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1 §1.1 Introduction

§1.1.1 Definitions, intermittency and problems
The parabolic Anderson model (abbreviated PAM) is the Cauchy problem for the heat
equation with random potential. It is given by the parabolic differential equation

∂
∂tu(x, t) = κ∆u(x, t) + ξ(x)u(x, t), t > 0, x ∈ X ,
u(x, 0) = f(x), x ∈ X ,

(1.1)

where κ > 0 is the diffusion constant, X an ambient space, ∆ the Laplace operator
acting on functions on X , ξ the random potential, and f the initial condition. The
ambient space X can be taken to be continuous, and/or the potential taken to be
time dependent. However, we shall restrict to discrete spaces (graphs) and a static
potential in this thesis. See [34], [18], [20] for more background on Rd, and [10], [17]
for works on time-dependent potentials.

Under mild conditions on the initial condition and potential, the unique non-
negative solution to (1.1) admits the the well-known Feynman-Kac representation

u(x, t) = Ex

[
e
∫ t

0
ξ(Xs)ds

f(Xt)
]
, (1.2)

where X = (Xt)t≥0 is the Markov process with generator κ∆, i.e. a continuous-time
random walk with jump rate κ to each neighbour. In addition, Px denotes probability
with respect to X given that X0 = x. Since the equations

∂

∂t
v(x, t) = κ∆v(x, t), ∂

∂t
w(x, t) = ξ(x)w(x, t),

have solutions

v(x, t) = Ex(f(Xt)), w(x, t) = e
∫ t

0
ξ(x)ds

f(x),

the solution in (1.2) is heuristically plausible.

One interpretation of the PAM concerns the following non-interacting particle sys-
tem. At time t and site x, particles are killed with rate ξ−(x) or are split into two
with rate ξ+(x), where ξ(x) = ξ+(x) − ξ−(x). At the same time, each particle jumps
independently with κ∆ as generator. The solution u(x, t) is the average number of
particles (or mass) at site x and time t, with initial condition f(x) that is integer
valued. The parabolic problem is a classical model of a system evolving in an in-
homogeneous random medium and has wide ranging applications. By considering the
particles above as organisms, the PAM has an application in population dynamics.
The PAM is also related to other physical problems, including the Burger’s equation,
and the advection-convection equation for a temperature field. See [10] for more de-
tails and more applications.
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Another contributing factor to the popularity of PAM is that the model exhibits
intermittency, rather than being spatially homogeneous. This is related to Ander-
son localisation observed in the associated Anderson Hamiltonian κ∆ + ξ studied in
[1], where the eigenvectors of the operator are concentrated around a point and de-
cay exponentially. Heuristically, intermittency is the related phenomenon where the
majority of the total mass

U(t) =
∑

x∈X

u(x, t)

is concentrated in specific regions of X as t → ∞ known as intermittent islands. See
[29][Section 2.2.4] for further details on how Anderson localisation relates to intermit-
tency. The natural questions regarding intermittency are therefore:

(a) What is the asymptotics of U(t) as t → ∞?
(b) Where are the intermittent island(s) situated in X ? How does ξ affect the

intermittent islands?
(c) What do ξ and u(t, x) look like on the intermittent islands?

The above intuition is too imprecise to provide a rigorous definition of intermittency.
In the literature, intermittency is defined using the moments of the total mass

mp(t) = 1
t

log〈U(t)p〉, p ∈ N, (1.3)

where 〈·〉 denotes expectation with respect to the potential ξ. Here mp(t) is known as
the pth Lyapunov exponent, and the model is said to be intermittent if

m1 <
m2

2
< · · · < mp

p
< · · · (1.4)

as t → ∞. We refer to [29][Section 1.4] for a more complete picture as to why this
definition captures the phenomenon described before. Loosely speaking, (1.4) says
that moments grow faster than previous moments by an exponential factor. This can
only happen if large amounts of mass concentrate on small regions of X , so that the
main contribution to the moments comes from regions where the solution takes large
values. In other words, the overwhelming part of the mass has to be concentrated
in these regions for large t. This means that the definition in terms of moments is
consistent with the heuristics given before.

