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Chapter 5

AutoML for single-step

forecasting

5.1 Introduction

In the previous chapter, we investigated the use of AutoML methods in perform-
ing load forecasting tasks, which are the special cases of time-series forecasting. We
showed that the current AutoML methods show promising results in the short term
load forecasting domain. In this chapter, we investigate the use of AutoML for con-
structing machine learning models for time-series forecasting tasks. Different from the
previous chapter, we design an AutoML framework specifically for time-series forecast-
ing. Feature engineering has been proven to be necessary in many machine learning
tasks, including time-series forecasting (Coyle et al.l |2005; |Phinyomark et al., [2014).
The biggest challenge in AutoML for time-series forecasting is to develop advanced
ML pipelines that include feature extractors and machine learning models that are
well-suited to time-series tasks. Another challenge arises in the selection of the size
of the time window that determines how much of the historical information is used
as the basis for forecasting future data points. The best window size depends on the
properties of the time-series and differs between data sets. It also depends on the ML

method used for forecasting.

We compare how different combinations of feature-extraction and window size se-
lection techniques can be used to obtain highly accurate models fully automatically,

without the need for making design choices by human experts. Specifically, the con-
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5.2. Related work

tributions made in this chapter are:

e We propose to combine automated time-series feature engineering and window
size selection, with automated algorithm selection and hyperparameter optimiza-
tion to generate machine learning pipelines for time-series forecasting. The focus

is on time-series forecasting which is implemented as a regression task.

e We compare the performance of the pipelines generated using our proposed
technique against 18 different machine learning models configured with fixed
windows sizes across 20 data sets. Our proposed new method aims to be gener-
ally applicable for time-series forecasting on arbitrary data sets. We, therefore,
assess the performance of the proposed method on a diverse set of problems. We
demonstrate the importance of feature selection and window size selection in
forecasting problems. We further show the strong performance of our proposed
technique in creating specialized AutoML systems for time-series data building
upon the available AutoML system of auto-sklearn (Feurer et all [2015) and a
well-known time-series feature extraction library tsfresh (Christ et al., 2018).
We propose three new approaches for AutoML for time-series forecasting:
(i) auto-sklearn with automated window size selection; (ii) auto-sklearn with
tsfresh features; and (iii) auto-sklearn with automated window size selection as
well as tsfresh features. Among these, we demonstrate that (i) performs better
compared to two other AutoML frameworks: i.e., AutoKeras (Jin et al., [2019),

auto-sklearn.

The remainder of this chapter is structured as follows: in Section|5.2] we give a brief
overview of the existing work in time-series forecasting and AutoML. Section [5.3] pro-
vides the formal problem definition of automated time-series forecasting. Section
introduces the AutoML systems and feature extraction methods studied in this chap-
ter along with our proposed approaches. Section [5.5] presents our experimental setup,

results and discussion. Finally, conclusions and future work directions are provided in

Section [5.6]

5.2 Related work

Time-series forecasting: Existing time-series forecasting methods can be mostly

divided into two categories: (i) statistical, and (ii) machine learning methods as we
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Chapter 5. AutoML for single-step forecasting

have mentioned in Section [£.2] Both of these categories aim at making accurate predic-
tions. Their differences lie in the fact that statistical algorithms are typically limited
as they assume linear dependence on past observations, while machine learning models
are non-linear (Makridakis et al., |2018). Furthermore, machine learning algorithms
require the training of predictive models using substantially more computational re-

sources than statistical algorithms.

Feature extraction: In order to apply methods from either of these two cat-
egories, it is typically necessary to perform some form of preprocessing on the raw
data. Feature extraction is an important preprocessing step used in many cases. So
far, many different feature extraction methods for time-series have been used in the
context of different applications (e.g., see (Coyle et al., [2005; [Phinyomark et al.,2014)).
Feature Extraction based on Scalable Hypothesis tests (FRESH) (Christ et al., [2018))
is a generic framework for time-series feature extraction. FRESH includes various
categories of features such as statistical features, features of sample distributions and
features of observed dynamics. A Python implementation of FRESH is available in
the tsfresh package (Christ et al., [2018). Tsfresh has been widely used in time-series
analysis (e.g., (Dempsey et al.,[2020; [Yuan et al.l|2019))). Catch22 (Lubba et al.;[2019)
and hetsa (Fulcher and Jones, [2017)) are two other feature extraction libraries. Hctsa
extracts over 7,700 features selected based on the time-series analysis literature. Such
a large number of features make the process of feature extraction computationally ex-
pensive. Catch22 (CAnonical Time-series CHaracteristics) presents a set of 22 of the
hctsa features, selected on a time-series classification benchmark set. Compared to
hctsa, using Catch22 provides an approximately 1000-fold reduction in computation
time with only 7% reduction in classification accuracy. However, being selected for
classification tasks, these features are not guaranteed to perform well on forecasting
problems considered in this chapter. Franceschi et al. (Franceschi et al., 2019) pro-
posed feature extraction using unsupervised representation learning for multivariate
time-series classification and regression problems. However, using a deep convolu-
tional neural network also generates high additional computational burdens for pre-
processing. Being focused on time-series forecasting problems and opting for lower
computational burdens, in our experiments we chose to use tsfresh, which computes a

total of 794 time-series features.

AutoML: Another line of related work comes from the area of automated ma-
chine learning (AutoML). We comprehensively reviewed AutoML systems in Chapter
AutoML has been used in many domains for constructing high-performance ma-

chine learning models for a given data set, without the need for machine learning
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5.2. Related work

experts to choose learning algorithms, model classes or hyperparameter settings. For
example, AutoML systems have been used for creating models for image classification
(Zoph et al.| [2018), prediction of the fuel consumption of ships (Ahlgren and Thern)
2018)), as well as prediction of biological ecosystem networks (Barreiro et al., 2018).
These works mainly involve automating classification and regression tasks. However,
they do not consider AutoML for time-series forecasting or the use of time-series fea-
tures in AutoML. In our earlier work (Wang et al. 2019) we showed the potential of
AutoML systems for energy load forecasting by defining a regression problem using
additional features (not extracted from the time-series). Kefalas et al. (Kefalas et al.l
2021)) looked at the problem of remaining useful life estimation of aircraft engines by

specifying a specific form of regression problem on time-series data.

In this chapter, we aim at studying how AutoML systems can be enhanced to per-
form in general time-series forecasting. Auto-sklearn (Feurer et al., |2015)), AutoGluon
(Shi et al., |2021) and Auto-Keras (Jin et al., 2019) are examples of available AutoML
systems. Auto-keras is a deep-learning-based AutoML system. AutoGluon focuses on
automated stack ensembling and deep learning techniques, while auto-sklearn is built
upon a search space composed of classic machine learning algorithms. In this chapter,
we use auto-sklearn for two reasons. Firstly, based on the time-series forecasting lit-
erature the feature extraction and pre-processing methods studied in this chapter can
complement various algorithms in auto-sklearn (e.g., Support vector machines) that
are not available in the other systems. Furthermore, our initial investigation showed
that it is much easier to extend auto-sklearn to acquire reliable results. We also use
Auto-Keras as a deep learning baseline to compare the performance achieved using
our proposed pipelines with classic machine learning models against automatically

configured deep learning models that do not require feature extraction.

