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See the editorial comment for this article ‘A novel prediction model for pulmonary embolism: from dichotomizing algorithms to persona
lized likelihood’, by T.A. Zelniker and I.M. Lang, https://doi.org/10.1093/eurheartj/ehad392.

Abstract

Aims Risk stratification is used for decisions regarding need for imaging in patients with clinically suspected acute pulmonary embolism 
(PE). The aim was to develop a clinical prediction model that provides an individualized, accurate probability estimate for the 
presence of acute PE in patients with suspected disease based on readily available clinical items and D-dimer concentrations.

Methods 
and results

An individual patient data meta-analysis was performed based on sixteen cross-sectional or prospective studies with data 
from 28 305 adult patients with clinically suspected PE from various clinical settings, including primary care, emergency care, 
hospitalized and nursing home patients. A multilevel logistic regression model was built and validated including ten a priori 
defined objective candidate predictors to predict objectively confirmed PE at baseline or venous thromboembolism (VTE) 
during follow-up of 30 to 90 days. Multiple imputation was used for missing data. Backward elimination was performed with 
a P-value <0.10. Discrimination (c-statistic with 95% confidence intervals [CI] and prediction intervals [PI]) and calibration 
(outcome:expected [O:E] ratio and calibration plot) were evaluated based on internal-external cross-validation. The  
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accuracy of the model was subsequently compared with algorithms based on the Wells score and D-dimer testing. The final 
model included age (in years), sex, previous VTE, recent surgery or immobilization, haemoptysis, cancer, clinical signs of deep 
vein thrombosis, inpatient status, D-dimer (in µg/L), and an interaction term between age and D-dimer. The pooled c-stat
istic was 0.87 (95% CI, 0.85–0.89; 95% PI, 0.77–0.93) and overall calibration was very good (pooled O:E ratio, 0.99; 95% CI, 
0.87–1.14; 95% PI, 0.55–1.79). The model slightly overestimated VTE probability in the lower range of estimated probabil
ities. Discrimination of the current model in the validation data sets was better than that of the Wells score combined with a 
D-dimer threshold based on age (c-statistic 0.73; 95% CI, 0.70–0.75) or structured clinical pretest probability (c-statistic 
0.79; 95% CI, 0.76–0.81).

Conclusion The present model provides an absolute, individualized probability of PE presence in a broad population of patients with 
suspected PE, with very good discrimination and calibration. Its clinical utility needs to be evaluated in a prospective man
agement or impact study.

Registration PROSPERO ID 89366.

Structured Graphical Abstract

Can we develop a clinical prediction model for the diagnostic management of acute pulmonary embolism that provides an individualized, 
accurate probability estimate based on readily available clinical items and D-dimer concentrations?

Sixteen studies (N=28 305) were used to develop and validate a prediction model, including eight objective clinical items and D-dimer
concentration. Discrimination (c-statistic, 0.87) and overall calibration were very good, and better than that of some traditional scores.

This diagnostic clinical prediction model provides an individualized probability of pulmonary embolism in patients with suspected disease, 
which can be used as an alternative to traditional algorithms to guide decision about the need for imaging. External validation is needed.
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A clinical prediction model for the diagnostic management of acute pulmonary embolism was developed and validated using data from 28 305 pa
tients across 16 studies. Eight clinical variables and quantitative D-dimer levels were included in the final model, which showed good discrimination 
and calibration. Overall performance was comparable to that of current diagnostic strategies, but, unlike traditional decision rules, the model can be 
used to calculate absolute probabilities of pulmonary embolism.
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Introduction
The diagnostic management of pulmonary embolism (PE) is a challenge 
faced by physicians in emergency rooms, outpatient clinics, and hospital 
wards, because signs and symptoms of PE are non-specific.1 The thresh
old to refer patients for (further) testing is usually low, since the con
sequences of a missed PE diagnosis can be serious and potentially 
fatal. PE can be confirmed or ruled out with sensitive and specific im
aging tests, such as computed tomography (CT) pulmonary angiog
raphy or ventilation-perfusion scanning.

The use of a diagnostic algorithm based on a clinical decision rule, 
consisting of medical history and physical examination findings, com
bined with D-dimer testing is recommended in patients with clinically 
suspected PE to exclude the disease and thereby reduce the need for 
CT scans.2 This is important since imaging results in radiation exposure, 
risk of contrast reactions or nephropathy, increased healthcare utiliza
tion and costs, overdiagnosis of small clots with uncertain relevance, 
and potential shortage of iodinated contrast material. In patients with 
a low or intermediate clinical probability and a D-dimer below a fixed 
or variable threshold, PE is considered excluded and imaging can be 
safely withheld.3–5 Nonetheless, up to 50% to 70% of patients with sus
pected PE with non-low clinical probability and elevated D-dimer levels 
are referred for imaging, and PE is not diagnosed in about 70% of 
those.3,5–7 Moreover, there are concerns about the generalizability of 
these algorithms given the differences in case-mix and PE prevalence 
across healthcare settings.8,9

Thus far, the development of PE diagnostic scores has focused on 
simplicity, allowing the scores to be calculated at the bedside to rapidly 
decide which patients should be referred for D-dimer testing or directly 
for imaging. These scores are based on simple multivariable logistic re
gression models in which continuous variables were often categorized 
and potential interaction was ignored.10–12 Derivation of most PE diag
nostic models also did not follow state-of-the-art methodological prin
ciples currently recommended including use of multiple imputation and 
internal-external validation.13 Finally, several diagnostic PE models in
clude a subjective ‘Gestalt’ variable to indicate whether ‘PE is the 
most likely diagnosis’,4,5,10 which is difficult to standardize as it may 
vary depending on physician experience.

An alternative approach to the diagnostic management of suspected 
acute PE is to use a model which calculates an absolute PE probability 
for each patient, allowing the physician to make individualized manage
ment decisions, i.e. deciding whether imaging is required. Using a large 
individual patient dataset (IPD), we sought to derive and validate such a 
diagnostic model including objective clinical items and quantitative 
D-dimer testing.

Methods
Data sources
We used individual patient data from studies evaluating the diagnostic man
agement of PE which were identified in a systematic review of MEDLINE 
from 1 January 1995, until 1 January 2021 (PROSPERO 89366).14

Development of the model was based on a predefined protocol14 and re
porting followed the TRIPOD statement (see www.tripod-statement.org
and Supplementary data online, Appendix A).15

Derivation data
Studies were eligible for inclusion in the IPD set if they had a prospective or 
cross-sectional design, included patients with clinically suspected acute PE, 
evaluated a structured clinical pretest probability, measured quantitative 

D-dimer levels, and used either imaging at baseline in all patients or clinical 
follow-up of at least 30 days in those not undergoing as the reference stand
ard. Individual patient data were provided by the principal investigators and 
centrally homogenized using a predefined template. For the current ana
lyses, studies with missing proportion higher than 80% for any predictor 
of the outcome variable and those restricting inclusion to patients with sus
pected recurrent PE were excluded. In addition, pregnant women were ex
cluded from each study.

