
Automated machine learning for dynamic energy management
using time-series data
Wang, C.

Citation
Wang, C. (2024, May 28). Automated machine learning for dynamic energy
management using time-series data. Retrieved from
https://hdl.handle.net/1887/3754765
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3754765
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3754765


Chapter 5

AutoML for single-step

forecasting

5.1 Introduction

In the previous chapter, we investigated the use of AutoML methods in perform-

ing load forecasting tasks, which are the special cases of time-series forecasting. We

showed that the current AutoML methods show promising results in the short term

load forecasting domain. In this chapter, we investigate the use of AutoML for con-

structing machine learning models for time-series forecasting tasks. Different from the

previous chapter, we design an AutoML framework specifically for time-series forecast-

ing. Feature engineering has been proven to be necessary in many machine learning

tasks, including time-series forecasting (Coyle et al., 2005; Phinyomark et al., 2014).

The biggest challenge in AutoML for time-series forecasting is to develop advanced

ML pipelines that include feature extractors and machine learning models that are

well-suited to time-series tasks. Another challenge arises in the selection of the size

of the time window that determines how much of the historical information is used

as the basis for forecasting future data points. The best window size depends on the

properties of the time-series and differs between data sets. It also depends on the ML

method used for forecasting.

We compare how different combinations of feature-extraction and window size se-

lection techniques can be used to obtain highly accurate models fully automatically,

without the need for making design choices by human experts. Specifically, the con-

99



5.2. Related work

tributions made in this chapter are:

• We propose to combine automated time-series feature engineering and window

size selection, with automated algorithm selection and hyperparameter optimiza-

tion to generate machine learning pipelines for time-series forecasting. The focus

is on time-series forecasting which is implemented as a regression task.

• We compare the performance of the pipelines generated using our proposed

technique against 18 different machine learning models configured with fixed

windows sizes across 20 data sets. Our proposed new method aims to be gener-

ally applicable for time-series forecasting on arbitrary data sets. We, therefore,

assess the performance of the proposed method on a diverse set of problems. We

demonstrate the importance of feature selection and window size selection in

forecasting problems. We further show the strong performance of our proposed

technique in creating specialized AutoML systems for time-series data building

upon the available AutoML system of auto-sklearn (Feurer et al., 2015) and a

well-known time-series feature extraction library tsfresh (Christ et al., 2018).

We propose three new approaches for AutoML for time-series forecasting:

(i) auto-sklearn with automated window size selection; (ii) auto-sklearn with

tsfresh features; and (iii) auto-sklearn with automated window size selection as

well as tsfresh features. Among these, we demonstrate that (i) performs better

compared to two other AutoML frameworks: i.e., AutoKeras (Jin et al., 2019),

auto-sklearn.

The remainder of this chapter is structured as follows: in Section 5.2, we give a brief

overview of the existing work in time-series forecasting and AutoML. Section 5.3 pro-

vides the formal problem definition of automated time-series forecasting. Section 5.4

introduces the AutoML systems and feature extraction methods studied in this chap-

ter along with our proposed approaches. Section 5.5 presents our experimental setup,

results and discussion. Finally, conclusions and future work directions are provided in

Section 5.6.

5.2 Related work

Time-series forecasting: Existing time-series forecasting methods can be mostly

divided into two categories: (i) statistical, and (ii) machine learning methods as we

100



Chapter 5. AutoML for single-step forecasting

have mentioned in Section 4.2 Both of these categories aim at making accurate predic-

tions. Their differences lie in the fact that statistical algorithms are typically limited

as they assume linear dependence on past observations, while machine learning models

are non-linear (Makridakis et al., 2018). Furthermore, machine learning algorithms

require the training of predictive models using substantially more computational re-

sources than statistical algorithms.

Feature extraction: In order to apply methods from either of these two cat-

egories, it is typically necessary to perform some form of preprocessing on the raw

data. Feature extraction is an important preprocessing step used in many cases. So

far, many different feature extraction methods for time-series have been used in the

context of different applications (e.g., see (Coyle et al., 2005; Phinyomark et al., 2014)).

Feature Extraction based on Scalable Hypothesis tests (FRESH) (Christ et al., 2018)

is a generic framework for time-series feature extraction. FRESH includes various

categories of features such as statistical features, features of sample distributions and

features of observed dynamics. A Python implementation of FRESH is available in

the tsfresh package (Christ et al., 2018). Tsfresh has been widely used in time-series

analysis (e.g., (Dempsey et al., 2020; Yuan et al., 2019)). Catch22 (Lubba et al., 2019)

and hctsa (Fulcher and Jones, 2017) are two other feature extraction libraries. Hctsa

extracts over 7,700 features selected based on the time-series analysis literature. Such

a large number of features make the process of feature extraction computationally ex-

pensive. Catch22 (CAnonical Time-series CHaracteristics) presents a set of 22 of the

hctsa features, selected on a time-series classification benchmark set. Compared to

hctsa, using Catch22 provides an approximately 1000-fold reduction in computation

time with only 7% reduction in classification accuracy. However, being selected for

classification tasks, these features are not guaranteed to perform well on forecasting

problems considered in this chapter. Franceschi et al. (Franceschi et al., 2019) pro-

posed feature extraction using unsupervised representation learning for multivariate

time-series classification and regression problems. However, using a deep convolu-

tional neural network also generates high additional computational burdens for pre-

processing. Being focused on time-series forecasting problems and opting for lower

computational burdens, in our experiments we chose to use tsfresh, which computes a

total of 794 time-series features.

AutoML: Another line of related work comes from the area of automated ma-

chine learning (AutoML). We comprehensively reviewed AutoML systems in Chapter

3. AutoML has been used in many domains for constructing high-performance ma-

chine learning models for a given data set, without the need for machine learning

101



5.2. Related work

experts to choose learning algorithms, model classes or hyperparameter settings. For

example, AutoML systems have been used for creating models for image classification

(Zoph et al., 2018), prediction of the fuel consumption of ships (Ahlgren and Thern,

2018), as well as prediction of biological ecosystem networks (Barreiro et al., 2018).

These works mainly involve automating classification and regression tasks. However,

they do not consider AutoML for time-series forecasting or the use of time-series fea-

tures in AutoML. In our earlier work (Wang et al., 2019) we showed the potential of

AutoML systems for energy load forecasting by defining a regression problem using

additional features (not extracted from the time-series). Kefalas et al. (Kefalas et al.,

2021) looked at the problem of remaining useful life estimation of aircraft engines by

specifying a specific form of regression problem on time-series data.

In this chapter, we aim at studying how AutoML systems can be enhanced to per-

form in general time-series forecasting. Auto-sklearn (Feurer et al., 2015), AutoGluon

(Shi et al., 2021) and Auto-Keras (Jin et al., 2019) are examples of available AutoML

systems. Auto-keras is a deep-learning-based AutoML system. AutoGluon focuses on

automated stack ensembling and deep learning techniques, while auto-sklearn is built

upon a search space composed of classic machine learning algorithms. In this chapter,

we use auto-sklearn for two reasons. Firstly, based on the time-series forecasting lit-

erature the feature extraction and pre-processing methods studied in this chapter can

complement various algorithms in auto-sklearn (e.g., Support vector machines) that

are not available in the other systems. Furthermore, our initial investigation showed

that it is much easier to extend auto-sklearn to acquire reliable results. We also use

Auto-Keras as a deep learning baseline to compare the performance achieved using

our proposed pipelines with classic machine learning models against automatically

configured deep learning models that do not require feature extraction.

On the one hand, the aforementioned statistical and the machine learning models

for time-series forecasting all need human experts to manually select parameters, such

as the windows size (over which features are extracted), the model to use, and the

model hyperparameters. On the other hand, current AutoML systems, while support-

ing model selection and hyperparameter optimisation, do not support the automated

prepropessing required for many time-series forecasting techniques. For applicability

on time-series data, AutoML systems need to support automated window size selection

and time-series feature generation. Here, we integrate time-series feature extraction

into AutoML systems. We propose variants of recent AutoML approaches that auto-

matically choose a window size, select one or more machine learning models, optimise

hyperparameters and generate time-series features. We benchmark our proposed Au-

102



Chapter 5. AutoML for single-step forecasting

toML approaches on a broad range of time-series forecasting problems.

5.3 Problem definition

We have defined the time-series forecasting problem in Chapter 2. Current AutoML

techniques cannot optimise the window size. When using an available AutoML system

to do time-series forecasting, one needs to select a value for w and preprocess the data

manually into pairs of feature vectors and target values. Current AutoML systems do

not support time-series feature extraction either. In automated time-series forecast-

ing, however, both window size selection and feature extraction should be performed

automatically.

The input raw data are extracted over a window of size w. Given a time-series

segment x̂ = [xi−w, . . . , xi−1], a feature extraction function g and a machine learning

model A, we are interested in forecasting xi. With feature engineering, we can write

this as xi = A(g(x̂)), and without it as xi = A(x̂).

Given a time-series data set x = [x1, . . . , xn] that is split into xtrain and xvalid,

we are interested in building an optimised model using xtrain by minimising a loss on

xvalid. Let A = {A(1), . . . , A(k)} be a set of algorithms with associated hyperparame-

ter spaces Λ(1), . . . ,Λ(k). Let w = {w(1), . . . , w(l)} be the set of the possible window

sizes. Further, let xtrain be a training set, and xvalid be a validation set. Finally,

let L(A(i)
λ , w(j),xtrain,xvalid) denote the loss that algorithm A(i) achieves on xvalid

when trained on xtrain with hyperparameters λ ∈ Λ(i) and window size w(j). Then the

automated time-series forecasting problem is to find the window size, algorithm, and

hyperparameter setting that minimises this loss:

(A∗, λ∗, w∗) ∈ argmin
A(j)∈A,λ∈Λ(j),w∈w

L(A(i)
λ , w(j),xtrain,xvalid) (5.1)

5.4 Methods

In our study, we use auto-sklearn (Feurer et al., 2015) as the main AutoML system,

and tsfresh (Christ et al., 2018) for time-series feature extraction; these were chosen

because they are state-of-the-art, prominent, and freely available. Auto-sklearn can

optimise machine learning pipelines, which corresponds to selecting A∗ and λ∗ in

Equation 5.1. Tsfresh realises the feature extraction function g from Section 5.3.

