute it.
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• Suppose that GW has been permuted such that XTi = i ∈ Z for all i = 0, · · · , j−
1. Then XTj is in the subtree rooted at XTj−1 . If XTj 6= j ∈ Z, then we can
swap it and the tree hanging below it with j and the tree hanging below it. In
other words, we swap TXTj

with Tj .

This permutation procedure preserves the edges and the vertices and so the resulting
tree is isomorphic to GW. Therefore, conditioning on the backbone being Z does not
affect the distribution of the total mass given in (3.4).

§3.5.2 Projection
For every vertex that is distance R from the backbone, replace the tree hanging below
it by a special tadpole vertex. R is chosen such that it is a multiple of N , i.e. R = nN

for some n ∈ N, with N from Section 3.1.1. Denote this truncated version of GW by
GWR. We apply the following map to X. Whenever X travels farther than distance
R from the backbone, its excursion is cut off and replaced by a sojourn time at the
corresponding tadpole. The resulting path, which we call XR = (XR

t )t≥0, is a Markov
renewal process on GWR with the following properties:

• The sojourn times in all the vertices that are not tadpoles have distribution
EXP(Dx + 1).

• The sojourn times in all the tadpole attached to vertex x have distribution ψx,
defined as the conditional distribution of the return time τx of the random walk
on the Galton-Watson tree rooted at x given that τx < ∞ (again see [30] for a
proper definition).

• The transitions into the tadpoles have probability Dx

Dx+1 , the transitions out of
the tadpoles have probability 1 (because of the conditioning on the backbone).
Here Dx denotes the number of offspring of x, which has the same distribution
as D (and Dx + 1 is the degree of the vertex).

Write (ℓGWR
t (x))x∈VGWR

to denote the local times of XR at time t.

Lemma 3.5.2. [Projection onto tadpoles] For every R ∈ (NZ) ∩ N and t ≥ 0,

E0

exp
[ ∑

x∈V (GW)

H(ℓt(x))
] ≤ E0

exp
[ ∑

x∈V (GWR)

H(ℓGWR
t (x))

] .

Proof. See Lemma 2.3.3. The map stacks local times on top of each other and the
inequality follows from the convexity of H defined in (3.2).

§3.5.3 Periodisation
We cut GWR into periodic units of length R+1 with the same R as in Section 3.5.2. We
do this in the natural way following the inherent periodic structure.By the contruction
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of the perodic Galton-Waton tree, we can fold all paths of XR that are in Tm into paths
in Tx where m = x mod (R + 1) for all m ∈ Z since the trees are identical. Finally,
paths that go from R mod (R+1) to 0 mod (R+1) are folded by adding an additional
edge between 0 and R. Denote the periodised graph by GWπ,R and the random walk
on GWπ,R by Xπ,R, which is obtained by folding XR. Write (ℓπ,R

t (x))x∈VGWR
to

denote the local times of Xπ,R at time t.

Lemma 3.5.3. [Periodisation to a finite graph] For every R ∈ (NZ) ∩ N and t ≥ 0,

E0

exp
[ ∑

x∈V (GWR)

H(ℓGWR
t (x))

] ≤ E0

exp
[ ∑

x∈V (GWπ,R)

H(ℓπ,R
t (x))

] .

Proof. The periodisation again stacks local times on top of each other.

Crucial observation. Let ∂VR be the set of vertices to which a tadpole is attached.
Due to shift invariance, we may assume that the total local time spent at ∂VR ∪ 0 ∪ ⋆,
is at most t/R, without loss of generality. See Lemma 2.3.6 for more details.

§3.5.4 Large deviation rate function
We use the following large deviation principle for Markov renewal processes derived
in [31].
To simplify notation, we define
⋆ = vertex R on the backbone,
□ = set of tadpoles,
∂VR = set of vertices neighbouring □,
int(VR) = VR \ (□ ∪ ∂VR),
□x = tadpole attached to x ∈ ∂VR\⋆.

1. For x /∈ □, ψx = EXP(Dx + 1), and so

λx(θ) =

{
log
(

Dx+1
Dx+1−θ

)
, θ < Dx + 1,

∞, θ ≥ Dx + 1.

