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Ten years of gadolinium retention 
and deposition: ESMRMB‑GREC looks backward 
and forward
Aart J. van der Molen1*   , Carlo C. Quattrocchi2   , Carlo A. Mallio3,4   , Ilona A. Dekkers1    for the European 
Society of Magnetic Resonance in Medicine, Biology Gadolinium Research, Educational Committee (ESMRMB-
GREC) 

Abstract  In 2014, for the first time, visible hyperintensities on unenhanced T1-weighted images in the nucleus 
dentatus and globus pallidus of the brain were associated with previous Gadolinium-based contrast agent (GBCA) 
injections and gadolinium deposition in patients with normal renal function. This led to a frenzy of retrospective 
studies with varying methodologies that the European Society of Magnetic Resonance in Medicine and Biology 
Gadolinium Research and Educational Committee (ESMRMB-GREC) summarised in 2019. Now, after 10 years, 
the members of the ESMRMB-GREC look backward and forward and review the current state of knowledge 
of gadolinium retention and deposition.

Clinical relevance statement  Gadolinium deposition is associated with the use of linear GBCA but no clinical symp-
toms have been associated with gadolinium deposition.

Key Points    
• Traces of Gadolinium-based contrast agent-derived gadolinium can be retained in multiple organs for a prolonged time.

• Gadolinium deposition is associated with the use of linear Gadolinium-based contrast agents.

• No clinical symptoms have been associated with gadolinium deposition.

Keywords  Contrast media, Gadolinium, Magnetic resonance imaging, Brain, Body

Introduction
Gadolinium-based contrast agents (GBCA) are routinely 
used in patients undergoing magnetic resonance imaging 
(MRI) to enhance image contrast and thereby improve 
the detection and characterisation of lesions. Since their 
introduction in 1988, an estimated 750 million doses 
have been delivered and the current estimated use is 59 
million doses per year (Bayer AG estimates based on 
various internal and external data, 2023 [1–3]). Overall, 
30–45% of the MRI scans have used GBCA, with high 
contribution by Neuroradiology (~40%) and Cardiovas-
cular Radiology (~20%) (Bayer AG estimates, based on 
various internal and external data, 2023).
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Gadolinium deposition in the brain was first described 
in 2014. It was suggested that the retrospectively 
observed hyperintensity of the dentate nucleus (DN) 
and the globus pallidus (GP) relative to the pons (i.e., 
dentate nucleus to pons (DNP) ratio) on unenhanced 
T1-weighted (T1w) images of a population of patients 
with brain tumours was related to repeated administra-
tions of linear GBCA [4]. Almost simultaneously, a Euro-
pean group reported similar findings on unenhanced 
T1w brain images after multiple injections of gadodi-
amide in patients with multiple sclerosis and in patients 
with brain metastases [5].

Of interest, a study on multiple sclerosis (MS) 
patients in 2009 already reported on hyperintensity of 
the DN on unenhanced T1w images in 23/119 patients. 
All patients had clinical symptoms of secondary pro-
gressive MS, and at the time the study did not associate 
this finding with previous contrast-enhanced MRI with 
linear GBCA [6].

GBCA basics
A basic understanding of GBCA physicochemistry, trans-
metallation, and elimination is needed for understanding 
gadolinium deposition. For more detailed information 
see the Online Supplement to this article.

GBCA exploits the highly paramagnetic gadolinium 
(Gd), which shortens T1 and T2 of tissues, leading 
to increased signal intensity (SI) on T1w images (and 
reduced SI on T2-weighted (T2w) images).

Gadolinium (Z = 64 and MW = 157.25 g/mol) is an ele-
ment from the Lanthanide family of elements that has the 
largest possible total spin (S = 7/2), and consequently a 
large spin magnetic moment [7]. The efficiency of T1w 
contrast agents in aqueous solutions is determined by 
their relaxivity r1 (r1 · [C] = 1 / ΔT1), which depends on 
temperature, field strength, and type of solution.

