
The parabolic Anderson model on Galton-Watson trees
Wang, D.

Citation
Wang, D. (2024, May 28). The parabolic Anderson model on Galton-Watson
trees. Retrieved from https://hdl.handle.net/1887/3754826
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University of
Leiden

Downloaded from: https://hdl.handle.net/1887/3754826
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3754826


PART I

PARABOLIC ANDERSON
MODEL: ANNEALED





CHAPTER 2
Annealed parabolic Anderson model

on a regular tree

This chapter is based on the following paper:
F. den Hollander and D. Wang. Annealed parabolic Anderson model on a regular tree.
Markov Process. Related Fields, 30:105–147, 2024.

Abstract

We study the total mass of the solution to the parabolic Anderson model on a regular tree
with an i.i.d. random potential whose marginal distribution is double-exponential. In earlier
work we identified two terms in the asymptotic expansion for large time of the total mass
under the quenched law, i.e., conditional on the realisation of the random potential. In the
present paper we do the same for the annealed law, i.e., averaged over the random potential. It
turns out that the annealed expansion differs from the quenched expansion. The derivation
of the annealed expansion is based on a new approach to control the local times of the
random walk appearing in the Feynman-Kac formula for the total mass. In particular, we
condition on the backbone to infinity of the random walk, truncate and periodise the infinite
tree relative to the backbone to obtain a random walk on a finite subtree with a specific
boundary condition, employ the large deviation principle for the empirical distribution of
Markov renewal processes on finite graphs, and afterwards let the truncation level tend to
infinity to obtain an asymptotically sharp asymptotic expansion.
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§2.1 Introduction and main results
Section 2.1.1 provides background and motivation, Section 2.1.2 lists notations, defin-
itions and assumptions, Section 2.1.3 states the main theorems, while Section 2.1.4
places these theorems in their proper context.

§2.1.1 Background and motivation
The parabolic Anderson model (PAM) is the Cauchy problem

∂tu(x, t) = ∆X u(x, t) + ξ(x)u(x, t), t > 0, x ∈ X , (2.1)

where t is time, X is an ambient space, ∆X is a Laplace operator acting on functions
on X , and ξ is a random potential on X . Most of the literature considers the setting
where X is either Zd or Rd with d ≥ 1, starting with the foundational papers [24], [25],
[23] and further developed through a long series of follow-up papers (see the monograph
[29] and the survey paper [3] for an overview). More recently, other choices for X
have been considered as well:

(I) Deterministic graphs (the complete graph [16], the hypercube [5]).
(II) Random graphs (the Galton-Watson tree [12], [13], the configuration model [12]).

Much remains open for the latter class.
The main target for the PAM is a description of intermittency: for large t the

solution u(·, t) of (2.1) concentrates on well-separated regions in X , called intermittent
islands. Much of the literature focusses on a detailed description of the size, shape and
location of these islands, and on the profiles of the potential ξ(·) and the solution u(·, t)
on them. A special role is played by the case where ξ is an i.i.d. random potential
with a double-exponential marginal distribution

P(ξ(0) > u) = e−eu/ϱ

, u ∈ R, (2.2)

where ϱ ∈ (0,∞) is a parameter. This distribution turns out to be critical, in the
sense that the intermittent islands neither grow nor shrink with time, and represents
a class of its own.

In the present paper we consider the case where X is an unrooted regular tree T .
Our focus will be on the asymptotics as t → ∞ of the total mass

U(t) =
∑
x∈T

u(x, t).

In earlier work [12], [13] we were concerned with the case where X is a rooted Galton-
Watson tree in the quenched setting, i.e., almost surely with respect to the random
tree and the random potential. This work was restricted to the case where the random
potential is given by (2.2) and the offspring distribution of the Galton-Watson tree
has support in N\{1} with a sufficiently thin tail. In the present paper our focus will
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be on the annealed setting, i.e., averaged over the random potential. We derive two
terms in the asymptotic expansion as t → ∞ of the average total mass

〈U(t)〉 =
∑
x∈T

〈u(x, t)〉,

where 〈·〉 denotes expectation with respect to the law of the random potential. It turns
out that the annealed expansion differs from the quenched expansion, even though the
same variational formula plays a central role in the two second terms.

The derivation in the annealed setting forces us to follow a different route than in
the quenched setting, based on various approximations of T that are more delicate
than the standard approximation of Zd (see [11, Chapter VIII]). This is the reason
why we consider regular trees rather than Galton-Watson trees, to which we hope
to return later. A key tool in the analysis is the large deviation principle for the
empirical distribution of Markov renewal processes on finite graphs derived in [31],
which is recalled in Appendix A.1.

§2.1.2 The PAM on a graph
Notations and definitions

Let G = (V,E) be a simple connected undirected graph, either finite or countably
infinite, with an arbitrarily designated vertex O. Let ∆G be the Laplacian on G, i.e.,

(∆Gf)(x) =
∑
y∈V :

{x,y}∈E

[f(y) − f(x)], x ∈ V, f : V → R,

which acts along the edges of G. Let ξ := (ξ(x))x∈V be a random potential attached
to the vertices of G, taking values in R. Our object of interest is the non-negative
solution of the Cauchy problem with localised initial condition,

∂tu(x, t) = (∆Gu)(x, t) + ξ(x)u(x, t), x ∈ V, t > 0,
u(x, 0) = δO(x), x ∈ V.

(2.3)

The quantity u(x, t) can be interpreted as the amount of mass at time t at site x when
initially there is unit mass at O. The total mass at time t is U(t) =

∑
x∈V u(x, t).

The total mass is given by the Feynman-Kac formula

U(t) = EO

(
e
∫ t

0
ξ(Xs)ds

)
, (2.4)

where X = (Xt)t≥0 is the continuous-time random walk on the vertices V with jump
rate 1 along the edges E, and PO denotes the law of X given X0 = O. Let 〈·〉 denote
expectation with respect to ξ. The quantity of interest in this paper is the average
total mass at time t:

〈U(t)〉 =
〈
EO

(
e
∫ t

0
ξ(Xs)ds

)〉
. (2.5)
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Assumption on the potential

Throughout the paper we assume that the random potential ξ = (ξ(x))x∈V consists
of i.i.d. random variables with a marginal distribution whose cumulant generating
function

H(u) = log
〈

euξ(O)
〉

(2.6)

satisfies the following:

Assumption 2.A. [Asymptotic double-exponential potential]
There exists a ϱ ∈ (0,∞) such that

lim
u→∞

uH ′′(u) = ϱ. (2.7)

■

Remark 2.1.1. [Double-exponential potential] A special case of (2.7) is when ξ(O)
has the double-exponential distribution in (2.2), in which case

H(u) = log Γ(ϱu+ 1)

with Γ the gamma function. ♠

By Stirling’s approximation, (2.7) implies

H(u) = ϱu log(ϱu) − ϱu+ o(u), u → ∞. (2.8)

Assumption 2.A is more than enough to guarantee existence and uniqueness of the
non-negative solution to (2.3) on any discrete graph with at most exponential growth
(as can be inferred from the proof in [24], [25] for the case G = Zd). Since ξ is assumed
to be i.i.d., we have from (2.5) that

〈U(t)〉 = EO

(
exp

[∑
x∈V

H(ℓt(x))
])

, (2.9)

where
ℓt(x) =

∫ t

0
1{Xs = x} ds, x ∈ V, t ≥ 0,

is the local time of X at vertex x up to time t.