To find λ∗
x(α) we compute

∂

∂θ
[αθ−log( Dx+1

Dx+1−θ )] = α− 1
Dx + 1 − θ

,
∂2

∂θ2 [αθ−log( Dx

Dx+1−θ )] = − 1
(Dx + 1 − θ)2 < 0.

This gives that the supremum in (A.4) is uniquely taken at

θ∗ = Dx + 1 − 1
α , α > 0,

so that
λ∗

x(α) = α(Dx + 1) − log[α(Dx + 1)] − 1, α > 0. (3.10)
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2. Inserting (3.10) into (A.1)–(A.3), we get

I†
ER

(p) =
∑

x∈VR

∑
y∼x

p(x) + inf
β∈(0,∞)

inf
q∈P(VR)

sup
q̂∈P(VR)

L(β, q, q̂ | p),

where we recall that y ∼ x means that x and y are connected by an edge in GWπ,R

(denoted by ER), and

L(β, q, q̂ | p) = −A−B − C −D,

where
A =

∑
x∈int(VR)

βq(x)
{

1 + log
(∑

y∼x q̂(y)
q̂(x)

p(x)
βq(x)

)}
,

B =
∑

x∈∂VR\⋆

βq(x)
{

1 + log
(
q̂(x↑) +Dxq̂(□x)

q̂(x)
p(x)
βq(x)

)}
,

C = βq(⋆)
{

1 + log
(
q̂(⋆↑) +D⋆q̂(O)

q̂(⋆)
p(⋆)
βq(⋆)

)}
,

D =
∑
x∈□

βq(x)
{

log
(
q̂(x↑)
q̂(x)

)
− (Lλx)

(
p(x)
βq(x)

)}
,

with Lλx the Legendre transform of the cumulant generating function of ψx and x↑

the unique vertex to which x is attached upwards. Note that A,B,C each combine
two terms, and that A,B,C,D depend on p. We suppress this dependence because p
is fixed.

3. Inserting the parametrisation q̂ = u/‖u‖1 and q = v/‖v‖1 with u, v : VR → (0,∞)
and putting βq = v, we may write

I†
ER

(p) =
∑

x∈VR

(Dx + 1)p(x) + inf
v : VR→(0,∞)

sup
u : VR→(0,∞)

L(u, v) (3.11)

with
L(u, v) = −A−B − C −D,

where
A =

∑
x∈int(VR)

v(x)
{

1 + log
(∑

y∼x u(y)
u(x)

p(x)
v(x)

)}
,

B =
∑

x∈∂VR\⋆

v(x)
{

1 + log
(
u(x↑) +Dxu(□x)

u(x)
p(x)
v(x)

)}
,

C = v(⋆)
{

1 + log
(
u(⋆↑) +Dxu(O)

u(⋆)
p(⋆)
v(⋆)

)}
,

D =
∑
x∈□

v(x)
{

log
(
u(x↑)
u(x)

)
− (Lλx)

(
p(x)
v(x)

)}
.

(3.12)

Our task is to carry out the supremum over u and the infimum over v in (3.11).
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4. First, we compute the infimum over v for fixed u. (Later we will make a judicious
choice for u to obtain a lower bound.) Abbreviate

Au(x) =
∑

y∼x u(y)
u(x)

p(x), x ∈ int(VR),

Bu(x) = u(x↑) +Dxu(□x)
u(x)

p(x), x ∈ ∂VR\⋆,

Cu(⋆) = u(⋆↑) +D⋆u(O)
u(⋆)

p(⋆).

(3.13)

• For z ∈ VR, the first derivatives of L are

z ∈ int(VR) : ∂L(u, v)
∂v(z)

= − log
(
Au(z)
v(z)

)
,

z ∈ ∂VR\⋆ : ∂L(u, v)
∂v(z)

= − log
(
Bu(z)
v(z)

)
,

z = ⋆ : ∂L(u, v)
∂v(z)

= − log
(
Cu(z)
v(z)

)
,

while the second derivatives of L equal 1/v(z) > 0. Hence the infimum is uniquely
taken at

x ∈ int(VR) : v̄(x) = Au(x),
x ∈ VR\⋆ : v̄(x) = Bu(x),
x = ⋆ : v̄(x) = Cu(x).