On the one hand, the aforementioned statistical and the machine learning models
for time-series forecasting all need human experts to manually select parameters, such
as the windows size (over which features are extracted), the model to use, and the
model hyperparameters. On the other hand, current AutoML systems, while support-
ing model selection and hyperparameter optimisation, do not support the automated
prepropessing required for many time-series forecasting techniques. For applicability
on time-series data, AutoML systems need to support automated window size selection
and time-series feature generation. Here, we integrate time-series feature extraction
into AutoML systems. We propose variants of recent AutoML approaches that auto-
matically choose a window size, select one or more machine learning models, optimise

hyperparameters and generate time-series features. We benchmark our proposed Au-
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Chapter 5. AutoML for single-step forecasting

toML approaches on a broad range of time-series forecasting problems.

5.3 Problem definition

We have defined the time-series forecasting problem in Chapter 2] Current AutoML
techniques cannot optimise the window size. When using an available AutoML system
to do time-series forecasting, one needs to select a value for w and preprocess the data
manually into pairs of feature vectors and target values. Current AutoML systems do
not support time-series feature extraction either. In automated time-series forecast-
ing, however, both window size selection and feature extraction should be performed

automatically.

The input raw data are extracted over a window of size w. Given a time-series
segment X = [¥;_q,...,2;—1], a feature extraction function g and a machine learning
model A, we are interested in forecasting z;. With feature engineering, we can write
this as z; = A(g(%X)), and without it as z; = A(X).

Given a time-series data set x = [z1,...,z,] that is split into Xyrein and Xyarids
we are interested in building an optimised model using X;,qi» by minimising a loss on
Xpalia- Let A = {A(l), ceey A(k)} be a set of algorithms with associated hyperparame-
ter spaces AV ... AP Let w = {w(l), . ,w(l)} be the set of the possible window
sizes. Further, let Xirqin be a training set, and Xyqiq be a validation set. Finally,
let E(Af\i),w(j),xtmm,xq,alid) denote the loss that algorithm A" achieves on Xyaiid
when trained on Xipqin with hyperparameters X € A and window size w9 . Then the
automated time-series forecasting problem is to find the window size, algorithm, and

hyperparameter setting that minimises this loss:

(A 2\ w*) e argmin L(AY, 09 Xprain, Xpatia) (5.1)
AW eANEAD)  wew

5.4 Methods

In our study, we use auto-sklearn (Feurer et al., 2015) as the main AutoML system,
and tsfresh (Christ et al., 2018]) for time-series feature extraction; these were chosen
because they are state-of-the-art, prominent, and freely available. Auto-sklearn can
optimise machine learning pipelines, which corresponds to selecting A* and A* in

Equation Tsfresh realises the feature extraction function g from Section [5.3
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5.4. Methods

5.4.1 Auto-sklearn

We use auto-sklearn in our experiments. We previously provided information about
auto-sklearn Chapter The feature engineering component of auto-sklearn is pow-
erful and widely used in classification and regression tasks. However, it has not been
designed for time-series analysis tasks, nor does it offer native support for such tasks.

In particular, it does not support automatic window size selection, nor the specific

time-series features offered, for example, by tsfresh (Christ et al. [2018).

data and
budget

/ meta- automated by \
learning

auto-sklearn

feature preprocessor (VA)

automated window size selection (W)

re- machine
pro%essor learning
feature preprocessor (tsfresh) (T) model
Bayesian tsfresh, and automated window size
optimisation selection (WT)

ensemble
construction

S

model
validation

Figure 5.1: Workflow of vanilla auto-sklearn, and three variants of auto-sklearn are spe-
cially designed for time-series forecasting tasks. VA represents the vanilla auto-sklearn with
its default feature preprocessor. W is the simplest variant of auto-sklearn for time-series fore-
casting and considers only automated window size selection without any feature engineering.
T extracts tsfresh time-series features from the input data, and the window size is predefined
and fixed in this case. WT optimises the pipeline with window size selection and time-series
feature engineering techniques. Each method is different from the others, only concerning
the middle block presented in the figure.
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Chapter 5. AutoML for single-step forecasting

5.4.2 Tsfresh

Feature engineering is an essential component in ML pipelines. Feature extraction
methods have also been used for time-series analysis tasks (Coyle et al., [2005; [Phiny-
omark et all 2014). There are a number of time-series feature extraction libraries
that are widely used for time-series analysis, including tsfresh (Christ et al., [2018),
Catch22 (Lubba et al., [2019)), and hctsa (Fulcher and Jones| 2017). Catch22 extracts
a selected list of the 22 most useful features of the 4791 features of hctsa from a time-
series. Extracting features with Catch22 is more computationally efficient than hctsa,
with only a 7% reduction in accuracy on average. In the following, we use tsfresh,
which extracts more than 700 time-series features in parallel and has previously shown
strong performance (Christ et al.,|2018]), since it does not require huge computational
resources like hctsa, or suffers from an accuracy reduction like Catch22. Tsfresh cov-
ers the feature extraction methods including features from summary statistics (e.g.,
maximum, minimum and mean); additional characteristics of the sample distribution
(e.g., number of data points above-median); and features derived from observed dy-
namics (e.g., mean absolute change). In total, tsfresh provides 63 time-series feature
extractors, which can extract 794 time-series features. The full list of these features
can be found in (Christ et al., |2018).

5.4.3 AutoML for time-series forecasting

In this section, we introduce our newly proposed approaches: three variants of auto-
sklearn that are specially designed for time-series forecasting tasks.

Auto-sklearn with automated window size selection (W): the simplest
variant of AutoML for time-series forecasting considers only automated window size
selection by searching for the optimal window size w. No extra feature extractors
are used, and only the value of the time-series X = [x;_y+1,-..,2;] are used to train
a model that predicts x;4,,. Figure shows how the workflow of auto-sklearn is
modified for automated window size selection. The original feature preprocessor is
replaced with an automated window size selection component. The window size w
is optimised as an additional hyperparameter using the core Bayesian optimisation
procedure of the AutoML framework.

Auto-sklearn with tsfresh features (T): Figure shows the workflow of
auto-sklearn with automated tsfresh feature extractor. In this case, tsfresh extracts
time-series features from the input data and the window size is predefined and fixed.

The time-series features g(X) = g([xi,...,Titw—1]) are used to train a model that
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predicts x;4,,. The original features are not contained. Since there are many useful
methods to evaluate feature importance, feature selection does not have to be done by
AutoML. The feature importance is assessed by univariate tests. (Christ et al. 2018)
performed a comparative study of different feature selection algorithms (Benjamini and
Hochberg, 1995; [Kursa and Rudnicki, [2011; (Wang et al., 2013|) which demonstrated
the outperforming performance of the approach proposed in (Benjamini and Hochberg;,
1995)). Therefore, we selected this approach for feature selection.

