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Abstract
Purpose  Prostate-specific membrane antigen (PSMA) is increasingly considered as a molecular target to achieve precision 
surgery for prostate cancer. A Delphi consensus was conducted to explore expert views in this emerging field and to iden-
tify knowledge and evidence gaps as well as unmet research needs that may help change practice and improve oncological 
outcomes for patients.
Methods  One hundred and five statements (scored by a 9-point Likert scale) were distributed through SurveyMonkey®. 
Following evaluation, a consecutive second round was performed to evaluate consensus (16 statements; 89% response rate). 
Consensus was defined using the disagreement index, assessed by the research and development project/University of Cali-
fornia, Los Angeles appropriateness method.
Results  Eighty-six panel participants (72.1% clinician, 8.1% industry, 15.1% scientists, and 4.7% other) participated, most 
with a urological background (57.0%), followed by nuclear medicine (22.1%). Consensus was obtained on the following: 
(1) The diagnostic PSMA-ligand PET/CT should ideally be taken < 1 month before surgery, 1–3 months is acceptable; (2) a 
16–20-h interval between injection of the tracer and surgery seems to be preferred; (3) PSMA targeting is most valuable for 
identification of nodal metastases; (4) gamma, fluorescence, and hybrid imaging are the preferred guidance technologies; and 
(5) randomized controlled clinical trials are required to define oncological value. Regarding surgical margin assessment, the 
view on the value of PSMA-targeted surgery was neutral or inconclusive. A high rate of “cannot answer” responses indicates 
further study is necessary to address knowledge gaps (e.g., Cerenkov or beta-emissions).
Conclusions  This Delphi consensus provides guidance for clinicians and researchers that implement or develop PSMA-
targeted surgery technologies. Ultimately, however, the consensus should be backed by randomized clinical trial data before 
it may be implemented within the guidelines.

Keywords  Delphi consensus · Prostate cancer · Prostate-specific membrane antigen (PSMA) · Radioguided surgery · Panel 
meeting

Introduction

The emergence of prostate-specific membrane antigen 
(PSMA), a transmembrane glycoprotein that is highly 
overexpressed in prostate cancer (PCa) cells (Fig. 1A), 
has greatly changed the identification of PCa on imaging. 

With the incorporation of PSMA-ligand positron emission 
tomography (PET)/computed tomography (CT) in interna-
tional guidelines [1], this biomarker has proven its clinical 
value [2, 3]. Exploitation of imaging biomarkers for surgical 
guidance is also becoming increasingly popular (Fig. 1B, 
C), where distinguishing benign tissue from malignant tis-
sue constitutes a challenge. More accurate intraoperative 
tumor delineation is expected to help advance surgical pre-
cision. A recent systematic review on the first efforts in the Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00259-023-06524-6&domain=pdf
http://orcid.org/0000-0002-3328-384X


	 European Journal of Nuclear Medicine and Molecular Imaging

1 3

area of PSMA-targeted surgery summarized the results on 
intraoperative technologies for detecting PSMA expressing 
PCa cells, both in and ex vivo (total approximately n = 793 
patients) [4]. This overview of the literature revealed that 
many of these pioneering studies deviate in (technical) setup 
and data analysis. Reports using radioguidance facilitated by 
the tracer [99mTc]Tc-PSMA-I&S (for imaging and surgery) 
currently dominate the field [5].

With the exception of two studies (121 and 364 patients) 
[6, 7], most literature on PSMA-targeted surgery represent 
smaller, often retrospective, series (range 1–40 patients). 
This may be related to the novelty of the subject and current 
reimbursement. Studies describe different types of tracers 
and detection modalities, each having their own strengths 
and limitations [4]. Literature on PSMA-targeted surgery 
also suffers from considerable heterogeneity of definitions 
and inconsistencies in the reporting of approaches and out-
comes such as the cutoff metrics used for a positive signal 
(signal-to-background ratios (SBR) ranging from 1.5 to 17) 

[8–10]. Although there appears to be a growing demand for 
technologies that support PSMA-targeted PCa surgery, cri-
teria for evaluating the outcomes and the optimal approach 
for future studies are unknown. Furthermore, evidence is 
lacking to demonstrate the benefits of the technology in 
improving outcomes for men with PCa such as disease-spe-
cific mortality and quality of life. This raises questions about 
how the technology might affect clinical practice.