• For z ∈ □, the computation is more delicate. Define

µx(α) = α(Lλx)
′
(α) − (Lλx)(α).

The function µx has range (−∞, logMx] for some Mx < ∞. The maximal value is
uniquely taken at α = ∞. Therefore there are two cases.

▶ u(z)/u(z↑) ≤ Mz: Abbreviate αu(z) = p(z)/v(z). For z ∈ □,

∂L(u, v)
∂v(z)

= log
(
u(z)
u(z↑)

)
+ (Lλz)

(
p(z)
v(z)

)
− p(z)
v(z)

(Lλz)
′
(
p(z)
v(z)

)
= log

(
u(z)
u(z↑)

)
− µz(αu(z)),

∂2L(u, v)
v(z)2 = p2(z)

v3(z)
(Lλz)

′′
(
p(z)
v(z)

)
> 0,

where we use that Lλx, being a Legendre transform, is strictly convex. Hence the
infimum is uniquely taken at

v̄(x) = p(x)
αu(x)

, x ∈ □,
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with αu(x) solving the equation

log
(
u(x)
u(x↑)

)
= µx(αu(x)), x ∈ □.

Since µ′
x(α) = α(Lλx)′′(α) and Lλx is strictly convex (see Fig. A.3 in Appendix A.2),

µx is strictly increasing and therefore invertible. Consequently,

αu(x) = µ−1
x

(
log
(
u(x)
u(x↑)

))
, x ∈ □.

Putting the above formulas together, we arrive at (recall (3.13))

L(u) = inf
v : VR→(0,∞)

L(u, v)

= −
∑

x∈int(VR)

Au(x) −
∑

x∈∂VR\⋆

Bu(x) − Cu(⋆) +
∑
x∈□

Du(x) (3.14)

with (recall (3.12))

Du(x) = − p(x)
αu(x)

[
log
(
u(x↑)
u(x)

)
− (Lλx)(αu(x))

]
= p(x)
αu(x)

[
(Lλx)(αu(x)) − µx(αu(x))

]
= p(x) (Lλx)

′
(αu(x)) = p(x)

(
(Lλx)

′
◦ µ−1

x

)(
log
(
u(x)
u(x↑)

))
.

▶ u(x)/u(x↑) > Mz: In this case ∂L(u,v)
∂v(z) > 0, the infimum is uniquely taken at

v̄(x) = 0, and
Du(x) = p(x) θc,x, x ∈ □,

where we use (A.13). Note that the right-hand side does not depend on u.

5. Recall that (Lλx)′(α) = θ∗
x(α) and let αx = µ−1

x (log( u(x)
u(x↑) )). For u(x)/u(x↑) ∈

[1,Mx],
θ∗

x(αx) ≥ θ∗
min(αx),

while for u(x)/u(x↑) ∈ (−∞, 1),

θ∗
x(αx) < θ∗(αx).

This follows from the fact that the sojourn time at x is stochastically smaller than
that on the minimal tree. It also follows that

θc,x ≥ θc,min.

We may therefore estimate

L(u) ≥ L̄(u) := −
∑

x∈int(VR)

Au(x) −
∑

x∈∂VR\⋆

Bu(x) − Cu(⋆) +
∑
x∈□

D̄u(x),
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where

D̄u(x) =


p(x)

(
(Lλmax)′ ◦ µ−1

max
) (

log
(

u(x)
u(x↑)

))
, u(x)/u(x↑) ∈ (−∞, 1),

p(x)
(
(Lλmin)′ ◦ µ−1

min
) (

log
(

u(x)
u(x↑)

))
, u(x)/u(x↑) ∈ [1,

√
d−],

p(x)θc,min, u(x)/u(x↑) >
√
d−.