103



5.4. Methods

5.4.1 Auto-sklearn

We use auto-sklearn in our experiments. We previously provided information about

auto-sklearn Chapter 4. The feature engineering component of auto-sklearn is pow-

erful and widely used in classification and regression tasks. However, it has not been

designed for time-series analysis tasks, nor does it offer native support for such tasks.

In particular, it does not support automatic window size selection, nor the specific

time-series features offered, for example, by tsfresh (Christ et al., 2018).

meta-
learning

pre-
processor

feature preprocessor (VA)

automated by 
auto-sklearn

Bayesian 
optimisation

meta-
learning

feature preprocessor (tsfresh) (T)

automated window size selection (W)

tsfresh, and automated window size 
selection (WT)

data and 
budget

machine 
learning 
model

ensemble 
construction

model 
validation

Figure 5.1: Workflow of vanilla auto-sklearn, and three variants of auto-sklearn are spe-
cially designed for time-series forecasting tasks. VA represents the vanilla auto-sklearn with
its default feature preprocessor. W is the simplest variant of auto-sklearn for time-series fore-
casting and considers only automated window size selection without any feature engineering.
T extracts tsfresh time-series features from the input data, and the window size is predefined
and fixed in this case. WT optimises the pipeline with window size selection and time-series
feature engineering techniques. Each method is different from the others, only concerning
the middle block presented in the figure.

104



Chapter 5. AutoML for single-step forecasting

5.4.2 Tsfresh

Feature engineering is an essential component in ML pipelines. Feature extraction

methods have also been used for time-series analysis tasks (Coyle et al., 2005; Phiny-

omark et al., 2014). There are a number of time-series feature extraction libraries

that are widely used for time-series analysis, including tsfresh (Christ et al., 2018),

Catch22 (Lubba et al., 2019), and hctsa (Fulcher and Jones, 2017). Catch22 extracts

a selected list of the 22 most useful features of the 4791 features of hctsa from a time-

series. Extracting features with Catch22 is more computationally efficient than hctsa,

with only a 7% reduction in accuracy on average. In the following, we use tsfresh,

which extracts more than 700 time-series features in parallel and has previously shown

strong performance (Christ et al., 2018), since it does not require huge computational

resources like hctsa, or suffers from an accuracy reduction like Catch22. Tsfresh cov-

ers the feature extraction methods including features from summary statistics (e.g.,

maximum, minimum and mean); additional characteristics of the sample distribution

(e.g., number of data points above-median); and features derived from observed dy-

namics (e.g., mean absolute change). In total, tsfresh provides 63 time-series feature

extractors, which can extract 794 time-series features. The full list of these features

can be found in (Christ et al., 2018).

5.4.3 AutoML for time-series forecasting

In this section, we introduce our newly proposed approaches: three variants of auto-

sklearn that are specially designed for time-series forecasting tasks.

Auto-sklearn with automated window size selection (W): the simplest

variant of AutoML for time-series forecasting considers only automated window size

selection by searching for the optimal window size w. No extra feature extractors

are used, and only the value of the time-series x̂ = [xi−w+1, . . . , xi] are used to train

a model that predicts xi+w. Figure 5.1 shows how the workflow of auto-sklearn is

modified for automated window size selection. The original feature preprocessor is

replaced with an automated window size selection component. The window size w

is optimised as an additional hyperparameter using the core Bayesian optimisation

procedure of the AutoML framework.

Auto-sklearn with tsfresh features (T): Figure 5.1 shows the workflow of

auto-sklearn with automated tsfresh feature extractor. In this case, tsfresh extracts

time-series features from the input data and the window size is predefined and fixed.

The time-series features g(x̂) = g([xi, . . . , xi+w−1]) are used to train a model that

105



5.5. Empirical results

predicts xi+w. The original features are not contained. Since there are many useful

methods to evaluate feature importance, feature selection does not have to be done by

AutoML. The feature importance is assessed by univariate tests. (Christ et al., 2018)

performed a comparative study of different feature selection algorithms (Benjamini and

Hochberg, 1995; Kursa and Rudnicki, 2011; Wang et al., 2013) which demonstrated

the outperforming performance of the approach proposed in (Benjamini and Hochberg,

1995). Therefore, we selected this approach for feature selection.

Auto-sklearn with automated window size selection and tsfresh features

(WT): the two previously mentioned approaches (auto-sklearn with automated win-

dow size selection and auto-sklearn with tsfresh features) are combined in this ap-

proach by optimising the window size w and extracting the time-series features from

the resulting window. The time-series features g(x̂) = g([xi, . . . , xi+w−1]) are used

to train a model that predicts xi+w. Figure 5.1 shows the workflow of auto-sklearn

with automated window size selection and tsfresh feature preprocessor. The additional

hyperparameter w is optimised in the AutoML framework using the core Bayesian op-

timisation procedure. Changes in window size cause different features to be extracted

by tsfresh.

5.5 Empirical results

Setup of computational experiments: In our experiments1, we used version 0.8.0

of auto-sklearn and version 0.16.1 of tsfresh. All experiments were run on 8 cores

of an Intel Xeon E5-2683 CPU (2.10GHz) with 10GB RAM. In Equation 5.1, we

have formalised our goal to minimise a given loss function. In our experiments, we

used RMSE (root mean squared error) as a performance metric in the optimisation to

evaluate the quality of machine learning pipelines. RMSE is one of the performance

metrics that has been used widely on regression tasks (Tan et al., 2021). Any other

performance metric can also be used to calculate the loss.

For this error metric, we define x′
t = A(γ(xt−w, . . . , xt−1)) as the predicted value at

timestamp t, with γ = id (where id(xi) = xi) when time-series features are not used,

and γ = g, otherwise. A is a machine learning model. Then, with et = xt−x′
t defined

as the error between xt and x′
t, the root mean square error is given by RMSE =√

1
n

∑n
t=1 e

2
t . n represents the length of the time-series. The time limit for each

evaluation was set to 20 minutes, and the time limit for each run of auto-sklearn to

1The data sets and source codes used in our experiments are available in
https://github.com/wangcan04/AutoML-timeseries

106



Chapter 5. AutoML for single-step forecasting

2 hours. In these experiments, we used hold-out validation (training:testing = 67:33),

the default validation technique in auto-sklearn. We did not shuffle the data set, in

order to preserve the sequential nature of the time-series data. All other settings

of auto-sklearn were left at their defaults. Since experiments are time-consuming,

we used bootstrapping to create a distribution of the errors to study performance

variability over multiple independent runs of auto-sklearn. For this, every experiment

was executed 25 times. Then we randomly sampled 5 out of the 25 results. We selected

the model with the lowest training RMSE out of these five models. We repeated

the sampling 100 times per model and data set. The solution quality distributions

reported in our results were thus obtained over the 100 samples. When we performed

automated window size selection, the maximum window size was set to 200. To obtain

a fair comparison, we skipped the first 200 points of the time-series before making the

train-test split; this helped ensure that the training set and test set were the same for

all the evaluated approaches.

data sets used: We used CompEngine (Fulcher et al., 2019), a comparison time-

series data engine containing 29 498 data sets in 197 categories (both real-world and

synthetic). Other popular time-series data libraries, such as the UCR time-series

archive (Dau et al., 2018) (only classification data sets) and the UCI machine learning

repository (only 39 data sets, mostly multivariate) were found to be unsuitable for our

purposes since we focus on univariate tasks. We used 20 data sets from CompEngine2

as our benchmark, of which ten are real-world data sets3, and ten synthetic data sets4.

We chose these by selecting the first data set from every category. As explained earlier,

we split each set into 67% training set and 33% test set, based on temporal order.

Since our data sets are all from different categories, the models are trained per

time-series. This means that we use a local method in contrast to a global method,

which trains one model on all time-series simultaneously (see (Januschowski et al.,

2020)).

Research questions: In our experiments, we addressed the following research

questions:

• (Q1): To what extent can AutoML techniques beat simple baselines?

2https://www.comp-engine.org/
3Audio (Animal sounds, Human speech, Music), Ecology (Zooplankton growth), Economics

(Macroeconomics, Microeconomics), Finance (Crude oil prices, Exchange rate, Gas prices), Medi-
cal (Electrocardiography ECG).

4Flow (Driven pendulum with dissipation, Duffing-van der Pol Oscillator, Driven van der Pol oscil-
lator, Duffing two-well oscillator, Diffusionless Lorenz Attractor), Stochastic Process (Autoregressive
with noise, Correlated noise, Moving average process, Nonstationary autoregressive, Random walk).

107



5.5. Empirical results

• (Q2): To what extent can current AutoML approaches beat deep neural network

baselines?

• (Q3): To what extent can our newly proposed approaches beat current AutoML

approaches?

• (Q4): Which approach generalises best from training to test data?

• (Q5): Can optimal window sizes for time-series forecasting be found by the

AutoML system?