In recognition of the importance of consensus on 
requirements, indications, and assessment criteria, a Del-
phi consensus was initiated. This widely accepted strategy 
in the surgical field is employed to establish guidelines 
based on clinical evidence and is increasingly used for new 
technologies that have not yet been implemented at a large 
scale, e.g., for strategies in image-guided surgery [11–13]. 
By conducting a Delphi consensus project at this early 
stage of PSMA-targeted surgery development, it becomes 
possible to identify and address knowledge/evidence gaps 
and unmet needs. The pursuit of consensus among the 

Fig. 1   A Prostate-specific membrane antigen (PSMA) targeting. B 
Clinical workflow PSMA-targeted surgery. C Surgical settings: Illus-
tration of open and minimally invasive robotic surgery with examples 

of in vivo drop-in probe and ex vivo specimen imaging (e.g., Ceren-
kov or fluorescence imaging)
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stakeholders in multiple disciplines helps standardize 
approaches and establish best practices in order to speed 
up the further maturation of the field. A forward-thinking 
strategy that helps reduce the chance that patients are sub-
ject to sub-optimal treatment paradigms. The objective 
of this study was to advance insight into the current and 
future applications of PSMA-targeted surgery early on, 
and with that help set the stage for future research and 
clinical implementation.

Methods

Delphi consensus project

The consensus project was conducted in six phases. In the 
first phase, a steering committee was established compris-
ing 12 experts from across the globe purposively selected 
to represent urologic end-users (46%), enabling nuclear 
medicine physicians (31%) and researchers (23%) in the 
field of image-guided surgery. In an iterative process, the 
steering committee decided on the topics and wording of 
the initial 105 statements. To accommodate for difference 
in backgrounds, statements were included with different 
levels of complexity and could be answered with “can-
not answer.” The second phase involved distributing the 
statements through SurveyMonkey® (Momentive Inc., 
San Mateo, CA, USA). In the third phase, the answers 
were analyzed. In the fourth phase, the steering commit-
tee met to discuss the need for clarifying certain state-
ments and drafting new ones. The fifth phase consisted 
of a second round of 16 statements that were distributed 
to the panel participants, again followed by anonymous 
answering (89% response rate). The sixth and final phase 
included the analysis of the answers and drafting of the 
manuscript. The steering committee guided the project and 
jointly drafted and authored the manuscript.

Participants and recruitment

Participants were identified through their authorship of stud-
ies on PSMA-targeted surgery or other individual relevant 
experience in this field, independent of the hospital, affili-
ation, or geographical origin. Industrial participants were 
invited because their company provided key enabling tech-
nologies for PSMA-targeted surgery studies. To avoid bias, 
two participants per company were invited. Eligible panel 
participants were invited directly by the steering committee 
to participate, explaining the projects aim and methodology, 
and requesting their agreement to participate. Final selec-
tion was influenced by the need to achieve an acceptable 
representation of key stakeholder groups. In total, 86 panel 
participants answered the statements (62 (72.1%) clinician, 

7 (8.1%) industry, 13 (15.1%) scientists, and 4 (4.7%) other), 
most with a urological background (57.0%), followed by 
nuclear medicine (22.1%). Further details on participants 
are available in supplementary 1.

Definition of consensus

The initial statements could be divided into two main cat-
egories: clinical and technological. Statements could be 
scored using a 9-point Likert scale ranging from disagree 
(1) to agree (9) or “cannot answer” [14]. A median score of 
1–3 represented disagreement with the statement, a score 
between 4 and 6 neutrality on the statement, and a score 
of 7–9 reflected agreement. Consensus was defined using 
the disagreement index (DI). DI was assessed using the 
research and development project (RAND)/University of 
California, Los Angeles (UCLA) appropriateness method, 
using the formula: DI = interpercentile range (IPR)/inter-
percentile range adjusted for symmetry (IPRAS) [14]. IPR 
was defined as the difference between the 30th and 70th 
percentiles. The IPRAS was derived using the formula 
IPRAS = 2.35 + (asymmetry index [AI] × 1.5), where AI was 
the absolute difference between five and the central point of 
the IPR. A DI > 1.0 indicated a large dispersion of scores and 
therefore no consensus. The smaller the DI, the less disper-
sion, meaning a stronger consensus. The level of dispersion 
was illustrated by boxplots. The color of the boxplots refers 
to the median score (1–3 red, 4–6 orange, 7–9 green). Gray 
reflects “no consensus.”