To simplify notation, we suppress min from the notation. For u(x)/u(x↑) ∈ [1, d−], it
can be shown that (Lλ)′ ◦ µ−1 = λ−1. Moreover, (λ−1 ◦ log) = S with

S(β) = d− + 1 − β − d−

β
, β ∈ (0,

√
d− ]. (3.15)

Since S has domain (0,
√
d− ], Du(x) is only defined when u(x)/u(x↑) ≤

√
d−, in which

case
D̄u(x) = p(x)S

(
u(x)
u(x↑)

)
, x ∈ □. (3.16)

On the other hand for u(x)/u(x↑) > d−,

D̄u(x) = p(x) (
√
d− − 1)2 = p(x)S(

√
d−), x ∈ □.

For u(x)/u(x↑) ∈ (−∞, 1), (3.15) and (3.16) hold with d− replaced by d+.

6. Next, we compute the supremum over u for L̄. The first derivatives of L̄ are

z ∈ int(VR)\O : ∂L̄(u)
∂u(z)

=
∑

y∼z u(y)
u2(z)

p(z) −
∑
y∼z

1
u(y)

p(y),

z = O : ∂L̄(u)
∂u(O)

=
∑

y∼O u(y)
u(O)2 p(O) −

∑
y:y↑=O

1
u(y)

p(y) − D⋆

u(⋆)
p(⋆),

z = ⋆ : ∂L̄(u)
∂u(⋆)

= − 1
u(O)

p(O) + u(⋆↑) +D⋆u(O)
u(⋆)2 p(⋆),

z ∈ ∂VR\⋆ : ∂L̄(u)
∂u(z)

= − 1
u(z↑)

p(z↑) + u(z↑) +Dzu(□z)
u(z)2 p(z)

+
[
u(□z)
u(z)2 − d−

u(□z)

]
p(□z)1{ u(z)

u(z↑)
∈[1,

√
d]
}

+
[
u(□z)
u(z)2 − d+

u(□z)

]
p(□z)1{ u(z)

u(z↑)
<1
},

z ∈ □ : ∂L̄(u)
∂u(z)

= − Dz↑

u(z↑)
p(z↑) +

[
− 1
u(z↑)

+ d−u(z↑)
u(z)2

]
p(z) 1{ u(z)

u(z↑)
∈[1,

√
d]
}

+
[
− 1
u(z↑)

+ d+u(z↑)
u(z)2

]
p(z) 1{ u(z)

u(z↑)
<1
}.

(3.17)
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The second derivatives of L are all < 0. The first line in (3.17) can be rewritten as

∑
y∼z

u(y)
[
p(z)
u2(z)

− p(y)
u2(y)

]
,

which is zero when

ū(x) =
√
p(x), x ∈ int(VR) \ O. (3.18)

Given the choice in (3.18), the fourth line in (3.17) is zero when

ū(x) =

√
d−p(x↑)p(x)

Dx↑p(x↑) + p(x)
1{ u(x)

u(x↑)
∈[1,

√
d−]
}+

√
d+p(x↑)p(x)

Dx↑p(x↑) + p(x)
1{ u(x)

u(x↑)
<1
}, x ∈ □.

(3.19)
Furthermore, the derivative in the fifth line is strictly negative when both indicators
are 0 and therefore at least one indicator must be 1. This is guaranteed since the
quotient

ū(x)
ū(x↑)

=

√
d−p(x)

Dx↑p(x↑) + p(x)
1{ u(x)

u(x↑)
∈[1,

√
d−]
} +

√
d+p(x↑)p(x)
Dx↑ + p(x)

1{ u(x)
u(x↑)

<1
}, x ∈ □,

is bounded from above by
√
d for all Dx↑ . In addition, we can rewrite the indicators

in (3.19) to get

ū(x) =

√
d−p(x↑)p(x)

Dx↑p(x↑) + p(x)
1{ p(x)

p(x↑)
≥

D
x↑

d−−1

}+

√
d+p(x↑)p(x)

Dx↑p(x↑) + p(x)
1{ p(x)

p(x↑)
<

D
x↑

d+−1

}, x ∈ □.