Understanding the asymptotics of mp(t) is often the first step in the analysis of the
PAM, as it quantifies the intermittency phenomenon and resolves the first question
above. There is a distinction between the quenched total mass and the annealed total
mass, i.e. the total mass taken almost surely with respect to the potential or averaged
over the potential. In (1.3) and (1.4) the total mass was taken annealed, although
the quenched asymptotics of U(t) is also relevant. For the other questions regarding
the intermittent islands, further analysis is required. The analysis in this case is
done through a characteristic variational formula that optimises the large deviation
probability of realisations of the potential and the principal eigenvalue of the Anderson
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1 Hamiltonian on the intermittent islands. The variational formula also serves as the
second order correction term in the asymptotics of both the quenched and the annealed
total mass. As will become clear later, this is because potential profiles that are ‘close’
to the minimiser of the variational formula contribute most to the total mass. There is
again a distinction between the annealed and the quenched variational formulae despite
their similarities. In essence they approach the problem from different starting points
and hence differ in their interpretation and are also formulated slightly differently.

§1.1.2 The parabolic Anderson model on a lattice
The study of the PAM on discrete spaces originated on the lattice Zd, d ≥ 1, through
the seminal works [24] and [25] by Gärtner and Molchanov. In particular, they showed
that the (non-negative) solution to (1.1) exists and is unique under mild conditions,
namely non-negative bounded initial conditions and that the potential does not per-
colate from below. In addition, the solution has the simple representation given by
(1.2).

Henceforward, we shall assume that f(x) = δ0(x), the potential ξ to be independent
and identically distributed, and κ = 1. In this case, the PAM in (1.1) reads

∂
∂tu(x, t) = ∆u(x, t) + ξ(x)u(x, t), t > 0, x ∈ Zd,
u(x, 0) = δ0(x), x ∈ Zd,

(1.5)

where the Laplacian is given by

(∆f)(x) =
∑
y∈Zd

|y−x|=1

[f(y) − f(x)]. (1.6)

The solution is then given by

u(x, t) = E0

[
e
∫ t

0
ξ(Xs)ds

1{Xt = x}
]
, (1.7)

where we have used time reversal. Taking a point mass at 0 is the standard choice of
initial condition, as it allows for the total mass U(t) to be expressed as

U(t) =
∑

x∈Zd

u(x, t) = E0

[
e
∫ t

0
ξ(Xs)ds

]
. (1.8)

The result for arbitrary κ can be obtained from those for κ = 1, by scaling time.

Since [24] and [25], the PAM on Zd has been extensively studied and is now well
understood. We give a brief summary of the main results under the above assump-
tions. We borrow from [29].
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Suppose that the cumulant generating function of the potential

H(t) = log〈etξ(0)〉

belongs to the de Haan class of regular functions, i.e. that

lim
t→∞

H(ct) − cH(t)
g(t)

= Ĥ(t) 6≡ 0 (1.9)

for all c 6= 1, and that limt→∞ g(t)/t exists. It is known from [35] that there are 4
qualitatively different regimes (known as universality classes) for the behaviour of the
total mass, as well as the size and number of intermittent islands. Precisely which
regime the asymptotics belong to depends on the the limit Ĥ, which is determined by
the upper tail of the distribution of ξ(0). The 4 classes are:

(a) Double exponential. This is the regime that was originally studied in [25]. Po-
tentials in this class have upper tails approximately equal to

P(ξ(0) > u) = e−eu/ϱ

, u ∈ R, (1.10)

for a parameter ϱ ∈ (0,∞). The unique feature of this class is that the intermit-
tent islands do not shrink nor grow with time, while also being non-trivial. In
this class, the moments of the total mass satisfy, as t → ∞,

〈U(t)p〉 = exp[H(pt) − ptχ(ϱ) + o(t)], (1.11)

where χ(ϱ) is the annealed characteristic variational formula given by

χ(ϱ) := inf
p∈P(Zd)

[I(p) + ϱJ(p)], ϱ ∈ (0,∞), (1.12)

with

I(p) =
∑

x,y∈Zd:x∼y

(√
p(x) −

√
p(y)

)2
, J(p) = −

∑
x∈Zd

p(x) log p(x).