Results/discussion

Molecular targeting methods for PCa surgery

The panel participants concurred that PSMA is, to date, the 
best available molecular target (median 9.0) (Fig. 1A), but 
other targets should continue to be explored (median 8.0).

For a surgical roadmap, the panel participants agreed on 
the use of PSMA-ligand PET scans, ideally undertaken less 
than 1 month prior to PSMA-targeted surgery (Fig. 2A, B). 
It was agreed that both 18F- and 68 Ga-PSMA-ligand PET 
tracers can be used interchangeably (median 7.5), thereby 
addressing the plurality of available PSMA-ligand PET 
tracers [15]. PSMA-ligand PET could be used to indicate 
the target location prior to surgery and provide a roadmap 
to support surgical navigation. While PET was the leading 
modality in PSMA-targeted surgery, an additional PSMA-
ligand SPECT was also considered of value (median 7.0) 
(Fig. 2A). A secondary roadmap (either PET or SPECT), 
acquired the day before surgery or on the day of surgery, 
was scored to be of neutral additional value (median 6.0). 
Overall, the lesions identified at preoperative imaging were 
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considered leading for PSMA-targeted surgery. The intraop-
erative identification of additional lesions was considered a 
bonus as it may support the identification of lesions < 3 mm 
since these are easy to miss on preoperative imaging [16].

Based on the available data from [99mTc]Tc-PSMA-I&S, 
a time range of 16–20 h between injection and surgery was 
regarded as optimal for the clinical workflow (Fig. 2C). 
However, as tracers may differ in imaging signature and 
pharmacokinetic properties, the timing between injection 
of the tracer and surgery may differ accordingly, and it was 
agreed that this should be determined for each tracer sep-
arately. The panel participants concurred that next to the 
pharmacokinetics, the quantity of PSMA tracer injected has 
influence on lesion staining, timing of administration, and 
background signal (median 8.0). A recent study using the 
fluorescent PSMA analogues OTL78, which used a thera-
peutic dosing range, indicates that the sensitivity and speci-
ficity of staining are highly dependent on the quantity of 
tracer administered [17].

Indications for PSMA‑targeted surgery

Despite the limited evidence provided thus far [4], the panel 
participants were neutral on the statement that PSMA-
targeted surgery has already proven its value in routine 
patient care, hereby taking into consideration that routine 

care is depended on the geographical origin of the panel 
participants.

Use of PSMA targeting strategies differs in clinical 
requirements and evidence for primary and salvage surgery 
[4]. Where indicated, the statements therefore addressed 
primary cancer surgery separately from salvage surgery 
(Fig. 3A). There was consensus on the value of PSMA tar-
geting during nodal identification in both primary and sal-
vage surgery, especially outside the standard surgical tem-
plate, with the strongest consensus for nodes surrounding 
the rectum, the bladder, and the aortic bifurcation. Despite 
literature describing use of PSMA targeting for margin 
detection during primary prostatectomy [8, 10, 18–20], no 
consensus was reached on its value (median 6.0, DI = 1.01). 
The view on the value of PSMA targeting technologies for 
the assessment of resection margins during salvage prosta-
tectomy was neutral (Fig. 3A). Local recurrence, however, 
was seen as an indication that could benefit from a PSMA-
targeted approach. This statement is supported by the recent 
report of Knipper et al. [21].