(3.20)
Given the choice in (3.18)–(3.19), also the fourth line in (3.17) is zero. Thus, only the
second and third line in (3.17) are non-zero, but this is harmless because O, ⋆ carry a
negligible weight in the limit as R → ∞,because of the constraint p(∂VR ∪ O) ≤ 1/R
(recall Section 3.5.3). To simplify notation, define

Ω−
□(x) =

√
d−p(x↑)p(x)

Dx↑p(x↑) + p(x)
, Ω+

□(x) =

√
d+p(x↑)p(x)

Dx↑p(x↑) + p(x)
,

and

Ω−(x) =

√
d−p(x)p(□x)

Dxp(x) + p(□x)
, Ω+(x) =

√
d+p(x)p(□x)

Dxp(x) + p(□x)
.

Inserting (3.18)–(3.19) into (3.14) and using (3.13) and (3.16), we get the following
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lower bound:
sup

u : VR→(0,∞)
L̄(u)

≥ −
∑

x∈int(VR)

Aū(x) −
∑

x∈∂VR\⋆

Bū(x) − Cū(⋆) +
∑
x∈□

D̄ū(x)

= −
∑

x∈int(VR)

∑
y∼x

√
p(y)p(x)

−
∑

x∈∂VR\⋆

√
p(x)

(√
p(x↑) +DxΩ−(x)1{ p(□x)

p(x) ≥ Dx
d−−1

} +DxΩ+(x)1{ p(□x)
p(x) < Dx

d−−1

})

−
√
p(⋆)

(√
p(⋆↑) +D⋆

√
p(O)

)
+
∑
x∈□

p(x)

[
S−

(
Ω−

□(x)√
p(x↑)

)
1{ p(x)

p(x↑)
≥

D
x↑

d−−1

} + S+

(
Ω+

□(x)√
p(x↑)

)
1{ p(x)

p(x↑)
<

D
x↑

d+−1

}]

7. Using the relation (Dx + 1)p(x) =
∑

y∼x p(x), x ∈ int(VR), we get from (3.11) that

I†
ER

(p) ≥ K1
R(p) +K2

R(p)

with

K1
R(p) =

∑
x∈int(VR)

∑
y∼x

[
p(x) −

√
p(x)p(y)

]
=

∑
{x,y}∈ER\{O,⋆}

(√
p(x) −

√
p(y)

)2
+
[
p(O) −

√
p(O)p(⋆)

]
−
∑

x∈∂VR

[
p(x) −

√
p(x)p(x↑)

]
and

K2
R(p) =

∑
x∈∂VR\⋆

[
(Dx + 1)p(x)

−
√
p(x)

(√
p(x↑) +DxΩ−(x)1{ p(□x)

p(x) ≥ Dx
d−−1

} +DxΩ+(x)1{ p(□x)
p(x) < Dx

d−−1

})]
+ (D⋆ + 1)p(⋆) −

√
p(⋆)

(√
p(⋆↑) +D⋆

√
p(O)

)
+
∑
x∈□

p(x)

[
S−

(
Ω−

□(x)√
p(x↑)

)
1{ p(x)

p(x↑)
≥

D
x↑

d−−1

} + S+

(
Ω+

□(x)√
p(x↑)

)
1{ p(x)

p(x↑)
<

D
x↑

d+−1

}] .
The first sum in the right-hand side of K1

R(p) equals the standard rate function I
ÊR

(p)
without {O, ⋆} and the tadpoles. Rearranging and simplifying terms, we arrive at

I†
ER

(p) ≥ I
ÊR

(p) +K3
R(p) (3.21)

with
K3

R(p) = S∂VR\⋆(p) + SO,⋆(p) + S(∂VR\⋆)∪□(p),
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where

S∂VR\⋆(p) =
∑

x∈∂VR\⋆

Dxp(x),

SO,⋆(p) =
(√

p(O) −
√
p(⋆)

)2
+ (D⋆ − 1)

[
p(⋆) −

√
p(O)p(⋆)

]
,

S(∂VR\⋆)∪□(p) = −
∑

x∈∂VR\⋆

p(x)Dx

(
Ω−(x)√
p(x)

1{ p(□x)
p(x) ≥ Dx

d−−1

} + Ω+(x)√
p(x)

1{ p(□x)
p(x) < Dx

d−−1

})

+
∑
x∈□

p(x)

[
S−

(
Ω−

□(x)√
p(x↑)