In this regime, H(t) = ϱt log(ϱt) − ϱt + o(t) as t → ∞. Furthermore, the
variational formula was studied in [23] and it is known that the minimiser de-
composes into the d-fold tensor product of the minimiser for the case d = 1.
The minimiser of the one-dimensional problem is unimodal (the maximum can
be taken at 0 due to translation invariance), and decreasing with the distance
to the maximum. Furthermore, it is known that the minimiser is unique up to
translations for ϱ sufficiently large.

For the quenched case, [25] showed that as, t → ∞,
1
t

logU(t) = H(d log t)
d log t

− χ⋆(ϱ) + o(1), (1.13)

where χ⋆(ϱ) is the quenched variational formula. In this case, the annealed and
the quenched variational formulae are equal and given by (1.12). However, we
emphasise that the two have different interpretations despite them being equal
in this case.
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1 (b) Single point. This class comprises potentials with heavier tails and corresponds
to the double exponential class with ϱ = ∞. This class was also analysed in [25],
as a limiting case for the double exponential class. Examples of distributions in
this class include the normal distribution, the Weibull distribution with

P(ξ(0) > u) = e−Cuα

, α > 1,

where the condition α > 1 ensures all exponential moments are finite. In this
class, the results are consistent with the double exponential class with ϱ = ∞.
The moments of the total mass satisfy, as t → ∞,

〈U(t)p〉 = exp[H(pt) − ptχ(∞) + o(t)].

The variational formula is also the same as (1.12) at ϱ = ∞, in which case the
minimiser is taken at a single point and the value is equal to 2d. Therefore the
intermittent island is a single site.

(c) Bounded Potential. The classical example is

P(ξ(0) = 0) = p, P(ξ(0) = −∞) = 1 − p,

for p ∈ [0, 1] which corresponds to Bernoulli traps. In this case the total mass
can be interpreted as the survival probability of the random walk. In this class,
the diameter of the intermittent islands diverges to ∞ at least as fast as some
power of t as t → ∞. Furthermore, it is known from [32] that the minimiser of
the variational formula exists, is unique and is compactly supported on a ball.
The quenched and annealed asymptotics for the total mass are complicated and
involve the diameter of the intermittent islands. See [7] for details.

(d) Almost bounded. This class lies between the bounded and the double exponential
classes in terms of the thickness of the tails. An example is obtained after ϱ is
replaced by a regular function ϱ(u) that tends to 0 as u → ∞. Here, the
diameter of the intermittent islands diverges to ∞, but slower than any power
of t as t → ∞. See [21] for further details.

§1.1.3 The parabolic Anderson model on random
graphs

On a general graph G = (V,E), the PAM is defined by

∂
∂tu(x, t) = ∆u(x, t) + ξ(x)u(x, t), t > 0, x ∈ V,
u(x, 0) = δO(x), x ∈ V.

(1.14)

The Laplacian is given by

(∆f)(x) =
∑
y∼x

[f(y) − f(x)], (1.15)

6



§1.1. Introduction

C
hapter

1

where the sum runs over all neighbours of x, i.e. y ∼ x means that {x, y} ∈ E. Note
that this is precisely equal to the graph Laplacian matrix on G given by D−A, where
D is the degree matrix and A is the adjacency matrix. The solution is given by

u(x, t) = EO

[
e
∫ t

0
ξ(Xs)ds

1{Xt = x}
]
, (1.16)

where the random walk has jump rate 1 along the edges E, and O ∈ V . In the case
of a rooted graph, O is chosen to be the root.

There has been little work in the area of deterministic graphs. The most impactful
works in this direction are [16] and [5]. The former concerned the PAM on a complete
graph of size N with an i.i.d. exponentially distributed potential. All moments are
eventually infinite as t → ∞ under this potential, hence intermittency was quantified
by showing that

u(t, y)
U(t)

→ 1 a.s. (1.17)

as t → ∞ and N → ∞ simultaneously (in any relation), where y is the site with the
largest value of ξ. This is to be expected, as the exponential distribution has even
thicker tails than the single point class above. Furthermore, it was shown that there is
a phase transition depending on whether t/ logN → 0 or not, i.e. whether time grows
faster than the logarithm of the size of the graph or not. In the case of the hypercube
{0, 1}n, the potential was taken to be i.i.d. normally distributed with mean 0 and
variance n. In this case, the PAM exhibits a similar behaviour as on the complete
graph: as t, n → ∞, most of the mass is concentrated on one site in the same sense as
(1.17). This site is again where the potential is maximal. Moreover, there is again a
phase transition, except that the critical time scale is n logn. The PAM on the hyper-
cube has biological applications, as it can model the occurrence of mutants in a large
population. The hypercube can be interpreted as the set of all possible gene sequences
of 2 alleles (the gene pool), and the potential can be seen as a random fitness landscape.