To address these research questions, we compare the approaches we mentioned

in Section 5.4 with simple statistical and machine learning baselines and AutoML

approaches. The first nine following approaches are our baselines, and the rest are the

AutoML variants proposed by us:

• Moving average (MV1, MV10, MV200): This is a simple and commonly

used method for time-series forecasting. We use this approach to create three

models considering the mean of the previous 1, 10, 200 data points to predict

the next point. This method does not have any hyperparameters. As this is a

näıve baseline, any approach should perform better in comparison to it.

• Auto Regressive Integrated Moving Average (ARIMA): ARIMA is a

widely used statistical model for time-series forecasting. In this chapter, we

used the auto.arima function from the Python library pmdarima (Smith et al.,

2017) that selects the best hyperparameters for ARIMA models for a given data

set. We used auto arima to optimise three important hyperparameters p, d, q,

that control the auto-regressive, trend and moving average components. We ran

experiments with the default setting of auto.arima that evaluated 50 models for

hyperparameter tuning. Since the default search space is small, 50 iterations are

enough to find an optimal order for a data set (Smith et al., 2017).

• Support vector machine (SVM10, SVM200): SVM is a classical machine

learning model that has been commonly used for time-series forecasting (e.g.,

(Candanedo et al., 2017)). Since we aim to perform single-step forecasting, we

assume that a window size of 10 is a reasonable value that captures the most

important temporal correlations. To investigate the influence of larger window

sizes, we also performed experiments with a window size of 200 (the maximum

window size for all experiments). We used time-series values in these window

sizes and searched for an optimised machine learning pipeline based on SVMs

108



Chapter 5. AutoML for single-step forecasting

for forecasting the next time-step. Next to optimising the hyperparameters, we

also searched for the best machine learning pipeline composed of the feature

extractors and preprocessors available in auto-sklearn. For optimising hyperpa-

rameters of single algorithms, it is common to use simple approaches such as

random search and grid search. Here, we used random search, since it is known

to often be more efficient than grid search (Bergstra and Bengio, 2012). For

implementing this approach, we used auto-sklearn, setting the regressor to SVM

and selecting the use of random search instead of SMAC (the default optimiser

in auto-sklearn). All remaining settings were left at their default values. We

used a 2-hour time limit for optimising the pipeline (the same as the limit used

for our proposed AutoML variants).

• Random forest (RF10, RF200): Random forest is another classical machine

learning model that can be used for time-series forecasting (Candanedo et al.,

2017; Wang et al., 2019). We trained RF10 and RF200, following the same

process used for training SVM10 and SVM200.

• Gradient Boosting Machine (GBM10, GBM200): Gradient Boosting Ma-

chine is another classical machine learning model that has been widely used in

the past for time-series forecasting tasks (Li et al., 2020b; Srivastava et al.,

2020). GBM uses an ensemble of weak prediction models, which means a group

of models that are slightly better than random chance. We trained GBM10 and

GBM200, following the same process used for training SVM10 and SVM200.

• eXtreme Gradient Boosting (XGBoost10, XGBoost200): XGBoost

(Chen and Guestrin, 2016) is a method based on gradient boosting. Compared to

GBM, XGBoost uses a more regularized model formalization to prevent overfit-

ting. In the M5 forecasting competition, the top 50 performing methods almost

all involve Light-GBM, XGBoost and NNs (mostly LSTM) (Makridakis et al.,

2021). XGBoost using default parameterization has shown competitive perfor-

mance in this competition. The process of training XGBoost10 and XGBoost100

is similar to that of SVM experiments. However, instead of using auto-sklearn

for a random search, we used h2o AutoML (LeDell and Poirier, 2020) since

auto-sklearn does not support XGBoost.

• Auto-Keras (Auto-Keras10, Auto-Keras200): Auto-Keras (Jin et al.,

2019) is an AutoML system for neural architecture search. It uses network

morphisms and Bayesian optimisation to efficiently search for high-performance

109



5.5. Empirical results

Figure 5.2: Workflow of deep neural network for time-series forecasting. The input data
goes through RNNBlock, the critical component of a deep neural network. The hyperparam-
eters will be optimised during the search, such as the number of layers and learning rate.
The Regression Head then generates output based on the information from RNNBlock.

neural network architectures. Auto-Keras does not have a time-series forecast-

ing component, but different neural network units available in its search space

(e.g., LSTM, GRU) have been previously used for time-series forecasting (e.g.,

(Siami-Namini et al., 2018; Zhang et al., 2017)). We similarly used values within

windows of size 10 and 200 to train a neural network that forecasts the next point

in the time-series using the StructuredDataRegressor function in Auto-Keras.

Auto-Keras allows to set of the maximum number of models evaluated, but it

does not allow specifying the time budget as auto-sklearn does. To ensure the

fairness of our comparisons, we calculated the average running time of 10 mod-

els on each data set and used this to estimate, for each data set, the number of

models that can be evaluated in 2 hours. We used hold-out validation (training:

testing = 80:20), which is the default setting in Auto-Keras.

• Deep neural network baseline (LSTM10, LSTM200, GRU10,

GRU200): We use LSTM and GRU as baselines, as these have been recently

studied in the literature on time-series forecasting (see, e.g., (Siami-Namini et al.,

2018; Yamak et al., 2019)). When using deep neural networks, it is common prac-

tice to design the architecture (e.g., by selecting the number of layers) and set

the hyperparameters for training (e.g., number of epochs, learning rate) man-

ually, as done in the work of (Siami-Namini et al., 2018) and (Yamak et al.,

2019). We believe that it is more effective to automate this process and to carry

it out separately for each given data set. To find suitable architectures based on

these types of networks for each of our data sets, we adapted the search space of

Auto-Keras to automatically design the architecture. Specifically, to deal with

time-series data, we designed our new search space using three types of blocks

available in Auto-Keras: Input block, RNNBlock and Regression Head (see Fig-

110



Chapter 5. AutoML for single-step forecasting

ure 5.2). The RNNBlock is the key component in our networks. A number of

hyperparameters need to be considered for this block, including bidirectionality,

the number of layers and layer type (LSTM or GRU). Since we performed the

experiments for testing the LSTM and GRU architectures separately, we did not

optimise layer type; instead, we set the value of this hyperparameter manually

in each experiment. We used Auto-Keras to optimise the architecture based on

the customised search space. Since Auto-Keras cannot choose the window size,

we selected window sizes of 10 and 200, and manually preprocessed the data. We

fed the values of the time-series within these windows to Auto-Keras in order to

obtain a model, once again using a time budget of 2 hours and a memory budget

of 80GB. We used a random search to find the model and left the remainder

of the setup of Auto-Keras at its default settings (number of epochs, validation

techniques, etc.).

• N-BEATS: N-BEATS (Oreshkin et al., 2019) uses deep learning involving resid-

ual neural networks and fully-connected layers to deal with univariate time-series

forecasting tasks. N-BEATS has shown good performance on several well-known

data sets. We executed every experiment 25 times. The distribution reported in

our results was obtained by the bootstrapping approach, explained in Section 5.5

In our experiments, we train N-BEATS using the default hyperparameters in the

implementation provided by the paper. The number of epochs is 500.

• Vanilla auto-sklearn (VA10, VA200): For VA (depicted in Figure 5.1), we

optimised the machine learning pipelines for time-series forecasting tasks using

auto-sklearn. Since auto-sklearn cannot choose the window size, we selected

window sizes equal to 10 and 200 and subsequently fed the manually preprocessed

values of the time-series within these windows to auto-sklearn in order to obtain

a forecasting model, once again using a time budget of 2 hours.

• Auto-sklearn with automated window size selection (W ens,

W single): For the W variant (depicted in Figure 5.1), we optimised the ma-

chine learning pipeline as well as the window size. Therefore, the time-series can

be used without additional preprocessing. In our experiments, the window size

varies from 2 to 200. In auto-sklearn, the final model produced is by default

an ensemble model that can be composed of models configured with different

window sizes. We performed two separate experiments to study the optimal

window size, both with ensembling (denoted by W ens) and without ensembling

111



5.5. Empirical results

(W single). In W single, only one machine learning model configured with a

single window is selected.

• Auto-sklearn with tsfresh features (T10, T200): In the T variant (de-

picted in Figure 5.1), we use tsfresh as an internal component of our AutoML

system. This component extracts features within a window, the size of which has

been set to 10 and 200. Without additional manual preprocessing, the tsfresh

component extracts the time-series features from the training data, and auto-

sklearn subsequently uses these features as input data and finds a configuration

that performs well on them.

• Auto-sklearn with automated window size selection and tsfresh fea-

tures (WT): In WT (depicted in Figure 5.1), by having tsfresh and the auto-

mated window size selection component, we do not need to perform any manual

preprocessing. In these experiments, we set the window size range from 2 to

200. The time-series can be used without additional preprocessing. In this ex-

periment, we always obtain an ensemble of forecasting models.

The results of our experiments are summarised in Tables 5.1, 5.2, 5.3, 5.4, 5.5

and 5.6 which compare performances in terms of RMSE . In order to determine the

statistical significance of the results, we initially performed an Anderson-Darling test

(Anderson and Darling, 1952) and found that the error distributions created by the

bootstrapping approach, explained in Section 5.5, are not Gaussian. Therefore, we

used the non-parametric Mann–Whitney U-test (Mann and Whitney, 1947) with a

standard significance level set to 0.05. In the tables, bold-faced entries indicate the

lowest mean error achieved on a given data set, and all results statistically tied to the

best are marked with ∗. Based on these results, in the remainder of this section, we

provide answers to the questions proposed earlier in Section 5.5.

Q1: To what extent can AutoML techniques beat simple baselines

(ARIMA, Moving average, SVM, RF, GBM and XGBoost baselines)?