Unchelated Gd3+ ions are toxic because the ion has 
an ionic radius (107.8 pm) close to the ionic radius of 
Ca2+ (114 pm) and can bind to Ca2+ ion channels and 
Ca2+-dependent proteins such as metalloenzymes or 
messenger proteins like calmodulin or calexcitin. To 
avoid this potential toxicity, the Gd3+ ions must be tightly 
bound as a chelate. In Europe, such ligands have a mac-
rocyclic (DOTA in gadoterate, BT-DO3A in gadobutrol, 
HP-DO3A in gadoteridol) or linear (BOPTA in gado-
benate; EOB-DTPA in gadoxetate) structure.

The stability of the gadolinium-ligand complex can be 
described by several constants. The thermodynamic sta-
bility constant Ktherm describes the affinity of Gd for the 
ligand at pH = 14.

For biological systems, the conditional thermodynamic 
stability constant Kcond is more appropriate. This charac-
terises the affinity of gadolinium for ligands in aqueous 

media under physiologic conditions (pH = 7.4). The 
kinetic stability describes the kinetic rate of the dissocia-
tion of the ML complex under acidic conditions at pH = 
1. The kinetic stability is in vivo the most important sta-
bility parameter [8].

Transmetallation is the exchange between Gd3+ and 
other metal ions M+ and depends on the stability of the 
chelating ligand. Gd3+ ions can be removed from the 
chelate by several ions like Zn2+, Cu2+, and Ca2+. When 
Gd3+ is released, it can form insoluble toxic Gd3+ com-
pounds like GdPO4 or Gd2(CO3)3 [8].

After intravenous administration, extracellular GBCA 
is excreted by the kidneys with an early elimination half-
life < 2h in patients with normal renal function, while 
> 95% of the GBCA is cleared from the body within 12 
hours; both are similar for linear and macrocyclic GBCA. 
Hepatobiliary GBCA has additional intracellular tran-
sient uptake and hepatic excretion into the biliary tree. In 
patients with severely reduced renal function (estimated 
glomerular filtration rate (eGFR) < 30 ml/min/1.73 m2) 
this early elimination half-life can increase up to 30h [9], 
which can increase the likelihood of transmetallation. 
A review of pharmacokinetic data showed the presence 
of a deep compartment of distribution with long-lasting 
residual excretion. So far, the exact components of this 
deep compartment are unknown. This long-lasting excre-
tion is faster for macrocyclic GBCA and is correlated to 
the higher thermodynamic stability and differences in 
transmetallation [10].

Gadolinium deposition in the brain
Extracellular linear GBCA
Preclinical studies in rat brains have highlighted the 
occurrence of in vivo dechelation of Gd3+ ions from less 
stable GBCA, regardless of the presence of renal dysfunc-
tion and with a clear dose-effect relationship. All quan-
tities were in the nmol /gram dry tissue range. It has 
also been shown that differences exist in the amount of 
total gadolinium retained in the brain between different 
GBCA compounds [11–14].

The use of linear extracellular GBCA led to visible 
changes in SI ratios and measurable Gd depositions in 
the rat and dog brains [15–18]. Most depositions were 
in perivascular foci in the DN and GP [15], with evi-
dence of co-localisation to parenchymal iron [18]. The 
amount of deposition in rat brains occurred independ-
ent of age or sex [17]. Local blood-brain barrier disrup-
tions did not lead to an increase in T1 SI ratios or Gd 
deposition [19]. Active inflammation showed higher Gd 
concentration in inflamed areas in mouse brains [20], 
while the presence of diabetes led to lower brain con-
centrations [21]. There was a decreased concentration 
over time in all brain regions, but long-term retention 
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over 1 year occurred preferentially in the rat DN [16]. 
Despite DN and GP being the brain structures mostly 
involved by Gd deposition (Figure 1), it should be men-
tioned that Gd was also suggested to be deposited in 
other brain areas including pulvinar thalami, pons, 
frontal lobe cortex and white matter, and cerebellar 
cortex and white matter, mainly at the level of capil-
lary endothelium and neural interstitium [18, 22, 23]. 
In addition, increased T1 signal intensity of the ante-
rior pituitary gland, notably not lined by blood–brain 
barrier, has also been reported after serial exposure to 
extracellular linear GBCA (Figure 2) [24, 25].