Risk of bias assessment across studies
Three pairs of authors (GJG and TT, NvE and NK, and FAK and MAMS), 
who were not involved in the original studies, independently assessed 
each eligible study for potential sources of bias and applicability concerns. 
As the original studies were diagnostic studies, we used Quality 
Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) for the assess
ment.16 Any disagreements were solved by discussion within each pair and 
subsequently between the pairs.

Outcome
The outcome for the prediction model was a diagnosis of PE confirmed by 
imaging at baseline or venous thromboembolism (VTE; i.e. PE or deep vein 
thrombosis [DVT]) during 30 to 90 day follow-up. Thus, similar as done in 
previous diagnostic VTE studies in the field, VTE diagnosed during this pre
defined follow-up period was considered a ‘missed’ diagnosis at baseline. 
Deaths adjudicated as fatal PE during the follow-up period in the original 
studies were also included in the outcome.

Candidate predictors
Candidate diagnostic predictors were selected a priori based on their pre
viously established associations with PE presence or absence in the litera
ture. To develop a new diagnostic prediction model which can be 
broadly used in all types of suspected PE patients and healthcare settings, 
also by less experienced physicians, variables with a subjective component 
often included in existing diagnostic PE models, such as ‘PE is the most likely 
diagnosis’ or unstructured PE probability estimates were explicitly not used. 
The following variables measured at baseline, without knowledge of the 
outcome, were considered as candidate predictors: age (in years), sex, pre
vious VTE, recent surgery or immobilization, haemoptysis, cancer, clinical 
signs of DVT, tachycardia (i.e. heart rate >100 bpm), inpatient status, and 
D-dimer level (in µg/L). Variables that could not be used as candidate pre
dictors due to systematically missing data were body mass index, heart rate, 
estrogen use, oxygen saturation, duration of symptoms, systolic blood pres
sure, congestive heart failure, and chronic lung disease. Since D-dimer levels 
are known to have a lower specificity in elderly patients,17 we included an 
interaction term for age and D-dimer as a candidate predictor. Hence, the 
final list of candidate diagnostic predictors comprised eleven variables. Any 
variable in the original studies concerning leg symptoms were grouped in 
the variable ‘clinical signs of DVT’. We used the definitions of recent surgery 
or immobilization and cancer used in the original studies, which were usually 
based on the Wells or revised Geneva scores.10,18 Heterogeneity in the as
sociations between predictors and the outcome across the included studies 
were assessed by visual inspection of forest plots of random effects 
meta-analyses (Supplementary data online, Appendix B). None of the candi
date predictors or studies were excluded based on this assessment.

Sample size
We estimated the minimal sample size required to develop a prediction 
model based on recent methodological recommendations.19 Assuming 
the acceptable difference in apparent and adjusted R2 as 0.05, the margin 
of error in estimation of the model’s intercept as 0.05 and the target of a 
shrinkage factor as 0.9, the number of predictors as 11 and the prevalence 
of PE as 15.6%, the required minimum sample size was 1380 patients in total 
with 216 patients with PE. This is a much lower number than the actual 
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included number of patients in this IPD meta-analysis (N = 28 305 in total 
and 4406 patients with PE).

Missing data
Proportion of missing data in each study is described in Supplementary data 
online, Appendix C. Missing values were imputed within each study ten times 
based on multiple imputation with chained equations using all available base
line information as well as the outcome.20,21 We only imputed data partially 
missing within each study if they were missing in 80% or less of patients,22 as 
imputation of systematically missing variables23 was unsuccessful due to 
convergence issues. Results across the ten imputed datasets were pooled 
using Rubin’s rule.

Model derivation
All studies were used for model derivation. To account for clustering of ob
servations within studies, we used a multilevel, multivariable logistic regres
sion with random intercept, which reflects study-level heterogeneity in 
baseline probabilities of PE.24,25 Predictors were treated as fixed effects 
in all models. In the present study, the goal was to obtain accurate, well- 
calibrated PE probability estimates, in particular around the threshold of 
interest (2%–3%). We used the so-called approximate cumulative distribu
tion (ACD) transformation for continuous variables (i.e. age, D-dimer, and 
their interaction) to improve model fit in this low-probability range. The 
ACD transformation is a smooth approximation to the empirical cumula
tive distribution function of a continuous variable via the scaled ranks, which 
was originally developed to improve model fitting in both ends of the esti
mated probabilities in sigmoid-type regression relationships.26 Variables in 
the final model were selected by backward elimination based on the 
Wald test. Variables with a P-value >0.10 in more than half of the imputed 
datasets were excluded from the model.27 The variables age, D-dimer, their 
interaction, and inpatient setting were forced into the model due to their 
known relevance for predicting PE.

Model performance and validation
Following methodological guidance on model development in 
IPDMA,25,28,29 we used internal-external cross-validation (IECV) on study 
level rather than a split-sample approach to evaluate the model’s generaliz
ability, which allowed retaining the maximum sample size for developing the 
model and assessment of model performance across all datasets. To assess 
model performance, we used IECV on study level.30 In short, the full model 
with selected predictors was developed from all but one study (n-1, where n 
is the number of included studies) after which the model was validated in 
the remaining study. This procedure was repeated n times by rotating the 
omitted study, resulting in n estimates of model performance measures, 
which were then pooled by a random-effects meta-analysis with restricted 
maximum likelihood estimation and the Hartung-Knapp-Sidik-Jonkman 
method to calculate confidence intervals (CI). Pooled performance mea
sures with 95% CI and 95% prediction intervals (PI) included discrimination, 
assessed by calculating the concordance index (c-statistic), and calibration, 
evaluated by comparing the estimated probabilities from the model with 
the observed incidence of VTE (outcome:expected [O:E] ratio, with a value 
of 1 indicating overall perfect calibration, a value <1 indicating overall under
estimation by the model, and a value >1 indicating overall overestimation by 
the model). Calibration plots were drawn for each study to identify the 
model’s under- or overestimation, with a focus on estimated probabilities 
in the clinically relevant range of 0% and 10%. IECV was used only for the 
evaluation of model’s generalizability, while the final model was derived 
using all studies. Pooled performance measures were reported as point es
timates with 95% CI and 95% PI. The 95% CI indicates the precision of the 
average of the model performance across all studies. The 95% PI accounts 
for heterogeneity between studies and therefore indicates what perform
ance can be expected when the prediction model is applied in a new study.

Clinical utility and comparison with current 
scores
Clinical utility of diagnostic management tools for PE is traditionally evalu
ated by assessing efficiency and safety. Efficiency is defined as the number 
of patients in whom PE can be considered excluded based on the diagnostic 
model without imaging, relative to all patients with suspected PE. Safety is 
defined by the failure rate, that is, the number of patients in whom PE is pre
sent relative to patients in whom PE was considered excluded by the model 
(i.e. without imaging)—the false negative proportion.