Auto-sklearn with automated window size selection and tsfresh features
(WT): the two previously mentioned approaches (auto-sklearn with automated win-
dow size selection and auto-sklearn with tsfresh features) are combined in this ap-
proach by optimising the window size w and extracting the time-series features from
the resulting window. The time-series features ¢g(X) = g([zi, ..., Titw—1]) are used
to train a model that predicts z;1,. Figure shows the workflow of auto-sklearn
with automated window size selection and tsfresh feature preprocessor. The additional
hyperparameter w is optimised in the AutoML framework using the core Bayesian op-
timisation procedure. Changes in window size cause different features to be extracted
by tsfresh.

5.5 Empirical results

Setup of computational experiments: In our experimenttﬂ we used version 0.8.0
of auto-sklearn and version 0.16.1 of tsfresh. All experiments were run on 8 cores
of an Intel Xeon E5-2683 CPU (2.10 GHz) with 10 GB RAM. In Equation we
have formalised our goal to minimise a given loss function. In our experiments, we
used RMSE (root mean squared error) as a performance metric in the optimisation to
evaluate the quality of machine learning pipelines. RMSE is one of the performance
metrics that has been used widely on regression tasks (Tan et al.l |2021). Any other
performance metric can also be used to calculate the loss.

For this error metric, we define ; = A(Y(Z¢—w, ..., Tt—1)) as the predicted value at
timestamp ¢, with v = id (where id(z;) = x;) when time-series features are not used,
and v = g, otherwise. A is a machine learning model. Then, with e; = x; — x} defined
as the error between z; and zj, the root mean square error is given by RMSE =

\/ = > 1€l n represents the length of the time-series. The time limit for each
evaluation was set to 20 minutes, and the time limit for each run of auto-sklearn to

IThe data sets and source codes used in our experiments are available in
https://github.com/wangcan04/AutoML-timeseries
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2 hours. In these experiments, we used hold-out validation (training:testing = 67:33),
the default validation technique in auto-sklearn. We did not shuffle the data set, in
order to preserve the sequential nature of the time-series data. All other settings
of auto-sklearn were left at their defaults. Since experiments are time-consuming,
we used bootstrapping to create a distribution of the errors to study performance
variability over multiple independent runs of auto-sklearn. For this, every experiment
was executed 25 times. Then we randomly sampled 5 out of the 25 results. We selected
the model with the lowest training RMSE out of these five models. We repeated
the sampling 100 times per model and data set. The solution quality distributions
reported in our results were thus obtained over the 100 samples. When we performed
automated window size selection, the maximum window size was set to 200. To obtain
a fair comparison, we skipped the first 200 points of the time-series before making the
train-test split; this helped ensure that the training set and test set were the same for
all the evaluated approaches.

data sets used: We used CompEngine (Fulcher et all[2019), a comparison time-
series data engine containing 29498 data sets in 197 categories (both real-world and
synthetic). Other popular time-series data libraries, such as the UCR time-series
archive (Dau et al., 2018) (only classification data sets) and the UCI machine learning
repository (only 39 data sets, mostly multivariate) were found to be unsuitable for our
purposes since we focus on univariate tasks. We used 20 data sets from CompEngineﬂ
as our benchmark, of which ten are real-world data Setsﬂ and ten synthetic data set&ﬂ
We chose these by selecting the first data set from every category. As explained earlier,
we split each set into 67% training set and 33% test set, based on temporal order.

Since our data sets are all from different categories, the models are trained per
time-series. This means that we use a local method in contrast to a global method,
which trains one model on all time-series simultaneously (see (Januschowski et al.
2020)).

Research questions: In our experiments, we addressed the following research

questions:

e (Q1): To what extent can AutoML techniques beat simple baselines?

2https://www.comp-engine.org/

3Audio (Animal sounds, Human speech, Music), Ecology (Zooplankton growth), Economics
(Macroeconomics, Microeconomics), Finance (Crude oil prices, Exchange rate, Gas prices), Medi-
cal (Electrocardiography ECG).

4Flow (Driven pendulum with dissipation, Duffing-van der Pol Oscillator, Driven van der Pol oscil-
lator, Duffing two-well oscillator, Diffusionless Lorenz Attractor), Stochastic Process (Autoregressive
with noise, Correlated noise, Moving average process, Nonstationary autoregressive, Random walk).
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(Q2): To what extent can current AutoML approaches beat deep neural network

baselines?

(Q3): To what extent can our newly proposed approaches beat current AutoML

approaches?
(Q4): Which approach generalises best from training to test data?

(Q5): Can optimal window sizes for time-series forecasting be found by the
AutoML system?

To address these research questions, we compare the approaches we mentioned

in Section with simple statistical and machine learning baselines and AutoML

approaches. The first nine following approaches are our baselines, and the rest are the

AutoML variants proposed by us:

Moving average (MV1, MV10, MV200): This is a simple and commonly
used method for time-series forecasting. We use this approach to create three
models considering the mean of the previous 1, 10, 200 data points to predict
the next point. This method does not have any hyperparameters. As this is a

naive baseline, any approach should perform better in comparison to it.

Auto Regressive Integrated Moving Average (ARIMA): ARIMA is a
widely used statistical model for time-series forecasting. In this chapter, we
used the auto.arima function from the Python library pmdarima (Smith et al.,
2017) that selects the best hyperparameters for ARIMA models for a given data
set. We used auto_arima to optimise three important hyperparameters p, d, q,
that control the auto-regressive, trend and moving average components. We ran
experiments with the default setting of auto.arima that evaluated 50 models for
hyperparameter tuning. Since the default search space is small, 50 iterations are

enough to find an optimal order for a data set (Smith et al., 2017)).

Support vector machine (SVM10, SVM200): SVM is a classical machine
learning model that has been commonly used for time-series forecasting (e.g.,
(Candanedo et al.| |2017))). Since we aim to perform single-step forecasting, we
assume that a window size of 10 is a reasonable value that captures the most
important temporal correlations. To investigate the influence of larger window
sizes, we also performed experiments with a window size of 200 (the maximum
window size for all experiments). We used time-series values in these window

sizes and searched for an optimised machine learning pipeline based on SVMs
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for forecasting the next time-step. Next to optimising the hyperparameters, we
also searched for the best machine learning pipeline composed of the feature
extractors and preprocessors available in auto-sklearn. For optimising hyperpa-
rameters of single algorithms, it is common to use simple approaches such as
random search and grid search. Here, we used random search, since it is known
to often be more efficient than grid search (Bergstra and Bengio, [2012). For
implementing this approach, we used auto-sklearn, setting the regressor to SVM
and selecting the use of random search instead of SMAC (the default optimiser
in auto-sklearn). All remaining settings were left at their default values. We
used a 2-hour time limit for optimising the pipeline (the same as the limit used

for our proposed AutoML variants).