)
1{ p(x)

p(x↑)
≥

D
x↑

d−−1

} + S+

(
Ω+

□(x)√
p(x↑)

)
1{ p(x)

p(x↑)
<

D
x↑

d+−1

}] .
(3.22)

8. Since
√
p(O)p(⋆) ≤ 1

2 [p(O)+p(⋆)], the boundary constraint
∑

x∈∂VR∪O p(x) ≤ 1/R

(recall Section 3.5.3) implies that S∂VR\⋆(p)+SO,⋆(p) = O(1/R). The same constraint
implies that the first sum in S(∂VR\⋆)∪□(p) is O(1/R). Hence

K3
R(p) ≥ O(1/R) +

∑
x∈∂VR\⋆

p(x)F
(

p(□x)
p(x)

)
with

F (w) = w

(
d− + 1 −

√
d

[√
w

d+ w
+
√
d+ + w

w

])
1{ p(□x)

p(x) ≥ Dx
d−−1

}
+ w

(
d+ + 1 −

√
d+

[√
w

d+ w
+
√
d+ + w

w

])
1{ p(□x)

p(x) < Dx
d−−1

}.
The map w 7→ F (w) is continuous on (0,∞) with

F (w) =

{
−

√
d−√
d+

√
w + (d− + 1)w +O(w3/2), w ↓ 0,

[(d− + 1) − 2
√
d− ]w +

√
d−(d− − d+)/2 +O(w−1), w → ∞,

on the first indicator, while

F (w) =
{

−
√
w + (d+ + 1)w +O(w3/2), w ↓ 0,

[(d+ + 1) − 2
√
d+ ]w +

√
d−(d− − d+)/2 +O(w−1), w → ∞,

on the second indicator. From this we see that if d+ ≥ d− ≥ 4, then there exists a
C ∈ (1,∞) such that

F (w) + C ≥
(
1 −

√
w
)2
, w ∈ [0,∞).

Hence we have the lower bound

K3
R(p) ≥ O(1/R) +

∑
x∈∂VR\⋆

p(x)

[
−C +

(
1 −

√
p(□x)
p(x)

)2
]

= O(1/R) +
∑

x∈∂VR\⋆

(√
p(x) −

√
p(□x)

)2
.
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Via (3.21)–(3.22), it follows that

I†
ER

≥ O(1/R) + I
ẼR

(p), R ∈ N,

with I
ẼR

(p) the standard rate function and

ẼR = ÊR ∪
[

∪x∈∂VR\⋆ {x,□x}
]

the set of edges obtained by removing the edge {O, ⋆}.

§3.6 Limit of the upper variational formula
With the above, we have shown that

1
t

log〈U(t)〉 ≤ ϱ log(ϱt) − ϱ− χ+
R(ϱ) + o(1), t → ∞,

with
χ+

R(ϱ) = inf
p∈P(GWπ,R)

{
I†

E(p) + ϱJV (GWπ,R)(p)
}
. (3.23)

It only remains to show that lim infR→∞ χ+
R(ϱ) ≥ χGW(ϱ). Due to shift invari-

ance (recall Section 3.5.3), we may assume that the minimiser in (3.23) satisfies∑
x∈∂VR∪O p(x) ≤ 1/R. Next

GWπ,R ⊆ GW.

Consequently,

I
ẼR

(p) = IE(p) −
∑

x∈∂VR\⋆

(Dx − 1)p(x), ∀ p ∈ P(GW) : supp(p) ⊆ GWπ,R,

where the sum compensates for the contribution coming from the edges in GW that
link the vertices in ∂VR\⋆ to the vertices one layer deeper in GW that are not tadpoles.
Since this sum is O(1/R), we obtain

χ+
R(ϱ) = inf

p∈P(V (GWπ,R))

{
I†

E(p) + ϱJV (GWR)(p)
}

≥ O(1/R) + inf
p∈P(V (GW)) : supp(p)⊆V (GWπ,R)

{
IE(GW)(p) + ϱJV (GW)(p)

}
≥ O(1/R) + χGW(ϱ),

where the last inequality follows after dropping the constraint under the infimum.
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