Preclinical long-term studies have shown that for lin-
ear GBCA a large portion of gadolinium was retained in 
the brain, with binding of soluble Gd to macromolecules. 
For macrocyclic GBCA only traces of the intact chelated 
gadolinium were consistently reported, with complete 
washout over time [26, 27].

After the initial reports, a plethora of small ret-
rospective studies was published. In the ESMRMB 
Gadolinium Research & Education Committee (ESM-
RMB-GREC) systematic review of these, increased SI in 

the dentate nucleus and or globus pallidus was found for 
linear GBCA, but no increases for macrocyclic GBCA, 
even after large doses [28].

The ESMRMB-GREC systematic review [28], but also 
a review of animal studies [29], showed that there was a 
large variety in sequence types and evaluation method-
ologies. The main problem is that increased SI ratios at 
unenhanced T1w MRI are a poor biomarker for gadolin-
ium deposition, as SI ratios do not have a linear relation-
ship with Gd concentration and are highly dependent on 
the MRI parameters used during acquisition and tissue 
gadolinium speciation. Absolute signal intensity (in arbi-
trary units) in MRI depends on many MRI parameters 
such as field strength, sequence type/parameters, coil 
sensitivity/filling factor, coil tuning/matching drift, etc. 
Signal intensities, or changes thereof, do not reflect true 
changes in Gd content [3, 28].

Intact GBCA doesn’t cross the intact blood-brain bar-
rier. It is now believed that GBCA can reach the cerebro-
spinal fluid (CSF) via the choroid plexus and ciliary body 
and can reach the brain interstitium via the glymphatic 
system along perineural sheaths and perivascular spaces 

Fig. 1  Axial (A, C) and sagittal (B, D) T1-weighted images. Forty-seven-year-old male with multiple sclerosis previously exposed to 14 intra-venous 
injections of gadodiamide. Globus pallidus and dentate nucleus hyperintensity on unenhanced T1-weighted images due to gadolinium deposition 
(arrows in A–D). Faint T1 hyperintensity of the pulvinar thalami is also seen (arrowheads in A)
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of penetrating cortical arteries [30]. It has been pointed 
out that all GBCA enter the cerebrospinal fluid glym-
phatic pathway through these anatomical structures not 
lined by the blood-brain barrier, then, transmetallation 
with other metals, such as Zn2+, Cu2+, and Fe3+, might 
take place at the extra-vascular space thanks to the high 
affinity for gadolinium-binding chelators [31, 32]. The 
reason for preferential Gd retention in particular brain 
nuclei or regions is unknown and remains an intriguing 
question. It might depend upon poorly understood ana-
tomical peculiarity, vulnerability, or molecular frame-
works occurring at specific brain structures. Indeed, the 
glymphatic system may serve as a pathway for Gd deche-
lated from linear GBCA but also serves as a physiological 
clearance route of more stable GBCA [31, 32].

GBCA distributed into the CSF cavity via the glym-
phatic system may remain in the eye or brain tissue for 
a longer duration compared to GBCA in systemic cir-
culation. The potential retention of GBCA in the aque-
ous humor of the anterior chamber has been observed 
in children due to post-injection leakage [33]. Another 
paper from the same group reported signal intensity 

increase in various cerebral fluid spaces, including 
the vitreous body of the eye, on GBCA-enhanced T2w 
images, obtained at three hours post-injection in neuro-
logically healthy adults [31].

Hepatobiliary linear GBCA
The use of gadobenate and gadoxetate has been restricted 
by the European Medicines Agency (EMA) to hepatobil-
iary MRI indications. The approved dose of gadoxetate 
is 0.025 mmol/kg and of gadobenate 0.05 mmol/kg, less 
than the dose of linear extracellular GBCA. However, 
outside the EU gadobenate is used for body MRI indica-
tions in doses up to 0.1 mmol/kg.