Tables 5.1, 5.2 and 5.3 compare the performance achieved by different methods in

terms of RMSE on the test set. Table 5.1, 5.2 shows the results for simple baseline

models while Table 5.3 presents the results for baseline AutoML techniques. In Table

5.5, the lowest RMSE obtained for each data set using simple baseline models and

baseline AutoML techniques are presented along with those achieved by our AutoML

variants.

112



Chapter 5. AutoML for single-step forecasting

Table 5.1: RMSE of simple baselines (ARIMA, and Moving average, SVM, RF, GBM,
XGBoost with window size = 10) on the test set. The bold-faced entries indicate the lowest
mean error achieved on a given data set.

Dataset
Model

ARIMA MV1 MV10 SVM10 RF10 GBM10 XGBoost10

Autoregre 0.400432 0.610580 0.512732 0.400718 0.404424 0.406328 0.402833

Correlated noise 1.022264 4.385376 2.336120 1.027496 1.036663 1.039973 1.034562

Lorenz Attractor 0.001325 0.152307 0.734693 0.015520 0.044260 0.031324 0.051661

Pendulum 0.000620 2.874323 1.488101 0.002337 0.017249 0.015552 0.045503

Driven oscillator 0.022562 0.208443 0.952037 0.005747 0.023396 0.014827 0.021946

Two-well oscillator 0.000258 0.020033 0.109077 0.000228 0.004575 0.004209 0.005556

Duffing oscillator 0.000261 0.046562 0.248152 0.000664 0.006194 0.005080 0.006358

Moving average 0.439993 1.021399 0.662487 0.441369 0.505118 0.482859 0.497822

Nonstationary 0.994813 3.605841 14.108665 0.990199 1.319040 1.264516 1.345824

Random walk 1.006695 1.005863 1.958452 1.098413 11.998150 12.387875 12.479568

Crude oil prices 3.954218 3.944808 11.855737 5.469766 26.033508 25.818681 26.544268

ECG 9.823127 14.658113 62.507000 9.214228 20.4555106 23.087870 22.727534

Exchange rate 0.000668 0.000662 0.001098 0.000663 0.005330 0.005837 0.004762

Gas prices 6.843051 7.984512 28.207355 7.826223 98.605229 92.366392 93.547291

Human speech 0.0316651 0.055792 0.076618 0.031606 0.034001 0.0307520 0.0329440

Macroeconomics 512.713152 625.923211 543.892692 557.474601 642.566387 611.218628 637.913982

Microeconomics 170.389959 170.059750 330.591176 171.446322 385.804129 445.430152 458.170203

Music 0.039373 0.060195 0.106724 0.044851 0.035303 0.034408 0.037114

Tropical sound 0.006598 0.069521 0.035080 0.006277 0.006212 0.006227 0.006331

Zooplankton 266.047819 312.605555 288.962126 263.25297 257.486771 290.024830 272.528711

Table 5.2: RMSE of simple baselines (Moving average, SVM, RF, GBM, XGBoost with
window size = 200) on the test set. The bold-faced entries indicate the lowest mean error
achieved on a given data set.

Dataset
Model

MV200 SVM200 RF200 GBM200 XGBoost200

Autoregre 0.482531 0.411491 0.406045 0.409519 0.410630

Correlated noise 2.261390 1.044179 1.036931 1.042252 1.040713

Lorenz Attractor 1.292518 0.004888 0.062212 0.038435 0.047212

Pendulum 1.443494 0.015913 0.081669 0.088391 0.060481

Driven oscillator 1.277660 0.030615 0.028647 0.017101 0.031403

Two-well oscillator 0.616822 0.001250 0.007276 0.005792 0.007372

Duffing oscillator 0.479744 0.001043 0.006816 0.004251 0.006769

Moving average 0.632330 0.437374 0.524114 0.507059 0.516003

Nonstationary 11.680654 1.004374 1.489324 1.419968 1.486933

Random walk 8.348509 1.078787 12.549192 12.428874 12.966513

Crude oil prices 34.56473 51.380480 26.983431 33.805812 28.337624

ECG 149.945466 11.025114 26.620362 31.597675 31.088642

Exchange rate 0.005441 0.000668 0.004816 0.005853 0.002782

Gas prices 94.097732 38.233882 101.034967 90.659451 90.176212

Human speech 0.066414 0.032727 0.037128 0.0348973 0.0375481

Macroeconomics 788.595638 790.718110 840.012363 816.094878 840.274512

Microeconomics 1481.184724 183.942596 451.909546 589.631221 590.172534

Music 0.095336 0.028995 0.054897 0.039644 0.038725

Tropical sound 0.034953 0.006610 0.006329 0.006339 0.006342

Zooplankton 315.773444 317.817582 262.21993 270.214120 260.286121

113



5.5. Empirical results

Table 5.3: RMSE of AutoML baselines (Auto-keras, vanilla auto-sklearn) on test set. The
bold-faced entries indicate the lowest mean error achieved on a given data set, and ∗ indicates
the results are statistically tied to the best.

Dataset
Model

Best baseline Auto-Keras10 Auto-Keras200 VA10 VA200

Autoregre 0.400718 0.402549 0.412751 0.400603± 0.000086* 0.404322± 0.001474

Correlated noise 1.027496 1.029839 1.063033 1.021476± 0.000938* 1.025509± 0.001547

Lorenz Attractor 0.004888 0.013126 0.111397 0.003703± 0.001902 0.000646± 0.000007*

Pendulum 0.002337 0.009459 0.141597 0.064857± 0.244416 0.001574± 0.000106*

Driven oscillator 0.005747 0.024633 0.082339 0.012259± 0.004473 0.015636± 0.001444

Two-well oscillator 0.000228 0.045387 0.077271 0.000797± 0.000917 0.001475± 0.001842

Duffing oscillator 0.000664 0.006247 0.023453 0.001509± 0.001812 0.001312± 0.00197

Moving average 0.437374 0.445282 0.517913 0.441905± 0.000381 0.429657± 0.001857*

Nonstationary 0.990199 1.005357 1.473375 0.988265± 0.001298 0.987444± 0.000661*

Random walk 1.005863 1.307905 11.782249 1.048836± 0.016573 1.035739± 0.016835

Crude oil prices 3.944808 20.946781 26.682971 5.315421± 2.542140 32.828312± 1.593694

ECG 9.214228 32.7111615 55.142157 8.297350± 1.065379* 8.3175328± 0.138348

Exchange rate 0.000662 0.001952 0.011507 0.000661± 0.000001* 0.000665± 0.000004

Gas prices 7.826223 6.961940 66.702707 6.904599± 0.033701* 8.648501± 0.181225

Human speech 0.031606 0.035305 0.047310 0.031522± 0.000969* 0.036217± 0.002604

Macroeconomics 543.892692 574.948945 712.831468 579.206474± 12.37575 781.995492± 25.03351

Microeconomics 170.059750 647.763369 10241.14926 170.724059± 0.218171 173.318589± 1.114270

Music 0.028995 0.037084 0.034293 0.032710± 0.000346 0.027476± 0.001178*

Tropical sound 0.006212 0.008190 0.008366 0.006211± 0.000013* 0.006270± 0.000018

Zooplankton 257.486771 280.185625 301.396218 264.522817± 0.686007 264.961660± 4.076801

Looking at Table 5.5, we generally observe that, aside from the Microeconomics

and Random walk data sets, the best AutoML results (acquired from any of these

methods: Auto-Keras10, Auto-Keras200, VA10, VA200, W ens, W single, T10, T200,

WT) are significantly better than the best baseline results (acquired from any of these

methods: ARIMA, MV1, MV10, MV200, SVM10, SVM200, RF10, RF200, GBM10,

GBM200, XGBoost10, XGBoost200) in terms of RMSE .

Comparing the RMSE values in the first two columns of Table 5.5, we observe

that in 9 out of 20 data sets, the best AutoML baseline significantly outperforms

the best baseline. Auto-Keras10, Auto-Keras200, VA10, VA200 outperform the best

baselines on 0, 0, 6, 5 data sets, respectively. Overall, the best AutoML baseline on

each data set achieves between 0.02 % and 105.11 % higher accuracy. Comparing the

RMSE values of the best baseline and our AutoML variants (W ens, W single, T10,

T200, WT) from Table 5.5 indicates that for 18 out of 20 data sets, at least one of our

AutoML variants achieves lower error. The only exceptions are the Microeconomics

and Random walk data sets, where no AutoML approach was able to perform better

than the best baseline. For the random walk data set, this can be explained by the

lack of exploitable structure. W ens, W single, T10, T200, WT outperform the best

baselines on 10, 10, 4, 4, 5 data sets, respectively.

Q2: To what extent can current AutoML approaches (vanilla auto-sklearn:

VA10, VA200, and Auto-Keras: Auto-Keras10, Auto-Keras200) beat deep

neural network baselines (LSTM10, LSTM200, GRU10, GRU200, N-

114



Chapter 5. AutoML for single-step forecasting

T
a
b
le

5
.4
:
R
M
S
E

o
f
d
ee
p
n
eu

ra
l
n
et
w
o
rk

b
a
se
li
n
es

(L
S
T
M
,
G
R
U
,
N
-B

E
A
T
S
)
o
n
th
e
te
st

se
t.

In
th
e
ta
b
le
,
th
e
te
rm

’o
u
t
o
f
m
em

o
ry
’

d
en

o
te
s
th
a
t
w
h
en

ev
a
lu
a
ti
n
g
th
e
m
o
d
el
,
th
e
m
a
x
im

u
m

m
em

o
ry

b
u
d
g
et

o
f
8
0
G
B

w
a
s
re
a
ch
ed

.
In

th
is
ca
se
,
A
u
to
-K

er
a
s
d
id

n
o
t
re
tu
rn

a
m
o
d
el
).