Random forest (RF10, RF200): Random forest is another classical machine
learning model that can be used for time-series forecasting (Candanedo et al.|
2017; [Wang et al., |2019). We trained RF10 and RF200, following the same
process used for training SVM10 and SVM200.

Gradient Boosting Machine (GBM10, GBM200): Gradient Boosting Ma-
chine is another classical machine learning model that has been widely used in
the past for time-series forecasting tasks (Li et al., 2020b; [Srivastava et al.|
2020). GBM uses an ensemble of weak prediction models, which means a group
of models that are slightly better than random chance. We trained GBM10 and
GBM?200, following the same process used for training SVM10 and SVM200.

eXtreme Gradient Boosting (XGBoost10, XGBoost200): XGBoost
(Chen and Guestrin, [2016) is a method based on gradient boosting. Compared to
GBM, XGBoost uses a more regularized model formalization to prevent overfit-
ting. In the M5 forecasting competition, the top 50 performing methods almost
all involve Light-GBM, XGBoost and NNs (mostly LSTM) (Makridakis et al.,
2021). XGBoost using default parameterization has shown competitive perfor-
mance in this competition. The process of training XGBoost10 and XGBoost100
is similar to that of SVM experiments. However, instead of using auto-sklearn
for a random search, we used h2o0 AutoML (LeDell and Poirier}, 2020)) since

auto-sklearn does not support XGBoost.

Auto-Keras (Auto-Kerasl0, Auto-Keras200): Auto-Keras (Jin et al.
2019) is an AutoML system for neural architecture search. It uses network

morphisms and Bayesian optimisation to efficiently search for high-performance
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Regression
[ Input ]—{ RNNBIlock H Head }

DNN Architecture

Figure 5.2: Workflow of deep neural network for time-series forecasting. The input data
goes through RNNBlock, the critical component of a deep neural network. The hyperparam-
eters will be optimised during the search, such as the number of layers and learning rate.
The Regression Head then generates output based on the information from RNNBlock.

neural network architectures. Auto-Keras does not have a time-series forecast-
ing component, but different neural network units available in its search space
(e.g., LSTM, GRU) have been previously used for time-series forecasting (e.g.,
(Siami-Namini et al.,|2018; |Zhang et al., 2017)). We similarly used values within
windows of size 10 and 200 to train a neural network that forecasts the next point
in the time-series using the StructuredDataRegressor function in Auto-Keras.
Auto-Keras allows to set of the maximum number of models evaluated, but it
does not allow specifying the time budget as auto-sklearn does. To ensure the
fairness of our comparisons, we calculated the average running time of 10 mod-
els on each data set and used this to estimate, for each data set, the number of
models that can be evaluated in 2 hours. We used hold-out validation (training:
testing = 80:20), which is the default setting in Auto-Keras.

e Deep neural network baseline (LSTM10, LSTM200, GRU10,
GRU200): We use LSTM and GRU as baselines, as these have been recently
studied in the literature on time-series forecasting (see, e.g., (Siami-Namini et al.,
2018;[Yamak et al.;2019)). When using deep neural networks, it is common prac-
tice to design the architecture (e.g., by selecting the number of layers) and set
the hyperparameters for training (e.g., number of epochs, learning rate) man-
ually, as done in the work of (Siami-Namini et al., [2018)) and (Yamak et al.,
2019). We believe that it is more effective to automate this process and to carry
it out separately for each given data set. To find suitable architectures based on
these types of networks for each of our data sets, we adapted the search space of
Auto-Keras to automatically design the architecture. Specifically, to deal with
time-series data, we designed our new search space using three types of blocks
available in Auto-Keras: Input block, RNNBlock and Regression Head (see Fig-
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ure . The RNNBIlock is the key component in our networks. A number of
hyperparameters need to be considered for this block, including bidirectionality,
the number of layers and layer type (LSTM or GRU). Since we performed the
experiments for testing the LSTM and GRU architectures separately, we did not
optimise layer type; instead, we set the value of this hyperparameter manually
in each experiment. We used Auto-Keras to optimise the architecture based on
the customised search space. Since Auto-Keras cannot choose the window size,
we selected window sizes of 10 and 200, and manually preprocessed the data. We
fed the values of the time-series within these windows to Auto-Keras in order to
obtain a model, once again using a time budget of 2 hours and a memory budget
of 80GB. We used a random search to find the model and left the remainder
of the setup of Auto-Keras at its default settings (number of epochs, validation

techniques, etc.).

N-BEATS: N-BEATS (Oreshkin et al.,|2019) uses deep learning involving resid-
ual neural networks and fully-connected layers to deal with univariate time-series
forecasting tasks. N-BEATS has shown good performance on several well-known
data sets. We executed every experiment 25 times. The distribution reported in
our results was obtained by the bootstrapping approach, explained in Section[5.5]
In our experiments, we train N-BEATS using the default hyperparameters in the

implementation provided by the paper. The number of epochs is 500.

Vanilla auto-sklearn (VA10, VA200): For VA (depicted in Figure [5.I]), we
optimised the machine learning pipelines for time-series forecasting tasks using
auto-sklearn. Since auto-sklearn cannot choose the window size, we selected
window sizes equal to 10 and 200 and subsequently fed the manually preprocessed
values of the time-series within these windows to auto-sklearn in order to obtain

a forecasting model, once again using a time budget of 2 hours.

Auto-sklearn with automated window size selection (W _ens,
W _single): For the W variant (depicted in Figure [5.1]), we optimised the ma-
chine learning pipeline as well as the window size. Therefore, the time-series can
be used without additional preprocessing. In our experiments, the window size
varies from 2 to 200. In auto-sklearn, the final model produced is by default
an ensemble model that can be composed of models configured with different
window sizes. We performed two separate experiments to study the optimal

window size, both with ensembling (denoted by W_ens) and without ensembling
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(W_single). In W_single, only one machine learning model configured with a

single window is selected.

e Auto-sklearn with tsfresh features (T10, T200): In the T variant (de-
picted in Figure , we use tsfresh as an internal component of our AutoML
system. This component extracts features within a window, the size of which has
been set to 10 and 200. Without additional manual preprocessing, the tsfresh
component extracts the time-series features from the training data, and auto-
sklearn subsequently uses these features as input data and finds a configuration

that performs well on them.

e Auto-sklearn with automated window size selection and tsfresh fea-
tures (WT): In WT (depicted in Figure , by having tsfresh and the auto-
mated window size selection component, we do not need to perform any manual
preprocessing. In these experiments, we set the window size range from 2 to
200. The time-series can be used without additional preprocessing. In this ex-

periment, we always obtain an ensemble of forecasting models.