In general, it was considered valuable to identify lesions 
that lay deeper below the tissue surface, in addition to the 
identification of superficial lesions. This is in line with 
the reliance on PSMA-ligand PET as a surgical roadmap 
(see clinical workflow, Fig. 1B). While there was consen-
sus that PSMA targeting strategies should facilitate open, 
laparoscopic, and robotic surgery, the consensus on its 

Fig. 2   Optimal clinical workflow in regard of most commonly used 
PSMA-targeted tracer ([99mTc]Tc-PSMA-I&S). A Left, top image: 
PSMA PET/CT, bottom image: SPECT/CT. Right: level of con-
sensus of only SPECT/CT, both PET and SPECT or only SPECT 
as preferred type of preoperative imaging. B Level of consensus on 

optimal timing between preoperative PSMA PET/CT and surgery. C 
Level of consensus on optimal timing between tracer injection and 
surgery. Scale: 9-point Likert scale. Legend: red = disagree (median 
1–3), orange = neutral (median 4–6), green = agree (median 7–9), and 
gray = no consensus
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value in the latter setting was the most evident (median 9.0 
with a DI = 0.0). This is contrary to the current predomi-
nant literature of PSMA-targeted approaches in open sur-
gery [4] (Fig. 4A). In particular, (real-time) in vivo guid-
ance technologies were considered useful (median 7.0). 

Complementary value was seen in ex vivo specimen analy-
sis (median 8.0), in line with the outcomes reported in a 
general Delphi consensus on image-guided surgery [13]. 
In this back table setup, the (margins of) excised tumor 
specimens are analyzed for PSMA expressing tissue.

Fig. 3   A Level of consensus on the value of PSMA targeting during 
primary or salvage surgery in different settings. B Level of consensus 
on how to define the signal-to-background ratio (SBR). Scale: 9-point 

Likert scale. Legend: red = disagree (median 1–3), orange = neutral 
(median 4–6), green = agree (median 7–9), and gray = no consensus

Fig. 4   A Summary of currently used types of PSMA-ligand guid-
ance and their distribution over open and robotic surgery [4]. B 
Level of consensus on which type of guidance would be preferred 
in daily practice (ranked based on declining consensus of nodal sur-

gery) on a 9-point Likert scale. Legend: red = disagree (median 1–3), 
orange = neutral (median 4–6), green = agree (median 7–9), and 
gray = no consensus. *not yet published
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Guidance modalities

There are a variety of technologies that can be used to help 
realize PSMA-targeted surgical guidance, ranging from 
radioactive to optical approaches [9, 10, 18, 22]. While it 
is often argued that non-ionizing methods are preferred, the 
panel participants remained neutral when asked whether 
non-radioactive guidance approaches are preferred over 
radioactive approaches (median 6.0). Combined with the 
strong consensus that radioactive PSMA ligands provide 
a valid method for PSMA-targeted surgery (median 8.0), 
this indicates that the exposure to ionizing radiation during 
guided surgery is not considered to be an issue. It should be 
noted that this view could be region specific, but radiation 
burden on patient and personnel for 99mTc-based technolo-
gies is minimal [23, 24].

Gamma-emission provides in-depth guidance (> 10 cm), 
while fluorescence, Cerenkov, and beta-emission provide 
superficial guidance (< 1 cm) only [18, 25]. The depth at 
which a signal can be detected constitutes a fundamental 
feature for the impact that a technology can offer during 
either nodal resections (in-depth signal detection most 
desirable) and primary tumor margin detection (superfi-
cial signal detection desirable). When asked which guid-
ance technology was preferred for radical prostatectomy, 
the panel participants most strongly agreed on the use of a 
hybrid combination of gamma- and fluorescence-guidance, 
or fluorescence-guidance only (Fig. 4B). Interestingly, panel 
participants did not reach consensus on whether the in-depth 
nature of gamma-guidance supported resection margin eval-
uation. In addition, in primary tumor margin evaluation, a 
hybrid combination of beta- and fluorescence-guidance was 
valued, while use of a beta-probe only resulted in a neutral 
response. Use of Cerenkov also yielded a neutral response; 
hereby, it is worth mentioning that Cerenkov imaging is only 
employed ex vivo. The statements regarding the use of Cer-
enkov or beta-probes generated exceptionally high cannot 
answer rates (27–47%). This indicates more education is 
needed regarding the use of these technologies for PSMA-
targeted surgery applications, something recently attempted 
by Costa et al. [26]. The panel participants answered neutral 
on whether the location of the tumor lesion affects the choice 
of imaging modality (median 6.0).