T
h
e
b
o
ld
-f
a
ce
d
en
tr
ie
s
in
d
ic
a
te

th
e
lo
w
es
t
m
ea
n
er
ro
r
a
ch
ie
v
ed

o
n
a
g
iv
en

d
a
ta

se
t,
a
n
d
∗
in
d
ic
a
te
s
th
e
re
su
lt
s
a
re

st
a
ti
st
ic
a
ll
y

ti
ed

to
th
e
b
es
t.

D
a
t
a
s
e
t

M
o
d
e
l

B
e
s
t

b
a
s
e
li
n
e

B
e
s
t

A
u
t
o
M

L
L
S
T

M
1
0

L
S
T

M
2
0
0

G
R

U
1
0

G
R

U
2
0
0

N
-
B

E
A
T

S
1
0

N
-
B

E
A
T

S
2
0
0

A
u
t
o
r
e
g
r
e

n
o
is
e

0
.4

0
0
7
1
8

0
.4

0
0
6
0
3

±
0
.0

0
0
0
8
6

0
.4

5
7
4
4
5

0
.4

8
1
1
7
9

0
.5

1
1
8
6
7

0
.4

8
0
8
1
2

0
.4

2
2
5
7
2

0
.4

3
7
8
1
3

C
o
r
r
e
la

t
e
d

n
o
is
e

1
.0

2
7
4
9
6

1
.0

2
1
4
7
6

±
0
.0

0
0
9
3
8

1
.3

4
7
7
1
1

1
.6

8
0
8
8
5

1
.1

8
7
2
2
6

2
.2

5
6
9
3
4

1
.6

7
1
8
5
0

1
.2

1
9
1
7
6

L
o
r
e
n
z

A
t
t
r
a
c
t
o
r

0
.0

0
4
8
8
8

0
.0

0
0
6
4
6

±
0
.0

0
0
0
0
7

1
.2

7
0
1
0
5

1
.0

7
1
0
7
2

1
.2

8
4
0
3
6

0
.5

5
9
7
8
8

0
.2

4
0
2
6
1

0
.2

1
3
1
8
0

P
e
n
d
u
lu

m
0
.0

0
2
3
3
7

0
.0

0
1
5
7
4

±
0
.0

0
0
1
0
6

0
.4

3
4
6
1
1

1
.4

3
8
4
5
1

0
.4

4
6
6
5
0

0
.8

3
9
4
7
2

0
.1

2
4
9
9
7

0
.2

1
1
6
6
0

D
r
iv

e
n

o
s
c
il
la

t
o
r

0
.0

0
5
7
4
7

0
.0

1
2
2
5
9
±

0
.0

0
4
4
7
3

0
.4

8
7
0
0
8

1
.3

1
0
6
3
9

0
.3

9
2
8
1
4

o
u
t

o
f
m

e
m

o
r
y

0
.2

3
7
4
0
5

0
.1

3
0
8
1
9

T
w
o
-w

e
ll

o
s
c
il
la

t
o
r

0
.0

0
0
2
2
8

0
.0

0
0
7
9
7
±

0
.0

0
0
9
1
7

0
.1

4
3
5
8
9

0
.6

9
1
4
8
8

0
.0

6
9
0
2
4

0
.9

2
2
1
0
3

0
.0

2
6
9
8
3

0
.0

4
4
4
6
9

D
u
ff
in

g
o
s
c
il
la

t
o
r

0
.0

0
0
6
6
4

0
.0

0
1
3
1
2
±

0
.0

0
1
9
7
9

0
.3

3
4
4
7
6

0
.0

3
5
0
9
5

0
.0

6
0
6
1
7

0
.9

6
9
0
4
2

0
.0

1
8
9
8
9

0
.0

2
5
4
6
5

M
o
v
in

g
a
v
e
r
a
g
e

0
.4

3
7
3
7
4

0
.4

2
9
6
5
7

±
0
.0

0
1
8
5
7

0
.5

7
6
2
2
8

o
u
t

o
f
m

e
m

o
r
y

0
.6

2
3
3
6
2

0
.6

3
9
4
7
3

0
.6

2
1
0
8
7

0
.5

4
9
4
7
6

N
o
n
s
t
a
t
io

n
a
r
y

0
.9

9
0
1
9
9

0
.9

8
7
4
4
4

±
0
.0

0
0
6
6
1

9
.6

3
5
9
3
0

1
1
.4

3
6
2
9
5

1
1
.9

2
2
8
0
8

6
.2

1
7
0
7
5

3
.8

4
9
4
7
8

2
.9

8
5
2
4
9

R
a
n
d
o
m

w
a
lk

1
.0

0
5
8
6
3

1
.0

3
5
7
3
9
±

0
.0

1
6
8
3
5

8
5
.0

5
5
4
1
4

8
5
.6

2
6
2
7
6
1
1

8
4
.2

7
6
2
6
5

1
8
.5

2
6
1
3
0

2
.6

5
2
3
6
6

2
.9

7
5
6
8
9

C
r
u
d
e

o
il

p
r
ic

e
s

3
.9

4
4
8
0
8

5
.3

1
5
4
2
1
±

2
.5

4
2
1
4
0

8
2
.8

1
5
4
7
0

8
3
.9

3
5
6
7
8

3
4
.7

7
3
3
8
9

4
2
.1

4
8
9
5
8

2
4
.8

0
7
5
0
9

1
9
.4

1
4
5
8
2

E
C
G

9
.2

1
4
2
2
8

8
.2

9
7
3
5
0

±
1
.0

6
5
3
7
9

1
7
1
.0

4
4
2
2
2

1
7
1
.6

8
3
9
5
2

1
5
5
.9

4
0
5
6
2

1
7
0
.4

2
2
6
0
2

2
2
.2

9
0
8
7
4

7
9
.2

6
8
6
0
6

E
x
c
h
a
n
g
e

r
a
t
e

0
.0

0
0
6
6
2

0
.0

0
0
6
6
1

±
0
.0

0
0
0
0
1

0
.8

7
3
5
5
4

o
u
t

o
f
m

e
m

o
r
y

1
.0

3
2
4
9
4

0
.1

2
3
8
8
3

0
.0

0
3
1
9
6

0
.0

8
5
4
4
4

G
a
s

p
r
ic

e
s

7
.8

2
6
2
2
3

6
.9

0
4
5
9
9

±
0
.0

3
3
7
0
1

1
3
2
.5

1
4
3
4
8

3
0
8
.3

3
2
6
0
9

1
2
6
.8

7
4
2
4
2

3
0
2
.0

1
7
0
5
0

4
7
.6

5
3
0
6
8

5
0
.0

6
4
5
5
4

H
u
m

a
n

s
p
e
e
c
h

0
.0

3
1
6
0
6

0
.0

3
1
5
2
2

±
0
.0

0
0
9
6
9

0
.0

6
6
0
9
7

0
.0

6
6
2
8
7

0
.0

6
6
2
9
0

0
.0

6
6
2
3
1

0
.0

5
2
1
4
8

0
.0

4
6
2
2
9

M
a
c
r
o
e
c
o
n
o
m

ic
s

5
4
3
.8

9
2
6
9
2

5
7
4
.9

4
8
9
4
5

8
2
2
.1

1
4
7
3
2

1
7
5
5
.3

6
4
2
0
4

1
7
5
2
.4

3
9
8
0
4

1
7
5
4
.1

8
0
2
9
4

7
8
3
.8

1
3
5
1
8

8
9
0
.0

1
8
0
1
1

M
ic

r
o
e
c
o
n
o
m

ic
s

1
7
0
.0

5
9
7
5
0

1
7
0
.7

2
4
0
5
9
±

0
.2

1
8
1
7
1

9
4
8
5
.9

4
8
4
7
3

9
7
5
6
.8

4
7
4
1
6

4
0
8
6
.5

5
1
2
0
3

o
u
t

o
f
m

e
m

o
r
y

4
8
7
7
.9

1
6
9
1
7

4
3
0
.3

2
3
8
6
3

M
u
s
ic

0
.0

2
8
9
9
5

0
.0

2
7
4
7
6

±
0
.0

0
1
1
7
8

0
.1

0
2
4
6
2

0
.1

2
0
0
9
1

0
.1

0
0
7
3
1

0
.0

9
5
0
9
1

0
.0

4
0
0
6
3

0
.0

3
8
1
7
9

T
r
o
p
ic

a
l
s
o
u
n
d

0
.0

0
6
2
1
2

0
.0

0
6
2
1
1

±
0
.0

0
0
0
1
3

0
.0

3
1
2
9
0

0
.0

3
4
2
4
0

0
.0

3
1
6
1
6

0
.0

3
2
3
4
9

0
.0

0
7
5
4
4

0
.0

0
8
5
0
9

Z
o
o
p
la

n
k
t
o
n

2
5
7
.4

8
6
7
7
1

2
6
4
.5

2
2
8
1
7
±

0
.6

8
6
0
0
7

5
2
3
.9

5
9
6
3
2

3
1
5
.2

1
2
5
7
2

5
2
3
.0

2
3
1
6
7

5
2
6
.7

2
6
3
3
8

3
9
3
.1

8
6
0
0
4

2
7
4
.2

8
9
9
2
4

115



5.5. Empirical results

T
a
b
le

5
.5
:

R
M
S
E

o
f
tim

e-series
A
u
to
M
L

a
p
p
ro
a
ch
es

(W
en

s,
W

sin
g
le,

T
1
0
,
T
2
0
0
a
n
d
W

T
)
o
n
test

set.
T
h
e
b
o
ld
-fa

ced
en

tries
in
d
ica

te
th
e
low

est
m
ea
n
erro

r
a
ch
iev

ed
o
n
a
g
iv
en

d
a
ta

set,
a
n
d
∗
in
d
ica

tes
th
e
resu

lts
a
re

sta
tistica

lly
tied

to
th
e
b
est.