The results of our experiments are summarised in Tables
and which compare performances in terms of RMSE. In order to determine the

statistical significance of the results, we initially performed an Anderson-Darling test
(Anderson and Darling| 1952) and found that the error distributions created by the
bootstrapping approach, explained in Section [5.5] are not Gaussian. Therefore, we
used the non-parametric Mann—Whitney U-test (Mann and Whitney, (1947) with a
standard significance level set to 0.05. In the tables, bold-faced entries indicate the
lowest mean error achieved on a given data set, and all results statistically tied to the
best are marked with *. Based on these results, in the remainder of this section, we

provide answers to the questions proposed earlier in Section [5.5]

Q1l: To what extent can AutoML techniques beat simple baselines
(ARIMA, Moving average, SVM, RF, GBM and XGBoost baselines)?
Tables and compare the performance achieved by different methods in
terms of RMSE on the test set. Table shows the results for simple baseline
models while Table [5.3] presents the results for baseline AutoML techniques. In Table
the lowest RMSE obtained for each data set using simple baseline models and
baseline AutoML techniques are presented along with those achieved by our AutoML

variants.
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Table 5.1: RMSE of simple baselines (ARIMA, and Moving average, SVM, RF, GBM,
XGBoost with window size = 10) on the test set. The bold-faced entries indicate the lowest
mean error achieved on a given data set.

Model ARIMA L MV1 L MV10 L SVM10 L RF10 L GBM10 L XGBoost10
Dataset
Autoregre 0.400432 0.610580 0512732 0.400718 0.404424 0.406328 0.402833
Correlated noise 1.022264 1.385376 2.336120 1.027496 1.036663 1.039973 1.034562
Torenz Attractor 0.001325 0.152307 0.734693 0.015520 0.044260 0.031324 0.051661
Pondulum 0.000620 2.874323 1.488101 0.002337 0.017249 0.015552 0.045503
Driven oscillator 0.022562 0.208443 0.952037 0.005747 0.023396 0.014827 0.021946
Two-well oscillator 0.000258 0.020033 0.109077 0.000228 0.004575 0.004209 0.005556
Duffing oscillator 0.000261 0.046562 0.248152 0.000664 0.006194 0.005080 0.006358
Moving average 0.439993 1.021399 0.662487 0.441369 0.505118 0.482850 0.497822
Nonstationary 0.994813 3.605841 14.108665 0.990199 1.310040 1.264516 1345824
Random walk 1.006695 1.005863 1958452 1.008413 11.998150 13.387875 13.479568
Crude oil prices 3054218 3.044808 T1.855737 5.469766 36.033508 35.818681 36.514268
[ole[e] 9.823127 14.658113 62.507000 9.214228 30.4555106 33.087870 53.727534
Exchange rate 0.000668 0.000662 0.001098 0.000663 0.005330 0.005837 0.004762
Cas prices 6.843051 7084512 58.207355 7.826223 58.605220 53.366302 53.547201
Human spoech 0.0316651 055792 0.076618 0.031606 0.034001 0.0307520 0.0329440
Macroeconomics 512.718152 | 625.023211 | 543.802602 | 557.474601 | 642.566387 | 611.218628 | 637.013982
Microoconomics 170.389959 | 170.059750 | 330.501176 | 171.446322 | 385.804120 | 445.430152 | 458.170203
Music 0.039373 0.060195 0.106724 0.044851 0.035303 0.034408 0.037114
Tropical sound 0.006598 0.069521 0.035080 0.006277 0.006212 0.006227 0.006331
Zooplankton 266.047810 312.605555 | 288.062126 | 263.25207 | 257.486771 | 290.024830 | 272.528711

Table 5.2:

RMSE of simple baselines (Moving average, SVM, RF, GBM, XGBoost with
window size = 200) on the test set. The bold-faced entries indicate the lowest mean error
achieved on a given data set.

Model MV200 l SVM200 L RF200 L GBM200 L XGBoost200
Dataset
Autorogroe 0.482531 0.411491 0.406045 0.409519 0.410630
Correlated noise 3.261390 1.044179 1.036931 1.042252 1.040713
Lorenz Attractor 1.292518 0.004888 0.062212 0.038435 0.047212
Pendulum 1.443494 0.015913 0.081669 0.088391 0.060481
Driven oscillator 1.277660 0.030615 0.028647 0.017101 0.031403
Two-well oscillator 0.616822 0.001250 0.007276 0.005792 0.007372
Duffing oscillator 0.479744 0.001043 0.006816 0.004251 0.006769
Moving average 0.632330 0.437374 0.524114 0.507059 0.516003
Nonstationary 11.680654 1.004374 1.489324 1.419968 1.486933
Random walk 8348509 1.078787 12.549192 12.428874 12.066513
Crude oil prices 34.56473 51.380480 36.983431 33.805812 38.337624
ECG 149.945466 11.025114 26.620362 31.597675 31.088642
Exchange rate 0.005441 0.000668 0.004816 0.005853 0.002782
Gas prices 04.007732 38.233882 101.034967 50.659451 90.176212
Human speech 0.066414 0.032727 0.037128 0.0348973 0.0375481
Macroeconomics 788.505638 790.718110 | 840.012363 | 816.094878 840.274512
Microeconomics T481.184724 | 183.042596 | 451.909546 | 589.631221 590.172534
Music 0.095336 0.028995 0.054807 0.039644 0.038725
Tropical sound 0.034953 0.006610 0.006329 0.006339 0.006342
Zooplankton 315.773444 317.817582 362.21993 370.214120 360.286121
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Table 5.3: RMSE of AutoML baselines (Auto-keras, vanilla auto-sklearn) on test set. The
bold-faced entries indicate the lowest mean error achieved on a given data set, and * indicates
the results are statistically tied to the best.

Model N
m‘ Best baseline

Auto-Kerasl0 ‘ Auto-Keras200

VA10

VA200

Autoregre 0.400718 0.402549 0.412751 0.400603 + 0.000086* 0.404322 + 0.001474
Correlated noise 1.027496 1.029839 1.063033 1.021476 £+ 0.000938* 1.025509 + 0.001547
Lorenz Attractor 0.004888 0.013126 0.111397 0.003703 £ 0.001902 0.000646 + 0.000007*

Pendulum 0.002337 0.009459 0.141597 0.064857 + 0.244416 0.001574 + 0.000106%*
Driven oscillator 0.005747 0.024633 0.082339 0.012259 £ 0.004473 0.015636 + 0.001444

