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Narcolepsy type 1 (NT1) is caused by a loss of hypocretin/orexin transmission.
Risk factors include pandemic 2009 H1N1 influenza A infection and immuni-
zationwith Pandemrix®. Here, we dissect diseasemechanisms and interactions
with environmental triggers in amulti-ethnic sample of 6,073 cases and 84,856
controls.We fine-mappedGWAS signalswithinHLA (DQ0602,DQB1*03:01 and
DPB1*04:02) and discovered seven novel associations (CD207, NAB1, IKZF4-
ERBB3, CTSC, DENND1B, SIRPG, PRF1). Significant signals at TRA and
DQB1*06:02 loci were found in 245 vaccination-related cases, who also shared
polygenic risk. T cell receptor associations inNT1modulated TRAJ*24, TRAJ*28
and TRBV*4-2 chain-usage. Partitioned heritability and immune cell enrich-
ment analyses found genetic signals to be driven by dendritic and helper
T cells. Lastly comorbidity analysis using data from FinnGen, suggests shared
effects between NT1 and other autoimmune diseases. NT1 genetic variants
shape autoimmunity and response to environmental triggers, including
influenza A infection and immunization with Pandemrix®.

The sleep disorder type 1 narcolepsy (NT1) affects ~0.03% individuals
across ethnic groups and populations1–3 and onset manifestationmost
commonly occurs in childhood or adolescence. As one of the symp-
toms, cataplexy, is almost entirely specific to NT1, diagnosis is clinical,
although sleep recordings are performed for confirmation. Symptoms
are caused by the autoimmune destruction of hypocretin/orexin
(HCRT) neurons in the hypothalamus4. NT1 is 97% associatedwithHLA-
DQA1*01:02~ DQB1*06:02, alleles encoding the DQ heterodimer
DQ06025,6. Other predisposing loci include T-cell receptor (TCR) loci
TRA and TRB, a type 1 interferon response receptor gene, IFNAR1, as
well as other autoimmune-associated genes (CTSH, P2RY11, ZNF365,
and TNFSF4)7–10. Recent studies identified HCRT, notably C-amidated
fragments of secreted HCRT peptides (HCRTNH2), as CD4+ T-cell
autoantigens11–15.

Triggers of NT1 autoimmunity point to Influenza-A9,16,17 and,
secondarily, Streptococcus pyogenes infections18,19. Onset in children
is abrupt and seasonal peaking between spring and summer16, pre-
sumably following a winter infection. Further, multiple countries
have reported increased incidence of NT1 4–6 months following the

2009H1N1 (pH1N1) “swine flu” pandemic16,17,20. Finally, immunization
with Pandemrix®, a pH1N1 vaccine created to prevent the 2009
pandemic, is an established trigger for NT117,20,21. Increased incidence
following Pandemrix® was first seen in Northern Europe, with inci-
dence in children increasing from 0.79/100,000 to 6.3/100,00021.
Specificity is striking, as increased NT1 was later detected in all
European countries where Pandemrix® was used, whereas countries
using other vaccine brands did not display vaccination-associated
increases in incidence17,20. The reason for the vaccine brand speci-
ficity may involve differences in flu antigen preparations and/or
timing of vaccination when infections peaked in some countries17,20.
Frequency of other autoimmune diseases did not increase following
Pandemrix® vaccination20.

In this study, we characterize novel genetic factors for NT1 across
multiple ethnic groups, performing computational and functional fine
mapping. Our findings establish a compelling pathophysiological
mechanism for the disease that implicate antigen presentation by
DQ0602 to specificCD4+ T cells and subsequentCD8+ T-cell activation,
with applications in the autoimmune disease and vaccination fields.
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Results
GWAS discovers novel risk loci for NT1
5,848 cases and 61,153 controls derived from ten cohorts were used as
the initial discovery GWAS sample (Table S1). We found associations in
HLA (P < 10−216), confirmed previously identified loci (TRA, TRB, CTSH,
IFNAR1, ZNF365, TNFSF4) and found 7 novel loci near CD207, NAB1,
IKZF4-ERBB3, CTSC, DENND1B, SIRPG and PRF1 (Figs. 1A and 2A, B,
Table 1; Supplementary Figs. 1 and 2). We observed that most asso-
ciations were shared across all ethnic groups. Significance between-
cohort heterogeneity was observed with TRA, SIRPG and DENND1B
(Table S2). Finally, as both influenza infections and, in rare cases,
immunization with Pandemrix®, associates with NT120, 245 vaccination
inducedNT1 cases identified in four countries were also studied. In this
sub-sample, we found GWAS significant signals with HLA-DQB1*06:02
and TRA rs1154155, as well as shared polygenetic risk (Table 1 and
Supplementary Fig. 3). The lack of association of other loci is likely due
to the small number of individualswith vaccination-relatednarcolepsy.

