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Chapter 2

Preliminaries

2.1 Time-series forecasting

This chapter shows an introduction to the core application domain of this thesis. It

covers the basics of time-series forecasting and dynamic energy management.

For single-step time-series forecasting, given a univariate time-series x =

[x1, . . . , xn], consisting of single observations recorded per equally distanced discrete

time steps, with x ∈ Rn (where Rn is the space of possible time-series of length n),

we are interested in forecasting each xi based on the historical data [x1, . . . , xi−1].

However, not all data points are equally informative for the prediction of xi. Usu-

ally, the points close to xi are more important than those further away for predicting

xi. The window size w (w ≪ n) indicates how many previous data points we use to

forecast xi. The time-series forecasting problem we address in this thesis considers

pre-observed data points within segments of size w or forecasting a future value of the

time-series. Specifically, given a time-series segment [xi−w, . . . , xi−1], we are interested

in forecasting xi.

For multi-step forecasting, we are interested in forecasting [xi, . . . , xi+m]. Fore-

casting window size m indicates we want to forecast the next m values.

2.2 Dynamic energy management

In this chapter, we only discuss the electric load forecasting application. There are

similarities between electric load forecasting and other forecasting problems, such as

the forecasting of prices of electricity and gas. We hope the review also works for other
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load forecasting areas.

We typically divide load forecasting problems into four types based on the range:

very short term load forecasting, short term load forecasting, medium term load fore-

casting, and long term load forecasting, with forecasting horizons one day to ten years,

and sometimes up to several decades (Hong and Fan, 2016) respectively. In this chap-

ter, we focus on short term load forecasting, with the range between one day to two

weeks.

Load forecasting is an active field of research and many papers are published every

year on this topic. In this chapter, we provide a review of the preliminary concepts

of the short term electricity load forecasting. In Section 2.2.1 we summarize some

characteristics of the load data. In Section 2.2.2, we introduce the strategies and

techniques for multi-step forecasting and short term electric load forecasting. We

introduce the common evaluation measures in Section 2.2.3.

2.2.1 Data characteristics

A number of factors may influence load signals. We examine the characteristics of

load data in this section.

Weekend and holiday effects:

On weekends and holidays, many buildings and factories are closed, resulting in less

load than on other weekdays. There are also influences on residential buildings - some

people wake up later in the morning on weekends and holidays than on weekdays. This

behaviour shifts the morning peak a little bit later than normal weekdays. Saturday

and Sunday are also different, due to churchgoers on Sunday and different opening

hours for shops.

Weekends and holidays also influence the day before and after them. Before week-

ends and holidays, people usually sleep later than usual. After a weekend, the factories

need to consume more energy to restart production. This means that load profiles on

different workdays can also be different.

To design the short term load forecasting model, it is better to consider effects from

weekends and holidays. To get better performance, short term load forecasting models

were developed based on different areas and countries. Different grouping methods are

proposed by different researchers.

Here is a list of grouping methods:

1. 2 types of days, Mon —Fri; Sat, Sun. (Chen et al., 1995)

2. 3 types of days, Mon —Fri; Sat; Sun. (Chen et al., 1995)
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3. 4 types of days, Mon; Tue —Thu; Fri; Sat, Sun(Methaprayoon et al., 2007)

4. 4 types of days, Mon; Tue —Fri; Sat; Sun (Hsu and Yang, 1991)

5. 4 types of days, Mon —Thu; Fri; Sat; Sun (Amjady, 2001)

6. 5 types of days, Mon; Tue —Thu; Fri; Sat; Sun (Hagan and Behr, 1987)

7. 7 types of days, Mon; Tue; Wed; Thu; Fri; Sat; Sun (Khotanzad et al., 1997)

Weather effects:

In load forecasting, weather conditions have always been an important factor. Most

methods in practice require weather information for short term load forecasting. The

features regarding weather include temperature, wind speed, and humidity. The most

influential and popular factor is temperature, whose measurement is also easier to

retrieve. Although humidity has been discussed in the load forecasting literature, it has

not been studied as formally as temperature. A recent investigation (Xie et al., 2018)

into the effect of relative humidity (RH) on electricity demand shows that adding RH

variables improves the forecast accuracy in a case study at a utility in North Carolina.

Xie and Hong (2018) used the solar-term calendar, which is based on the zodiac. The

results show that the forecast based on the solar-term calendar has higher accuracy

than the forecast based on the Gregorian calendar.

2.2.2 Methodology

In the thesis, we aim to resolve address both single-step and multi-step energy load

forecasting tasks. We treat the single-step forecasting tasks as a special type of re-

gression problem. In this case, we focus on modeling the relationship between a

time-series segment [xi−w, . . . , xi−1] and xi. However, multi-step forecasting problems

are more complex than multi-step forecasting problems. In this section, we introduce

the methodologies that we use to make multi-step forecasting.