By applying currently available diagnostic algorithms, patients are classi
fied as ‘imaging indicated’ or ‘imaging not indicated’, usually based on the re
sults of a clinical decision rule (e.g. the Wells or revised Geneva rules) 
combined with D-dimer testing. These algorithms are considered safe if 
the mean probability of PE presence is below 2.0% in the group of patients 
classified as ‘PE absent and further imaging not indicated,’ i.e. a failure rate 
below 2.0%.31 In contrast to this approach, a diagnostic prediction model 
such as the one derived here provides an individualized probability condition
al on the variables included in the model, which hampers a direct compari
son with these older dichotomized algorithms because mean (marginal) 
probabilities cannot be meaningfully compared with the conditional esti
mates from our model. That is, applying a threshold conditional probability 
of 2% in our model usually leads to a failure rate much lower than 2%, given 
the assumption that all patients should have an individualized probability of 
having PE below 2%. Therefore, to illustrate how the newly derived model 
compares to existing algorithms, we compared discrimination (c-statistic) 
of the developed and validated model to that of a logistic regression model 
including all separate Wells score items in combination with the D-dimer 
test result using an age-adjusted threshold (500 µg/L in patients up to 50 
years of age, and ten times age in years in those older than 50 years) or a 
three-tier classification as used in the YEARS and PEGED algorithms 
(<500 µg/L, 500–999 µg/L, and ≥1000 µg/L). Again, we used IECV to com
pare those models. Although this is technically not a direct comparison be
tween the algorithms given their different objectives (risk classification vs. 
probability estimation), it reflects overall performance of the combined 
set of predictors of both approaches. Next, we calculated the proportion 
of patients with a negative traditional algorithm (i.e. PE considered ex
cluded) that had an individualized PE probability >2% based on the present 
model. The individualized PE probability was calculated using IECV. For illus
trative purposes, a plot is provided in which efficiency and safety of the cur
rently used algorithms are compared with those of the present model.

All analyses were performed in R, version 3.6.3 (www.R-project.org), in 
particular using the mice and lme4 packages for multiple imputation and gen
eralized linear mixed-effects models, respectively.

Results
Among 3733 studies identified by the systematic literature search, 40 
were considered potentially suitable for inclusion in the IPD 
meta-analysis. Corresponding authors of these publications were con
tacted and invited to provide their original data. After review of original 
data files and publications, a total of 23 studies were selected to be in
cluded in this IPD-MA for a total of 35 248 unique patients suspected of 
PE. Six studies were excluded because quantitative D-dimer levels were 
missing in >80% of patients32–37 and one study was excluded because 
enrolment was restricted to patients with suspected recurrent PE 
only.38 A total of 28 305 patients from the remaining 16 studies were 
included.3–5,7,12,39–49 Risk of bias of included studies was generally 
scored as low (see Supplementary Supplementary data online, 
Appendix D).

A summary of included studies is shown in Supplementary data 
online, Appendix E. Studies were conducted between 1992 and 2018, 
of which 13 studies in Europe and three studies in North America. 
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PE prevalence ranged from 7.1% to 40% with an overall summary 
prevalence of 16%. Baseline imaging was performed in all patients in 
two studies. Follow-up ranged from 30 to 90 days across studies. 
Assessors of PE or DVT were usually not blinded to the results of clin
ical and laboratory data. Patient characteristics stratified by PE diagnosis 
are shown in Table 1.

Model development and performance 
evaluation
All candidate predictors, except ‘tachycardia’, were included in the 
model based on a P-value <0.10 in more than half of the imputed data
sets, that is age (in years), sex, previous VTE, recent surgery or immo
bilization, haemoptysis, cancer, clinical signs of DVT, inpatient status, 
D-dimer (in µg/L) and interaction between age and D-dimer. The devel
oped model formula is shown in Supplementary data online, Appendix F. 
For illustration and research purposes, a web calculator of the model is 
available online (https://pred-model.shinyapps.io/App_IPD_PE).

The model consistently showed discrimination performance across 
all validation studies in IECV with a pooled c-statistic of 0.87 (95% CI, 
0.85–0.89; 95% PI, 0.77–0.93; Table 2). Overall calibration performance 
was also excellent, but there was evidence of heterogeneity across 
studies based on the 95% PI (pooled O:E ratio, 0.99; 95% CI, 0.87– 
1.14; 95% PI, 0.55–1.79; Table 2). An overall calibration plot based on 
all (stacked) IECV data showed a good agreement between model- 
based estimated probabilities and observed prevalence of PE in the 
overall range of 0%–100% (Figure 1A). However, in the clinically relevant 
range of probabilities of 0%–3%, the model tended to overestimate the 
probability of PE by a maximum of about 1 percentage point (Figure 1B).

Clinical utility comparison with current 
algorithms
Discrimination performance of the Wells score in combination with 
D-dimer (based on age-adjusted or three-tier testing) was evaluated 
using a logistic regression model with PE as the outcome. Two study 
data sets12,43 were not used for this analysis since a variable ‘PE is the 
most likely diagnosis’, which is included in these existing algorithms, 
was systematically missing. In the remaining 14 studies, the c-statistics 
were 0.73 (95% CI, 0.70–0.75; 95% PI, 0.62–0.82) for the Wells items 
model with age-adjusted D-dimer testing and 0.79 (95% CI, 0.76–0.81; 
95% PI, 0.66–0.88) for the Wells items model with three-tier D-dimer 
testing, compared with 0.87 (95% CI, 0.84–0.89; 95% PI, 0.76–0.93) for 
the new model. Overall calibration of the Wells score models was ex
cellent (O:E ratio, 0.99 for all models), but showed overprediction in 
the lower range between 1%–10% (see Supplementary data online, 
Figures S1–S3), similar as to what we observed for the new model (al
beit at a wider range). Individualized probability estimates of the pre
sent model were comparable to safety and efficiency of the currently 
used algorithms (Figure 2).

Mean (marginal) vs. individual (conditional) 
probability estimates
We evaluated mean and individual, model-based probability estimates 
in two groups, namely patients classified as ‘imaging not indicated’ by 
the Wells score combined with (1) age-adjusted D-dimer testing or 
(2) D-dimer testing using a threshold based on clinical probability. 
Figure 3 shows the distribution of the conditional (individual) probability 
estimates based on the new model in these groups. For example, 
the mean (marginal) probabilities of PE were 0.74% when using 

age-adjusted D-dimer testing and 2.2% when using clinical probabil
ity dependent D-dimer testing. However, many patients in these 
groups actually had a higher individual, model-based probability. In 
fact, in this group where PE was considered excluded based upon 
these existing algorithms, the proportion of patients with an esti
mated (conditional) probability ≥2% based on our new model was 
28% in the group in whom PE was considered excluded based on 
age-adjusted D-dimer testing and 44% among those in whom PE 
was considered excluded based clinical probability-adjusted 
D-dimer testing. An estimated individual probability threshold below 
7.9% based on the new model corresponded to a mean (marginal) 
probability estimate of 2%.