D
a
t
a
s
e
t

M
o
d
e
l

B
e
s
t

B
a
s
e
lin

e
B

e
s
t

A
u
t
o
M

L
B

e
s
t

D
N

N
W

e
n
s

W
s
in

g
le

T
1
0

T
2
0
0

W
T

A
u
t
o
r
e
g
r
e

0
.4

0
0
7
1
8

0
.4

0
0
6
0
3

±
0
.0

0
0
0
8
6

0
.4

5
7
4
4
5

0
.4

0
0
4
4
2

±
0
.0

0
0
1
1
6

0
.4

0
0
3
2
6

±
0
.0

0
0
2
1
6
*

0
.4

0
0
9
6
7

±
0
.0

0
0
2
0
9

0
.4

1
6
7
5
3

±
0
.0

0
0
4
5
3

0
.4

0
5
8
5
2

±
0
.0

0
1
7
1
3

C
o
r
r
e
la

t
e
d

n
o
is
e

1
.0

2
7
4
9
6

1
.0

2
1
4
7
6

±
0
.0

0
0
9
3
8

1
.1

8
7
2
2
6

1
.0

2
1
2
3
3

±
0
.0

0
0
2
3
2
*

1
.0

2
1
7
7
9

±
0
.0

0
0
9
0
7

1
.0

2
1
3
7
4

±
0
.0

0
1
5
1
3

1
.0

3
9
1
5
7

±
0
.0

0
7
5
0
8

1
.0

2
9
9
6
9

±
0
.0

0
4
8
3
9

L
o
r
e
n
z

A
t
t
r
a
c
t
o
r

0
.0

0
4
8
8
8

0
.0

0
0
6
4
6

±
0
.0

0
0
0
0
7
*

0
.5

5
9
7
8
8

0
.0

0
6
5
7
2

±
0
.0

0
3
4
8
8

0
.0

0
0
6
4
5

±
0
.0

0
0
0
1
1
*

0
.0

0
9
9
4
4

±
0
.0

0
3
9
2
3

0
.0

0
3
0
9
8

±
0
.0

1
3
1
7
1

0
.0

0
4
5
3
9

±
0
.0

1
2
6
0
0

P
e
n
d
u
lu

m
0
.0

0
2
3
3
7

0
.0

0
1
5
7
4

±
0
.0

0
0
1
0
6

0
.4

3
4
6
1
1

0
.0

0
1
8
7
3

±
0
.0

0
1
6
5
3

0
.0

0
0
3
3
1

±
0
.0

0
0
1
2
8

0
.0

0
3
1
9
6

±
0
.0

0
0
9
8
1

0
.0

0
0
5
6
4

±
0
.0

0
0
7
8
0

0
.0

0
0
3
2
5

±
0
.0

0
1
4
3
0
*

D
r
iv

e
n

o
s
c
illa

t
o
r

0
.0

0
5
7
4
7

0
.0

1
2
2
5
9

±
0
.0

0
4
4
7
3

0
.3

9
2
8
1
4

0
.0

1
1
4
6
4

±
0
.0

0
1
1
7
9

0
.0

0
9
6
9
6

±
0
.0

0
5
1
9
6

0
.0

0
0
0
0
9

±
0
.0

0
0
0
0
0
*

0
.0

1
8
8
2
4

±
0
.0

0
1
8
4
5

0
.0

1
7
6
3
5

±
0
.0

0
0
0
0
0

T
w
o
-w

e
ll

o
s
c
illa

t
o
r

0
.0

0
0
2
2
8

0
.0

0
0
7
9
7

±
0
.0

0
0
9
1
7

0
.0

6
9
0
2
4

0
.0

0
0
5
9
9

±
0
.0

0
0
5
2
0

0
.0

0
0
0
2
4

±
0
.0

0
0
0
2
0
*

0
.0

0
1
6
9
9

±
0
.0

0
0
1
7
3

0
.0

0
8
0
1
7

±
0
.0

0
9
9
5
2

0
.0

0
2
8
1
7

±
0
.0

0
0
0
0
0

D
u
ffin

g
o
s
c
illa

t
o
r

0
.0

0
0
6
6
4

0
.0

0
1
3
1
2

±
0
.0

0
1
9
7
9

0
.0

3
5
0
9
5

0
.0

0
1
0
1
6

±
0
.0

0
0
7
9
6

0
.0

0
0
0
2
4

±
0
.0

0
0
0
0
1
*

0
.0

0
1
6
6
7

±
0
.0

0
0
2
3
9

0
.0

0
5
9
5
9

±
0
.0

0
6
0
2
8

0
.0

0
3
9
9
5

±
0
.0

0
0
0
0
0

M
o
v
in

g
a
v
e
r
a
g
e

0
.4

3
7
3
7
4

0
.4

2
9
6
5
7

±
0
.0

0
1
8
5
7

0
.5

7
6
2
2
8

0
.4

2
6
2
8
5

±
0
.0

0
0
8
2
0

0
.4

2
4
8
5
8

±
0
.0

0
0
5
1
3
*

0
.4

4
2
4
7
9

±
0
.0

0
0
3
9
8

0
.4

3
7
2
5
8

±
0
.0

0
0
8
7
5

0
.4

3
1
5
3
1

±
0
.0

0
1
7
3
2

N
o
n
s
t
a
t
io

n
a
r
y

0
.9

9
0
1
9
9

0
.9

8
7
4
4
4

±
0
.0

0
0
6
6
1

6
.2

1
7
0
7
5

0
.9

8
6
3
4
2

±
0
.0

0
0
1
6
1

0
.9

8
6
1
0
1

±
0
.0

0
0
1
5
5
*

0
.9

8
7
9
4
8

±
0
.0

0
4
3
8
1

0
.9

9
8
9
8
8

±
0
.0

0
7
4
8
8

1
.0

9
8
6
0
8

±
0
.1

2
5
8
3
9

R
a
n
d
o
m

w
a
lk

1
.0

0
5
8
6
3

1
.0

3
5
7
3
9

±
0
.0

1
6
8
3
5

1
8
.5

2
6
1
3
0

1
.0

5
2
5
1
1

±
0
.0

3
0
7
7
7

1
.0

0
8
0
2
3

±
0
.0

0
0
5
2
9

1
.0

6
3
5
3
4

±
0
.1

0
2
3
1
0

1
.0

7
8
4
9
7

±
0
.1

5
3
6
9
0

1
.9

5
0
6
1
4

±
0
.9

7
4
3
3
3

C
r
u
d
e

o
il

p
r
ic

e
s

3
.9

4
4
8
0
8

5
.3

1
5
4
2
1

±
2
.5

4
2
1
4
0

4
2
.1

4
8
9
5
8

3
.8

8
6
3
0
8

±
0
.0

3
1
6
5
1
*

3
.9

8
3
9
3
2

±
0
.0

5
7
4
8
1

1
1
.9

3
3
0
6
5

±
2
.4

6
4
1
7
7

1
5
.6

3
3
2
9
9

±
0
.9

1
8
6
7
7

1
0
.5

4
6
5
5
6

±
0
.8

5
5
5
0
9

E
C
G

9
.2

1
4
2
2
8

8
.2

9
7
3
5
0

±
1
.0

6
5
3
7
9
*

1
5
5
.9

4
0
5
6
2

9
.0

0
4
1
7
3

±
1
.2

2
1
0
8
6

2
8
.5

3
4
4
5
5

±
2
8
.2

8
1
2
7

1
1
.3

3
1
5
2
5

±
1
.7

2
8
5
5
5

1
1
8
.0

5
3
2
2
3

±
2
5
.0

4
4
2
4
2

1
3
.9

3
7
3
8
7

±
0
.0

0
0
0
0
0

E
x
c
h
a
n
g
e

r
a
t
e

0
.0

0
0
6
6
2

0
.0

0
0
6
6
1

±
0
.0

0
0
0
0
1

0
.1

2
3
8
8
3

0
.0

0
0
6
6
0

±
0
.0

0
0
0
0
1
*

0
.0

0
0
6
6
1

±
0
.0

0
0
0
0
1

0
.0

0
0
6
7
2

±
0
.0

0
0
0
1
2

0
.0

0
0
6
7
3

±
0
.0

0
0
0
1
2

0
.0

0
0
6
6
8

±
0
.0

0
0
0
0
1

G
a
s

p
r
ic

e
s

7
.8

2
6
2
2
3

6
.9

0
4
5
9
9

±
0
.0

3
3
7
0
1

1
2
6
.8

7
4
2
4
2

6
.7

6
2
9
4
0

±
0
.1

4
2
2
3
9
*

7
.0

6
4
7
3
9

±
0
.0

2
1
3
7
1

1
4
.5

9
6
1
4
9

±
4
.5

4
9
6
7
3

4
5
.3

1
2
2
1
0

±
4
3
.4

1
4
3
5
4

2
8
.6

5
7
3
2
9

±
5
4
.9

7
2
3
4
6

H
u
m

a
n

s
p
e
e
c
h

0
.0

3
1
6
0
6

0
.0

3
1
5
2
2

±
0
.0

0
0
9
6
9

0
.0

6
6
0
9
7

0
.0

3
0
2
8
7

±
0
.0

0
0
7
7
5
*

0
.0

3
2
3
8
6

±
0
.0

0
1
6
3
8

0
.0

3
1
2
0
6

±
0
.0

0
0
3
3
8

0
.0

3
0
9
6
5

±
0
.0

0
0
2
6
6

0
.0

3
5
2
5
6

±
0
.0

0
0
0
0
0

M
a
c
r
o
e
c
o
n
o
m

ic
s

5
4
3
.8

9
2
6
9
2

5
7
4
.9

4
8
9
4
5

8
2
2
.1

1
4
7
3
2

7
0
7
.2

3
2
3
2
8

±
3
7
.7

5
9
2
5
5

7
3
1
.9

6
0
2
3
8

±
5
5
.2

4
1
5
2
7

6
0
5
.2

6
7
7
0
2

±
5
.3

5
2
1
4
5

7
0
9
.2

2
9
8
8
8

±
1
9
.2

5
1
7
1
0

3
1
9
.1

2
6
6
0
3

±
2
9
4
.6

4
5
3
6
3
*

M
ic

r
o
e
c
o
n
o
m

ic
s

1
7
0
.0

5
9
7
5
0

1
7
0
.7

2
4
0
5
9

±
0
.2

1
8
1
7
1

4
0
8
6
.5

5
1
2
0
3

1
7
0
.9

2
3
7
1
1

±
0
.4

3
6
1
2
8

1
7
1
.0

0
2
1
6
3

±
0
.2

9
2
9
3
4

3
9
5
.3

1
9
8
4
2

±
1
3
0
.5

2
3
5
4
2

3
9
5
.3

1
9
8
4
2

±
1
3
0
.5

2
3
5
4
2

1
7
1
.2

9
8
1
1
8

±
0
.3

2
4
2
8
4

M
u
s
ic

0
.0

2
8
9
9
5

0
.0

2
7
4
7
6

±
0
.0

0
1
1
7
8

0
.0

9
5
0
9
1

0
.0

2
7
0
3
3

±
0
.0

0
0
4
6
2
*

0
.0

2
7
2
9
9

±
0
.0

0
1
3
4
2

0
.0

3
2
7
7
9

±
0
.0

0
0
3
4
4

0
.0

2
8
3
0
2

±
0
.0

0
1
1
3
8

0
.0

2
9
3
8
7

±
0
.0

0
1
3
5
9

T
r
o
p
ic

a
l
s
o
u
n
d

0
.0

0
6
2
1
2

0
.0

0
6
2
1
1

±
0
.0

0
0
0
1
3

0
.0

3
1
6
1
6

0
.0

0
6
1
7
1

±
0
.0

0
0
0
2
5

0
.0

0
6
1
6
6

±
0
.0

0
0
0
1
9
*

0
.0

0
6
2
8
1

±
0
.0

0
0
0
1
3

0
.0

0
6
4
6
5

±
0
.0

0
0
0
2
3

0
.0

0
6
1
6
2

±
0
.0

0
0
0
0
9

Z
o
o
p
la

n
k
t
o
n

2
5
7
.4

8
6
7
7
1

2
6
4
.5

2
2
8
1
7

±
0
.6

8
6
0
0
7
*

3
1
5
.2

1
2
5
7
2

2
6
3
.1

2
9
4
3
1

±
3
.4

2
7
3
8
7

2
6
7
.3

5
4
4
2
1

±
0
.3

2
4
7
5
4

2
7
1
.0

2
6
2
5
1

±
6
.2

0
3
1
6
3

2
7
3
.3

2
0
2
6
0

±
1
.9

6
3
3
6
7

2
5
5
.7

2
6
0
8
1

±
2
.9

7
8
3
3
0
*

116



Chapter 5. AutoML for single-step forecasting

BEATS10, N-BEATS200)?