For random graphs, even less is known. The study of the PAM on random graphs
was initiated in [12] on the Galton-Watson tree (G,V,O) with offspring distribution
bounded below by a constant d ≥ 2, and with expectation ϑ. Consequently, the
Galton-Watson trees considered are infinite with probability 1. For the double expo-
nential class of potentials, the almost sure asymptotics of the total mass was shown
to be

1
t

logU(t) = ϱ log
(

ϱtϑ

log log t

)
− ϱ− χ(ϱ) + o(1), (1.18)

almost surely with respect to the potential and the random tree. The argument
roughly follows the ideas from the lattice. The total mass is estimated by considering
random walk paths that very quickly reach an intermittent island with high values of
the potential and subsequently remain there. The probabilistic cost to travel to the
island and the maximum of the potential on the island were calculated and optimised
over. The first term in (1.18) corresponds to the maximal value of the potential in
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1 the island, which is obtained through extreme-value analysis. Since neighbourhoods
grow exponentially on the Galton-Watson tree, the first term is larger than (1.13) on
Zd, where neighbourhoods grow polynomially, because there are more sites for the
potential to take larger values. It was also shown that the intermittent islands are
equal to an infinite regular tree with minimal degree when ϱ is sufficiently large. This
was done by analysing the variational formula

χ(ϱ) := inf
p∈P(V )

[IE(p) + ϱJV (p)], ϱ ∈ (0,∞), (1.19)

which is the same as (1.12) but now on V , and showing that it is non-increasing under
successive ‘trimming’ of excess branches.

More recently, in [2], the PAM with i.i.d. Pareto distributed potentials was analysed
on a critical Galton-Watson tree conditioned on survival. The authors followed the
arguments presented in [28] for the lattice and obtained that the asymptotics of the
total mass satisfies

lim
λ→∞

lim inf
t→∞

P(logU(t) ∈ [λ−1ta(t), λta(t)]) = 1,

where λ is a parameter coming from the offspring distribution, and a(t) is the order
of the maximal value of the potential in a growing ball that was explicitly identified.
Furthermore, it was shown that the solution localises on 2 points almost surely, and
on a single point with high probability. Formally, there exist processes Vt and Wt on
the vertices such that as t → ∞,

u(t, Vt) + u(t,Wt)
U(t)

→ 1

almost surely with respect to the tree and the potential, and

u(t, Vt)
U(t)

→ 1

in probability with respect to the tree and the potential.

The main difficulty of moving to random graphs is that they complicate the analysis
by adding another layer of randomness. Furthermore, many properties of the lattice,
including degree regularity and translation invariance that previous works relied on,
are no longer present. Another difficulty is the exponentially growing nature of the
Galton-Watson tree, which means that any subtree has a boundary comparable to its
volume in size. Consequently, bounds that rely on reflection techniques that fold Zd

into a box of an appropriate size at the cost of a negligible boundary term are no longer
applicable. Even though the Galton-Watson tree is not regular, the degrees are i.i.d.
so that there is still some regularity. Hence, the Galton-Watson tree is the natural first
step towards extending the results beyond the lattice. Furthermore, random graphs
that are locally tree-like may share the the same behaviour as the Galton-Watson tree.
An example is the configuration model, as shown in [12].
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§1.1.4 Overview of the results
This thesis aims to contribute to the PAM on random trees. In this section we give an
overview of the main results. In all cases, we work under the i.i.d. double exponential
class of potentials. We also assume that the minimal offspring is at least 2, so that we
always have an infinite tree.

Chapter 2

In Chapter 2 we derive the annealed asymptotics of the total mass on a regular tree
with degree d+ 1.

Theorem 1.1.1. [Growth rate of the total mass] For any d ≥ 4,
1
t

log〈U(t)〉 = ϱ log(ϱt) − ϱ− χ(ϱ) + o(1), t → ∞.