Variational formula

The following characteristic variational formula is important for the description of the
asymptotics of 〈U(t)〉. Denote by P(V ) the set of probability measures on V . For
p ∈ P(V ), define

IE(p) =
∑

{x,y}∈E

(√
p(x) −

√
p(y)

)2
, JV (p) = −

∑
x∈V

p(x) log p(x), (2.10)
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and set
χG(ϱ) = inf

p∈P(V )
[IE(p) + ϱJV (p)], ϱ ∈ (0,∞). (2.11)

The first term in (2.11) is the quadratic form associated with the Laplacian, which is
the large deviation rate function for the empirical distribution

Lt = 1
t

∫ t

0
δXs ds = 1

t

∑
x∈V

ℓt(x)δx ∈ P(V ) (2.12)

(see e.g. [11, Section IV]). The second term in (2.11) captures the second order asymp-
totics of

∑
x∈V H(tp(x)) as t → ∞ via (2.8) (see e.g. [11, Section VIII]).

Reformulation

The following lemma pulls the leading order term out of the expansion and shows that
the second order term is controlled by the large deviation principle for the empirical
distribution.

Lemma 2.1.2. [Key object for the expansion] If G = (V,E) is finite, then

〈U(t)〉 = eH(t)+o(t) EO

(
e−ϱtJV (Lt)

)
, t → ∞.

where JV is the functional in (2.10) and Lt is the empirical distribution in (2.12).

Proof. Because
∑

x∈V ℓt(x) = t, we can rewrite (2.9) as

〈U(t)〉 = EO

(
exp

[∑
x∈V

H(ℓt(x))
])

= eH(t) EO

(
exp

{
t
∑
x∈V

1
t

[
H( ℓt(x)

t t) − ℓt(x)
t H(t)

]})
.

Assumption 2.A implies that H has the following scaling property (see [23]):

lim
t→∞

1
t
[H(ct) − cH(t)] = ϱc log c uniformly in c ∈ [0, 1].

Hence the claim follows.

§2.1.3 The PAM on an unrooted regular tree: an-
nealed total mass for large times and key vari-
ational formula

In this section we specialise to the case where G = T = (E, V ), an unrooted regular
tree of degree d + 1 with d ≥ 2 (see Fig. 2.1). The main theorem of our paper is the
following expansion.
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Figure 2.1: An unrooted tree with degree 3 (= offspring size 2).

Theorem 2.1.3. [Growth rate of the total mass] For any d ≥ 4, subject to Assump-
tion 2.A,

1
t

log〈U(t)〉 = ϱ log(ϱt) − ϱ− χT (ϱ) + o(1), t → ∞, (2.13)

where χT (ϱ) is the variational formula in (2.11) with G = T .

The proof of Theorem 2.1.3 is given in Sections 2.2–2.4 and makes use of technical
computations collected in Appendices A.2–A.3.

The main properties of the key quantity

χT (ϱ) = inf
p∈P(V )

[IE(p) + ϱJV (p)], ϱ ∈ (0,∞), (2.14)

are collected in the following theorem (see Fig. 2.2).

Theorem 2.1.4. [Properties of the variational formula] For any d ≥ 2 the following
hold:
(a) The infimum in (2.14) may be restricted to the set

P↓
O(V ) =

{
p ∈ P(V ) : argmax p = O, p is non-increasing along paths to infinity}.

(2.15)
(b) For every ϱ ∈ (0,∞), the infimum in (2.14) restricted to P↓

O(V ) is attained, every
minimiser p̄ is such that p̄ > 0 on V , and ∂SR =

∑
∂BR(O) p̄(x), R ∈ N0, satisfies

∑
R∈N0

∂SR log(R+ 1) ≤ d+ 1
ϱ

,

where BR(O) is the ball of radius R centred at O.
(c) The function ϱ 7→ χT (ϱ) is strictly increasing and globally Lipschitz continuous on
(0,∞), with

lim
ϱ↓0

χT (ϱ) = d− 1, lim
ϱ→∞

χT (ϱ) = d+ 1.

The proof of Theorem 2.1.4 is given in Section 2.5 (see Fig. 2.2).
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Figure 2.2: Qualitative plot of ϱ 7→ χT (ϱ).

§2.1.4 Discussion
1. Theorem 2.1.3 identifies the scaling of the total mass up to and including terms
that are exponential in t. The first two terms in the right-hand side of (2.13) are
the same as those of 1

tH(t) (recall (2.8)). The third term is a correction that comes
from the cost for X in the Feynman-Kac formula in (2.4) to create an optimal local
time profile somewhere in T , which is captured by the minimiser(s) of the variational
formula in (2.14).

2. For the quenched model on a rooted Galton-Watson tree GW we found in [12], [13]
that

1
t

logU(t) = ϱ log
(

ϱtϑ

log log t

)
− ϱ− χ(ϱ) + o(1), t → ∞, P ×P-a.s., (2.16)

where P is the law of the potential, P is the law of GW, ϑ is the logarithm of the mean
of the offspring distribution, and

χT (ϱ) = inf
S⊂GW

χS(ϱ) (2.17)

with χS(ϱ) given by (2.11) and the infimum running over all subtrees of GW. This
result was shown to be valid as soon as the offspring distribution has support in N\{1}
(i.e., all degrees are at least 3) and has a sufficiently thin tail. The extra terms in (2.16)
come from the cost for X in the Feynman-Kac formula in (2.4) to travel in a time of
order o(t) to an optimal finite subtree with an optimal profile of the potential, referred
to as intermittent islands, located at a distance of order ϱt/ log log t from O, and to
subsequently spend most of its time on that subtree. In this cost the parameter ϑ
appears, which is absent in (2.13). It was shown in [12] that if ϱ ≥ 1/ log(dmin + 1),
with dmin the minimum of the support of the offspring distribution, then the infimum
in (2.17) is attained at the unrooted regular tree with degree dmin +1, i.e., the minimal
unrooted regular tree contained in GW, for which ϑ = log dmin. Possibly the bound on
ϱ is redundant.
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3. In view of Lemma 2.1.2 and the fact that Assumption 2.A implies (2.8), we see
that the proof of Theorem 2.1.3 amounts to showing that, on T = (V,E),

lim
t→∞

1
t

logEO

(
e−ϱtJV (Lt)

)
= −χT (ϱ).

We achieve this by deriving asymptotically matching upper and lower bounds. These
bounds are obtained by truncating T outside a ball of radius R, to obtain a finite tree
TR, deriving the t → ∞ asymptotics for finite R, and letting R → ∞ afterwards. For
the lower bound we can use the standard truncation technique based on killing X when
it exits TR and applying the large deviation principle for the empirical distribution
of Markov processes on finite graphs derived in [15]. For the upper bound, however,
we cannot use the standard truncation technique based on periodisation of X beyond
radius R, because T is an expander graph (see [29, Chapter IV] for a list of known
techniques on Zd and Rd). Instead, we follow a route in which T is approximated
in successive stages by a version of TR with a specific boundary condition, based on
monitoring X relative to its backbone to infinity. This route allows us to use the
large deviation principle for the empirical distribution of Markov renewal processes on
finite graphs derived in [31], but we need the condition d ≥ 4 to control the specific
boundary condition in the limit as R → ∞ (see Remark 2.4.1 for more details). The
reason why the approximation of T by finite subtrees is successful is precisely because
in the parabolic Anderson model the total mass tends to concentrate on intermittent
islands.

4. Theorem 2.1.4 shows that, modulo translations, the optimal strategy for Lt as
t → ∞ is to be close to a minimiser of the variational formula in (2.14) restricted to
P↓

O(V ). Any minimiser is centred at O, strictly positive everywhere, non-increasing in
the distance to O, and rapidly tending to zero. The following questions remain open:

(1) Is the minimiser p̄ unique modulo translation?

(2) Does p̄(x) satisfy lim|x|→∞ |x|−1 log p̄(x) = −∞, with |x| the distance between x
and O?

