
Automated machine learning for dynamic energy management
using time-series data
Wang, C.

Citation
Wang, C. (2024, May 28). Automated machine learning for dynamic energy
management using time-series data. Retrieved from
https://hdl.handle.net/1887/3754765
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3754765
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3754765


Chapter 6

AutoML for multi-step

time-series forecasting

6.1 Introduction

In the previous chapter, we investigated the use of AutoML for constructing machine

learning models for single-step time-series forecasting tasks. Different from the previ-

ous chapter, in this chapter we aim to answer the research question: How can AutoML

be used for multi-step time-series forecasting? Feature engineering is an essential step

in the pipelines used for many machine learning tasks, including time-series forecast-

ing. Although existing AutoML approaches partly automate feature engineering, they

do not support specialised approaches for applications on time-series data such as

multi-step forecasting. Multi-step forecasting is the task of predicting a sequence of

values in a time-series. Two kinds of approaches are commonly used for multi-step

forecasting. A typical approach is to apply one model to predict the value for the next

time step. Then the model uses this predicted value as an input to forecast the value

for the next time step. Another approach is to use multi-output models to make the

predictions for multiple time steps of each time-series directly.

This chapter presents a study of AutoML for time-series multi-step time-series fore-

casting implemented through (i) multi-output modeling, and (ii) recursive modeling.

We combine the state-of-the-art AutoML system of auto-sklearn with tsfresh, a well-

known library for feature extraction from time-series. We implement three AutoML

variants and state-of-the-art baseline models, including auto-sklearn, support vector

129



6.2. Related work

machines (SVMs), gradient boosting machine (GBM), N-BEATS, and Auto-Keras.

More specifically, our contributions are as follows:

• We adapt the auto-sklearn AutoML system to the task of multi-step forecasting

and introduce three AutoML forecasting variants for multi-step-ahead time-series

forecasting.

• We demonstrate the importance of feature selection and window size selection

in multi-step forecasting problems and further show that by incorporating such

approaches, our time-series AutoML techniques outperform available AutoML

methods.

• We evaluate our methods on 20 benchmarking data sets from 20 different cate-

gories and against the baselines. We found that our proposed AutoML method

outperformed the traditional machine learning baseline in 14 out of 20 data sets

and N-BEATS on 15 out of 20 data sets.

The remainder of this chapter is structured as follows: Section 6.2 covers related work

on time-series forecasting, time-series feature engineering and AutoML. Section 6.3

introduces the problem statement of AutoML for multi-step time-series forecasting.

In Section 6.4, the methodology of our newly proposed models is explained. Section

6.5 presents the results of the empirical performance comparison of different machine

learning models for multi-step time-series forecasting. A summary of our work and

directions for future work are given in Section 6.6

6.2 Related work

Multi-step time-series Forecasting: different machine learning methods and sta-

tistical methods have been used for both single-step and multi-step time-series analysis

in the past few decades (Hong and Fan, 2016). These include artificial neural networks

(Chen et al., 2018b), support vector machines (Nie et al., 2012), gradient boosting ma-

chine (Li et al., 2020b), random forest (Candanedo et al., 2017), auto-regressive moving

average models (Box et al., 2015), and exponential smoothing models (Nedellec et al.,

2014). To use these models for multi-step forecasting, two major approaches are used:

direct and recursive strategies (Taieb et al., 2012). The first of these uses multi-output

regression models to predict multiple time-series steps into the future directly or use

multiple models (one for each time step) to make multi-step forecasting. Multi-output

130



Chapter 6. AutoML for multi-step time-series forecasting

models show good performance and require less computational resources than train-

ing multiple models to realise multi-step forecasting (Ferreira and da Cunha, 2020).

The second approach uses a single model recursively, using the predicted values as

additional input to forecast the next step. In this case, the error in the prediction

may be accumulated (Taieb et al., 2012). Recursive strategies only require one model,

which saves significant computational time (Taieb et al., 2012). Other methods based

on these two approaches are also used, such as the DirRec strategy (Sorjamaa and

Lendasse, 2006), which combines the recursive strategies and direct strategies.

Time-series feature engineering: We have previously reviewed related work

in time-series feature engineering in Chapter 5.4.2. We use tsfresh in our experiments

in this chapter.