Interestingly, GWAS results are unusually rich in missense var-
iants. In addition to HLA polymorphisms, these include a TRAJ24 (F8V)
substitution, polymorphisms in langerin (CD207 N288D and K313I), as
well as variants inCTSC (I453L) andPRF1 (A91V); the last twoare known
hypomorphs involved in autosomal recessive conditions with

abnormal sensitivity to viral infections. Finally, we found that the
effects of some of these variants colocalized between NT1 and type 1
diabetes (CTSH G11R and SIRPG S286L, posterior probability = 1.0).
Functional effects of these missense variants are detailed in Supple-
mentary Data 1 and Supplementary Fig. 2.

Other polymorphisms found in the GWAS and associated with
other autoimmune diseases include ZNF365 (atopic eczema, ankylos-
ing spondylitis, Crohn’s disease, psoriasis, primary sclerosing cho-
langitis, ulcerative colitis, posterior probability = 1.0), TNFSF4 (eczema,
asthma and allergic diseases, posterior probability = 1.0), NAB1 (pri-
mary biliary cholangitis r2 = 0.48, rheumatoid arthritis, r2 = 0.15) and
IKZF4-ERBB (vitiligo and alopecia areata r2 = 0.36) (see Table Supple-
mentary Data 1 and Supplementary Fig. 2 for functional descriptions
and associations).

NT1 shares variants with other autoimmune diseases
Heritability in NT1 is similar to other pediatric autoimmune
diseases22; GCTA estimated observed scale heritability to be
h2SNP[ci] = 0.403 [0.015]. Using a prevalence of 0.03%1,3, we esti-
mate population heritability at h2SNP[ci] = 0.231 [0.0088], con-
sistent with twin studies23. We found that shared heritability was
largest with sleepiness and daytime napping and with autoimmune
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Fig. 1 | Multi-ethnic genetic analysis of NT1. AMulti-ethnic analysis conducted in
6073 cases and 84,856 controls reveals significant associations in 13 loci in addition
to HLA. The x-axis shows genomic location by chromosome and the y-axis shows
–log10P-values. The redhorizontal line indicates the genome-wide significant P-value
threshold of 5 × 10−8. P-values larger than 10−75 were set to 10−75 (HLA locus hasmany
SNPs with P-value < 10−216). Variants are shared at individual level with known auto-
immune traits, with notable exception at variants within the TRA and TRB loci and
variants within CD207 and INFAR1 (see Supplementary Data 1). Raw P-values are
reported using two-sided fixed-effectsmeta-analysis. Multiple testing correction has
been done at genome-wide level so that variants with nominal P-value under 5e-8
were considered statistically significant. B Associated variants are located on chro-
mosome positions that have active eQTLs in blood samples, as evidenced by an
analysis using GARFIELD. Enrichment analysis has been binned by P-value threshold

and raw two-sided P-values are reported. C When using stratified LD score regres-
sion, association within individual blood cell types implicate NK cells, CD4+ T and
CD8+ T cells. Statistically significant enrichment ismarkedwith a line corresponding
to enrichment P-value =0.05 (dashed line) and FDR corrected P-value =0.05 (dotted
line). Raw two-sided P-values are reported and we have show significance also by
false-discovery rate of 0.05 (dotted line). D Global enrichment is seen with auto-
immune traits in general using variants that were genome-wide significant. Raw two-
sided P-values from hypergeometric test are reported. Fig. 2A, B, E: Raw P-values are
reported using two-sided fixed-effects meta-analysis. EOverall enrichment was seen
with MS and SLE using LDSC. F PheWAS with narcolepsy risk variants showed
association across different autoimmune traits. positive beta is depictedwith square
and negative with triangle. For details, see methods.
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traits including psoriasis, multiple sclerosis and systemic lupus
erythematosus in particular (P < 0.05, Table S3, Fig. 1E). We com-
puted enrichment of NT1-associated genes with publicly available
GWAS data at gene and variant level, identifying overlap with
immune and infectious traits such as asthma, type 1 diabetes, pri-
mary biliary cholangitis, plantar warts and hepatitis B (P < 0.001,
Fig. 1D–F and Table S4). Almost all variants identified (ZNF365,
TNFSF4, NAB1, IKZF4-ERBB3, CTSC, DENND1B, SIRPG, and PRF1) are
the same or strongly linked with markers associated with other
autoimmune diseases (Supplementary Data 1).