Two-well oscillator 0.000228 0.045387 0.077271 0.000797 + 0.000917 0.001475 £ 0.001842
Duffing oscillator 0.000664 0.006247 0.023453 0.001509 £ 0.001812 0.001312 + 0.00197
Moving average 0.437374 0.445282 0.517913 0.441905 £ 0.000381 0.429657 + 0.001857*
Nonstationary 0.990199 1.005357 1.473375 0.988265 £ 0.001298 0.987444 + 0.000661*
Random walk 1.005863 1.307905 11.782249 1.048836 £+ 0.016573 1.035739 £+ 0.016835
Crude oil prices 3.944808 20.946781 26.682971 5.315421 + 2.542140 32.828312 £ 1.593694
ECG 9.214228 32.7111615 55.142157 8.297350 + 1.065379* 8.3175328 1 0.138348
Exchange rate 0.000662 0.001952 0.011507 0.000661 + 0.000001%* 0.000665 £ 0.000004
Gas prices 7.826223 6.961940 66.702707 6.904599 + 0.033701* 8.648501 + 0.181225
Human speech 0.031606 0.035305 0.047310 0.031522 + 0.000969* 0.036217 + 0.002604
Macroeconomics 543.892692 574.948945 712.831468 579.206474 + 12.37575 781.995492 £ 25.03351
Microeconomics 170.059750 647.763369 10241.14926 170.724059 £ 0.218171 173.318589 + 1.114270
Music 0.028995 0.037084 0.034293 0.032710 £ 0.000346 0.027476 + 0.001178%*
Tropical sound 0.006212 0.008190 0.008366 0.006211 + 0.000013%* 0.006270 £ 0.000018
Zooplankton 257.486771 280.185625 301.396218 264.522817 £ 0.686007 264.961660 £ 4.076801

Looking at Table we generally observe that, aside from the Microeconomics
and Random walk data sets, the best AutoML results (acquired from any of these
methods: Auto-Keras10, Auto-Keras200, VA10, VA200, W _ens, W _single, T10, T200,
WT) are significantly better than the best baseline results (acquired from any of these
methods: ARIMA, MV1, MV10, MV200, SVM10, SVM200, RF10, RF200, GBM10,
GBM200, XGBoost10, XGBoo0st200) in terms of RMSE.

Comparing the RMSE values in the first two columns of Table we observe
that in 9 out of 20 data sets, the best AutoML baseline significantly outperforms
the best baseline. Auto-Keras10, Auto-Keras200, VA10, VA200 outperform the best
baselines on 0, 0, 6, 5 data sets, respectively. Overall, the best AutoML baseline on
each data set achieves between 0.02 % and 105.11 % higher accuracy. Comparing the
RMSE values of the best baseline and our AutoML variants (W_ens, W _single, T10,
T200, WT) from Table [5.5|indicates that for 18 out of 20 data sets, at least one of our
AutoML variants achieves lower error. The only exceptions are the Microeconomics
and Random walk data sets, where no AutoML approach was able to perform better
than the best baseline. For the random walk data set, this can be explained by the
lack of exploitable structure. W_ens, W _single, T10, T200, WT outperform the best
baselines on 10, 10, 4, 4, 5 data sets, respectively.

Q2: To what extent can current AutoML approaches (vanilla auto-sklearn:

VA10, VA200, and Auto-Keras: Auto-Keras10, Auto-Keras200) beat deep
neural network baselines (LSTM10, LSTM200, GRU10, GRU200, N-
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Table 5.5: RMSE of time-series AutoML approaches (W _ens, W_single, T10, T200 and WT) on test set. The bold-faced entries
indicate the lowest mean error achieved on a given data set, and * indicates the results are statistically tied to the best.

Dataset Model WNWmMﬂu:m >—wwm7a\:.. wmmb W-ens W-single T10 T200 wT
Autoregre 0400715 | Jolocooss | 047445 | Jo0ooils | +6.000aie* | Lo.000200 | +o000153 | o.oiris
Correlated noise 1027496 | Joooooss | 1187226 | oiooozazr | 40.00000r | doo0isls | o007s0s + 0.004839
Lorens Attractor | 0.004888 | 4gogooors | 0599788 | gooates | +G.o00011% | iooo03sss | kooisir | 40013600
Pendulum 0002337 | Jootos | 0434611 | Co0oiess | cooooizs | booooost | +oooorso | o.001as0r
Driven oscillator | 0005747 | Jooouazs | 0392814 | Jootizo | +oo0s106 | +0.000000% | 0001815 - 0.000000
Two-well oscillator | 0000228 | Jgoootr | 0069024 | 000500 | 4 06.000030% | 40000173 | - 0.000952 £ 6.000000
Duffing oscillator | 0000664 | Jgootoze | 0035095 | 0'cooros | +0.000001% | 40000230 | 0000028 £ 0:000000
Moving average 0497374 | Jooorasr | 0570228 | 20006530 | 4 o.o00sas® | Loooosss | 0000875 +0.001732
Nonstationary 0990190 | 3001 | ST | Coonoier | 0.000185% | doooisst | i oooriss 20125830
Random walk 1005863 | J0Ciaees | 19920130 | JoGsrir | aoovosss | 40d03ai0 | 4o1sse0o 2097433
e I N I P s o N I
R - A e e T
e T e P I v I I R
Sieroreonmicr | roosoreo | UUTE | wowsvins | foran | Toumi | smotem [t |
oo O O I P N P e I
doopior | wrasen | T | sipans | BTl | st | o | o | s
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BEATS10, N-BEATS200)?
In Table[5.4] we show the test set RMSE obtained for each data set using our deep

neural networks baselines, along with the lowest error achieved by simple baseline
models and baseline AutoML techniques. Among LSTM, GRU and N-BEATS
baselines, the results indicate that N-BEATS shows lower RMSFE than LSTM and
GRU on 19 out of 20 data sets. We observe that the deep neural network baselines
were outperformed by the best AutoML results, followed by the best simple baseline.
In our experiments, we noticed that for longer window sizes, the optimisation process
terminated due to memory limitations. This demonstrates the complexity and diffi-
culty of optimising deep neural network architectures for time-series data. We suspect
that better results could be obtained with automatically designed LSTM/GRU
architectures, but likely at the cost of substantially higher resource usage (computing
time and memory). Compared to LSTM10 and GRU10, Auto-Kerasl0 achieves
better performance on all the data sets. Similarly, when compared to LSTM200
and GRU200, Auto-Keras200 performs better on 19 out of 20 data sets. This shows
that neural network architectures that are known to be suitable for modelling the
dynamics of time-series data, such as LSTMs and GRUs, are too expensive to be
effectively optimised automatically. Given the same amount of resources, when using
Auto-Keras with its original search space, other types of architectures (e.g., dense
layers) can also be selected and may offer better results. These results also show that
there is still room for more complex and efficient approaches for neural architecture
search for time-series data. Compared to N-BEATS10, Auto-Kerasl0 achieves higher
accuracy on 17 out of 20 data sets; Compared to N-BEATS200, Auto-Keras200
outperforms on 13 out of 20 data sets. N-BEATS has been considered one of the
state-of-the-art methods in the time-series forecasting domain. We see a big potential
in automatically generated models for time-series forecasting. Current AutoML
approaches (vanilla auto-sklearn: VA10, VA200, and Auto-Keras: Auto-Kerasl0,
Auto-Keras200) beat deep neural network baselines (LSTM10, LSTM200, GRU10,
GRU200, N-BEATS10, N-BEATS200) on all the 20 data set.