This shows that the asymptotics on the regular tree exactly matches with the lattice
given by (1.11). We try to mimic the argument from [25] for the lattice, which involves
finding matching upper lower and upper bounds. For the lattice, the lower bound is
obtained by approximating the random walk on the infinite lattice by the random walk
on box of length R with zero boundary conditions. The upper bound is obtained by
periodising the random walk onto a torus of length R. The bounds coincide in the
limit R → ∞, which gives the result. The upper bound heavily relies on translation
invariance in the periodisation procedure, which is not present on the regular tree.
To overcome this, we devise a novel procedure to periodise the random walk onto a
subtree analogous to the torus for the lattice. This procedure relies on new ideas as
well as delicate computations.

Subsequently, we analysed the variational formula on the regular tree. In [12] it
was already shown that the minimiser is attained by the regular tree with minimal
degree. The theorem below collects its key properties.

Theorem 1.1.2. [Properties of the variational formula] For any d ≥ 2 the following
hold:
(a) The infimum in (1.12) may be restricted to the set

P↓
O(V ) =

{
p ∈ P(V ) : argmax p = O, p is non-increasing along backbones. (1.20)

(b) For every ϱ ∈ (0,∞), the infimum in (1.19) restricted to P↓
O(V ) is attained, every

minimiser p̄ is such that p̄ > 0 on V , and ∂SR =
∑

∂BR(O) p̄(x), R ∈ N0, satisfies∑
R∈N0

∂SR log(R+ 1) ≤ d+ 1
ϱ

,

where BR(O) is the ball of radius R centred at O.
(c) The function ϱ 7→ χ(ϱ) is strictly increasing and globally Lipschitz continuous on
(0,∞), with

lim
ϱ↓0

χ(ϱ) = d− 1, lim
ϱ→∞

χ(ϱ) = d+ 1.

9



1. Introduction

C
ha

pt
er

1 Chapter 3

We would like to have a result analogous to Theorem 1.1.1 on the Galton-Watson tree.
Chapter 3 makes another step in this direction by extending the results of Chapter
2 to a periodic Galton-Watson tree, i.e. a Galton-Watson tree up to distance R from
the root, which is repeated every R generations. This is a close approximation of the
Galton-Watson tree for R large. On this tree, we again derive the asymptotics of the
annealed total mass. We require the following assumption on the offspring distribution
D.

Assumption 1.A. [Offspring distribution]
There exist 4 ≤ d− ≤ d+ < ∞ such that supp(D) ⊆ [d−, d+]. ■

Theorem 1.1.3. Subject to Assumption 1.A, as t → ∞,

1
t

log〈U(t)〉 = ϱ log(ϱt) − ϱ− χGW(ϱ) + o(1)

almost surely with respect to the tree.

The proof relies on the novel techniques developed in the previous chapter, but all the
technicalities and fine details needed to be carefully adapted. Obtaining the result
requires careful navigation with the degrees, which are now random.

Chapter 4

Chapter 4 concerns the aspymptotics of the total mass, but in the quenched setting.
This chapter follows the framework that was set up in [12], which required the offspring
distribution to be bounded. This goal of this chapter is to identify the weakest con-
dition on the degree distribution under which the arguments can be pushed through.
We require the following assumption on the offspring distribution.

Assumption 1.B. [Super-double-exponential tails] There exists a function f : (0,∞) →
(0,∞) satisfying lims→∞ f(s) = 0, lims→∞ f ′(s) = 0 and lims→∞ f(s) log s = ∞ such
that

lim sup
s→∞

e−s log P(D > sf(s)) < −2ϑ.

■

The assumption is slightly weaker than E
(
eeeaD )

< ∞ for some a < ∞.

Theorem 1.1.4. Subject to Assumption 1.B, as t → ∞,

1
t

logU(t) = ϱ log
(

ϱtϑ

log log t

)
− ϱ− χ(ϱ) + o(1).

The asymptotics are the same as in [12], but we have relaxed the assumption to off-
spring distributions with unbounded support. Obtaining the result requires a careful
analysis of the structural properties of the Galton-Watson tree and control on the
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occurrence of large degrees uniformly in large subtrees. Vertices with large degrees are
problematic and Assumption 1.B is the weakest condition needed to control them.