AutoML: AutoML systems have been used in many domains, such as image clas-

sification (Zoph et al., 2018), language processing (Bisong, 2019) and energy consump-

tion forecasting (Wang et al., 2019). However, time-series features are not well-studied

in AutoML systems. In our earlier work (Wang et al., 2019), we studied AutoML for

short term load forecasting demonstrating the competitive performance of AutoML

systems. However, we did not investigate the use of time-series features. In another

work (Wang et al., 2023), we studied AutoML with time-series features for single-step

time-series forecasting. Our Empirical results indicate that AutoML with time-series

features can further improve the accuracy of AutoML systems. In this chapter, we

focus on studying how to improve the performance of AutoML systems on multi-step

forecasting tasks by using time-series features. Many AutoML systems have been re-

cently developed, including Auto-sklearn (Feurer et al., 2015), AutoGluon (Shi et al.,

2021) and Auto-Keras (Jin et al., 2019) . Auto-sklearn is used in our experiments

since it supports various algorithms (e.g., SVMs) that are not available in the other

systems, and it is easy to extend. Auto-Keras is used to create a deep learning baseline

in our experiments.

6.3 Problem statement

Given a univariate time-series x = [x1, . . . , xi] composed of i observations. We are

interested in predicting the next k values x = [xi+1, . . . , xi+k], where k > 1 denotes

the forecasting window. Usually, not all the data points show the same influence

on the predictions of [xi+1, . . . , xi+k]. The more recent data points tend to be more

important. Specifically, given a time-series segment [xi−w+1, . . . , xi], we are interested

in forecasting of [xi+1, . . . , xi+k]; the window size w indicates how much historical data

131



6.4. Methodology

are used to make the prediction. In the previous chapter, we showed that the window

size w plays an essential role in single-step time-series forecasting; specifically, if a

machine learning model gets too much or too little information, this may reduce the

model’s performance. Here, we extend the automated window size selection technique

to multi-step forecasting. Besides this, we use tsfresh to automatically extract features

from time-series data within these windows.

6.3.1 AutoML for multi-step time-series forecasting

In the previous chapter, we define the Combined Algorithm Selection and Hyperparam-

eter optimisation (CASH) problem (Thornton et al., 2013) for single-output time-series

forecasting as the joint optimisation problem 5.1. In this chapter, we focus on multi-

step time-series forecasting tasks. The problem definition stays the same but the loss

is different, instead of calculating the loss based on the predicted value of every time

step, in the multi-step time-series forecasting tasks, we have to calculated it by the

whole predicted vector, which contains the predicted value from the next 1 to k time

steps.

6.4 Methodology

This section presents the two multi-step forecasting techniques and the AutoML tech-

nique enhanced with time-series features we use later in our experiments.

6.4.1 Multi-step forecasting

Recursive strategy: In this strategy, given a univariate time-series x = [x1, . . . , xn]

composed of n observations, a model f is trained to perform a single-step ahead

forecast: x̂i+1 = f(xi−w+1, ..., xi) with i ∈ {w, ..., n − 1}. Then we use x̂i+1 as an

input to predict xi+2. x̂i+2 = f(xi−w+2, ..., xi, x̂i+1) with i ∈ {w, ..., n − 1}. We

continue recursively, making new predictions in this manner until we forecast xi+k.

Direct Multi-Output strategy: A multi-output strategy has been proposed by

(Taieb and Bontempi, 2011) to solve multi-step time-series forecasting tasks. In this

strategy, one multi-output model f is learned, i.e., [x̂i+1, ..., x̂i+k] = f(xi−w+1, ..., xi)

with i ∈ {w, ..., n− k}.

132



Chapter 6. AutoML for multi-step time-series forecasting

6.4.2 Auto-Sklearn with time-series feature engineering

In this chapter, we study how we can extend auto-sklearn (Feurer et al., 2015) to

perform automatic feature extraction on time-series data. Originally, the pipelines

constructed by auto-sklearn include a preprocessor, feature preprocessor, and ma-

chine learning components. The ensemble construction used in auto-sklearn uses a

greedy algorithm to build the ensembles. The workflow of auto-sklearn is illustrated

in Figure 5.1. Auto-sklearn has a powerful feature preprocessor component. However,

it does not support any specialised time-series feature extractors. In our work, we

use our newly proposed time-series feature extractors in the search space instead of

the feature extractor in auto-sklearn. Automated feature extraction in this case con-

siders both the selection of the window size and the extraction of relevant features.

