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Mauro Birattari, Thomas Stützle, Lúıs Paquete, and Klaus Varrentrapp. A Racing
Algorithm for Configuring Metaheuristics. In Proceedings of the Genetic and Evo-
lutionary Computation Conference, New York, USA, July 9-13, 2002, pages 11–18.

Ekaba Bisong. Google AutoML: cloud vision. In Building Machine Learning and Deep
Learning Models on Google Cloud Platform, pages 581–598. Springer, 2019.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time
series analysis: forecasting and control. John Wiley & Sons, 2015.

151



Bibliography

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
Distributed Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers. Foundations and Trends in Machine Learning, 3(1):1–122,
2011.

Antonio Bracale, Guido Carpinelli, Pasquale De Falco, and Tao Hong. Short-term
industrial load forecasting: A case study in an Italian factory. In Proceedings of the
2017 IEEE PES Innovative Smart Grid Technologies Conference Europe, Torino,
Italy, September 26-29, 2017, pages 1–6.

Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.

Andrew Brock, Theodore Lim, James M. Ritchie, and Nick Weston. SMASH: One-
Shot Model Architecture Search through HyperNetworks. In Proceedings of the 6th
International Conference on Learning Representations, Vancouver, BC, Canada,
April 30 - May 3, 2018.

Bostjan Brumen, Ales Cernezel, and Leon Bosnjak. Overview of Machine Learning
Process Modelling. Entropy, 23(9):1123, 2021.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller,
Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grob-
ler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux.
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Versatile Bayesian Optimization Package for Hyperparameter Optimization. Journal
of Machine Learning Research, 23:54:1–54:9, 2022.

LinuxFoundation. PyTorch. https://pytorch.org, 2022. Accessed: 2022-11-04.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li,
Li Fei-Fei, Alan L. Yuille, Jonathan Huang, and Kevin Murphy. Progressive Neural
Architecture Search. In Proceedings of the 15th European Conference on Computer
Vision, Munich, Germany, September 8-14, 2018, pages 19–35.

165

https://pytorch.org


Bibliography

Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L
Yuille, and Li Fei-Fei. Auto-deeplab: Hierarchical neural architecture search for
semantic image segmentation. In Proceedings of the 2019 IEEE Conference on
Computer Vision and Pattern Recognition, Long Beach, CA, USA, June 16-20,
2019, pages 82–92.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray
Kavukcuoglu. Hierarchical Representations for Efficient Architecture Search. In
Proceedings of the 6th International Conference on Learning Representations, Van-
couver, BC, Canada, April 30 - May 3, 2018.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable Architecture
Search. In Proceedings of the 7th International Conference on Learning Represen-
tations, New Orleans, LA, USA, May 6-9, 2019.

Sijia Liu, Parikshit Ram, Deepak Vijaykeerthy, Djallel Bouneffouf, Gregory Bramble,
Horst Samulowitz, Dakuo Wang, Andrew Conn, and Alexander G. Gray. An ADMM
Based Framework for AutoML Pipeline Configuration. In Proceedings of the 34th
AAAI Conference on Artificial Intelligence, New York, NY, USA, February 7-12,
2020, pages 4892–4899.

Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G. Yen, and Kay Chen
Tan. A Survey on Evolutionary Neural Architecture Search. IEEE Transactions on
Neural Networks and Learning Systems, 34(2):550–570, 2023.

James Robert Lloyd. GEFCom2012 hierarchical load forecasting: Gradient boosting
machines and Gaussian processes. International Journal of Forecasting, 30(2):369–
374, 2014.

Pablo Ribalta Lorenzo and Jakub Nalepa. Memetic evolution of deep neural net-
works. In Proceedings of the genetic and evolutionary computation conference, Ky-
oto, Japan, July 15-19, 2018, pages 505–512.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperpa-
rameters by implicit differentiation. In Proceedings of the International Conference
on Artificial Intelligence and Statistics, Virtual Event, August 26-28, 2020, pages
1540–1552.

Ilya Loshchilov and Frank Hutter. CMA-ES for Hyperparameter Optimization of Deep
Neural Networks. CoRR, abs/1604.07269, 2016.

Ilya Loshchilov, Marc Schoenauer, and Michèle Sebag. Self-adaptive surrogate-assisted
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Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine Learn-
ing in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Valerio Perrone, Huibin Shen, Matthias W. Seeger, Cédric Archambeau, and Rodolphe
Jenatton. Learning search spaces for Bayesian optimization: Another view of hy-
perparameter transfer learning. In Proceedings of the 33rd Annual Conference on
Neural Information Processing Systems, Vancouver, BC, Canada, December 8-14,
2019, pages 12751–12761.

Valerio Perrone, Michele Donini, Muhammad Bilal Zafar, Robin Schmucker, Krish-
naram Kenthapadi, and Cédric Archambeau. Fair bayesian optimization. In Pro-
ceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, Virtual
Event, May 19-21, 2021, pages 854–863.
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