In sheep, the level of Gd retention 10 weeks after 
a single dose injection was 14-fold higher for gado-
benate than for gadoterate [34]. In humans, the use of 
gadobenate led to visible SI changes in the brain [35, 
36]. Neuroinflammation led to higher Gd concentra-
tions in the rat brain after gadobenate use [37]. In 
human cadavers, the mean Gd concentration in the 
brain was 3–6 times higher for gadobenate compared 
to gadoterate. From time to GBCA administration to 
death, it was estimated that gadobenate washed out 
over time [38].

In an animal study after gadoxetate administration, 
no visible hyperintensity of the deep cerebral nuclei was 
demonstrated. Gadoxetate had lower cerebellar Gd lev-
els than gadobutrol or gadodiamide [39]. Results of T1 
hyperintensity in humans after gadoxetate administration 
were conflicting [40, 41], and a meta-analysis showed 
significant bias in five included studies in humans, and 
therefore available data on gadolinium deposition for 
gadoxetate is incomplete [42].

Macrocyclic GBCA
There was a consistent finding that cumulative dosing 
of macrocyclic GBCA did not lead to visible changes 
in SI on T1w images or changes in T1 relaxation times 
in rat and human brains [29, 32, 43, 44], but not in all 
studies [45].

In comparative studies in rats, macrocyclic GBCA 
led to measurable Gd concentrations at 1–5 weeks after 
administration, which were lower for gadoteridol com-
pared to gadoterate and gadobutrol, independent of renal 
function [46]. The GBCA wash-out led to a 3–5-fold 
reduction from 1 to 5 weeks which was more rapid for 
gadoteridol. The levels at 5 weeks ranged from 0.14 to 
0.30 nmol Gd/g tissue [47, 48].

R1 relaxometry and Quantitative Susceptibility Mapping 
(QSM)
MRI R1 relaxometry techniques [49] and QSM [50] are 
more sensitive tools for biometal imaging and allow the 

Fig. 2  Slightly greater T1 signal intensity of the anterior pituitary 
gland in sagittal T1W image acquired at post-injection time delay of 1 
day and only 1 previous GBCA exposure (arrow in A) with respect 
to a similar image acquired at post-injection time delay of 180 days 
and four previous GBCA injections (arrow in B). The lower panel 
shows the decreasing trend of normalised ratios from minimum 
to maximum post-injection time delay of each individual patient.  
Reproduced from reference 24 under the Creative Commons 
Attribution 4.0 International License (http://​creat​iveco​mmons.​org/​
licen​ses/​by/4.​0/)
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quantitative evaluation of transchelation of Gd from 
GBCA to competing macromolecules [51, 52]. After 
serial administration of gadobutrol relaxometry did not 
show R1 relaxometry changes in the DN [53, 54], but sus-
ceptibility changes on QSM could be demonstrated in 
the GP [52] or DN [55]. Brain radiotherapy can weaken 
the blood-brain barrier, which might lead to an increase 
in Gd accumulation with increased R1 relaxation in the 
DN [56]. Despite the exact contribution of radiotherapy 
remains somehow controversial, it is likely that brain 
irradiation is a co-factor enhancing the effect of GBCA 
on T1 signal intensity on unenhanced T1w images [57]. 
Indeed, in retrospective studies using SI ratios such as the 
ratio between globus pallidus and thalamus, the denomi-
nator can also be affected by gadolinium retention, and 
the choice of the reference region is thus crucial. Quan-
titative MRI approaches, such as R1 relaxometry or QSM 
can avoid this problem.

Speciation of Gadolinium deposition in the brain
It is unclear what forms are responsible for the T1w sig-
nal increase. In the rat brain, three different chemical 
forms must be distinguished: intact GBCA, Gd bound 
to macromolecules (e.g., ferritin), and insoluble Gd-salts 
[58]. Intact GBCA was found for linear and macrocyclic 
GBCA, but the other forms were only for linear GBCA. 
As precipitated gadolinium does not induce any change 
in MRI signal, it is likely that the Gd bound to macromol-
ecules is responsible for the visible T1w hyperintensity in 
clinical MRI [59].