Therefore, we propose three variants of auto-sklearn that are specially designed for

time-series forecasting tasks by replacing the feature extractors of auto-sklearn with

one of the following.

meta-
learning

Input RNN Block

Regression
Head 1

automated by Auto-Keras

The numbers 
of epochs 

and iterations

.

.

.

Regression
Head 10

Figure 6.1: Workflow of our customised search space of Auto-Keras for time-series fore-
casting. The input data flows through the RNN Block. Hyperparameters, such as the number
of layers and learning rate, will be optimised during the search. The Regression Head then
generates output based on the information from the RNN Block.

1. Auto-sklearn with automated window size selection (W): the first vari-

ant of auto-sklearn for time-series forecasting optimises the window size w.

The time-series x = [xi−w+1, . . . , xi] are used to train a model that predicts

[xi+1, . . . , xi+k].

2. Auto-sklearn with tsfresh features (T): the second variant of auto-

sklearn extracts tsfresh time-series features from the time-series segment x =

133



6.5. Empirical results

[xi−w+1, . . . , xi] to predict [xi+1, . . . , xi+k]. In this case, the window size w

is predefined and fixed. The time-series features g(x) = g([xi−w+1, . . . , xi]) are

calculated using the time-series feature extractor g. Feature importance is calcu-

lated using the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995)

to select the important features. The Benjamini-Hochberg procedure selects im-

portant features for each step in the time-series separately. We then use the

union of all the important features to predict [xi+1, . . . , xi+k].

3. Auto-sklearn with automated window size selection and tsfresh fea-

tures (WT): this approach combines the two previously mentioned approaches.

Both window size w and the time-series extractor g are optimised in this variant.

6.5 Empirical results

Our key empirical results are based on aggregate performance over 20 data sets and

8 models. More detailed descriptions of the data sets and models are described in the

following.

6.5.1 Data sets

The open-source data sets from CompEngine (Fulcher et al., 2019) are used in our ex-

periments. CompEngine is a time-series data engine containing 197 types of data sets

comprising 29514 in total. These data sets include both real-world and synthetic data

sets. We chose ten real-world and ten synthetic data sets from different categories.

These are comprised of the following 20 categories: Audio: Animal sounds, Human

speech, Music; Ecology: Zooplankton growth; Economics: Macroeconomics, Microeco-

nomics; Finance: Crude oil prices, Exchange rate, Gas prices; Medical: Electrocardio-

graphy ECG; Flow: Driven pendulum with dissipation, Duffing-van der Pol Oscillator,

Driven van der Pol oscillator, Duffing two-well oscillator, Diffusionless Lorenz Attrac-

tor; Stochastic Process: Autoregressive with noise, Correlated noise, Moving average

process, Nonstationary autoregressive, Random walk.

Since there are usually more than one data set in each category, we choose the

first one of each category. We split every data set into 67% training and 33% test set,

based on temporal order, since the data sets are time-series.

134



Chapter 6. AutoML for multi-step time-series forecasting

Table 6.1: RMSE on test set acquired from traditional machine learning baselines. GBM-
recursive, GBM-multiout, SVM-recursive, and SVM multioutput win on 6, 6, 0, and 8 out of
20 data sets respectively.

Dataset
RMSE(GBM
-recursive)

RMSE(GBM
-multioutput)

RMSE(SVM
-recursive)

RMSE(SVM
-multioutput)

Autoregre noise 0.458890 0.461558 0.484516 0.459410

Correlated noise 1.872176 1.862137 2.012916 2.004572

Lorenz Attractor 0.102323 0.088045 0.188223 0.152384

Pendulum 0.112041 0.104519 0.172118 0.035350

Driven oscillator 0.121606 0.124701 0.231661 0.224206

Two-well oscillator 0.033950 0.032462 0.075318 0.007772

Duffing oscillator 0.025830 0.021330 0.075308 0.013762

Moving average 0.629791 0.627176 0.641453 0.622803

Nonstationary 6.049796 5.987631 6.796246 6.448516

Random walk 12.766561 13.690753 30.594553 25.654821

Crude oil prices 28.215008 32.909490 42.278003 20.867176

ECG 79.209558 103.881034 128.420743 126.1525026

Exchange rate 0.006880 0.006823 0.028571 0.005433

Gas prices 102.819893 100.612148 166.021626 172.605827

Human speech 0.059365 0.054838 0.085002 0.057631

Macroeconomics 779.515969 806.704035 713.073168 713.363569

Microeconomics 647.432403 705.051879 3500.094238 3865.235605

Music 0.082864 0.076047 0.068341 0.052978

Tropical sound 0.009468 0.006285 0.034925 0.008820

Zooplankton 312.033380 385.377067 319.839856 320.049399

6.5.2 Experimental setup

All the experiments were executed on 8 cores of an Intel Xeon E5-2683 CPU (2.10GHz)