(3) Is p̄ radially symmetric?

(4) Is ϱ 7→ χT (ϱ) analytic on (0,∞)?

We expect the answer to be yes for (1) and (2), and to be no for (3) and (4).

§2.2 Proof of the main theorem: lower bound
In this section we prove the lower bound in Theorem 2.1.3, which is standard and
straightforward. In Section 2.2.1 we obtain a lower bound in terms of a variational
formula by killing the random walk when it exits TR. In Section 2.2.2 we derive the
lower bound of the expansion by letting R → ∞ in the variational formula.
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§2.2.1 Killing and lower variational formula
Fix R ∈ N. Let TR be the subtree of T = (V,E) consisting of all the vertices that are
within distance R of the root O and all the edges connecting them. Put VR = VR(TR)
and ER = E(TR). Let τR = inf{t ≥ 0: Xt /∈ VR} denote the first time that X exits
TR. It follows from (2.9) that

〈U(t)〉 ≥ EO

(
exp

[ ∑
x∈VR

H(ℓt(x))
]
1
{
τR > t

})
.

Since TR is finite, Lemma 2.1.2 gives

〈U(t)〉 ≥ eH(t)+o(t) EO

[
e−ϱtJV (Lt)1

{
τR > t

}]
with JV the functional defined in (2.10). As shown in [22] (see also [25]), the family
of sub-probability distributions PO(Lt ∈ · , τR > t), t ≥ 0, satisfies the LDP on
PR(V ) = {p ∈ P(V ) : supp(p) ⊂ VR} with rate function IE , with IE the functional
defined in (2.10). This is the standard LDP for the empirical distribution of Markov
processes. Therefore, by Varadhan’s Lemma,

lim
t→∞

1
t

logEO

[
e−ϱtJV (Lt)1

{
τR > t

}]
= −χ−

R(ϱ)

with
χ−

R(ϱ) = inf
p∈PR(V )

[IE(p) + ϱJV (p)], (2.18)

where we use that p 7→ JV (p) is bounded and continuous (in the discrete topology) on
PR(V ). Note that

lim
t→∞

1
t

logPO(τR > t) = − inf
p∈PR(V )

IE(p) < 0,

which is non-zero because any p ∈ PR(V ) is non-constant on V . The expression in
(2.18) is the same as (2.11) with G = T , except that p is restricted to VR.

§2.2.2 Limit of the lower variational formula
Clearly, R 7→ χ−

R(ϱ) is non-increasing. To complete the proof of the lower bound in
Theorem 2.1.3, it remains is to show the following.

Lemma 2.2.1. lim supR→∞ χ−
R(ϱ) ≤ χT (ϱ).

Proof. Pick any p ∈ P(V ) such that IE(p) < ∞ and JV (p) < ∞. Let pR be the
projection of p onto VR, i.e.,

pR(x) =
{
p(x), x ∈ int(VR),∑

y≥x p(y), x ∈ ∂VR,
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where y ≥ x means that y is an element of the progeny of x in T . Since pR ∈ PR(V ), we
have from (2.18) that χ−

R(ϱ) ≤ IE(pR) + ϱJV (pR). Trivially, limR→∞ IE(pR) = IE(p)
and limR→∞ JV (pR) = JV (p), and so we have lim supR→∞ χ−

R(ϱ) ≤ IE(p) + ϱJV (p).
Since this bound holds for arbitrary p ∈ P(V ), the claim follows from (2.18).

§2.3 Proof of the main theorem: upper bound
In this section we prove the upper bound in Theorem 2.1.3, which is more laborious
and requires a more delicate approach than the standard periodisation argument used
on Zd . In Section 2.3.1 we obtain an upper bound in terms of a variational formula
on a version of TR with a specific boundary condition. The argument comes in four
steps, encapsulated in Lemmas 2.3.1–2.3.6 below:

(I) Condition on the backbone of X (Section 2.3.1).

(II) Project X onto a concatenation of finite subtrees attached to this backbone that
are rooted versions of TR (Section 2.3.1).

(III) Periodise the projected X to obtain a Markov renewal process on a single finite
subtree and show that the periodisation can be chosen such that the local times
at the vertices on the boundary of the finite subtree are negligible (Section 2.3.1).

(IV) Use the large deviation principle for the empirical distribution of Markov renewal
processes derived in [31] to obtain a variational formula on a single subtree
(Section 2.3.1).

In Section 2.3.2 we derive the upper bound of the expansion by letting R → ∞ in the
variational formula.

§2.3.1 Backbone, projection, periodisation and up-
per variational formula

Backbone

For r ∈ N, let τr be the last time when X visits ∂Br(O) = {x ∈ V : d(x,O) = r}, the
boundary of the ball of radius r around O. Then the sequence B = (Xτr

)r∈N0 forms
the backbone of X, running from O to infinity.

Lemma 2.3.1. [Condition on a backbone] For every backbone bb and every t ≥ 0,

EO

exp
[ ∑

x∈V (T )

H(ℓt(x))
] = EO

exp
[ ∑

x∈V (T )

H(ℓt(x))
] ∣∣∣∣∣ B = bb

 .

Proof. By symmetry, the conditional expectation in the right-hand side does not de-
pend on the choice of bb. Indeed, permutations of the edges away from the root do
not affect the law of

∑
x∈V (T ) H(ℓt(x)).
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Turn the one-sided backbone into a two-sided backbone by adding a second back-
bone from O to infinity. By symmetry, the choice of this second backbone is arbitrary,
say bb′. Redraw T by representing bb′ ∪ bb as Z and representing the rest of T as a
sequence of rooted trees T ∗ = (T ∗

x )x∈Z hanging off Z (see Fig. 2.3). In T ∗
x , the root sits

at x and has d− 1 downward edges, while all lower vertices have d downward edges.
Let T Z denote the redrawn tree and XZ = (XZ

t )t≥0 be the random walk on T Z.
Furthermore let (ℓZt (x))x∈T Z denote the local times of XZ at time t.

T ∗
−2 T ∗

−1 T ∗
0 T ∗

+1 T ∗
+2

u u u u u Z
O

Figure 2.3: Redrawing of T as T Z: a two-sided backbone Z with a sequence T ∗ = (T ∗
x )x∈Z of

rooted trees hanging off. The upper index ∗ is used to indicate that the tree is rooted.

Lemma 2.3.2. [Representation of T as a backbone with rooted trees] For every bb
and t ≥ 0,

EO

exp
[ ∑

x∈V (T )

H(ℓt(x))
] ∣∣∣∣∣ B = bb

 = EO

exp
[ ∑

x∈V (T Z)

H(ℓZt (x))
] ∣∣∣∣∣ XZ

∞ = +∞

 .

Proof. Simply redraw T as T Z.

Note that XZ is a Markov process whose sojourn times have distribution EXP(d+ 1)
and whose steps are drawn uniformly at random from the d+1 edges that are incident
to each vertex.

Projection

For R ∈ N\{1}, cut Z into slices of length R, i.e.,

Z = ∪k∈Z(z + (kR+ I)), I = {0, 1, . . . , R− 1},

where z is to be chosen later. Apply the following two maps to T Z (in the order
presented):

(i) For each k ∈ Z, fold T ∗
z+(kR+(R−1)) onto T ∗

z+(k+1)R by folding the d − 1 edges
downwards from the root on top of the edge in Z connecting z + (kR+ (R− 1))
and z+(k+1)R, and putting the d infinite rooted trees hanging off each of these
d− 1 edges on top of the rooted tree T ∗

z+(k+1)R hanging off z + (k + 1)R. Note
that each of the d infinite rooted trees is a copy of T ∗

z+(k+1)R.
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(ii) For each k ∈ Z and m ∈ {0, 1, . . . , R − 2}, cut off all the infinite subtrees in
T ∗

z+(kR+m) whose roots are at depth (R − 1) − m. Note that the total number
of leaves after the cutting equals

(d− 1)
R−2∑
m=0

d(R−2)−m = (d− 1)dR−2 1 − d−(R−1)

1 − d−1 = dR−1 − 1,

which is the same as the total number of leaves of the rooted tree T ∗
R of depth

R− 1 (i.e., with R generations) minus 1 (a fact we will need below).