In speciation analyses in rats exposed to intravenous 
gadobenate and gadodiamide, a combination of intact 
GBCA, complexes of dissociated Gd3+ bound to ferritin, 
and Gd3+ bound to other macromolecules was found. 
Incomplete column recovery suggested the presence of 
labile complexes of dissociated Gd3+ with other endog-
enous molecules. In addition, Gd was present in insolu-
ble amorphous spheroid structures of 100–200 nm. Gd 
was consistently co-localised with calcium and phosphor, 
suggesting a composition of mixed Gd/Ca-phosphates 
[60, 61].

Gadolinium deposition in the body
Abdominal organs
Most of the data regarding the abdominal organs is still 
largely investigational and no firm conclusions can be 
drawn yet.

In animal studies, residual Gd is also present in abdom-
inal tissue samples [46, 62–66]. While deposition in the 
brain was only 2–7 μg Gd/g tissue, the amounts in other 
organs were much higher for kidney, liver, and spleen. 
The level was highest for gadodiamide [62]. In mice, high 

doses were found in the kidneys after high-dose gadodi-
amide (7.49 nmol/g tissue) or gadobutrol (16.36 nmol/g 
tissue) administration, but no spleen enlargement was 
found after GBCA administration [63]. In subtotally 
nephrectomised rats, higher Gd levels 28 days after 
administration of gadobutrol or gadoterate versus gado-
teridol were determined in the kidneys and liver. After 56 
days, lower Gd levels were determined for all GBCA [46].

In sheep, concentrations were 3–21 times higher 
for linear than for macrocyclic GBCA. Concentra-
tions for kidney, liver, and spleen were for gadodiamide 
879/780/137 ng/g, for gadobenate 179/157/16 ng/g, and 
for gadobutrol 86/35/6 ng/g tissue, respectively. No tis-
sue alterations were detected [67]. In a study on rats, Gd 
was least retained after administration of gadoxetate, fol-
lowed by gadobutrol and gadodiamide when clinically 
recommended doses were administered. Most of the 
retained Gd was excreted within 4 weeks after GBCA 
administration [68].

Administration of macrocyclic GBCA also led to 
measurable Gd concentrations in the liver and kidney 
4 weeks after administration, which were lower for 
gadoteridol compared to gadoterate and gadobutrol. 
The levels for the liver ranged from 0.36 to 1.22 nmol 
Gd/g tissue and for the kidney 39–294 nmol Gd/g tis-
sue [58].

There is a paucity of data from human studies. Reduced 
T1 values in the renal cortex and medulla have been 
demonstrated after 7 days of a single dose of gadobutrol 
in subjects with normal renal function using T1 map-
ping [69]. This indicates the prolonged presence of small 
amounts of gadobutrol in the kidney after single-dose 
administration, suggesting delayed elimination of GBCA 
(Figures 3 and 4).

Gd deposits have been associated with iron overload in 
the livers of pediatric stem cell transplantation patients 
with normal renal function [70].

Bone
Lanthanide metals (gadolinium, samarium, europium, 
and cerium) have long been known to deposit in bone 
tissues and have effects on osteoblasts and osteoclasts, 
although the exact mechanisms are not well understood 
[71]. Gadolinium deposits have been found in samples of 
bone tissues of humans at higher concentrations than in 
brain tissue after administration of linear and macrocy-
clic GBCA, whereby linear GBCA deposits 4 to 25 times 
more than macrocyclic GBCA [66, 72, 73].

Bone residence time for macrocyclic GBCA (up to 
30 days) is much shorter than for linear GBCA (up 
to 8 years) [10, 72]. The bone may serve as a storage 
compartment from which Gd is later released in the 
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body [74]. It is postulated that the long-term reser-
voir of gadolinium in bones might implicate that some 
patients with high bone turnover (post-menopausal 
women, osteoporosis) may be more vulnerable to gad-
olinium deposition in bone [72].