with 10GB RAM. In the experiments, version 0.8.0 of auto-sklearn and version 0.16.1

of tsfresh were used. To evaluate the quality of a machine learning pipeline, we used

quantified error/accuracy. RMSE was used as a performance metric in the optimisa-

tion. The maximum evaluation time for one machine learning pipeline was set to 20

min wall-clock time. The time budget for every AutoML optimisation on each data

set was set to 3 h wall-clock time. In these experiments, we used hold-out validation

(training:validation = 67:33), the default validation technique in auto-sklearn. The

split was carried out only on the training data, such that the optimisation process

never sees the test data. However, we did not shuffle the data set in order to preserve

the temporal structure of the time-series data. All remaining choices were left at their

default settings. Since experiments are very time-consuming, we used bootstrapping

to create distributions of performance results in order to investigate their variability.

Every experiment was run 25 times. We then randomly sampled 5 out of the 25 results

and selected the model with the lowest RMSE on the training set out of these five

models and reported the RMSE on the test set. We repeated this process 100 times

per model and data set. The distributions we showed are based on these 100 values.

We compared the AutoML methods, including Auto-Keras, auto-sklearn and our

proposed variants, with traditional machine learning baselines and N-BEATS. Both re-

cursive and multi-output techniques are used in the machine learning baselines (GBM

135



6.5. Empirical results

Table 6.2: RMSE on test set acquired from different AutoML methods including vanilla
auto-sklearn (VA), our proposed variants (W, T, and WT), Auto-Keras and the state-of-
the-art method N-BEATS. The accuracy of N-BEATS, Auto-Keras, VA, W, T, WT are
statistically significant on 5, 0, 2, 8, 3, and 3 out of 20 data sets, respectively.