In Table 5.4, we show the test set RMSE obtained for each data set using our deep

neural networks baselines, along with the lowest error achieved by simple baseline

models and baseline AutoML techniques. Among LSTM, GRU and N-BEATS

baselines, the results indicate that N-BEATS shows lower RMSE than LSTM and

GRU on 19 out of 20 data sets. We observe that the deep neural network baselines

were outperformed by the best AutoML results, followed by the best simple baseline.

In our experiments, we noticed that for longer window sizes, the optimisation process

terminated due to memory limitations. This demonstrates the complexity and diffi-

culty of optimising deep neural network architectures for time-series data. We suspect

that better results could be obtained with automatically designed LSTM/GRU

architectures, but likely at the cost of substantially higher resource usage (computing

time and memory). Compared to LSTM10 and GRU10, Auto-Keras10 achieves

better performance on all the data sets. Similarly, when compared to LSTM200

and GRU200, Auto-Keras200 performs better on 19 out of 20 data sets. This shows

that neural network architectures that are known to be suitable for modelling the

dynamics of time-series data, such as LSTMs and GRUs, are too expensive to be

effectively optimised automatically. Given the same amount of resources, when using

Auto-Keras with its original search space, other types of architectures (e.g., dense

layers) can also be selected and may offer better results. These results also show that

there is still room for more complex and efficient approaches for neural architecture

search for time-series data. Compared to N-BEATS10, Auto-Keras10 achieves higher

accuracy on 17 out of 20 data sets; Compared to N-BEATS200, Auto-Keras200

outperforms on 13 out of 20 data sets. N-BEATS has been considered one of the

state-of-the-art methods in the time-series forecasting domain. We see a big potential

in automatically generated models for time-series forecasting. Current AutoML

approaches (vanilla auto-sklearn: VA10, VA200, and Auto-Keras: Auto-Keras10,

Auto-Keras200) beat deep neural network baselines (LSTM10, LSTM200, GRU10,

GRU200, N-BEATS10, N-BEATS200) on all the 20 data set.

Q3: To what extent can our newly proposed approaches beat current Au-

toML approaches (vanilla auto-sklearn: VA10, VA200, and Auto-Keras:

Auto-Keras10, Auto-Keras200)?

In Table 5.5, we compare the performance achieved by our newly proposed ap-

proaches against that of the best AutoML baselines. For 18 out of the 20 data sets,

at least one of our newly proposed approaches outperforms the best baseline Au-

117



5.5. Empirical results

toML approach, with improvements ranging between 0.02% and 136 111.11% in terms

of RMSE . Among the five proposed variants, W ens and W single show the lowest

RMSE on 13 out of 20 data sets, while T10, T200 outperform the rest only on one

data set (Driven oscillator). WT outperforms the rest only on 3 data sets (Pendulum,

Macroeconomics, Zooplankton). W ens, W single, T10, T200, WT outperform the

best AutoML baselines (Auto-Keras10, Auto-Keras200, VA10, VA200) on 14, 12, 3, 2

and 4 data sets, respectively.

Overall, next to observing improvements against the best baseline AutoML

approaches, a comparison of the performance of our newly proposed approaches with

each other suggests that W ens and W single tend to perform better than the rest in

terms of performance on test data.

Q4: Which approach generalises best from training to test data?

To understand which method generalises best, we compare the training and test

performance results (training set results in terms of RMSE are presented in Table 5.6).

A method that generalises well should show similarly low prediction error in both cases.

Comparing the training and test set errors, it is evident that the approaches with

tsfresh features (T10, T200) suffer from overfitting on training data: these approaches

perform better than VA10 and W ens, W single, WT on 13 out of 20 data sets in

terms of the RMSE on the training set, while they only show better performance on

the test set on one data set. The approaches with automated window size selection

(W ens, W single or WT) show the highest accuracy on 7 out of 20 data sets in terms

of the RMSE on the training set (mainly outperformed by T10 and T200), while the

corresponding results for test set performance is much higher (16 out of 20). This

suggests that these approaches are more robust against overfitting. W ens is most of

the time better than VA10 in training but not as good as T variants (T10, T200).

Figure 5.3 and Figure 5.4 show the RMSE distributions obtained from bootstrap

sampling over multiple independent runs of our proposed AutoML variants for two

synthetic and two real-world benchmarks. These data sets have been selected such

that the difference between approaches is clearly visible. As seen in Figures 5.3(a),

5.3(c), 5.4(a), among the AutoML variants, W ens shows the lowest median and the

lowest test set error followed by VA10, while WT performs best only in Figure 5.4(c).

Looking at training error (Figures 5.3(b), 5.3(d), 5.4(b), 5.4(d)), we find that in 3 out

of the 4 cases, T10 shows a clear advantage over other approaches; however, similar

performances are not achieved on the corresponding test sets. WT does not perform

very well either and shows a low performance on the test set. This could be the result

118



Chapter 5. AutoML for single-step forecasting

Table 5.6: RMSE on the training set acquired from different AutoML methods including
vanilla auto-sklearn VA10 and our proposed variants (W ens, W single, T10, T200, WT ).
The bold-faced entries indicate the lowest mean error achieved on a given data set, and ∗
indicates the results are statistically tied to the best.