Q3: To what extent can our newly proposed approaches beat current Au-
toML approaches (vanilla auto-sklearn: VA10, VA200, and Auto-Keras:
Auto-Kerasl0, Auto-Keras200)?

In Table we compare the performance achieved by our newly proposed ap-
proaches against that of the best AutoML baselines. For 18 out of the 20 data sets,

at least one of our newly proposed approaches outperforms the best baseline Au-
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toML approach, with improvements ranging between 0.02% and 136 111.11% in terms
of RMSE. Among the five proposed variants, W_ens and W _single show the lowest
RMSE on 13 out of 20 data sets, while T10, T200 outperform the rest only on one
data set (Driven oscillator). WT outperforms the rest only on 3 data sets (Pendulum,
Macroeconomics, Zooplankton). W_ens, W _single, T10, T200, WT outperform the
best AutoML baselines (Auto-Keras10, Auto-Keras200, VA10, VA200) on 14, 12, 3, 2
and 4 data sets, respectively.

Overall, next to observing improvements against the best baseline AutoML
approaches, a comparison of the performance of our newly proposed approaches with
each other suggests that W_ens and W _single tend to perform better than the rest in

terms of performance on test data.

Q4: Which approach generalises best from training to test data?

To understand which method generalises best, we compare the training and test
performance results (training set results in terms of RMSFE are presented in Table.
A method that generalises well should show similarly low prediction error in both cases.
Comparing the training and test set errors, it is evident that the approaches with
tsfresh features (T10, T200) suffer from overfitting on training data: these approaches
perform better than VA10 and W_ens, W _single, WT on 13 out of 20 data sets in
terms of the RMSE on the training set, while they only show better performance on
the test set on one data set. The approaches with automated window size selection
(W_ens, W _single or WT) show the highest accuracy on 7 out of 20 data sets in terms
of the RMSE on the training set (mainly outperformed by T10 and T200), while the
corresponding results for test set performance is much higher (16 out of 20). This
suggests that these approaches are more robust against overfitting. W_ens is most of
the time better than VA10 in training but not as good as T variants (T10, T200).

Figure [5.3] and Figure show the RMSFE distributions obtained from bootstrap
sampling over multiple independent runs of our proposed AutoML variants for two
synthetic and two real-world benchmarks. These data sets have been selected such
that the difference between approaches is clearly visible. As seen in Figures
among the AutoML variants, W_ens shows the lowest median and the
lowest test set error followed by VA10, while WT performs best only in Figure |5.4(c)
Looking at training error (Figures|5.3(b)} [5.3(d)} [5.4(b)} [5.4(d)]), we find that in 3 out

of the 4 cases, T10 shows a clear advantage over other approaches; however, similar

performances are not achieved on the corresponding test sets. WT does not perform

very well either and shows a low performance on the test set. This could be the result
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Table 5.6: RMSE on the training set acquired from different AutoML methods including
vanilla auto-sklearn VA10 and our proposed variants (W_ens, W _single, T10, T200, WT ).
The bold-faced entries indicate the lowest mean error achieved on a given data set, and *
indicates the results are statistically tied to the best.

Model

Datasot VA10 ‘W _ens L W _single T10 T200 WT
Autoregre noise 0.404725 0.357100 0.404948 0.312280 0.099848 0.309739
+ 0.000028 +0.018618 4+ 0.002718 + 0.019081 + 0.059389* 4+ 0.000000
Correlated noise 0.953938 0.821940 0.988425 0.582574 0.445290 0.725874
+ 0.018389 + 0.028382 + 0.001885 + 0.029850 + 0.021132* =+ 0.000000
Lorenz Attractor 0.003643 0.004787 0.000687 0.005257 0.001684 0.033001
+ 0.002108 + 0.001795 + 0.000001* + 0.000979 + 0.004996 + 0.000000
Pendulum 0.013990 0.001807 0.000143 0.001046 0.001172 0.008570
+ 0.022468 + 0.001262 + 0.000019* + 0.000127 + 0.003045 =+ 0.000000
Driven oscillator 0.003357 0.003524 0.002885 0.003180 0.015826 0.013420
+ 0.001745 + 0.000898 + 0.000953* + 0.000028 + 0.003702 + 0.000000
Two-well oscillator 0.000519 0.000406 0.000725 0.000789 0.004617 0.001773
+ 0.000356 + 0.000252* 4+ 0.000494 + 0.000015 4+ 0.005851 + 0.000000
Duffing oscillator 0.000679 0.000575 0.002424 0.000691 0.001937 0.002474
+ 0.000463 + 0.000216* + 0.000738 + 0.000042 + 0.001342 + 0.000005
Moving average 0.413227 0.372342 0.397426 0.293087 0.261658 0.405050
+ 0.003247 + 0.002935 4+ 0.000732 + 0.036759 + 0.059058* 4+ 0.000000
Nonstationary 0.960435 0.941951 0.994682 0.612182 0.629782 1.151766
+ 0.006790 + 0.012253 + 0.000214 + 0.076556* +0.128813 + 0.000000
Random walk 0.994218 0.993145 1.008242 0.544931 0.637171 1.692634
+ 0.004097 + 0.003799 4+ 0.000831 +0.114882* +0.141287 + 0.000000
Crude oil prices 1.862273 1.787196 1.877526 1.486114 0.657657 1.854731
+ 0.019859 + 0.039135 + 0.004829 + 0.069461 + 0.148479* + 0.000000
BCG 6.345342 5.609683 5.555471 12.434153 12.598475 7.246352
+ 0.230522 +0.217275 + 0.597214* +6.124225 + 3.335467 + 0.000000
Exchange rate 0.000762 0.000753 0.000761 0.000751 0.000734 0.000797
+ 0.000014 + 0.000008 + 0.000003 + 0.000018* + 0.000036* 4+ 0.000000
Gas prices 2.109257 2.037483 2.103643 1.936833 1.268692 2.023632
+ 0.003033 + 0.019962 4+ 0.002152 + 0.089270 4+ 0.212155* + 0.010646
Human speech 0.025226 0.025127 0.028316 0.020102 0.006871 0.033939
+ 0.002773 + 0.002285 + 0.006866 + 0.002484 + 0.001208* + 0.000146
Macroeconomics 332.182737 137.694269 296.448896 161.153074 130.189798 112.574887
+ 26.603055 + 29.074179 + 121.080645 + 47.609146 + 24.135087 + 0.277946*
Microeconomics 112.433023 111.805190 112.400226 457.133087 101.604636 112.605469
+ 0.060023 + 0.198384 + 0.170035 + 472.235290 + 1.238983* + 0.320563
Music 0.054124 0.025809 0.027113 0.025053 0.025895 0.064743
+ 0.002594 + 0.002242 4+ 0.001405 + 0.003775* 4+ 0.000817 4+ 0.000000
Tropical sound 0.005904 0.004962 0.003926 0.003967 0.003253 0.005707
+ 0.000122 + 0.0001514 4+ 0.000523 + 0.000932 + 0.000454* + 0.000004
Zooplankton 312.205839 265.446350 315.313539 109.159209 173.214940 176.475896
+ 2.797241 + 18.170189 + 3.728371 +9.050114* + 12.636791 +9.671782
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Figure 5.3: RMSE distribution of the bootstrapping results of the AutoML method runs
on the Two-well oscillator, Moving average data sets with models VA10, W_ens, T10, WT.
The distribution is created by the bootstrapping protocol we mentioned in Section
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Figure 5.4: RMSE distribution of the bootstrapping results of AutoML method runs on
the Human speech, and Zooplankton data sets with models VA10, W_ens, T10, WT. The
distribution is created by the bootstrapping protocol we mentioned in Section
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5.5.
of the fact that the search space is considerably more complex. Using the same time