By doing so we obtain a concatenation of finite units

UR = (UR[k])k∈Z

that are rooted trees of depth R − 1 (see Fig. 2.4). Together with the two maps that
turn T Z into UR, we apply two maps to XZ:

(i) All excursions of XZ in the infinite subtrees that are folded to the right and on
top are projected accordingly.

(ii) All excursions of XZ in the infinite subtrees that are cut off are replaced by a
sojourn of XUR in the tadpoles that replace these subtrees (see Fig. 2.4)

The resulting path, which we call XUR = (XUR
t )t≥0, is a Markov renewal process with

the following properties:

• The sojourn times in all the vertices that are not tadpoles have distribution
EXP(d+ 1).

• The sojourn times in all the tadpoles have distribution ψ, defined as the condi-
tional distribution of the return time τ of the random walk on the infinite rooted
tree T ∗ given that τ < ∞ (see [30] for a proper definition).

• The transitions into the tadpoles have probability d
d+1 , the transitions out of the

tadpoles have probability 1 (because of the condition XZ
∞ = +∞).

• The transitions from z + (kR + (R − 1)) to z + (k + 1)R have probability d
d+1 ,

while the reverse transitions have probability 1
d+1 .

Write (ℓUR
t (x))x∈VUR

to denote the local times of XUR at time t.

Lemma 2.3.3. [Projection onto a concatenation of finite subtrees] For every R ∈
N\{1} and t ≥ 0,

EO

exp
[ ∑

x∈V (T Z)

H(ℓZt (x))
] ∣∣∣∣∣ XZ

∞ = +∞


≤ EO

exp
[ ∑

x∈V (UR)

H(ℓUR
t (x))

] ∣∣∣∣∣ XUR
∞ = +∞

 .
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Proof. The maps that are applied to turn XZ into XUR are such that local times are
stacked on top of each other. Since H defined in (2.6) is convex and H(0) = 0, we
have H(ℓ) +H(ℓ′) ≤ H(ℓ+ ℓ′) for all ℓ, ℓ′ ∈ N0, which implies the inequality.

t

t

tt t
□ □ □

T ∗
R

Figure 2.4: A unit in UR. Inside is a rooted tree T ∗
R of depth R−1, of which only the root and

the leaves are drawn. Hanging off the leaves at depth R− 1 from the root are tadpoles, except
for the right-most bottom vertex, which has a downward edge that connects to the root of the
next unit. The vertices marked by a bullet form the boundary of UR, the vertices marked by
a square box form the tadpoles of UR.

Periodisation

Our next observation is that the condition {XUR
∞ = +∞} is redundant.

Lemma 2.3.4. [Condition redundant] For every R ∈ N\{1} and t ≥ 0,

EO

exp
[ ∑

x∈V (UR)

H(ℓUR
t (x))

] ∣∣∣∣∣ XUR
∞ = +∞

 = EO

exp
[ ∑

x∈V (UR)

H(ℓUR
t (x))

] .

Proof. The event {XUR
∞ = +∞} has probability 1 because on the edges connecting

the units of UR (see Fig. 2.4) there is a drift downwards. To see why, note that
1

d+1 <
1
2 <

d
d+1 because d ≥ 2, and use that a one-dimensional random walk with drift

is transient to the right [33].

Since UR is periodic, we can fold XUR onto a single unit WR, to obtain a Markov
renewal process XWR on WR (see Fig. 2.5) in which the transition from the top vertex
to the right-most bottom vertex has probability 1

d+1 , while the reverse transition has
probability d

d+1 . Clearly, the sojourn time distributions are not affected by the folding
and therefore remain as above. Write (ℓWR

t (x))x∈V (WR) to denote the local times of
XWR at time t.
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Lemma 2.3.5. [Periodisation to a single finite subtree] For every R ∈ N\{1} and
t ≥ 0,

EO

exp
[ ∑

x∈V (UR)

H(ℓUR
t (x))

] ≤ EO

exp
[ ∑

x∈V (WR)

H(ℓWR
t (x))

] .

Proof. The periodisation again stacks local time on top of each other.

Before we proceed we make a crucial observation, namely, we may still choose the
shift z ∈ {0, 1, . . . , R−1} of the cuts of the two-sided backbone Z (recall Fig. 2.3). We
will do so in such a way that the local time up to time t spent in the set ∂UR

defined
by

∂UR
= all vertices at the top or at the bottom of a unit in UR

= all vertices marked by • in Fig. 2.4
(2.19)

is at most t/R. After the periodisation these vertices are mapped to the set ∂WR

defined by
∂WR

= all vertices at the top or at the bottom of WR

= all vertices marked by • in Fig. 2.5.

Lemma 2.3.6. [Control on the time spent at the boundary] For every R ∈ N\{1} and
t ≥ 0,

EO

exp
[ ∑

x∈V (UR)

H(ℓUR
t (x))

]
≤ EO

exp
[ ∑

x∈V (WR)

H(ℓWR
t (x))

]
1{ 1

t

∑
x∈∂ WR

ℓ
WR
t (x)≤1/R

} .

Proof. For different z the sets of vertices making up ∂R correspond to disjoint sets of
vertices in T Z (see Fig. 2.4). Since

∑
x∈T Z ℓZt (x) = t for all t ≥ 0, it follows that there

exists a z for which
∑

x∈∂R
ℓZt (x) ≤ t/R. Therefore the upper bound in Lemma 2.3.3

can be strengthened to the one that is claimed.

Upper variational formula

Lemmas 2.3.1–2.3.6 provide us with an upper bound for the average total mass (recall
((2.9)) on the infinite tree T in terms of the same quantity on the finite tree-like
unit WR with a specific boundary condition. Along the way we have paid a price:
the sojourn times in the tadpoles are no longer exponentially distributed, and the
transition probabilities into and out of the tadpoles and between the top vertex and the
right-most bottom vertex are biased. We therefore need the large deviation principle
for the empirical distribution of Markov renewal processes derived in [31], which we
can now apply to the upper bound.
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t

t

tt t
□ □ □

T ∗
R

Figure 2.5: A unit WR with the top vertex and the right-most bottom vertex connected by an
edge.

Since WR is finite, Lemma 2.1.2 gives

〈U(t)〉 ≤ eH(t)+o(t) EO

(
e−ϱJV (WR)(L

WR
t ) 1{

L
WR
t (∂ WR

)≤1/R
})

with JV the functional defined in (2.10). The following lemma controls the expectation
in the right-hand side.

Lemma 2.3.7. [Scaling of the key expectation] For every R ∈ N\{1},

lim
t→∞

1
t

logEO

(
e−ϱtJV (WR)(L

WR
t ) 1{

L
WR
t (∂ WR

)≤1/R
}) = −χ+

R(ϱ),

where
χ+

R(ϱ) = inf
p∈P(V (WR)) :
p(∂WR

)≤1/R

{
I†

E(WR)(p) + ϱJV (WR)(p)
}
, (2.20)

with
I†

E(WR)(p) = inf
β∈(0,∞)

inf
q∈P(V (WR))

[
K̂(βq) + K̃(p | βq)

]
, (2.21)

where

K̂(βq) = sup
q̂∈P(V (WR))

∑
x∈V (WR)

βq(x) log
(

q̂(x)∑
y∈V (WR)

πx,y q̂(y)

)
, (2.22)

K̃(p | βq) =
∑

x∈V (WR)

βq(x) (Lλx)
(

p(x)
βq(x)

)
, (2.23)

with

(Lλx)(α) = sup
θ∈R

[αθ − λx(θ)], α ∈ [0,∞), (2.24)

λx(θ) = log
∫ ∞

0
eθτψx(dτ), θ ∈ R, (2.25)
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where ψx = ψ when x is a tadpole, ψx = EXP(d + 1) when x is not a tadpole, and
πx,y is the transition kernel of the discrete-time Markov chain on V (WR) embedded in
XWR .