When asked which guidance technology was preferred 
for lymph node dissection, the response changed slightly 
(Fig. 4B). For this indication, there was consensus on the 
use of gamma- and/or fluorescence-guidance. While lesion 
location on preoperative imaging was considered essential 
for the selection of the best imaging modality, there was no 
consensus on whether the superficial nature of fluorescence 
imaging allows accurate identification of nodal metastases 
(median 5.0, DI = 1.15). There was a strong consensus to 
use radio-gamma and hybrid-gamma supporting approaches 

(median 8.0 and 9.0, respectively) and a neutral view on the 
use of the hybrid combination of beta- and fluorescence-
guidance (median 5.0) or beta-probe combined with Ceren-
kov imaging (median 4.0). Again, only Cerenkov and only 
beta-emissions scored neutral including a high percentage 
of “cannot answer” (29–43%).

When asked about what type of readout was preferred 
(quantitative or qualitative and visual or acoustic), the 
strongest consensus was on a quantitative and visual image-
based readout (median 8.0 and 7.0, respectively). As a quan-
titative readout is affiliated with radioguidance (gamma and 
beta), while an image-based readout is affiliated with opti-
cal technologies (fluorescence and Cerenkov), only hybrid 
approaches appear to tick both boxes.

Besides the choice of a modality, the surgeon’s ability to 
use image-guided technology during surgery also is criti-
cal. For example, the integration of the Firefly fluorescence 
camera in the da Vinci surgical system (Intuitive Surgical, 
Inc., Sunnyvale, CA, USA) has paved the way for the pur-
suit of robotic fluorescence-guidance applications [27]. In 
extension to this, the operating surgeon should be able to 
autonomously select and control the modalities needed to 
implement PSMA-targeted surgery instead of, e.g., the bed-
side assistant (median 8.0). There was consensus that guid-
ance modalities are preferably integrated in existing surgical 
instruments but it appears that more research is needed on 
this topic. This need for integration aligns with technical 
concepts such as intelligent robotics that are currently under 
investigation [28, 29].

Performance assessment

In the gathering of evidence for PSMA-targeted approaches, 
it was agreed that it is important to assess the impact on the 
success of the surgical procedure. Oncological outcomes 
(e.g., surgical margins, biochemical recurrence, disease-
free survival) were defined as the most valuable endpoint 
(median 9.0), followed by improvement in dexterity and 
decision-making (median 8.0) and complications (median 
7.0). There was a neutral view on the role of length of sur-
gery or blood loss as endpoints (median 5.0). On top of this, 
the panel participants agreed on the need for technologies 
that support scoring of proficiency in the use of PSMA tech-
nologies. A trend that is in line with the use of proficiency 
scoring in urological training programs and the relation 
between outcomes and surgical quality [30, 31].

When asked whether specificity should be central even 
when sensitivity is reduced, the opinion was neutral (median 
6.0), and the answers were scattered (DI = 0.97). There 
was consensus that sensitivity is preferred, even when this 
reduces specificity (median 7.0). It is worth noting that 
the widely employed method of 99mTc-PSMA radioguid-
ance exhibits greater specificity than sensitivity [9, 32, 33]. 
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Recent studies describe fluorescent PSMA ligands to exhibit 
the same, although this was highly dose dependent [17, 34]. 
Further enquiries revealed that there was a strong consen-
sus that during primary tumor resection false-positive signal 
needs to be avoided (median 8.0). During lymph node dis-
section, false positivity was voted on to be less of an issue 
(median 7.0).

There was consensus on the need to define SBR values 
during surgery and that these values are critical for decision-
making, a finding that is supported by earlier literature [35]. 
In line with the variations of SBR assessments reported in 
literature [8, 9], there was no consensus on the best way 
to perform SBR measurements; variations considered were 
the individual target versus the direct surrounding rim of 
tissue, or all the targets versus a distant low-intensity tissue 
(Fig. 3B). As SBRs are the driving factor for a surgeon’s 
ability to isolate a target from its background environment, 
one can question the value of measures that rely on SBRs 
based on distant low-intensity tissue. Although in current 
clinical practice the ex vivo SBR is often taken into account 
[32, 36], it was agreed that the SBR should be measured 
in vivo (median 8.0). There was a preference for SBR > 2 
as cutoff for detection, and it was mutually understood there 
is a need to standardize the way SBRs are measured and 
reported. Hence, it seems more studies are required that 
address the role of SBR values during PSMA-targeted 
surgery. During primary tumor resection, background sig-
nal coming from the intestines was considered acceptable 
(median 7.0). On background signal coming from urine, 
however, no consensus was reached (median 4.0, DI = 1.36). 
Here, one should realize that urine can contaminate the oper-
ating field during prostatectomy [37]. It should be noted 
that literature on PSMA-targeted surgery rarely describes 
the idea, development, exploration, assessment, and long-
term study (IDEAL) framework criteria [4, 38]. Logically, 
adopting the IDEAL criteria would improve standardization.