Discussion
Using individual data from 28 305 patients from 16 studies, we devel
oped and validated a new diagnostic prediction model to select patients 
with suspected PE in whom imaging can be safely withheld. The final 
model yields an estimated absolute probability of PE for each patient 
based on (and conditional to) information from eight objective clinical 
items and the absolute D-dimer concentration. Overall, this model 
showed good discrimination (c-statistic, 0.87) and calibration (O:E ra
tio, 0.99), although PE probability appeared to be overestimated at low
er, clinically relevant thresholds. Discrimination was better than that of 
a logistic regression model including the Wells score items and a cate
gorized D-dimer test result. The new model identifies a substantial pro
portion of patients with a high individual PE probability (above the 
currently accepted ‘safe’ 2%) among patients classified as ‘imaging not 
indicated’ by current diagnostic algorithms (Structured Graphical 
Abstract).

Currently used algorithms for the diagnostic management of PE have 
been extensively validated in numerous studies. Most of them rely on 
readily available clinical items combined with D-dimer testing to identify 
a group of patients with a low to very low probability of PE. An ob
served frequency of PE below 2% among patients in whom PE was con
sidered excluded by the algorithm was used in validation studies to 
indicate that PE can be considered safely excluded by an algorithm with
out imaging.31 Although this approach is widely used in clinical practice 
and has proven to be safe on a population level, it may mean that some 
patients with an individual probability that is considerably higher than 
2% will not be referred for imaging. The new model provides an abso
lute PE presence probability estimate based on clinical variables and the 
quantitative D-dimer concentration, which can be explicitly communi
cated to patients and holds promise to better discriminate between pa
tients with and without PE. For example, about 44% of patients in which 
the traditional algorithm with D-dimer testing suggested ‘PE excluded’, 
actually had an individual PE presence probability >2% based on the 
new model, and about 4% even had even an estimated probability 
>10%, raising the question whether it is truly safe to withhold imaging 
in such patients.

The new model does not include any subjective clinical items, incor
porates D-dimer concentration as continuous variable (which is more 
informative than a dichotomized test result), and may perform better 
across subgroups and healthcare settings, possibly in part due to the 
interaction term age and D-dimer. Disadvantages of the model include 
the need for more variables to be measured and entered compared 
with the Wells rule and YEARS algorithm, which can be burdensome 
in emergency care practices, the need for D-dimer testing in all patients, 
and the need for a website or smartphone application to calculate the 
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Table 1 Patient characteristics

Patients without pulmonary embolism 
(N = 23 899)

Patients with pulmonary embolism 
(N = 4406)

Total  
(N = 28 305)

Setting, n (%)

Self-referral emergency care 7493 (31.4) 595 (13.5) 8088 (28.6)

Primary healthcare 2000 (8.4) 181 (4.1) 2181 (7.7)

Referred secondary care 13 106 (54.8) 3220 (73.1) 16 326 (57.7)

Hospitalized or nursing home 1300 (5.4) 411 (9.3) 1711 (6.0)

Age in years, median (IQR) 53.1 [39.4, 67.4] 63.2 [49.0, 75.0] 55.0 [41.0, 69.0]

Female sex, n (%) 14 978 (62.7) 2331 (52.9) 17 309 (61.2)

History of venous thromboembolism, 
n (%)

2487 (10.4) 1085 (24.6) 3572 (12.6)

Surgery or immobilization <4 weeks, 
n (%)

3596 (15.0) 1195 (27.1) 4791 (16.9)

Haemoptysis, n (%) 912 (3.8) 252 (5.7) 1164 (4.1)

Active cancer, n (%) 2078 (8.7) 674 (15.3) 2752 (9.7)

Clinical signs of deep-vein 
thrombosis, n (%)

1387 (5.8) 877 (19.9) 2264 (8.0)

D-dimer concentration, median 
(IQR)

522.0 [270.0, 1057.0] 2780.0 [1300.0, 5000.0] 653.0 [300.0, 
1500.0]

IQR, interquartile range.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Discrimination and overall calibration performance of the model

Study c-statistic O:E ratio

PERC validation study42 0.87 (0.84–0.90) 0.65 (0.61–0.68)

Kline et al.41 0.78 (0.74–0.82) 0.78 (0.77–0.79)

Prometheus39 0.83 (0.80–0.86) 1.06 (1.05–1.08)

Goekoop et al.37 0.91 (0.89–0.94) 1.30 (1.24–1.36)

ADJUST-PE3 0.88 (0.86–0.89) 0.91 (0.90–0.93)

VT elderly38 0.81 (0.73–0.89) 1.05 (0.96–1.15)

Christopher7 0.85 (0.83–0.87) 1.03 (1.02–1.04)

YEARS5 0.90 (0.89–0.91) 0.87 (0.86–0.88)

Geneva derivation study12 0.89 (0.87–0.91) 1.11 (1.10–1.13)

CT-PE II43 0.83 (0.80–0.85) 1.42 (1.39–1.45)

CT-PE III44 0.88 (0.87–0.90) 1.09 (1.07–1.10)

CT-PE IV46 0.84 (0.81–0.87) 1.69 (1.66–1.73)

PEGeD4 0.92 (0.91–0.94) 0.58 (0.58–0.59)

Galipienzo et al.36 0.86 (0.80–0.91) 1.14 (1.12–1.16)

Ghanima et al.40 0.87 (0.83–0.90) 0.87 (0.86–0.88)

Percepic45 0.89 (0.86–0.92) 0.89 (0.87–0.90)

Pooled 0.87 (0.85–0.89) (0.77–0.93) 0.99 (0.87–1.14) (0.55–1.79)

O, observed; E, expected.
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absolute probability, although the latter is becoming less of an issue in 
the current era of digitalized storage of patient information and data.

PE prevalence or the addressed healthcare setting, is an important 
aspect to take in consideration when using diagnostic algorithms. 
When PE prevalence is lower in some settings, a progressively lower 
probability threshold should be deemed acceptable in parallel. For ex
ample, while a mean probability below 2% in a group is often used to 
withhold imaging, such a threshold is obviously useless when overall 
PE prevalence is also 2% .8,9,31 Therefore, another advantage of the 
new model is that it allows for flexible probability estimation by varying 
the safety probability threshold, which allows physicians to tailor the in
terpretation of the model to their own clinical setting. For example, a 
higher probability threshold can be used for inpatients, in whom PE 
prevalence is usually high, than for patients seen in an outpatient setting 
by general practitioners or those visiting emergency rooms.