Proof. Apply the large deviation principle derived in [31], which we recall in Proposi-
tion A.1.1 in Appendix A.1.

The expression in (2.20) is similar to (2.11) with G = WR, expect that the rate
function IE(WR) in (2.21) is more involved than the rate function IE in (2.10).

§2.3.2 Limit of the upper variational formula
The prefactor eH(t)+o(1) in Lemma 2.1.2 accounts for the terms ϱ log(ϱt) − ϱ in the
right-hand side of (2.13) (recall 2.8). In view of Lemma 2.3.7, in order to complete the
proof of the upper bound in Theorem 2.1.3 it suffices to prove the following lemma.

Lemma 2.3.8. For any d ≥ 4, lim infR→∞ χ+
R(ϱ) ≥ χT (ϱ).

Proof. The proof is given in Section 2.4 and relies on two steps:

• Show that, for d ≥ 4,

I†
E(WR)(p) ≥ I+

E(WR)(p) +O(1/R) (2.26)

with I+
E(WR) a rate function similar to the standard rate function IE(WR) given

by (2.10).

• Show that, d ≥ 2,

χ̂+
R (ϱ) = inf

p∈P(V (WR)) :
p(∂ WR

)≤1/R

{
I+

E(WR)(p) + ϱJV (WR)(p)
}

satisfies
lim inf
R→∞

χ̂+
R (ϱ) ≥ χT (ϱ). (2.27)

§2.4 Analysis of the upper variational formula
In this section we carry out the proof of the claims in Section 2.3.2, namely, we settle
(2.26) in Section 2.4.1 and (2.27) in Section 2.4.2. The computations carried out in
Appendix A.3 guide us along the way.
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§2.4.1 Identification of the rate function for the local
times on the truncated tree

To identify the rate function I†
E(WR) in Lemma 2.3.7, we need to work out the two

infima between braces in (2.20). The computation follows the same line of argument
as in Appendix A.3, but is more delicate. We will only end up with a lower bound.
However, this is sufficient for the upper variational formula.

To simplify the notation we write (recall Fig. 2.5):
(VR, ER) = vertex and edge set of WR without the tadpoles,
O = top vertex of VR,
⋆ = right-most bottom vertex of VR,
∂VR = set of vertices at the bottom of VR,
□ = set of tadpoles,
□x = tadpole attached to x ∈ ∂VR\⋆.

Note that ∂VR consists of ⋆ and the vertices to which the tadpoles are attached. Note
that int(VR) = VR \ ∂VR includes O.
1. Inserting (A.9) in Appendix A.2 into (2.22)–(2.23), we get

I†
E(WR)(p) = (d+ 1)

∑
x∈VR

p(x) + inf
β∈(0,∞)

inf
q∈P(VR)

sup
q̂∈P(VR)

L(β, q, q̂ | p)

with
L(β, q, q̂ | p) = −A−B − C −D,

where
A =

∑
x∈int(VR)

βq(x)
{

1 + log
(∑

y∼x q̂(y)
q̂(x)

p(x)
βq(x)

)}
,

B =
∑

x∈∂VR\⋆

βq(x)
{

1 + log
(
q̂(x↑) + dq̂(□x)

q̂(x)
p(x)
βq(x)

)}
,

C = βq(⋆)
{

1 + log
(
q̂(⋆↑) + dq̂(O)

q̂(⋆)
p(⋆)
βq(⋆)

)}
,

D =
∑
x∈□

βq(x)
{

log
(
q̂(x↑)
q̂(x)

)
− (Lλ)

(
p(x)
βq(x)

)}
,

with Lλ the Legende transform of the cumulant generating function of ψ (recall (2.25))
and x↑ the unique vertex to which x is attached upwards. (Recall that y ∼ x means
that x and y are connected by an edge in ER.) Note that A,B,C each combine two
terms, and that A,B,C,D depend on p. We suppress this dependence because p is
fixed.
2. Inserting the parametrisation q̂ = u/‖u‖1 and q = v/‖v‖1 with u, v : VR → (0,∞)
and putting βq = v, we may write

I†
E(WR)(p) = (d+ 1)

∑
x∈VR

p(x) + inf
v : VR→(0,∞)

sup
u : VR→(0,∞)

L(u, v) (2.28)
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with
L(u, v) = −A−B − C −D,

where
A =

∑
x∈int(VR)

v(x)
{

1 + log
(∑

y∼x u(y)
u(x)

p(x)
v(x)

)}
,

B =
∑

x∈∂VR\⋆

v(x)
{

1 + log
(
u(x↑) + du(□x)

u(x)
p(x)
v(x)

)}
,

C = v(⋆)
{

1 + log
(
u(⋆↑) + du(O)

u(⋆)
p(⋆)
v(⋆)

)}
,

D =
∑
x∈□

v(x)
{

log
(
u(x↑)
u(x)

)
− (Lλ)

(
p(x)
v(x)

)}
.

(2.29)

Our task is to carry out the supremum over u and the infimum over v in (2.28).

3. First, we compute the infimum over v for fixed u. (Later we will make a judicious
choice for u to obtain a lower bound.) Abbreviate

Au(x) =
∑

y∼x u(y)
u(x)

p(x), x ∈ int(VR),

Bu(x) = u(x↑) + du(□x)
u(x)

p(x), x ∈ ∂VR\⋆,

Cu(⋆) = u(⋆↑) + du(O)
u(⋆)

p(⋆).

(2.30)

• For z ∈ VR, the first derivatives of L are

z ∈ int(VR) : ∂L(u, v)
∂v(z)

= − log
(
Au(z)
v(z)

)
,

z ∈ ∂VR\⋆ : ∂L(u, v)
∂v(z)

= − log
(
Bu(z)
v(z)

)
,

z = ⋆ : ∂L(u, v)
∂v(z)

= − log
(
Cu(z)
v(z)

)
,

while the second derivatives of L equal 1/v(z) > 0. Hence the infimum is uniquely
taken at

x ∈ int(VR) : v̄(x) = Au(x),
x ∈ VR\⋆ : v̄(x) = Bu(x),
x = ⋆ : v̄(x) = Cu(x).

• For z ∈ □, the computation is more delicate. Define (see (A.6) in Appendix A.2)

µ(α) = α(Lλ)
′
(α) − (Lλ)(α).

The function µ has range (−∞, log
√
d ], with the maximal value uniquely taken at

α = ∞. Therefore there are two cases.
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▶ u(x)/u(x↑) ≤
√
d: Abbreviate αu(z) = p(z)/v(z). For z ∈ □,

∂L(u, v)
∂v(z)

= log
(
u(z)
u(z↑)

)
+ (Lλ)

(
p(z)
v(z)

)
− p(z)
v(z)

(Lλ)
′
(
p(z)
v(z)

)
= log

(
u(z)
u(z↑)

)
− µ(αu(z)),

∂2L(u, v)
v(z)2 = p2(z)

v3(z)
(Lλ)

′′
(
p(z)
v(z)

)
> 0,

where we use that Lλ, being a Legendre transform, is strictly convex. Hence the
infimum is uniquely taken at

v̄(x) = p(x)
αu(x)

, x ∈ □,

with αu(x) solving the equation

log
(
u(x)
u(x↑)

)
= µ(αu(x)), x ∈ □.