Again, human data is scarce. In a cadaver study, 80 
days after last GBCA exposure the mean Gd concen-
tration in bone and skin was 2.9–4.4 times higher for 
gadobenate compared to gadoterate. Bone was the 
primary Gd retention site with levels of 23–100 ng/g 

tissue/mmol GBCA, while the Gd elimination rate was 
high for skin [38].

Skin
Gadolinium deposition in the skin has been dem-
onstrated ever since the association of GBCA with 
nephrogenic systemic fibrosis (NSF) in 2006. In rat skin, 
administration of macrocyclic GBCA led to measurable 
Gd concentrations 1–5 weeks after administration, which 
were lower for gadoteridol compared to gadoterate and 

Fig. 3  Example images of the right kidney from a healthy volunteer obtained at the first scan session. a T1 source image at multiple inversion 
times (in msec) after motion correction and the masks of the cortical and medullary segmentation. b Calculated corresponding T1 map. The color 
bar indicates T1 relaxation time in msec. The cortex and medulla can easily be discriminated thanks to the higher T1 in the medulla compared 
to the cortex.  Reproduced from reference 69 under the Creative Commons Attribution 4.0 International License (http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/)

Fig. 4  a Boxplots summarising the T1 values in the gadolinium (n = 16) and control group (n = 5) at baseline and follow-up. b Boxplots 
of the ΔT1 for cortex and medulla and both for the gadolinium and control group. ΔT1in the gadolinium group differed significantly from ΔT1 in 
the control group, both in the cortex (p < 0.001) and medulla (p = 0.001). Reproduced from reference 69 under the Creative Commons Attribution 
4.0 International License (http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/)
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gadobutrol. The levels in the skin were initially high, but 
after washout levels at 5 weeks ranged from 0.31 to 0.53 
nmol Gd/g tissue [47, 48].

In skin biopsies of NSF patients, gadolinium was 
found along collagen bundles but also as insoluble 
apatite-like deposits, suggesting dechelation [75, 76]. 

Table 1  Reviewed studies describing findings of gadolinium retention/deposition for various GBCA, stratified by involved organs

Contrast agent Organs involved Major findings References

Linear GBCA

  Gadodiamide Brain, pituitary gland Hyperintensity in DN and GP on unenhanced T1w (humans) 4,5

Hyperintensity in DN and GP on unenhanced T1w (animals) 11,12,13,14,15,16,17,35,68

No ultrastructural or metabolic changes (animals) 14,15,16,17

Hyperintensity in anterior pituitary gland on unenhanced T1w (humans) 24,25

Persistent hyperintensity in DCN on T1w after 12 months (animals) 26,27

25-40% washout of brain within 12 months (animals) 26,27

Increased R1 relaxation rate (humans) 44

No increase in T1 hyperintensity after radiotherapy (animals) 58

Gd present as intact chelate, soluble macromolecules, insoluble forms (animals) 59,60

Higher SI changes in DN on unenhanced T1w than macrocyclic GBCA (animals) 63

Liver, spleen, kidneys Higher Gd levels in liver, spleen, kidneys than macrocyclic GBCA (animals) 63,67,69

Higher level of Gd in spleen than gadobutrol (animals) 64

More kidney fibrosis, amyloid, vasocongestion than gadoterate (animals) 65

High Gd levels in liver and kidney (animals) 68

Skin, bone Very long bone residence time (humans) 10

Higher level Gd in skin and bone than gadoterate (animals) 67,76

Higher Gd levels in femoral bone than gadoteridol and controls (humans) 73,74

Dermal thickening in multiple sclerosis patients 89

  Gadopentetate Brain Not significant hyperintensity in DN and GP on unenhanced T1w (animals) 11