In practice, a dichotomous decision (imaging or no imaging) needs to 
be made in patients with a (relatively) low model-based probability of 
PE presence. The probability estimate threshold prompting imaging 
for an individual patient is a matter of debate and can be tailored to 
the clinical situation or setting in shared decision making between 
healthcare provider and patient when using the new model, although 
the latter might prove challenging in an acute care setting. For example, 
in a female patient of 50 years with clinically suspected PE, a history of 
provoked VTE, no other clinical PE predictors from our model, and a 
D-dimer value of 460 µg/L, the estimated PE probability would reach 
5.2%. This information would likely result in referral for imaging, in par
ticular if the patient was seen in a setting with low PE prevalence, even 
though PE would have been considered ruled out in this patient based 

on current diagnostic algorithms. Similarly, in a male 90-year-old patient 
with suspected PE residing in a nursing home, also with no other clinical 
PE predictors from our model, and a D-dimer value of 790 µg/L, the es
timated PE probability is 5.2%. In this scenario, the information from the 
model may be used to balance the excepted risks and benefits of refer
ral to the hospital for imaging in such a frail patient.50

Our developed and validated model was well-calibrated overall, but 
there was slight overestimation (maximum absolute ∼1%) in the lower 
range of estimated probabilities (0%–4%). Potential explanations for 
this overestimation include heterogeneity across studies and the use 
of logistic regression models in the development, wherein small devia
tions in observed variables can have a large impact that easily leads to 
inaccurate estimates in the lower and upper tails of a calibration curve. 
On a population level, this overestimation will only increase safety but 
decrease efficiency. Moreover, there was evidence of heterogeneity in 
calibration across the studies included in the IPD, particularly in those 
with a high or low prevalence of PE, indicating that updating may be 
needed in those settings.

Strengths of the present IPD-MA include the use of numerous stud
ies from different parts of the world and healthcare settings, use of 
state-of-the art techniques for model development, and the large num
ber of outcome events which provided sufficient statistical power. Yet, 
there are some limitations that need to be considered. Studies differed 
in management of patients with suspected PE and not all patients 
underwent imaging. The combined reference standard of imaging and 
clinical follow-up may have introduced differential verification bias, 
which can result in overestimated failure rates when patients with a 
low model-based probability estimate are diagnosed with PE at baseline 

Figure 1 (A) Overall calibration of the new model. The dashed line indicates a situation of perfect calibration. The solid line reflects the actual cor
relation between estimated probabilities and observed prevalence of pulmonary embolism. The histogram below the plot shows the distribution of 
estimated probabilities in the study population. (B) Overall calibration of the new model for estimated risks between 0–10%. The dashed line indicates 
a situation of perfect calibration. The solid line reflects the actual correlation between estimated probabilities and observed prevalence of pulmonary 
embolism. Histogram below the plot shows distribution of estimated probabilities in the study population.
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that would otherwise not have been diagnosed during follow-up.9 Studies 
were conducted over two decades, differed in terms of PE prevalence, 
healthcare setting, and D-dimer assays used, which all contributed to het
erogeneity in discrimination and calibration. We attempted to impute 
systematically missing variables, but this was not possible due to conver
gence issues of the imputation model leading to less included studies and 
candidate predictors than originally planned. We deliberately did not 
include items with a subjective component because they are less 

generalizable, although they might have improved discrimination. 
Because of missing information, the model could not be compared 
with algorithms based on the (revised) Geneva score,12,18 PERC rule,51

or 4-PEPS score.52 We did not assess the model in an independent data
set, but rather used IECV used to evaluate validity of the model to maxi
mize the use of data for model derivation.

In summary, the present developed and validated diagnostic model 
for PE, based on the data of more than 28 000 patients worldwide, is 

Figure 2 Efficiency and safety of currently used algorithms compared with the new model. Efficiency (x-axis) and failure rate (y-axis) of current diag
nostic algorithms are plotted with 95% confidence intervals (dots with bars). The solid line shows the potential efficiency and safety of the new model 
based over the range of estimated probabilities, with the shaded area showing the 95% confidence intervals.

Figure 3 Distribution of risk estimated by the new model in patients categorized as ‘pulmonary embolism excluded’ based on the Wells score with 
D-dimer testing using the age-adjusted threshold (panel A) or a threshold based on clinical pretest probability (panel B).
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unique in its kind as it provides absolute, individualized probability esti
mates for a broad population of patients with suspected PE with good 
discrimination and calibration. It shows that a considerable proportion 
of patients with a high individual probability are actually classified as low 
risk by current available algorithms. Nonetheless, on a population level, 
currently available algorithms are very efficient, safe, and easy to use. 
Therefore, the primary goal of the model is not to replace current diag
nostic algorithms or reduce the number of imaging tests per se. Rather, 
we believe it can be viewed as an alternative option that can, for ex
ample, be suitable in healthcare settings with a high VTE prevalence 
(e.g. nursing home residents or inpatients) or for high-risk patients 
(e.g. cancer patients, elderly with comorbidity, patients with a previous 
VTE). We anticipate that communicating absolute probabilities may 
serve physicians and their patients, both for preventing under- and 
overdiagnosis of PE. Before it can be adopted in practice, its clinical util
ity should be evaluated in a prospective management study in which im
aging is withheld based on the probability estimated by the model.

Supplementary data
Supplementary data are available at European Heart Journal online.

Declarations
Disclosure of Interest
All authors have completed the ICMJE uniform disclosure form. Dr. van 
Es has received honoraria from Bristol Myers Squibb outside this work, 
which was transferred to his institution. Prof. Huisman reports receiv
ing grants or contracts from the Dutch Heart Foundation, Dutch 
Healthcare Fund, Boehringer Ingelheim, BMS-Pfizer, LEO Pharma, 
and Bayer Health Care, and consulting fees from Pfizer-BMS and 
Boehringer-Ingelheim, all outside this work. Prof. Klok has received re
search support from Bayer, Bristol-Myers Squibb, BSCI, MSD, Leo 
Pharma, Actelion, The Netherlands Organisation for Health Research 
and Development, The Dutch Thrombosis Association, and The 
Dutch Heart Foundation and the Horizon Europe Program, all outside 
this work. Prof. Le Gal reports receiving grants from Pfizer and Bristol 
Myers Squibb for clinical trials, and honoraria from Pfizer, LEO Pharma, 
Sanofi, and Aspen Pharma, not taken as salary. Prof. Wells has received 
honoraria from Bayer Healthcare, which were transferred to his insti
tution. Prof. Ghanima has received grants from Bayer, BMS, and UCB, 
consulting fees from Amgen, Novartis, Pfizer, Principia Biopharma Inc, 
Sanofi, SOBI, Grifols, UCB, Argenx, and Cellphire, and honoraria from 
Amgen, Novartis, Pfizer, Bristol Myers Squibb, SOBI, Grifols, Sanofi, and 
Bayer. The other authors do not report competing interests.

Data Availability
Data from the individual studies are available on request to the respect
ive principal investigators.

Funding
This work was supported by the Dutch Research Council (Nederlandse 
Organisatie voor Wetenschappelijk Onderzoek) (Vidi grant GJG num
ber 91719304).

Ethical Approval
Ethical approval was not required for this individual patient data meta- 
analysis. Ethical approval was obtained for the individual studies.

Pre-registered Clinical Trial Number
The pre-registered clinical trial number is PROSPERO ID 89366.

References
1. Huisman MV, Barco S, Cannegieter SC, Le Gal G, Konstantinides SV, Reitsma PH, et al. 