Since µ′(α) = α(Lλ)′′(α) and Lλ is strictly convex (see Fig. A.3 in Appendix A.2), µ
is strictly increasing and therefore invertible. Consequently,

αu(x) = µ−1
(

log
(
u(x)
u(x↑)

))
, x ∈ □.

Putting the above formulas together, we arrive at (recall (2.30))

L(u) = inf
v : VR→(0,∞)

L(u, v)

= −
∑

x∈int(VR)

Au(x) −
∑

x∈∂VR\⋆

Bu(x) − Cu(⋆) +
∑
x∈□

Du(x) (2.31)

with (recall (2.29))

Du(x) = − p(x)
αu(x)

[
log
(
u(x↑)
u(x)

)
− (Lλ)(αu(x))

]
= p(x)
αu(x)

[
(Lλ)(αu(x)) − µ(αu(x))

]
= p(x) (Lλ)

′
(αu(x)) = p(x)

(
(Lλ)

′
◦ µ−1)(log

(
u(x)
u(x↑)

))
.

In (A.8) in Appendix A.2 we show that (Lλ)′ ◦ µ−1 = λ−1. Moreover In (A.14) in
Appendix A.2 we show that (λ−1 ◦ log) = S with

S(β) = d+ 1 − β − d

β
, β ∈ (0,

√
d ].
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Since S has domain (0,
√
d ], Du(x) is only defined when u(x)/u(x↑) ≤

√
d, in which

case
Du(x) = p(x)S

(
u(x)
u(x↑)

)
, x ∈ □. (2.32)

▶ u(x)/u(x↑) >
√
d: In this case ∂L(u,v)

∂v(z) > 0, the infimum is uniquely taken at
v̄(x) = 0, and

Du(x) = p(x) (
√
d− 1)2 = p(x)S(

√
d), x ∈ □,

where we use (A.13). Note that the right-hand side does not depend on u.

4. Next, we compute the supremum over u. The first derivatives of L are

z ∈ int(VR)\O : ∂L(u)
∂u(z)

=
∑

y∼z u(y)
u2(z)

p(z) −
∑
y∼z

1
u(y)

p(y),

z = O : ∂L(u)
∂u(O)

=
∑

y∼O u(y)
u(O)2 p(O) −

∑
y:y↑=O

1
u(y)

p(y) − d

u(⋆)
p(⋆),

z = ⋆ : ∂L(u)
∂u(⋆)

= − 1
u(O)

p(O) + u(⋆↑) + du(O)
u(⋆)2 p(⋆),

z ∈ ∂VR\⋆ : ∂L(u)
∂u(z)

= − 1
u(z↑)

p(z↑) + u(z↑) + du(□z)
u(z)2 p(z)

+
[
u(□z)
u(z)2 − d

u(□z)

]
p(□z)1{ u(z)

u(z↑)
≤

√
d
},

z ∈ □ : ∂L(u)
∂u(z)

= − d

u(z↑)
p(z↑) +

[
− 1
u(z↑)

+ du(z↑)
u(z)2

]
p(z) 1{ u(z)

u(z↑)
≤

√
d
}.

(2.33)
The second derivates of L are all < 0. The first line in (2.33) can be rewritten as∑

y∼z

u(y)
[
p(z)
u2(z)

− p(y)
u2(y)

]
,

which is zero when
ū(x) =

√
p(x), x ∈ VR. (2.34)

Given the choice in (2.34), the fifth line in (2.33) is zero when

ū(x) =

√
dp(x↑)p(x)
dp(x↑) + p(x)

, x ∈ □. (2.35)

Indeed, the derivative is strictly negative when the indicator is 0 and therefore the
indicator must be 1. But the latter is guaranteed by (2.34)–(2.35), which imply that

ū(x)
ū(x↑)

=

√
dp(x)

dp(x↑) + p(x)
≤

√
d, x ∈ □.
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Given the choice in (2.34)–(2.35), also the fourth line in (2.33) is zero. Thus, only the
second and third line in (2.33) are non-zero, but this is harmless because O, ⋆ carry a
negligible weight in the limit as R → ∞ because of the constraint p(∂VR ∪ O) ≤ 1/R
in Lemma 2.3.7 (recall (2.19)).

Inserting (2.34)–(2.35) into (2.31) and using (2.30), (2.32), we get the following
lower bound:

sup
u : VR→(0,∞)

L(u)

≥ −
∑

x∈int(VR)

Aū(x) −
∑

x∈∂VR\⋆

Bū(x) − Cū(⋆) +
∑
x∈□

Dū(x)

= −
∑

x∈int(VR)

∑
y∼x

√
p(y)p(x) −

∑
x∈∂VR\⋆

√
p(x)

(√
p(x↑) + d

√
dp(x)p(□x)
dp(x) + p(□x)

)

−
√
p(⋆)

(√
p(⋆↑) + d

√
p(O)

)
+
∑
x∈□

p(x)

(
d+ 1 −

√
d

[√
p(x)

dp(x↑) + p(x)
+

√
dp(x↑) + p(x)

p(x)

])
.

5. Using the relation (d+ 1)p(x) =
∑

y∼x p(x), x ∈ int(VR), we get from (2.28) that

I†
E(WR)(p) ≥ K1

R(p) +K2
R(p)

with

K1
R(p) =

∑
x∈int(VR)

∑
y∼x

[
p(x) −

√
p(x)p(y)

]
=

∑
{x,y}∈ÊR

(√
p(x) −

√
p(y)

)2
+
[
p(O) −

√
p(O)p(⋆)

]
−
∑

x∈∂VR

[
p(x) −

√
p(x)p(x↑)

]

and

K2
R(p) =

∑
x∈∂VR\⋆

[
(d+ 1)p(x) −

√
p(x)

(√
p(x↑) + d

√
dp(x)p(□x)
dp(x) + p(□x)

)]

+ (d+ 1)p(⋆) −
√
p(⋆)

(√
p(⋆↑) + d

√
p(O)

)
+
∑
x∈□

p(x)

[
d+ 1 −

√
d

(√
p(x)

dp(x↑) + p(x)
+

√
dp(x↑) + p(x)

p(x)

)]
.

The first sum in the right-hand side of K1
R(p) equals the standard rate function I

ÊR
(p)

given by (2.10), with
ÊR = ER \ {O, ⋆}
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the set of edges in the unit WR without the tadpoles and without the edge {O, ⋆} (i.e.,
ÊR = E(T ∗

R); recall Fig. 2.4). Rearranging and simplifying terms, we arrive at

I†
E(WR)(p) ≥ I

ÊR
(p) +K3

R(p) (2.36)

with
K3

R(p) = S∂VR\⋆(p) + SO,⋆(p) + S(∂VR\⋆)∪□(p),

where

S∂VR\⋆(p) = d
∑

x∈∂VR\⋆

p(x),

SO,⋆(p) =
(√

p(O) −
√
p(⋆)

)2
+ (d− 1)

[
p(⋆) −

√
p(O)p(⋆)

]
,

S(∂VR\⋆)∪□(p) = −
∑

x∈∂VR\⋆

p(x) d

√
dp(□x)

dp(x) + p(□x)

+
∑

x∈∂VR\⋆

p(□x)

(
d+ 1 −

√
d

[√
p(□x)

dp(x) + p(□x)
+

√
dp(x) + p(□x)

p(□x)

])
.