Hyperintensity in DN and GP on unenhanced T1w (animals) 13

10-40% washout of brain within 12 months (animals) 27

Hyperintensity in DN and GP on unenhanced T1w (humans) 36

No increase in Gd levels after radiotherapy (animals) 19

Increased Gd levels after brain inflammation (animals) 20

Increased R1 relaxation rate (humans) 44

Gd present as intact chelate, soluble macromolecules, insoluble forms (animals) 59

Liver, spleen, kidneys Higher Gd levels in liver, spleen, kidneys (animals) 66

Skin, bone Long bone residence time (humans) 10

  Gadobenate Brain Hyperintensity in DN and GP on unenhanced T1w (animals) 11,13,35,63,68

Hyperintensity in DN and GP on unenhanced T1w (humans) 36,37,39

Increased Gd levels after abdominal sepsis (animals) 38

Gd present as intact chelate, soluble macromolecules, insoluble forms (animals) 59

Higher SI changes in DN on unenhanced T1w than macrocyclic GBCA (animals) 63

Liver, spleen, kidneys Higher Gd levels in liver, spleen, kidneys than macrocyclic GBCA 63,68

High Gd levels in liver and kidney (animals) 68

Bone, Skin Intermediate bone residence time (humans) 10

Higher Gd retention in bone than gadoteridol (humans) 39

Intermediate Gd levels in skin (animals) 76

  Gadoxetate Brain No hyperintensity in DN and GP on unenhanced T1w (animals) 40

No hyperintensity in DN and GP on unenhanced T1w (humans) 41,43

Hyperintensity in DN and GP on unenhanced T1w (humans) 42,43

Liver, spleen, kidneys Lower levels Gd in liver, spleen, kidneys than gadodiamide or gadobutrol 
(animals)

69

Skin, bone Intermediate bone residence time (humans) 10
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After linear GBCA, gadolinium deposits were found 
up to 40–180 times more frequently than after macro-
cyclic GBCA, histologic changes are more extensive, 
and products of dechelation of GBCA can be found 
[66, 77]. Gd is also deposited in the skin of patients 
with normal renal function after high cumulative 
GBCA doses [78]. With normal renal function ‘gado-
linium-associated plaques’ have been described after 
gadodiamide, suggesting that Gd deposition in the 

skin after linear GBCA might give clinically relevant 
symptoms [79].

Possible clinical symptoms of gadolinium deposition
Despite the retention or even deposition of Gd in various 
tissues, no histopathologic changes in rat brains could 
be found [80], nor tissue alterations in MS patients [81]. 
In addition, no effect on sensorimotor or behavioural 

Table 1  (continued)

Contrast agent Organs involved Major findings References

Macrocyclic GBCA

  Gadoteridol Brain More than 65% washout of brain within 12 months (animals) 27

No detectable Gd levels in brain (animals) 35

Lower level Gd in brain than gadoterate and gadobutrol (animals) 47,48,49

Gd only present as intact chelate (animals) 60

Lower T1w SI changes in DN on unenhanced T1w than linear GBCA (animals) 63

Liver, spleen, kidneys Lower level Gd in kidney and/or liver than gadoterate and gadobutrol (animals) 47,48

Lower Gd levels in liver, spleen, kidneys than linear GBCA (animals) 63

Skin, bone Lower level Gd in skin than gadoterate and gadobutrol (animals) 48,49

Lower Gd levels in femoral head bone than gadodiamide (humans) 73,74

Intermediate bone residence time (humans) 10

  Gadoterate Brain No hyperintensity in DN and GP on unenhanced T1w (animals) 11,12,13,17

More than 85% washout of brain within 12 months (animals) 26,27

No detectable Gd levels in brain (animals) 35

Higher level Gd in brain than gadoteridol (animals) 47,48,49

Gd only present as intact chelate (animals) 59

Liver, spleen, kidneys Higher level Gd in kidney and/or liver than gadoteridol (animals) 47,48