Dataset
Model

VA10 W ens W single T10 T200 WT

Autoregre noise
0.404725

± 0.000028
0.357100

± 0.018618
0.404948

± 0.002718
0.312280

± 0.019081
0.099848

± 0.059389*
0.309739

± 0.000000

Correlated noise
0.953938

± 0.018389
0.821940

± 0.028382
0.988425

± 0.001885
0.582574

± 0.029850
0.445290

± 0.021132*
0.725874

± 0.000000

Lorenz Attractor
0.003643

± 0.002108
0.004787

± 0.001795
0.000687

± 0.000001*
0.005257

± 0.000979
0.001684

± 0.004996
0.033001

± 0.000000

Pendulum
0.013990

± 0.022468
0.001807

± 0.001262
0.000143

± 0.000019*
0.001046

± 0.000127
0.001172

± 0.003045
0.008570

± 0.000000

Driven oscillator
0.003357

± 0.001745
0.003524

± 0.000898
0.002885

± 0.000953*
0.003180

± 0.000028
0.015826

± 0.003702
0.013420

± 0.000000

Two-well oscillator
0.000519

± 0.000356
0.000406

± 0.000252*
0.000725

± 0.000494
0.000789

± 0.000015
0.004617

± 0.005851
0.001773

± 0.000000

Duffing oscillator
0.000679

± 0.000463
0.000575

± 0.000216*
0.002424

± 0.000738
0.000691

± 0.000042
0.001937

± 0.001342
0.002474

± 0.000005

Moving average
0.413227

± 0.003247
0.372342

± 0.002935
0.397426

± 0.000732
0.293087

± 0.036759
0.261658

± 0.059058*
0.405050

± 0.000000

Nonstationary
0.960435

± 0.006790
0.941951

± 0.012253
0.994682

± 0.000214
0.612182

± 0.076556*
0.629782

± 0.128813
1.151766

± 0.000000

Random walk
0.994218

± 0.004097
0.993145

± 0.003799
1.008242

± 0.000831
0.544931

± 0.114882*
0.637171

± 0.141287
1.692634

± 0.000000

Crude oil prices
1.862273

± 0.019859
1.787196

± 0.039135
1.877526

± 0.004829
1.486114

± 0.069461
0.657657

± 0.148479*
1.854731

± 0.000000

ECG
6.345342

± 0.230522
5.609683

± 0.217275
5.555471

± 0.597214*
12.434153
± 6.124225

12.598475
± 3.335467

7.246352
± 0.000000

Exchange rate
0.000762

± 0.000014
0.000753

± 0.000008
0.000761

± 0.000003
0.000751

± 0.000018*
0.000734

± 0.000036*
0.000797

± 0.000000

Gas prices
2.109257

± 0.003033
2.037483

± 0.019962
2.103643

± 0.002152
1.936833

± 0.089270
1.268692

± 0.212155*
2.023632

± 0.010646

Human speech
0.025226

± 0.002773
0.025127

± 0.002285
0.028316

± 0.006866
0.020102

± 0.002484
0.006871

± 0.001208*
0.033939

± 0.000146

Macroeconomics
332.182737
± 26.603055

137.694269
± 29.074179

296.448896
± 121.080645

161.153074
± 47.609146

130.189798
± 24.135087

112.574887
± 0.277946*

Microeconomics
112.433023
± 0.060023

111.805190
± 0.198384

112.400226
± 0.170035

457.133087
± 472.235290

101.604636
± 1.238983*

112.605469
± 0.320563

Music
0.054124

± 0.002594
0.025809

± 0.002242
0.027113

± 0.001405
0.025053

± 0.003775*
0.025895

± 0.000817
0.064743

± 0.000000

Tropical sound
0.005904

± 0.000122
0.004962

± 0.0001514
0.003926

± 0.000523
0.003967

± 0.000932
0.003253

± 0.000454*
0.005707

± 0.000004

Zooplankton
312.205839
± 2.797241

265.446350
± 18.170189

315.313539
± 3.728371

109.159209
± 9.050114*

173.214940
± 12.636791

176.475896
± 9.671782

136



Chapter 6. AutoML for multi-step time-series forecasting

and SVM). All other models use the multi-output approach.

6.5.3 Baselines

• Gradient Boosting Machine (GBM): Gradient Boosting Machine is a clas-

sical machine learning model used for time-series analysis tasks that has shown

promising performance in the M3, M4 competitions (Januschowski et al., 2020).

For hyperparameter optimisation, we performed a random search on GBM with

30 iterations and window size w = 100 (Bergstra and Bengio, 2012). In this case,

the search space is the same as the search space of GBM in auto-sklearn. In this

experiment, we did not split the training set into the training set and validation

sets.

• Support vector machine (SVM): SVM is another classical machine learning

model that has been used for time-series forecasting (e.g., (Candanedo et al.,

2017)). Similar to GBM experiments, we use 30 iterations of random search and

window size w = 100. The search space is the same as the search space of SVM

in auto-sklearn.

• N-BEATS: N-BEATS (Oreshkin et al., 2019) uses fully-connected layers with

residual links to improve 3% over the winner of the M4 competition, which

demonstrates state-of-the-art performance. We used the default hyperparame-

ter settings in the implementation provided by (Oreshkin et al., 2019) and the

bootstrapping approach mentioned in Section 6.5 to create distributions of re-

sults. The number of epochs was set to 500.

• Auto-Keras: Auto-Keras (Jin et al., 2019) is a neural architecture search sys-

tem that uses Bayesian optimisation to search for high-performance neural net-

work architectures. Some neural network units available in its search space

(e.g., LSTM, GRU), have been used for time-series forecasting (see, e.g., (Siami-

Namini et al., 2018; Zhang et al., 2017)). Vanilla Auto-Keras does not support

multi-output models. To deal with multi-step forecasting tasks, we designed

our new search space using three types of blocks available in Auto-Keras: Input

block, RNN Block and Regression Head (see Figure 6.1). The RNN Block is a

critical component in our networks. We use RNN as a baseline, as it has been

recently studied in the literature on time-series forecasting (see, e.g., (Siami-

Namini et al., 2018; Yamak et al., 2019)). Several hyperparameters need to be

considered for this block, including bidirectionality, the number of layers and

137



6.5. Empirical results

layer type (LSTM or GRU). Auto-Keras cannot choose the window size w auto-

matically. We manually preprocessed the data with window size w = 100. We

used Bayesian optimisation for architecture search. The number of epochs was

set to 100, and we left the remaining settings of Auto-Keras at their default

values.