(2.37)

6. Since
√
p(O)p(⋆) ≤ 1

2 [p(O)+p(⋆)], the boundary constraint
∑

x∈∂VR∪O p(x) ≤ 1/R
implies that S∂VR\⋆(p)+SO,⋆(p) = O(1/R). The same constraint implies that the first
sum in S(∂VR\⋆)∪□(p) is O(1/R). Hence

K3
R(p) = O(1/R) +

∑
x∈∂VR\⋆

p(x)F
(

p(□x)
p(x)

)
with

F (w) = w

(
d+ 1 −

√
d

[√
w

d+ w
+
√
d+ w

w

])
.

The map w 7→ F (w) is continuous on (0,∞) with

F (w) =
{

−
√
w + (d+ 1)w +O(w3/2), w ↓ 0,

[(d+ 1) − 2
√
d ]w +O(w−1), w → ∞.

From this we see that if d ≥ 4, then there exists a C ∈ (1,∞) such that

F (w) + C ≥
(
1 −

√
w
)2
, w ∈ [0,∞). (2.38)

Hence we have the lower bound

K3
R(p) ≥ O(1/R) +

∑
x∈∂VR\⋆

p(x)

[
−C +

(
1 −

√
p(□x)
p(x)

)2
]

= O(1/R) +
∑

x∈∂VR\⋆

(√
p(x) −

√
p(□x)

)2
.
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Via (2.36)–(2.37), it follows that

I†
E(WR)(p) ≥ O(1/R) + I

ẼR
(p), R ∈ N, (2.39)

with I
ẼR

(p) the standard rate function given by (2.10), with

ẼR = ÊR ∪
[

∪x∈∂VR\⋆ {x,□x}
]

the set of edges in the unit W̃R that is obtained from the unit WR by removing the
edge {O, ⋆} (i.e., ẼR = E(W̃R); recall Fig. 2.5). This completes the proof of (2.26).

Remark 2.4.1. The condition d ≥ 4 is needed only in (2.38). For d = 2, 3 we have
F (w) + C ≥ θc(1 −

√
w )2 with θc = d + 1 − 2

√
d ∈ (0, 1). Consequently, the edges

{x,□x}, x ∈ ∂VR \ ⋆, carry a weight that is smaller than that of the edges in T , which
may cause the optimal p to stick to the boundary as R → ∞, in which case we do not
have (2.39). ♠

§2.4.2 Limit of the upper variational formula
Note that

W̃R ⊆ T ,

with T the infinite tree. Consequently,

I
ẼR

(p) = IE(T )(p) − (d− 1)
∑

x∈∂VR\⋆

p(x), ∀ p ∈ P(V (T )) : supp(p) = V (W̃R),

where the sum compensates for the contribution coming from the edges in T that link
the vertices in ∂VR \ ⋆ to the vertices one layer deeper in T that are not tadpoles.
Since this sum is O(1/R), we obtain (recall (2.20))

χ+
R(ϱ) = inf

p∈P(V (WR)) :
p(∂WR

)≤1/R

{
I†

E(WR)(p) + ϱJV (WR)(p)
}

≥ O(1/R) + inf
p∈P(V (T )) :

supp(p)=V (W̃R), p(∂
W̃R

)≤1/R

{
IE(T )(p) + ϱJV (T )(p)

}
≥ O(1/R) + χT (ρ),

where the last inequality follows after dropping the constraint under the infimum and
recalling (2.14). This completes the proof of (2.27).

§2.5 Analysis of the variational problem on the in-
finite regular tree

In this Section we prove Theorem 2.1.4. Section 2.5.1 formulates two theorems that
imply Theorem 2.1.4, Section 2.5.2 provides the proof of these theorems. Recall the
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definition of P(V ), IE(p) and JV (p) from (2.10). Set

χT (ϱ) = inf
p∈PO(V )

[IE(p) + ϱJV (p)], ϱ ∈ (0,∞), (2.40)

where PO(V ) = {p ∈ P(V ) : argmax p = O}. Since P(V ), IE and JV are invariant
under translations, the centering at O is harmless.

§2.5.1 Two properties
Theorem 2.5.1. For every ϱ ∈ (0,∞) the infimum in (2.40) is attained, and every
minimiser p̄ is strictly positive, non-increasing along backbones, and such that∑

N∈N0

∂SR log(R+ 1) ≤ d+ 1
ϱ

, ∂SR =
∑

∂BR(O)

p̄(x),

where BR(O) is the ball of radius R around O.

Theorem 2.5.2. The function ϱ 7→ χT (ϱ) is strictly increasing and globally Lipschitz
continuous on (0,∞), with limϱ↓0 χT (ϱ) = d− 1 and limϱ→∞ χT (ϱ) = d+ 1.

Theorems 2.5.1–2.5.2 settle Theorem 2.1.4. Their proof uses the following two
lemmas.

Lemma 2.5.3. For every ϱ ∈ (0,∞), the infimum in (2.40) may be restricted to
p ∈ PO(V ) such that JV (p) ≤ d+1

ϱ .

Proof. Let δO ∈ PO(V ) denote the point measure at O. Then, for all ϱ ∈ (0,∞),

χT (ϱ) ≤ IE(δO) + ϱJV (δO) = (d+ 1) + ϱ× 0 = d+ 1.

Since IV ≥ 0, we may restrict the infimum in (2.40) to p with JV (p) ≤ d+1
ϱ .

Lemma 2.5.4. For every ϱ ∈ (0,∞), there exists a c(ϱ) > 0 such that the infimum
in (2.40) may be restricted to p ∈ PO(V ) such that JV (p) ≥ c(ϱ).

Proof. Since JV (p) = 0 if and only if p = δO is a point measure, it suffices to show
that δO is not a minimiser of χT (ϱ). To that end, for y ∈ V compute

∂

∂p(y)
[IE(p) + ϱJV (p)] = 1 −

∑
z∼y

√
p(z)
p(y)

− ϱ log p(y) − ϱ. (2.41)

Because p(O) > 0, it follows that the right-hand side tends to −∞ as p(y) ↓ 0 for
every y ∼ O. Hence, no p ∈ PO(V ) with p(y) = 0 for some y ∼ O can be a minimiser
of (2.40), or be the weak limit point of a minimising sequence. In particular, δO
cannot.

40



§2.5. Analysis of the variational problem on the infinite regular tree

C
hapter

2

§2.5.2 Proof of the two properties
Proof of Theorem 2.5.1. First observe that P(V ) and JV are invariant under per-
mutations, i.e., for any p ∈ P(V ) and any relabelling π of the vertices in V , we have
πp ∈ P(V ) and JV (πp) = JV (p). The same does not hold for IE , but we can apply
permutations such that IE(πp) ≤ IE(p).

1. Pick any p ∈ P(V ). Pick any backbone bb = {x0, x1, · · · } that runs from x0 =
O to infinity. Consider a permutation π that reorders the vertices in bb such that
{(πp)(x)}x∈bb becomes non-increasing. Together with the reordering, transport all
the trees that hang off bb as well. Since πp is non-increasing along bb, while all the
edges that do not lie on bb have the same neighbouring values in p and in πp, we have

IE(πp) ≤ IE(p). (2.42)

Indeed,
1
2 [IE(p) − IE(πp)] =

∑
k∈N0

√
(πp)(xk)(πp)(xk+1) −

∑
k∈N0

√
p(xk)p(xk+1), (2.43)

where we use that p(x0) = (πp)(x0) (because p(x0) ≥ p(xk) for all k ∈ N) and∑
k∈N p(xk) =

∑
k∈N(πp)(xk). The right-hand side of (2.43) is ≥ 0 by the rearrange-

ment inequality for sums of products of two sequences [26, Section 10.2, Theorem
368]. In fact, strict inequality in (2.43) holds unless p is constant along bb. But this
is impossible because it would imply that p(O) = 0 and hence p(x) = 0 for all x ∈ V .
Thus, p and bb being arbitrary, it follows from (2.42) that any minimiser or minim-
ising sequence must be non-increasing in the distance to O. Indeed, if it were not,
then there would be a bb along which the reordering would lead to a lower value of
IE + ϱJV . Hence we may replace (2.40) by

χT (ϱ) = inf
p∈P↓

O(V )
[IE(p) + ϱJV (p)], ϱ ∈ (0,∞), (2.44)

with P↓
O(V ) defined in (2.15).