As mentioned above, the existence and uniqueness of the Feynman-Kac solution
to PAM on the lattice was proven in [24]. The existence and uniqueness on trees
should hold as well, although was never explicitly proven. In this chapter we follow
the arguments of [24] and rigorously prove the existence and uniqueness on Galton-
Watson trees provided, the offspring distribution has all exponential moments.

Assumption 1.C. [Exponential tails]
E
[
eaD

]
< ∞ for all a ∈ (0,∞). ■

Theorem 1.1.5. Subject to Assumption 1.C, (1.14) has a unique non-negative solution
for all most all realisations of the potential and the tree. This solution admits the
Feynman-Kac representation in (1.16).

Chapter 5

Chapter 5 again considers the PAM on a Galton-Watson tree, but with the normalised
Laplacian

(∆f)(x) = 1
deg(x)

∑
y∼x

[f(y) − f(x)],

instead of (1.15). The aim of this chapter is to investigate the effect of the normalisa-
tion of the Laplacian. In the case of the lattice or regular graphs, the choice does not
matter as the normalisation is uniform across all the vertices and is therefore simply a
constant. This constant can be absorbed into the diffusion constant κ and all results
can be easily inferred. In [5] and [16], the degrees approach infinity with the size of
the graph and hence the normalised Laplacian was the only viable choice. In the case
of inhomogoenous graphs, which random graphs are, the choice of Laplacian plays a
role. We again consider the quenched asymptotics of the total mass.

Assumption 1.D. [Exponential tails]
E
[
eaD

]
< ∞ for all a ∈ (0,∞). ■

Theorem 1.1.6. [Total mass asymptotics] Subject to Assumption 1.D,
1
t

logU(t) = ϱ log
(

ϱtϑ

log log t

)
− ϱ− χ̃(ϱ) + o(1), t → ∞, (1.21)

almost surely with respect to the graph and the potential.

In this case, the variational formula is given by

χ̃(ϱ) = inf
p∈P(V )

[IE(p) + ϱJV (p)], ϱ ∈ (0,∞), (1.22)

with

IE(p) =
∑

{x,y}∈E

(√
p(x)

deg(x) −
√

p(y)
deg(y)

)2

, JV (p) = −
∑
x∈V

p(x) log p(x).
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1 Note that IE is different compared with (1.19). Hence, the leading-order terms in
(1.21) and (1.1.4) are the same, however the normalised Laplacian results in a different
the second-order term. Furthermore, comparing Assumption 1.A with Assumption 1.D
we see that the asymptotics now holds under vastly milder conditions on the offspring
distribution. We again follow the framework of [12]. The main challenge is to investig-
ate the spectral properties of the Anderson Hamiltonian ∆+ξ, which are now different.

It was found in [12] that the minimiser of the variational formula on the Galton-
Watson tree is equal to the variational formula on the regular tree minimal degrees
χTd

. We show that, with the normalised Laplacian and the different IE-function this
is again true, and under weaker conditions on ϱ.

Theorem 1.1.7. [Identification of the minimiser] If ϱ ≥ 1
dmin log(dmin+1) , then χ̃(ϱ) =

χTd
(ϱ).

§1.1.5 Open problems
We end this introduction by stating a few open problems. The ones that are within
reach include:

• Extend the techniques from Chapters 2 and 3 to the Galton-Watson tree.

• For the variational formula on the regular tree analysed in Chapter 2, de-
termine whether the minimiser p̄ is unique modulo translation, p̄(x) satisfies
lim|x|→∞ |x|−1 log p̄(x) = −∞, p̄ is radially symmetric, and whether ϱ 7→ χT (ϱ)
is analytic on (0,∞).

• Identify the minimiser of the variational formula for all ϱ, and show that it is
unique.

• Calculate the asymptotics of 〈U(t)p〉 on the Galton-Watson tree and see whether
this equal to

exp{H(pt) − ptχ(ϱ) + o(t)},

which is the same form as (1.11) on the lattice.

As stated before, very little is known about the PAM on general graphs. More chal-
lenging open problems include:

• Can we prove all our results under a different class of potential?

• What can we say about the PAM on other random graph models?
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