Multi-step forecasting strategies:

A multi-step ahead time-series forecasting task consists of predicting the next m

values [xi, · · · , xi+m] of a historical time-series [x1, · · · , xi−1] composed of i− 1 obser-

vations, where m > 1 is the forecasting horizon. In this section, we introduce a few

existing strategies for multi-step ahead forecasting and compare them in theory.

Recursive strategy: In this strategy, a single model f is trained to perform a

one-step-ahead forecast:
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x̂i = f(xi−w, ..., xi−1) (2.1)

In this strategy, given a univariate time-series x = [x1, . . . , xn] composed of n

observations, a model f is trained to perform a single-step ahead forecast:

x̂i = f(xi−w, ..., xi−1), i ∈ {w + 1, ..., n} (2.2)

Then we use x̂i+1 as an input to predict xi+2.

x̂i+1 = f(xi−w+1, ..., xi, x̂i), i ∈ {w + 1, ..., n} (2.3)

We continue recursively, making new predictions in this manner until we forecast

xi+m.

Direct strategy: In this approach, m models f1, · · · , fm are learned to perform

a single-step ahead forecast for each horizon. For example, the first two models are:

x̂i = f1(xi−w, ..., xi−1) (2.4)

x̂i+2 = f2(xi−w, ..., xi−1) (2.5)

MIMO strategy: A group of researchers (Taieb and Bontempi, 2011) also

proposed a Multi-Input Multi-Output (MIMO) strategy. This strategy learns one

multiple-output model f from the time-series [x1, ..., xn] where

x̂i, ..., x̂i+m = f(xi−w, ..., xi−1) (2.6)

2.2.3 Evaluation measures

Many measures have been developed for judging the similarity of time-series data.

Due to the fact that each error measure has disadvantages that can lead to inaccu-

rate evaluation of the forecasting results, it is impossible to choose only one measure

(Mahmoud, 1984), and the most appropriate error measure depends on the particular

situation. In this section, we introduce a couple of the most common approaches used

for measuring load forecasting accuracy.

MAE: In statistics, mean absolute error (MAE) is a measure of the difference be-

tween two continuous variables. Mean Absolute Error is the average distance between

the predicted value and the real value. MAE is unable to indicate large relative differ-

ences or even wrong signs around 0. We define x′
t as the predicted value at timestamp
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t, with et = xt−x′
t defined as the error between xt and x′

t. For a time-series of length

n, MAE is calculated as

MAE =

∑n
t=1 |et|
n

(2.7)

MAPE: The mean absolute percentage error (MAPE) expresses accuracy as a

percentage. MAPE is defined as:

MAPE =
100%

n

n∑
t=1

∣∣∣∣ etxt

∣∣∣∣ (2.8)

The difference et between xt and x′
t is divided by the actual value xt again. Multiplying

by 100% makes it a percentage error. MAPE cannot be used if xt is 0.

RMSE: RMSE is the square root of the average of squared errors. The effect of

each error on RMSE is proportional to the size of the squared error; thus larger errors

have a disproportionately large effect on RMSE, and it is sensitive to outliers. As it

is scale-dependent, RMSE is a measure of accuracy to compare forecasting errors of

different models for a particular data set, and not between data sets. RMSE is given

by

RMSE =

√√√√ 1

n

n∑
t=1

e2t (2.9)

R2: R2 is the coefficient of determination. R2 measures the degree to which the

dependent variable of a given effect is determined by the independent variables. R2 is

more informative than MAE, RMSE in regression analysis evaluation (Chicco et al.,

2021). R2 is defined as:

R2 = 1−
∑n

t=1 et
2∑n

t=1(xt − x̄)2
(2.10)

It is the proportion of the variance in x′
t that is predictable from the input variables.

2.2.4 Conclusions

In this chapter, we provide an overview of short term electric load forecasting, which is

a classical branch of the load forecasting problem and show a few preliminary concepts

about energy load forecasting. We first introduced some characteristics of electrical

load data and methods to incorporate these effects. We then reviewed general fore-

casting strategies for these time-series and their relative strengths, followed by specific
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techniques used to model electrical load. Lastly, we discussed some evaluation mea-

sures of these models ranging from the simple MAE to the R2. Once again, it is

important to note that there are pros and cons to every metric, and the best measure

is always specific to the specific situation.

We hope that this chapter not only offers insights for researchers and practitioners

in the area of load forecasting to assist in further development of useful models and

methodologies, but also provides the broader scientific community with enough back-

ground knowledge and good reference sources, so that more researchers can contribute

to this new, challenging and important area of load forecasting.
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