Dataset
Model

VA10 W ens W single T10 T200 WT

Autoregre noise
0.404725

± 0.000028
0.357100

± 0.018618
0.404948

± 0.002718
0.312280

± 0.019081
0.099848

± 0.059389*
0.309739

± 0.000000

Correlated noise
0.953938

± 0.018389
0.821940

± 0.028382
0.988425

± 0.001885
0.582574

± 0.029850
0.445290

± 0.021132*
0.725874

± 0.000000

Lorenz Attractor
0.003643

± 0.002108
0.004787

± 0.001795
0.000687

± 0.000001*
0.005257

± 0.000979
0.001684

± 0.004996
0.033001

± 0.000000

Pendulum
0.013990

± 0.022468
0.001807

± 0.001262
0.000143

± 0.000019*
0.001046

± 0.000127
0.001172

± 0.003045
0.008570

± 0.000000

Driven oscillator
0.003357

± 0.001745
0.003524

± 0.000898
0.002885

± 0.000953*
0.003180

± 0.000028
0.015826

± 0.003702
0.013420

± 0.000000

Two-well oscillator
0.000519

± 0.000356
0.000406

± 0.000252*
0.000725

± 0.000494
0.000789

± 0.000015
0.004617

± 0.005851
0.001773

± 0.000000

Duffing oscillator
0.000679

± 0.000463
0.000575

± 0.000216*
0.002424

± 0.000738
0.000691

± 0.000042
0.001937

± 0.001342
0.002474

± 0.000005

Moving average
0.413227

± 0.003247
0.372342

± 0.002935
0.397426

± 0.000732
0.293087

± 0.036759
0.261658

± 0.059058*
0.405050

± 0.000000

Nonstationary
0.960435

± 0.006790
0.941951

± 0.012253
0.994682

± 0.000214
0.612182

± 0.076556*
0.629782

± 0.128813
1.151766

± 0.000000

Random walk
0.994218

± 0.004097
0.993145

± 0.003799
1.008242

± 0.000831
0.544931

± 0.114882*
0.637171

± 0.141287
1.692634

± 0.000000

Crude oil prices
1.862273

± 0.019859
1.787196

± 0.039135
1.877526

± 0.004829
1.486114

± 0.069461
0.657657

± 0.148479*
1.854731

± 0.000000

ECG
6.345342

± 0.230522
5.609683

± 0.217275
5.555471

± 0.597214*
12.434153
± 6.124225

12.598475
± 3.335467

7.246352
± 0.000000

Exchange rate
0.000762

± 0.000014
0.000753

± 0.000008
0.000761

± 0.000003
0.000751

± 0.000018*
0.000734

± 0.000036*
0.000797

± 0.000000

Gas prices
2.109257

± 0.003033
2.037483

± 0.019962
2.103643

± 0.002152
1.936833

± 0.089270
1.268692

± 0.212155*
2.023632

± 0.010646

Human speech
0.025226

± 0.002773
0.025127

± 0.002285
0.028316

± 0.006866
0.020102

± 0.002484
0.006871

± 0.001208*
0.033939

± 0.000146

Macroeconomics
332.182737
± 26.603055

137.694269
± 29.074179

296.448896
± 121.080645

161.153074
± 47.609146

130.189798
± 24.135087

112.574887
± 0.277946*

Microeconomics
112.433023
± 0.060023

111.805190
± 0.198384

112.400226
± 0.170035

457.133087
± 472.235290

101.604636
± 1.238983*

112.605469
± 0.320563

Music
0.054124

± 0.002594
0.025809

± 0.002242
0.027113

± 0.001405
0.025053

± 0.003775*
0.025895

± 0.000817
0.064743

± 0.000000

Tropical sound
0.005904

± 0.000122
0.004962

± 0.0001514
0.003926

± 0.000523
0.003967

± 0.000932
0.003253

± 0.000454*
0.005707

± 0.000004

Zooplankton
312.205839
± 2.797241

265.446350
± 18.170189

315.313539
± 3.728371

109.159209
± 9.050114*

173.214940
± 12.636791

176.475896
± 9.671782

119



5.5. Empirical results

(a) (b)

(c) (d)

Figure 5.3: RMSE distribution of the bootstrapping results of the AutoML method runs
on the Two-well oscillator, Moving average data sets with models VA10, W ens, T10, WT.
The distribution is created by the bootstrapping protocol we mentioned in Section 5.5.

120



Chapter 5. AutoML for single-step forecasting

(a) (b)

(c) (d)

Figure 5.4: RMSE distribution of the bootstrapping results of AutoML method runs on
the Human speech, and Zooplankton data sets with models VA10, W ens, T10, WT. The
distribution is created by the bootstrapping protocol we mentioned in Section 5.5.

121



5.5. Empirical results

of the fact that the search space is considerably more complex. Using the same time

budget as the other variants, WT can evaluate much fewer configurations than other

approaches, since significant time has to be spent on extracting features.

These results generally suggest that while the tsfresh features can indeed help in

training machine learning models for time-series forecasting, their use can easily lead

to overfitting. We believe this is caused by the relatively large number of features

(794 time-series features total before performing feature selection) compared to

the number of data instances available for training. During training, we used the

Benjamini-Hochberg procedure for feature selection (Benjamini and Hochberg, 1995)

in both tsfresh and auto-sklearn in order to avoid overfitting. After feature selection,

between 26 to 466 features were selected in T10 and T200 experiments (depending on

the data set). However, this approach still could not prevent the overfitting issue.

(a) (b)

Figure 5.5: The window size distribution of W ens on (a) 10 synthetic datasests and (b) 10
real data sets. Distributions of window sizes are acquired from 25 runs. Color codes represent
comparative performance based on the test set RMSE presented in Table 5.5.

Q5: Can optimal window sizes for time-series forecasting be found by the

AutoML system?

Figure 5.5 and Figure 5.6 visualise the distribution of window sizes found for syn-

thetic and real-world data sets in 25 runs, with (W ens) and without ensembling

(W single) and compares their performances based on RMSE on test sets presented

earlier in Table 5.5. We first investigated whether an optimal window size has been

found for each data set. A distribution with low variance will indicate the stability of

the range of these window sizes. Figures 5.5 show the window size distributions for

122



Chapter 5. AutoML for single-step forecasting

(a) (b)

Figure 5.6: The window size distribution of W single on (a) 10 synthetic data sets and
(b) 10 real data sets. Distributions of window sizes are acquired from 25 runs. Color codes
represent comparative performance based on the test set RMSE presented in Table 5.5.

W ens. It is generally seen that the ensemble models have selected a wide variation

of window sizes. We believe that this is due to the fact that a time-series can be

decomposed into multiple signals with different frequency components (according to

the Fourier transform). Each frequency component can be represented as values in

windows with different sizes. Ensemble models can consider the contribution of each

of these components in forecasting. Figures 5.6 show the window size distributions for

W single. As expected, W single models tend to have less varied window size ranges

than W ens and considerably lower numbers of outliers.

Looking at these figures, we also observed that in most cases W single tends to

yield better performance than W ens on synthetic data sets, while W ens yields better

performance on real-world data sets. This can be explained by looking at the data sets

in Figure 5.7 and Figure 5.8. In Figures 5.7 and 5.8 (a),(c) we present 2 samples of

each data set category that had lower variance in Figures 5.6 along with their first 200

samples (Figures 5.7 and 5.8 (b),(d)). Clearly, real-world data sets are more complex.

Furthermore, in these data sets, the relation between different data points in terms of

slow and fast-changing patterns (i.e., low and high-frequency components) is visible.

This explains why W ens performs best on these data sets. The synthetic data sets

we used, on the other hand, are either periodic or do not show any complex and non-

stationary behaviour. This explains why a single window size that is large enough to

capture the temporal patterns yields better results. Since the goal of the AutoML

system should be to perform well on real-world data sets, W ens should be preferred

123



5.5. Empirical results

(a) (b)

(c) (d)

Figure 5.7: Visualization of Pendulum, Moving average, Human speech, and Microeco-
nomics data sets: (a) Pendulum data set (b) the first 200 points of Pendulum data set (c)
Moving average data set (d) the first 200 points of Moving average data set.

124



Chapter 5. AutoML for single-step forecasting

(a) (b)

(c) (d)

Figure 5.8: Visualization of Pendulum, Moving average, Human speech, and Microeco-
nomics data sets: (a) Human speech data set (b) the first 200 points of Human speech data
set (c) Microeconomics data set. (d): the first 200 points of Microeconomics data set.

125



5.6. Conclusion

over W single as the ensembling method can capture different periodic components of

the time-series in different window sizes.

5.6 Conclusion

In this chapter, we investigated the realisation of AutoML systems for time-series

forecasting. We proposed three variants of AutoML systems based on auto-sklearn and

tsfresh for time-series forecasting and compared them to simple statistical, machine

learning baselines, and AutoML baselines. We found that vanilla AutoML can perform

very well on time-series forecasting tasks, achieving significantly higher accuracy than

the simple statistical and machine learning baselines on 9 out of 20 data sets in terms

of RMSE . Compared to deep neural network baselines, AutoML baselines and our

newly proposed approaches perform better on all the data sets in terms of RMSE on

test sets. However, it is likely that better results can be obtained using automatically

designed LSTM/GRU architectures at the expense of much higher resource usage

(computing time and memory). The state-of-the-art model N-BEATS has been used in

our experiments. We found that although N-BEATS beats our LSTM/GRU baselines

on most of the data sets, Auto-Keras baselines and vanilla auto-sklearn baselines

still perform better than it on most of the data sets. With the same computational

resources, our enhanced approaches yield better results than vanilla AutoML on most

of our data sets (on 18 out of 20 benchmarks in terms of RMSE on the test sets).

Overall, our methods improved accuracy for 17 out of 20 data sets compared to our

simple baselines and current AutoML baselines. In terms of RMSE on training sets,

our new approaches outperform vanilla auto-sklearn on all 20 data sets.

We also found that the window size has a considerable impact on the accuracy of

time-series forecasting and that by optimising the window size, we could achieve signif-

icantly higher performance than current AutoML techniques. Our experiments show

that, while tsfresh features can be useful in terms of improving forecasting accuracy,

their use in combination with an AutoML system often leads to overfitting. Our em-

pirical results further indicate that our enhanced AutoML variant with windows size

selection works best in connection with ensembling when tackling forecasting tasks

on complex real-world data sets. We found that models with longer input window

sizes do not always perform better than those with shorter input window sizes, which

further proves that the window size selection is essential in time-series forecasting.

Overall, these results clearly demonstrate that the use of AutoML techniques for

time-series forecasting is highly promising. Interesting avenues for future work include

126



Chapter 5. AutoML for single-step forecasting

the development of techniques for detecting and preventing overfitting as well as the

use of AutoML for other tasks involving time-series data, such as multi-step forecasting

and time-series classification.

127



5.6. Conclusion

128