In case/control studies, NT1 has been associated with various
autoimmune diseases in some24,25, but not all26 studies. For exam-
ple, Chen et al. (2021) found association of narcolepsy with asthma
in the general Taiwanese population27. To further examine if auto-
immune traits are associated with NT1 in epidemiological samples,
we explored association between narcolepsy and autoimmune
diseases and asthma in 342,499 participants of the FinnGen cohort,
retrieving diagnosis of autoimmune diseases, asthma and narco-
lepsy. In this sample, narcolepsy (157 participants) was associated
with psoriasis (OR = 2.29 [1.07–4.90], P = 0.033), hypothyroidism
(OR = 4.61[2.39–8.93], P = 5.19*10−6), rheumatoid diseases
(OR = 2.20[1.00–4.82], P = 0.049), asthma (OR = 4.58[3.04–6.89],
P = 3.45*10−13) and “any” autoimmune disease (OR = 2.07[1.50–2.84],
P = 8.31*10−6). Of note, since DQ0602 is extremely (OR = 0.03)
protective against type 1 diabetes28 and strongly protective (OR =
0.64) against primary biliary cholangitis29; no narcolepsy cases had
these dual pathologies. Taken together, these findings suggest
shared effects between narcolepsy and other autoimmune diseases
at both the epidemiological level and at multiple genetic loci,
modulated by HLA genotypes.

Variants involved in antigenic stimulation and infections
The specific polymorphisms in langerin (CD207) we found asso-
ciated with NT1 have previously been linked to interferon stimulus
and influenza uptake by dendritic cells (DC) (Supplementary Data 1).
Langerin is a type II transmembrane C-type lectin receptor expres-
sed in Langerhans cells, a specialized type of dendritic cells located
exclusively in the respiratory tract and the epidermis, and it recog-
nizes mannose-rich sugars expressed by bacterial, fungal or viral
pathogens, including HIV-1 and Influenza-A (Supplementary Data 1).

Our leading variant, rs3815556G, a rare allele, is in complete
linkage disequilibrium (r2 = 1) with two coding variants, rs13383830C
(N288D) and rs57302492A (K313I) that modulate recognition of
bacterial versus viral antigens. The rare Asp-288/Ile-313 haplotype
has langerin molecules with enhanced affinity for GlcNAc, present in
influenza and other viruses, whereas the other haplotype has higher
affinity for high-mannose structures and fucosylated glycans, as well
as 6SO4-Gal binding activity. This may potentially allow for protec-
tion against a wider range ofmicroorganisms, notably bacterial ones
as well (Supplementary Data 1). The NT1-associated variants may
thus affect disease predisposition by increasing influenza viral (as
opposed to bacterial) uptake and antigen presentation to CD4+

T cells.
In addition to langerin, we identified a regulatory variant near

IL10RB-IFNAR1, rs2096464T. The SNP is a strong eQTL for IFNAR1
expression in various tissues in GTEx. IFNAR1 controls dendritic cell
responses to viral infections, notably Influenza-A. We therefore
examined IFNAR1 expression in DC following H1N1 infection (PR8
delta NS1), finding that the exact NT1 predisposing SNP (rs2096464)
is themajor eQTL for this effect (P = 1.92 × 10−25, beta = 0.140), as well
as for interferon stimulation (P = 10−33, beta = 0.215), as it is in perfect

Fig. 2 | TRA rs1154155 is associated with multiple functional SNPs affecting
TRAJ24 and TRAJ28; TRB lead variant affects TRBV 4-2 usage. ANT1 association
with rs1154155 within the T-cell receptor alpha chain (TRA) locus. BNT1 association
with rs7458379 within the T-cell receptor beta chain (TRB) locus. C The NT1 asso-
ciationwithin the TRA locus spans a region containing ~30TRAJ genes that contains
4 SNPs in almost perfect LD (rs1154155, rs1483979, rs3764159, rs3764160) over a
18 kb region. D Exemplary TCR receptor structure of a TCR containing TCR J24.
rs1483979 encodes a leucine (J24*02) to phenylalanine (J24*01) substitution (F8L)
within the J24 segment. The substitution is projected within the Complementary
Determining Region (CDR) 3 of the corresponding family of receptors, in an area
anticipated to interact directly with the peptide presented by HLA. E Usage of

TRAJ28*01 in 895 individuals shows similar association with NT1 lead variant
rs1154155, with posterior probability of 0.958 between NT1 and increased TRAJ28
usage. F T-cell receptor sequencing in CD4+ Tmemory cells in 60 NT1 patients and
42matched controls confirmed the effect of rs1483979 on usage of TRAJ28*01with
similar effect seen in the NT1 cases. It also shows a decreasing effect of rs1483979C
on TRAJ24 expression, with a ratio of 24 F/L (associated allele over non-associated
allele in ~0.4 in heterozygous subjects, see Supplementary Fig. 5). The center of the
boxplot corresponds to the median corresponding to 50th percentile, the box
indicates the upper and lower bounds of the interquartile range corresponding to
25th and 75th percentile, and themin andmaxvalues correspond to the plus/minus
two interquartile ranges.
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LD with the leading variant for the signal (rs6517159, r2 = 0.93, Sup-
plementary Fig. 4). Taken together, these findings suggest that NT1-
associated variants may affect disease predisposition by increasing
influenza viral (as opposed to bacterial) uptake and antigen pre-
sentation to CD4+ T cells, although additional mechanisms could be
involved.