Before the individual PSMA-targeted surgery strategies 
put forward in feasibility studies can be accepted as valid 
treatment option, individual tracers and modalities need to 
be independently analyzed, preferably in prospective ran-
domized controlled trials (RCTs). Multicenter RCTs with 
identical procedures (median 9.0), or with the same proce-
dure but different tracers (median 8.0), and different modal-
ities (median 7.0) were considered valuable. There was 
strong consensus that clinical data acquisition needs to be 
standardized (median 8.0). The panel participants remained 
inconclusive, however, on whether the data that is gathered 
on one specific PSMA targeting tracer provides sufficient 
evidence to support the use of alternative PSMA targeting 
tracers for the same indication (median 5.0, DI = 0.97). Fur-
ther studies are thus required to define how, e.g., higher dose 
fluorescence approaches [17] relate to micro-dosing based 
radioguided approaches [7, 21, 39].

One performance aspect that was considered too early 
to investigate is the learning curve. This is because only a 
very limited selection of the participants had enough clini-
cal experience to define which metrics define procedural 
proficiency. In line with the consensus on the value of 
dexterity and decision-making analysis, studies are now 
emerging on technologies that can objectively assess these 
features during PSMA-targeted surgery [40]. Following 
further growth of performance assessment technologies, 
the impact of learning curves on PSMA-targeted surgery 
could be addressed in future consensus activities.

Conclusions

While conducted at an early phase in clinical implementa-
tion, the present Delphi consensus project provides guidance 
for clinicians and researchers that have an interest in pursu-
ing PSMA as a surgical biomarker in PCa. Key stakeholders 
from urology, nuclear medicine, research, and industry, with 
experience in PSMA-targeted surgery, were involved. As the 
different participants often applied the technology in a dif-
ferent setting (e.g., primary vs salvage surgery) or using dif-
ferent technologies (e.g., radio- or fluorescence-guided sur-
gery), a balanced view of the field could be provided. This 
project demonstrated areas of consensus, identified disagree-
ments, highlighted ongoing knowledge gaps, and revealed 
unanswered clinical needs. Consensus indicated that PSMA-
ligand PET/CT is ideally undertaken within 1 month before 
surgery. The preferred time between injection of tracer and 
surgery seems to be 16–20 h. The timing should, however, 
be determined per tracer, imaging signature, and in relation 
to the pharmacokinetics and dosing. In vivo guidance and 
SBR measurements are preferred, with an additional value 
of ex vivo confirmation. Looking at indication, the strongest 
consensus was found for the use of PSMA-targeted guidance 
in nodal surgery outside of the template, independent of pri-
mary or salvage setting. As imaging modality, a hypothetical 
hybrid combination of gamma- and fluorescence guidance 
yielded the strongest consensus. The answers also clearly 
indicated knowledge gaps in areas such as Cerenkov, the 
use of beta-emission, or their combination (high percent-
ages of “cannot answer”), suggesting more education and 
research are needed to assess the value of these unconven-
tional approaches. Regarding the value of PSMA as bio-
marker in surgical margin assessment, the view was neutral 
or inconclusive. Again, indicating more evidence is needed 
before widespread clinical implementation is pursued. For 
gathering evidence, the field should move beyond feasibility, 
and future emphasis should be on well-designed RCTs with 
the same procedures using standardized values and relevant 
endpoints to improve outcomes in patients receiving surgical 
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treatment for their PCa. This Delphi consensus project pro-
vides a valuable reference by addressing clinical needs and 
recommendations for research and clinical trials.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00259-​023-​06524-6.
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