Pulmonary embolism. Nat Rev Dis Primers 2018;4:18028. https://doi.org/10.1038/nrdp. 
2018.28

2. Konstantinides SV, Meyer G, Becattini C, Bueno H, Geersing GJ, Harjola VP, et al. 2019 
ESC guidelines for the diagnosis and management of acute pulmonary embolism devel
oped in collaboration with the European respiratory society (ERS). Eur Heart J 2020;41: 
543–603. https://doi.org/10.1093/eurheartj/ehz405

3. Righini M, Van Es J, Den Exter PL, Roy PM, Verschuren F, Ghuysen A, et al. Age-adjusted 
D-dimer cutoff levels to rule out pulmonary embolism: the ADJUST-PE study. JAMA 
2014;311:1117–1124. https://doi.org/10.1001/jama.2014.2135

4. Kearon C, de Wit K, Parpia S, Schulman S, Afilalo M, Hirsch A, et al. Diagnosis of pul
monary embolism with d-dimer adjusted to clinical probability. N Engl J Med 2019; 
381:2125–2134. https://doi.org/10.1056/NEJMoa1909159

5. van der Hulle T, Cheung WY, Kooij S, Beenen LFM, van Bemmel T, van Es J, et al. 
Simplified diagnostic management of suspected pulmonary embolism (the YEARS 
study): a prospective, multicentre, cohort study. Lancet 2017;390:289–297. https:// 
doi.org/10.1016/S0140-6736(17)30885-1

6. van Es N, van der Hulle T, van Es J, den Exter PL, Douma RA, Goekoop RJ, et al. Wells 
rule and d-dimer testing to rule out pulmonary embolism a systematic review and 
individual-patient data meta- analysis. Ann Intern Med 2016;165:253–261. https://doi. 
org/10.7326/M16-0031

7. van Belle A, Büller HR, Huisman MV, Huisman PM, Kaasjager K, Kamphuisen PW, et al. 
Effectiveness of managing suspected pulmonary embolism using an algorithm combining 
clinical probability, D-dimer testing, and computed tomography. JAMA 2006;295: 
172–179. https://doi.org/10.1001/jama.295.2.172

8. Geersing GJ, Takada T, Klok FA, Büller HR, Courtney DM, Freund Y, et al. Ruling out 
pulmonary embolism across different healthcare settings: a systematic review and indi
vidual patient data meta-analysis. PLoS Med 2022;19:e1003905. https://doi.org/10.1371/ 
journal.pmed.1003905

9. Stals MAM, Takada T, Kraaijpoel N, van Es N, Büller HR, Courtney DM, et al. Safety and 
efficiency of diagnostic strategies for ruling out pulmonary embolism in clinically relevant 
patient subgroups. Ann Intern Med 2022;175:244–255. https://doi.org/10.7326/M21- 
2625

10. Wells P, Anderson DR, Rodger M, Ginsberg JS, Kearon C, Gent M, et al. Derivation of a 
simple clinical model to categorize patients probability of pulmonary embolism: increas
ing the models utility with the SimpliRED D-dimer. Thromb Haemost 2000;83:416–420. 
https://doi.org/10.1055/s-0037-1613830

11. Glober N, Tainter CR, Brennan J, Darocki M, Klingfus M, Choi M, et al. The DAGMAR 
score: D-dimer assay-guided moderation of adjusted risk. Improving specificity of the 
D-dimer for pulmonary embolism. Am J Emerg Med 2019;37:895–901. https://doi.org/ 
10.1016/j.ajem.2018.08.018

12. Wicki J, Perneger TV, Junod AF, Bounameaux H, Perrier A. Assessing clinical probability 
of pulmonary embolism in the emergency ward: a simple score. Arch Intern Med 2001; 
161:92–97. https://doi.org/10.1001/archinte.161.1.92

13. Moons KGM, Wolff RF, Riley RD, Whiting PF, Westwood M, Collins GS, et al. 
PROBAST: a tool to assess risk of bias and applicability of prediction model studies: ex
planation and elaboration. Ann Intern Med 2019;170:W1. https://doi.org/10.7326/M18- 
1377

14. Geersing GJ, Kraaijpoel N, Büller HR, van Doorn S, van Es N, Le Gal G, et al. Ruling out 
pulmonary embolism across different subgroups of patients and healthcare settings: 
protocol for a systematic review and individual patient data meta-analysis (IPDMA). 
Diagn Progn Res 2018;2:10. https://doi.org/10.1186/s41512-018-0032-7

15. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivari
able prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD 
statement. Ann Intern Med 2015;162:55–63. https://doi.org/10.7326/M14-0697

16. Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. 
QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. 
Ann Intern Med 2011;155:529–536. https://doi.org/10.7326/0003-4819-155-8- 
201110180-00009

17. Schouten HJ, Geersing GJ, Koek HL, Zuithoff NPA, Janssen KJM, Douma RA, et al. 
Diagnostic accuracy of conventional or age adjusted D-dimer cut-off values in older pa
tients with suspected venous thromboembolism: systematic review and meta-analysis. 
BMJ 2013;346:f2492. https://doi.org/10.1136/bmj.f2492

18. Le Gal G, Righini M, Roy PM, Sanchez O, Aujesky D, Bounameaux H, et al. Prediction of 
pulmonary embolism in the emergency department: the revised Geneva score. Ann 
Intern Med 2006;144:165–171. https://doi.org/10.7326/0003-4819-144-3-200602070- 
00004

19. Riley RD, Ensor J, Snell KIE, Harrell FE, Martin GP, Reitsma JB, et al. Calculating the sam
ple size required for developing a clinical prediction model. BMJ 2020;368:m441. https:// 
doi.org/10.1136/bmj.m441

Diagnostic management of acute pulmonary embolism                                                                                                                                  3081
D

ow
nloaded from

 https://academ
ic.oup.com

/eurheartj/article/44/32/3073/7224694 by guest on 27 M
ay 2024

http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehad417#supplementary-data
https://doi.org/10.1038/nrdp.2018.28
https://doi.org/10.1038/nrdp.2018.28
https://doi.org/10.1093/eurheartj/ehz405
https://doi.org/10.1001/jama.2014.2135
https://doi.org/10.1056/NEJMoa1909159
https://doi.org/10.1016/S0140-6736(17)30885-1
https://doi.org/10.1016/S0140-6736(17)30885-1
https://doi.org/10.7326/M16-0031
https://doi.org/10.7326/M16-0031
https://doi.org/10.1001/jama.295.2.172
https://doi.org/10.1371/journal.pmed.1003905
https://doi.org/10.1371/journal.pmed.1003905
https://doi.org/10.7326/M21-2625
https://doi.org/10.7326/M21-2625
https://doi.org/10.1055/s-0037-1613830
https://doi.org/10.1016/j.ajem.2018.08.018
https://doi.org/10.1016/j.ajem.2018.08.018
https://doi.org/10.1001/archinte.161.1.92
https://doi.org/10.7326/M18-1377
https://doi.org/10.7326/M18-1377
https://doi.org/10.1186/s41512-018-0032-7
https://doi.org/10.7326/M14-0697
https://doi.org/10.7326/0003-4819-155-8-201110180-00009
https://doi.org/10.7326/0003-4819-155-8-201110180-00009
https://doi.org/10.1136/bmj.f2492
https://doi.org/10.7326/0003-4819-144-3-200602070-00004
https://doi.org/10.7326/0003-4819-144-3-200602070-00004
https://doi.org/10.1136/bmj.m441
https://doi.org/10.1136/bmj.m441