• Vanilla auto-sklearn (VA): We manually preprocessed the data with window

size w = 100 and then fed it to the auto-sklearn. The time budget for the

optimisation was set to 3 h.

6.5.4 Our methods

• Auto-sklearn with automated window size selection (W): For the W

variant, we did not need to manually preprocess the data, since the window size

w is selected automatically. The window size ranges from 50 to 200.

• Auto-sklearn with tsfresh features (T): In the T variant, the time-series

feature extractor tsfresh was used as an internal component of auto-sklearn.

Auto-sklearn used these time-series features as input data to search over machine

learning pipelines. The window size was set to w = 100.

• Auto-sklearn with automated window size selection and tsfresh fea-

tures (WT): In WT, we set the window size w to range from 50 to 200. The

time-series features were extracted from these input data.

Tables 6.1 and 6.2 compare the performance achieved by different methods in terms

of RMSE on the test set. Table 6.1, shows the results for traditional machine learning

baseline models, while Table 6.2 presents the results for AutoML techniques and N-

BEATS. To present the results in these tables, we calculated the statistical significance

of the results by the non-parametric Mann–Whitney U-test (Mann and Whitney, 1947)

with a standard significance level set to 0.05. The bold-faced entries show the lowest

mean RMSE achieved on a given data set, and the ∗ means the RMSE is statistically

best.

6.5.5 Research questions

Q1: How do recursive and multi-output techniques compare in terms of

accuracy?

138



Chapter 6. AutoML for multi-step time-series forecasting

To determine the answer to this question, we compared the recursive and multi-

output versions of GBM and SVM algorithms. Among the baselines we consider,

N-BEATS as described in the original work is not a recursive model. Therefore,

we do not consider it for this analysis. Looking at Table 6.1, we generally observe

that GBM-multioutput performs better than GBM-recursive on 12 out of 20 data

sets, while SVM-multioutput outperforms SVM-recursive on 17 out of 20 data sets

in terms of RMSE . As we have observed that multi-output models tend to perform

better, which is in line with the results from (Taieb et al., 2012). Therefore, we only

use the multi-output technique in our next experiments.

Q2: To what extent can AutoML techniques (Auto-Keras, auto-sklearn,

and our variants) beat the traditional baselines (GBM, SVM)?

Looking at Tables 6.1 and 6.2, one can compare the performance achieved by

different methods in terms of RMSE on the test set. We observe that Auto-Keras

beats all the traditional machine learning baseline models (GBM-recursive, GBM-

multioutput, SVM-recursive, and SVM-multioutput) on 4 out of 20 data sets.

Vanilla auto-sklearn outperforms all the traditional machine learning baselines on

8 out of 20 data sets. Our three variants W, T, WT show lower error than all the

traditional machine learning baselines on 10, 5, and 5 out of 20 data sets, respectively.

The best AutoML (W) outperforms the best traditional machine learning baseline

(SVM-multioutput) on 14 out of 20 data sets.

Q3: To what extent can AutoML techniques beat N-BEATS?

Looking at Table 6.2, we observe that the best AutoML (W) outperforms N-BEATS

on 14 out of 20 data sets. For other AutoML techniques, we observe that Auto-Keras,

VA, T, and WT beat N-BEATS on 5, 12, 11, and 10 out of 20 data sets, respectively.

AutoML methods that are based on standard machine learning are beating this neural

networks-based model.

6.6 Conclusion

In this chapter, we extended AutoML for multi-step time-series forecasting with time-

series features. We found that AutoML can achieve significantly higher accuracy than

the traditional machine learning baselines on 14 out of 20 data sets in terms of RMSE .

Although N-BEATS performs better than Auto-Keras and vanilla auto-sklearn on

139



6.6. Conclusion

many data sets, our AutoML time-series variants still managed to beat it on 14 out of

20 data sets. We found that the multi-output technique tends to perform better with

the same budget than the recursive technique in the multi-step time-series forecasting

tasks. Overall, these results clearly demonstrate that the use of AutoML techniques

and multi-output strategies for multi-step time-series forecasting is promising.

140