2. Let p ∈ P↓
O(V ). Estimate

JV (p) =
∑

R∈N0

∑
x∈∂BR(O)

[−p(x) log p(x)] ≥
∑

R∈N0

∑
x∈∂BR(O)

[
− p(x) log

( 1
R+1

)]
,

where we use that p(x) ≤ 1
R+1 for all x ∈ ∂BR(O). Hence

JV (p) ≥
∑

R∈N0

∂SR log(R+ 1)

with ∂SR =
∑

x∈∂BR(O) p(x). By Lemma 2.5.3, JV (p) ≤ d+1
ϱ , and so∑

R∈N0

∂SR log(R+ 1) ≤ d+ 1
ϱ

. (2.45)
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The computation in (2.41) shows that any p for which there exist z ∼ y with p(z) > 0
and p(y) = 0 cannot be minimiser nor a weak limit point of a minimising sequence.
Hence all minimisers or weak limit points of minimising sequences are strictly positive
everywhere.

3. Take any minimising sequence (pn)n∈N of (2.44). By (2.45), limR→∞
∑

x/∈BR(O) pn(x) =
0 uniformly in n ∈ N, and so (pn)n∈N is tight. By Prokhorov’s theorem, tight-
ness is equivalent to (pn)n∈N being relatively compact, i.e., there is a subsequence
(pnk

)k∈N that converges weakly to a limit p̄ ∈ P↓
O(V ). By Fatou’s lemma, we have

lim infk→∞ IE(pnk
) ≥ IE(p̄) and lim infk→∞ JV (pnk

) ≥ JV (p̄). Hence

χT (ϱ) = lim
k→∞

[IE(pnk
) + ϱJV (pnk

)] ≥ IE(p̄) + ϱJV (p̄).

Hence p̄ is a minimiser of (2.44).

Proof of Theorem 2.5.2. The proof uses approximation arguments.

1. We first show that ϱ 7→ χT (ϱ) is strictly increasing and globally Lipschitz. Pick
ϱ1 < ϱ2. Let p̄ϱ1 be any minimiser of (2.40) at ϱ1, i.e.,

χT (ϱ1) = IE(p̄ϱ1) + ϱ1JV (p̄ϱ1).

Estimate

[IE(p̄ϱ1) + ϱ1JV (p̄ϱ1)] = [IE(p̄ϱ1) + ϱ2JV (p̄ϱ1)] − (ϱ2 − ϱ1)JV (p̄ϱ1)
≥ χT (ϱ2) − (ϱ2 − ϱ1)JV (p̄ϱ1) ≥ χ(ϱ2) − (ϱ2 − ϱ1) d+1

ϱ1
,

where we use Lemma 2.5.3. Therefore

χT (ϱ2) − χT (ϱ1) ≤ (ϱ2 − ϱ1) d+1
ϱ1
.

Similarly, let p̄ϱ2 be any minimiser of (2.40) at ϱ2, i.e.,

χT (ϱ2) = IE(p̄ϱ2) + ϱ2JV (p̄ϱ2).

Estimate

[IE(p̄ϱ2) + ϱ2JV (p̄ϱ2)] = [IE(p̄ϱ2) + ϱ1JV (p̄ϱ2)] + (ϱ2 − ϱ1)JV (p̄ϱ2)
≥ χT (ϱ1) + (ϱ2 − ϱ1)JV (p̄ϱ2) ≥ χT (ϱ1) + (ϱ2 − ϱ1)c(ϱ2),

where we use Lemma 2.5.4. Therefore

χT (ϱ2) − χT (ϱ1) ≥ c(ϱ2)(ϱ2 − ϱ1).

2. Because χT (ϱ) ≤ d + 1 for all ϱ ∈ (0,∞), it follows that limϱ→∞ χT (ϱ) ≤ d +
1. To obtain the reverse inequality, let p̄ϱ be any minimiser of (2.44) at ϱ. By
Lemma 2.5.3, we may assume that JV (p̄ϱ) ≤ d+1

ϱ . Hence limϱ→∞ JV (p̄ϱ) = 0, and
consequently limϱ→∞ p̄ϱ = δO weakly. Therefore, by Fatou’s lemma, limϱ→∞ χT (ϱ) =
limϱ→∞[IE(p̄) + ϱJV (p̄)] ≥ lim infϱ→∞ IE(p̄ϱ) ≥ IE(δO) = d+ 1.
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3. To prove that limϱ↓0 χT (ϱ) ≤ d− 1, estimate

χT (ϱ) ≤ inf
p∈P↓

O(V )
supp(p)⊆BR(O)

[IE(p) + ϱJV (p)], R ∈ N0.

Because
sup

p∈P↓
O(V )

supp(p)⊆BR(O)

JV (p) = JV (pR) = log |BR(O)|, R ∈ N0,

with

pR(x) =

{
|BR(O)|−1, x ∈ BR(O),

0, else,
it follows that

lim
ϱ↓0

χT (ϱ) ≤ inf
p∈P↓

O(V )
supp(p)⊆BR(O)

IE(p) ≤ IE(pR), R ∈ N0.

Compute (recall (2.10)) ,

IE(pR) = |∂BR+1(O)|
|BR(O)|

, R ∈ N0.

Inserting the relations

|∂BR(O)| =
{

1, R = 0,
(d+ 1)dR−1, R ∈ N,

|BR(O)| =
R∑

R′=0
|∂BR′(O)| = 1 + d+ 1

d− 1
(dR − 1), R ∈ N0,

we get

IE(pR) = (d− 1) (d+ 1)dR

(d+ 1)dR − 2
.

Hence limR→∞ IE(pR) = d− 1, and so limϱ↓0 χT (ϱ) ≤ d− 1.
4. To prove that limϱ↓0 χT (ϱ) ≥ d− 1, note that because JV ≥ 0 we can estimate

lim
ϱ↓0

χT (ϱ) ≥ inf
p∈P↓

O(V )
IE(p).

It therefore suffices to show that

inf
p∈P↓

O(V )
IE(p) ≥ d− 1,

i.e., (pR)R∈N0 is a minimising sequence of the infimum in the left-hand side. The proof
goes as follows. Write (recall (2.10))

IE(p) = 1
2

∑
x,y∈V

x∼y

(√
p(x) −

√
p(y)

)2

= 1
2

∑
x,y∈V

x∼y

[
p(x) + p(y) − 2

√
p(x)p(y)

]
= (d+ 1) −

∑
x,y∈V

x∼y

√
p(x)p(y).
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Since T is a tree, each edge can be labelled by the end-vertex that is farthest from O.
Hence the sum in the right-hand side can be written as∑

x∈V \O

2
√
p(x)p(x↓),

where x↓ is the unique neighbour of x that is closer to O than x. Since 2
√
p(x)p(x↓) ≤

p(x) + p(x↓), it follows that∑
x∈V \O

2
√
p(x)p(x↓) ≤

∑
x∈V \O

p(x) +
∑

x∈V \O

p(x↓) = [1 − p(O)] + 1.

Therefore
IE(p) ≥ d− 1 + p(O),

which settles the claim.
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