budget as the other variants, WT can evaluate much fewer configurations than other

approaches, since significant time has to be spent on extracting features
These results generally suggest that while the tsfresh features can indeed help in
training machine learning models for time-series forecasting, their use can easily lead

to overfitting. We believe this is caused by the relatively large number of features
(794 time-series features total before performing feature selection) compared to

the number of data instances available for training. During training, we used the

Benjamini-Hochberg procedure for feature selection (Benjamini and Hochberg [1995)

in both tsfresh and auto-sklearn in order to avoid overfitting. After feature selection

between 26 to 466 features were selected in T10 and T200 experiments (depending on

the data set). However, this approach still could not prevent the overfitting issue
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based on 25 runs (W_ens).
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Figure 5.5: The window size distribution of W_ens on (a) 10 synthetic datasests and (b)
real data sets. Distributions of window sizes are acquired from 25 runs. Color codes represent
comparative performance based on the test set RMSE presented in Table

Q5: Can optimal window sizes for time-series forecasting be found by the

AutoML system?
Figure and Figure visualise the distribution of window sizes found for syn-
thetic and real-world data sets in 25 runs, with (W_ens) and without ensembling

(W _single) and compares their performances based on RMSE on test sets presented

earlier in Table We first investigated whether an optimal window size has been
found for each data set. A distribution with low variance will indicate the stability of
the range of these window sizes. Figures show the window size distributions for
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10 synthetic datasets 10 real world datasets
based on 25 runs (W_single) based on 25 runs (W_single).
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Figure 5.6: The window size distribution of W_single on (a) 10 synthetic data sets and
i .0

(b) 10 real data sets. Distributions of window sizes are acquired from 25 runs. Color codes
represent comparative performance based on the test set RMSE presented in Table

W_ens. It is generally seen that the ensemble models have selected a wide variation
We believe that this is due to the fact that a time-series can be

of window sizes. i
decomposed into multiple signals with different frequency components (according to
Each frequency component can be represented as values in

the Fourier transform).
windows with different sizes. Ensemble models can consider the contribution of each
of these components in forecasting. Figures [5.6| show the window size distributions for

W_single. As expected, W_single models tend to have less varied window size ranges

than W_ens and considerably lower numbers of outliers
Looking at these figures, we also observed that in most cases W _single tends to
, _

we present 2 samples of

yield better performance than W_ens on synthetic data sets, while W_ens yields better
performance on real-world data sets. This can be explained by looking at the data sets
,(c)

in Figure E and Figure In Figures E and -
each data set category that had lower variance in Figures along with their first 200
). Clearly, real-world data sets are more complex.

The synthetic data sets

samples (Figures|5.7] E and [5 -
Furthermore, in these data sets, the relation between different data points in terms of
slow and fast-changing patterns (i.e., low and high-frequency components) is visible

)
stationary behaviour. This explains why a single window size that is large enough to
. Since the goal of the AutoML

This explains why W_ens performs best on these data sets
we used, on the other hand, are either periodic or do not show any complex and non-
capture the temporal patterns yields better results
system should be to perform well on real-world data sets, W_ens should be preferred
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Figure 5.7: Visualization of Pendulum, Moving average, Human speech, and Microeco-
nomics data sets: (a) Pendulum data set (b) the first 200 points of Pendulum data set (c)
Moving average data set (d) the first 200 points of Moving average data set.
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04 Human speech dataset (full) Human speech dataset (first 200 points)
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Figure 5.8: Visualization of Pendulum, Moving average, Human speech, and Microeco-
nomics data sets: (a) Human speech data set (b) the first 200 points of Human speech data
set (c) Microeconomics data set. (d): the first 200 points of Microeconomics data set.
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over W _single as the ensembling method can capture different periodic components of

the time-series in different window sizes.

5.6 Conclusion

In this chapter, we investigated the realisation of AutoML systems for time-series
forecasting. We proposed three variants of AutoML systems based on auto-sklearn and
tsfresh for time-series forecasting and compared them to simple statistical, machine
learning baselines, and AutoML baselines. We found that vanilla AutoML can perform
very well on time-series forecasting tasks, achieving significantly higher accuracy than
the simple statistical and machine learning baselines on 9 out of 20 data sets in terms
of RMSE. Compared to deep neural network baselines, AutoML baselines and our
newly proposed approaches perform better on all the data sets in terms of RMSE on
test sets. However, it is likely that better results can be obtained using automatically
designed LSTM/GRU architectures at the expense of much higher resource usage
(computing time and memory). The state-of-the-art model N-BEATS has been used in
our experiments. We found that although N-BEATS beats our LSTM/GRU baselines
on most of the data sets, Auto-Keras baselines and vanilla auto-sklearn baselines
still perform better than it on most of the data sets. With the same computational
resources, our enhanced approaches yield better results than vanilla AutoML on most
of our data sets (on 18 out of 20 benchmarks in terms of RMSE on the test sets).
Overall, our methods improved accuracy for 17 out of 20 data sets compared to our
simple baselines and current AutoML baselines. In terms of RMSE on training sets,
our new approaches outperform vanilla auto-sklearn on all 20 data sets.

We also found that the window size has a considerable impact on the accuracy of
time-series forecasting and that by optimising the window size, we could achieve signif-
icantly higher performance than current AutoML techniques. Our experiments show
that, while tsfresh features can be useful in terms of improving forecasting accuracy,
their use in combination with an AutoML system often leads to overfitting. Our em-
pirical results further indicate that our enhanced AutoML variant with windows size
selection works best in connection with ensembling when tackling forecasting tasks
on complex real-world data sets. We found that models with longer input window
sizes do not always perform better than those with shorter input window sizes, which
further proves that the window size selection is essential in time-series forecasting.

Overall, these results clearly demonstrate that the use of AutoML techniques for

time-series forecasting is highly promising. Interesting avenues for future work include
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the development of techniques for detecting and preventing overfitting as well as the
use of AutoML for other tasks involving time-series data, such as multi-step forecasting

and time-series classification.
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