20. Janssen KJM, Donders ART, Harrell FE, Vergouwe Y, Chen Q, Grobbee DE, et al. 
Missing covariate data in medical research: to impute is better than to ignore. J Clin 
Epidemiol 2010;63:721–727. https://doi.org/10.1016/j.jclinepi.2009.12.008

21. Moons KGM, Donders RART, Stijnen T, Harrell FE. Using the outcome for imputation 
of missing predictor values was preferred. J Clin Epidemiol 2006;59:1092–1101. https:// 
doi.org/10.1016/j.jclinepi.2006.01.009

22. Madley-Dowd P, Hughes R, Tilling K, Heron J. The proportion of missing data should not 
be used to guide decisions on multiple imputation. J Clin Epidemiol 2019;110:63–73. 
https://doi.org/10.1016/j.jclinepi.2019.02.016

23. Audigier V, White IR, Jolani S, Debray TPA, Quartagno M, Carpenter J, et al. Multiple 
imputation for multilevel data with continuous and binary variables. Stat Sci 2018;33: 
160–183. https://doi.org/10.1214/18-STS646

24. Wynants L, Vergouwe Y, van Huffel S, Timmerman D, van Calster B. Does ignoring 
clustering in multicenter data influence the performance of prediction models? A 
simulation study. Stat Methods Med Res 2018;27:1723–1736. https://doi.org/10.1177/ 
0962280216668555

25. Debray TPA, Collins GS, Riley RD, Snell KIE, Van Calster B, Reitsma JB, et al. 
Transparent reporting of multivariable prediction models developed or validated using 
clustered data: tRIPOD-cluster checklist. BMJ 2023;380:e071018.

26. Royston P. A smooth covariate rank transformation for use in regression models with a 
sigmoid dose-response function. Stata J 2014;14:329–341. https://doi.org/10.1177/ 
1536867X1401400206

27. Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg EW, et al. 
Transparent reporting of a multivariable prediction model for individual prognosis or 
diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 2015;162:W1–73. 
https://doi.org/10.7326/M14-0698

28. Riley RD van der Windt D Croft P, Moons KGM (eds). Prognosis research in health 
care. Oxford University Press; 2019.

29. Jong VMT, Moons KGM, Eijkemans MJC, Riley RD, Debray TPA. Developing more gen
eralizable prediction models from pooled studies and large clustered data sets. Stat Med 
2021;40:3533–3559. https://doi.org/10.1002/sim.8981

30. Steyerberg EW, Harrell FE. Prediction models need appropriate internal, internal–ex
ternal, and external validation. J Clin Epidemiol 2016;69:245–247. https://doi.org/10. 
1016/j.jclinepi.2015.04.005

31. Dronkers CEA, van der Hulle T, Le Gal G, Kyrle PA, Huisman MV, Cannegieter SC, et al. 
Towards a tailored diagnostic standard for future diagnostic studies in pulmonary em
bolism: communication from the SSC of the ISTH. J Thromb Haemost 2017;15: 
1040–1043. https://doi.org/10.1111/jth.13654

32. Geersing G-J, Erkens PMG, Lucassen WAM, Buller HR, Cate HT, Hoes AW, et al. Safe 
exclusion of pulmonary embolism using the wells rule and qualitative D-dimer testing in 
primary care: prospective cohort study. BMJ 2012;345:e6564. https://doi.org/10.1136/ 
bmj.e6564

33. Kline JA, Nelson RD, Jackson RE, Courtney DM. Criteria for the safe use of D -dimer 
testing in emergency department patients with suspected pulmonary embolism: a multi
center US study. Ann Emerg Med 2002;39:144–152. https://doi.org/10.1067/mem.2002. 
121398

34. Runyon MS, Beam DM, King MC, Lipford EH, Kline JA. Comparison of the simplify 
D-dimer assay performed at the bedside with a laboratory-based quantitative 
D-dimer assay for the diagnosis of pulmonary embolism in a low prevalence emergency 
department population. Emerg Med J 2008;25:70–75. https://doi.org/10.1136/emj.2007. 
048918

35. Kline JA, Runyon MS, Webb WB, Jones AE, Mitchell AM. Prospective study of the diag
nostic accuracy of the simplify D-dimer assay for pulmonary embolism in emergency 
department patients. Chest 2006;129:1417–1423. https://doi.org/10.1378/chest.129.6. 
1417

36. Sanson BJ, Lijmer JG, Mac Gillavry MR, Turkstra F, Prins MH, Büller HR. Comparison of a 
clinical probability estimate and two clinical models in patients with suspected pulmon
ary embolism. ANTELOPE-study group. Thromb Haemost 2000;83:199–203. https://doi. 
org/10.1055/s-0037-1613785

37. Kearon C, Ginsberg JS, Douketis J, Turpie AG, Bates SM, Lee AY, et al. An evaluation of 
D-dimer in the diagnosis of pulmonary embolism: a randomized trial. Ann Intern Med 
2006;144:812–821. https://doi.org/10.7326/0003-4819-144-11-200606060-00007

38. Mos ICM, Douma RA, Erkens PMG, Kruip MJHA, Hovens MM, van Houten AA, et al. 
Diagnostic outcome management study in patients with clinically suspected recurrent 
acute pulmonary embolism with a structured algorithm. Thromb Res 2014;133: 
1039–1044. https://doi.org/10.1016/j.thromres.2014.03.050

39. Galipienzo J, de Tena J G, Flores J, Alvarez C, Garcia-Avello A, Arribas I. Effectiveness of 
a diagnostic algorithm combining clinical probability, D-dimer testing, and computed 
tomography in patients with suspected pulmonary embolism in an emergency depart
ment. Rom J Intern Med 2012;50:195–202.