Less kidney fibrosis, amyloid, vasocongestion than gadodiamide (animals) 65

Lower level Gd in liver than gadodiamide (animals) 67

Skin, bone Higher level Gd in skin than gadoteridol (animals) 48,49

Lower level Gd in skin and bone than gadodiamide (animals) 67,76

Short bone residence time (humans) 10

  Gadobutrol Brain No hyperintensity in DN and GP on unenhanced T1w (animals) 11

More than 85% washout of brain within 12 months (animals) 27

No detectable Gd levels in brain (animals) 35

Higher level Gd in brain than gadoteridol (animals) 47,48,49

Higher magnetic susceptibility in GP (humans) 53

Increased Gd accumulation by QSM after radiotherapy (humans) 57

Gd only present as intact chelate (animals) 59

Lower SI changes in DN on unenhanced T1w than linear GBCA (animals) 63

Liver, spleen, kidneys Higher level Gd in rat kidney and/or liver than gadoteridol (animals) 47,48

Lower Gd levels in liver, spleen, kidneys than linear GBCA (animals) 63

Lower level of Gd in spleen than gadodiamide (animals) 64

Decreased renal T1 on unenhanced T1w (humans) 70

Skin, bone Short bone residence time (humans) 10

Lower level Gd in skin than linear GBCA (animals) 11,76

Higher level Gd in skin than gadoteridol (animals) 48,49

Abbreviations: DCN = Deep cerebral nuclei; DN = Dentate Nucleus; GBCA = Gadolinium-based contrast agent(s); Gd = gadolinium; GP = Globus Pallidus; QSM = 
Quantitative Susceptibility Mapping; SI = Signal intensity; T1w = T1-weighted
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functions could be demonstrated for either linear or mac-
rocyclic GBCA in mice [82] or in humans [83]. Gadolin-
ium retention was not related to symptom worsening in 
relapsing MS patients [84, 85] nor to Parkinsonism [86].

For linear GBCA, pain hypersensitivity has been seen 
in rats [87]. In MS, increased relaxation rates may be 
associated with lower information-processing speed 
[43] or mild effects on cerebellar speech or verbal flu-
ency [43, 81], but these couldn’t be fully attributed to 
GBCA. Dermal thickening of the scalp skin has been 
reported in MS patients with normal renal function 
exposed to linear GBCA as compared to a matched 
group of patients exposed to macrocyclic GBCA, thus 
suggesting subclinical chronic effects of gadolinium 
retention on the skin [88].

The European Medicines Agency ruling
The described association between NSF and exposure 
to linear GBCA in 2006 resulted in a switch to macrocy-
clic GBCA only (mostly gadoterate or gadobutrol) use in 
many European hospitals from 2007 onwards.

After publications describing increased signal inten-
sities in the brain nuclei on unenhanced T1-weighted 
imaging after multiple linear GBCA exposures and 
post-mortem studies revealing the presence of small 
amounts of gadolinium in neural tissues, the EMA 
instituted a pharmacovigilance referral procedure (arti-
cle 31). This led to the withdrawal of EU market author-
isations of the high-risk linear GBCA gadodiamide 
and gadoversetamide and restricted the use of gado-
pentetate to MR arthrography and gadobenate to liver 
MRI [89, 90]. In Europe, only macrocyclic GBCA are 
available for general use, while gadoxetate and gado-
benate are available for liver MRI (Table 1).

Conclusions
After 10 years, even though there is evidence that GBCA 
are retained and that sometimes Gd is deposited in tis-
sues, there is no evidence of clinical symptoms nor harm 
associated with Gd deposition in the brain and body. In 
practice, clinical radiologists ensure a strict indication 
for contrast-enhanced MRI and only use EMA-approved 
or American College of Radiology (ACR) grade II GBCA 
in all patients to minimise Gd deposition. But there are 
still many knowledge gaps about Gd metabolism and Gd 
deposition for which an international research agenda is 
important. We keenly await the results of ongoing studies 
that have been issued by the Federal Drug Authority on 
the joint contrast media manufacturers. In the meantime, 
the ACR/NIH/RSNA Agenda remains a good guidance 
document to target future research [3].
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