40. Goekoop RJ, Steeghs N, Niessen RWLM, Jonkers GJPM, Dik H, Castel Ad, et al. Simple 
and safe exclusion of pulmonary embolism in outpatients using quantitative D-dimer 
and wells’ simplified decision rule. Thromb Haemost 2007;97:146–150. https://doi.org/ 
10.1160/TH06-09-0529

41. Schouten HJ, Geersing G-J, Oudega R, van Delden JJM, Moons KGM, Koek HL. Accuracy 
of the wells clinical prediction rule for pulmonary embolism in older ambulatory adults. J 
Am Geriatr Soc 2014;62:2136–2141. https://doi.org/10.1111/jgs.13080

42. Douma RA, Mos ICM, Erkens PMG, Nizet TAC, Durian MF, Hovens MM, et al. 
Performance of 4 clinical decision rules in the diagnostic management of acute pulmon
ary embolism: a prospective cohort study. Ann Intern Med 2011;154:709–718. https:// 
doi.org/10.7326/0003-4819-154-11-201106070-00002

43. Ghanima W, Almaas V, Aballi S, Dörje C, Nielssen BE, Holmen LO, et al. Management of 
suspected pulmonary embolism (PE) by D-dimer and multi-slice computed tomography 
in outpatients: an outcome study. J Thromb Haemost 2005;3:1926–1932. https://doi.org/ 
10.1111/j.1538-7836.2005.01544.x

44. Kline JA, Hogg MM, Courtney DM, Miller CD, Jones AE, Smithline HA. D-dimer thresh
old increase with pretest probability unlikely for pulmonary embolism to decrease un
necessary computerized tomographic pulmonary angiography. J Thromb Haemost 2012; 
10:572–581. https://doi.org/10.1111/j.1538-7836.2012.04647.x

45. Kline JA, Courtney DM, Kabrhel C, Moore CL, Smithline HA, Plewa MC, et al. 
Prospective multicenter evaluation of the pulmonary embolism rule-out criteria. J 
Thromb Haemost 2008;6:772–780. https://doi.org/10.1111/j.1538-7836.2008.02944.x

46. Perrier A, Roy PMM, Aujesky D, Chagnon I, Howarth N, Gourdier ALL, et al. Diagnosing 
pulmonary embolism in outpatients with clinical assessment, D-dimer measurement, 
venous ultrasound, and helical computed tomography: a multicenter management 
study. Am J Med 2004;116:291–299. https://doi.org/10.1016/j.amjmed.2003.09.041

47. Perrier A, Roy PM, Sanchez O, Meyer G, Gourdier A-L, Furber A, et al. 
Multidetector-Row computed tomography in suspected pulmonary embolism. N Engl 
J Med 2005;352:1760–1768. https://doi.org/10.1056/NEJMoa042905

48. Penaloza A, Soulié C, Moumneh T, Delmez Q, Ghuysen A, el Kouri D, et al. Pulmonary 
embolism rule-out criteria (PERC) rule in European patients with low implicit clinical 
probability (PERCEPIC): a multicentre, prospective, observational study. Lancet 
Haematol 2017;4:e615–e621. https://doi.org/10.1016/S2352-3026(17)30210-7

49. Righini M, Le Gal G, Aujesky D, Roy PM, Sanchez O, Verschuren F, et al. Diagnosis of 
pulmonary embolism by multidetector CT alone or combined with venous ultrasonog
raphy of the leg: a randomised non-inferiority trial. Lancet 2008;371:1343–1352. https:// 
doi.org/10.1016/S0140-6736(08)60594-2

50. Schouten HJ, Koek HL, Kruisman-Ebbers M, Geersing GJ, Oudega R, Kars MC, et al. 
Decisions to withhold diagnostic investigations in nursing home patients with a clinical 
suspicion of venous thromboembolism. PLoS One 2014;9:e90395. https://doi.org/10. 
1371/journal.pone.0090395

51. Kline JA, Mitchell AM, Kabrhel C, Richman PB, Courtney DM. Clinical criteria to prevent 
unnecessary diagnostic testing in emergency department patients with suspected pul
monary embolism. J Thromb Haemost 2004;2:1247–1255. https://doi.org/10.1111/j. 
1538-7836.2004.00790.x

52. Roy PM, Friou E, Germeau B, Douillet D, Kline JA, Righini M, et al. Derivation and val
idation of a 4-level clinical pretest probability score for suspected pulmonary embolism 
to safely decrease imaging testing. JAMA Cardiol 2021;6:669–677. https://doi.org/10. 
1001/jamacardio.2021.0064

3081a                                                                                                                                                                 van Es et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/eurheartj/article/44/32/3073/7224694 by guest on 27 M
ay 2024

https://doi.org/10.1016/j.jclinepi.2009.12.008
https://doi.org/10.1016/j.jclinepi.2006.01.009
https://doi.org/10.1016/j.jclinepi.2006.01.009
https://doi.org/10.1016/j.jclinepi.2019.02.016
https://doi.org/10.1214/18-STS646
https://doi.org/10.1177/0962280216668555
https://doi.org/10.1177/0962280216668555
https://doi.org/10.1177/1536867X1401400206
https://doi.org/10.1177/1536867X1401400206
https://doi.org/10.7326/M14-0698
https://doi.org/10.1002/sim.8981
https://doi.org/10.1016/j.jclinepi.2015.04.005
https://doi.org/10.1016/j.jclinepi.2015.04.005
https://doi.org/10.1111/jth.13654
https://doi.org/10.1136/bmj.e6564
https://doi.org/10.1136/bmj.e6564
https://doi.org/10.1067/mem.2002.121398
https://doi.org/10.1067/mem.2002.121398
https://doi.org/10.1136/emj.2007.048918
https://doi.org/10.1136/emj.2007.048918
https://doi.org/10.1378/chest.129.6.1417
https://doi.org/10.1378/chest.129.6.1417
https://doi.org/10.1055/s-0037-1613785
https://doi.org/10.1055/s-0037-1613785
https://doi.org/10.7326/0003-4819-144-11-200606060-00007
https://doi.org/10.1016/j.thromres.2014.03.050
https://doi.org/10.1160/TH06-09-0529
https://doi.org/10.1160/TH06-09-0529
https://doi.org/10.1111/jgs.13080
https://doi.org/10.7326/0003-4819-154-11-201106070-00002
https://doi.org/10.7326/0003-4819-154-11-201106070-00002
https://doi.org/10.1111/j.1538-7836.2005.01544.x
https://doi.org/10.1111/j.1538-7836.2005.01544.x
https://doi.org/10.1111/j.1538-7836.2012.04647.x
https://doi.org/10.1111/j.1538-7836.2008.02944.x
https://doi.org/10.1016/j.amjmed.2003.09.041
https://doi.org/10.1056/NEJMoa042905
https://doi.org/10.1016/S2352-3026(17)30210-7
https://doi.org/10.1016/S0140-6736(08)60594-2
https://doi.org/10.1016/S0140-6736(08)60594-2
https://doi.org/10.1371/journal.pone.0090395
https://doi.org/10.1371/journal.pone.0090395
https://doi.org/10.1111/j.1538-7836.2004.00790.x
https://doi.org/10.1111/j.1538-7836.2004.00790.x
https://doi.org/10.1001/jamacardio.2021.0064
https://doi.org/10.1001/jamacardio.2021.0064

	Diagnostic management of acute pulmonary embolism: a prediction model based on a patient data meta-analysis
	Introduction
	Methods
	Data sources
	Derivation data
	Risk of bias assessment across studies
	Outcome
	Candidate predictors
	Sample size
	Missing data
	Model derivation
	Model performance and validation
	Clinical utility and comparison with current scores

	Results
	Model development and performance evaluation
	Clinical utility comparison with current algorithms
	Mean (marginal) vs. individual (conditional) probability estimates

	Discussion
	Supplementary data
	Declarations
	Disclosure of Interest
	Data Availability
	Funding
	Ethical Approval
	Pre-registered Clinical Trial Number

	References
	References