Fine mapping of multi-loci association in the HLA region
To further fine map the HLA association, we imputed classical HLA
class I (HLA-A, HLA-B, HLA-C) and class II (HLA-DRB1, HLA-DQA1, HLA-
DQB1, HLA-DPA1 and HLA-DPB1) genes using HIBAG30 and HLA
IMP:0231 and examined allele associations with NT1. As expected5,6, the
strongest association was withDQA1*01:02~DQB1*06:02 (DQ0602). To
delineate additional signals, we performed conditional analysis using
stepwise forward regression. We discovered protective associations
with DQA1*01:01 and DQA1*01:03 (OR =0.30, P < 10−15 and OR=0.30,
P < 10−20, respectively) and confirmed predisposing effects of
DQB1*03:01 and DQA1*01:02 across ethnic groups, as shown
before5,6,32,33 (OR = 1.23, P <0.001 and OR= 1.47 P < 1 × 10−6, respec-
tively) (TableS5). Finally, controlling for bothDQB1 andDQA1 effects, a
protective association was seen with the DPB1*04:02 allele (P-value <
10−20), whereas smaller predisposing effects were found with
DPB1*05:01 and at HLA class I with A*11:01, B*51:01, B*35:01 and
B*35:03, and protective association with A*03:01 (P <0.01, Table S5).
Taken together, these findings confirm and extend results from pre-
vious studies6,33 and highlight independent association of both HLA
class I and II alleles with NT1.

Antigen Presentation and T-cell involvement in NT1
We next examined whether associations with NT1 were enriched
genome-wide on specific enhancers using stratified LD score regres-
sion (LDSC) on Epigenome Roadmap cell type and ENTEX tissue-
specific annotations (n = 491 cell and tissue types)34. Partitioned her-
itability by cell type categories was enriched in hematopoietic cell lines
(observed h2 at hematopoietic cells = 0.24[0.11], P = 0.018) and after
partitioning the signal into specific cell subsets, ten cell types showed
enrichment with P < 0.005. These were either helper or cytotoxic
T cells or NK cells (Fig. 1C and Supplementary Data 2). As LDSC does
not keep information on the HLA region due to ambiguous linkage
disequilibrium, we next examined the contribution of different
immune cell types using enrichment analysiswith genes close toGWAS
significant variants. This analysis further supported the enrichment
with CD4+ T cells, but also implicated antigen-presenting cells such as
monocytes and dendritic cells (P-enrichment < 0.01, Table S6),
reflecting, in addition to langerin and IFNAR1, expression of GWA
significant, independently associated HLA-associated genes DQB1 and
DPB1 (Supplementary Data 1). Together, these results indicate invol-
vement of antigen presentation to CD4+ and CD8+ T cells in NT1.

Risk variants in T-cell receptor loci modulate αβ TCR repertoire
NT1 is the only autoimmune disease with known associations in both
HLA and T-cell receptor (TCR) loci (TRA and TRB) (Fig. 2A, B). TCRα
and β chains heterodimerize to form biologically functionalmolecules
that recognize peptides presented byHLA.We therefore examined the
function of these leading variants by examining effects on T-cell
receptor V- or J-gene chain usage using RNA sequencing in 895
individuals35, aswell as in 130 individuals sequenced specifically inboth
memory CD4+ and CD8+ T cells.

As mentioned above, rs1154155 within TRA is entirely linked with
multiple SNPs across ethnic groups (Fig. 2C), one of which, rs1483979,
substitutes a leucine to a phenylalanine in the CDR3 area of J24, which
is predicted to interact with peptides presented by HLA (Fig. 2D;
Supplementary Data 5 and 6). This substitution makes it a prime can-
didate for a functional effect, should an F allele J24*01 CDR3 sequence
interact more favorably with an autoantigen than in the presence ofTa
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J24*02. Making the matter more complex, however, J24 usage is also
modulated by rs1154155, such that the F-associated allele is associated
withdecreasedusage inCD4+ cells, as shownby the eQTLplot in Fig. 2F
(beta = 0.33, P <0.001). We also computed association in memory
CD4+T cells and in CD8+ T cells and observed a consistent effect on
TRA-J28 expression specifically (P = 2.29 × 10−10 and P = 4.08 × 10−10, in
CD4+ and in CD8+ T cells, respectively). Finally, we confirmed that
these effects are cismediated, as the ratio of J24*01 (F) over J24*02 (L)
was only 0.4 in heterozygotes, indicating lower allele expression of F-
alleles, with similar effects in other T-cell subpopulations (Supple-
mentary Fig. 5).

In addition to J24-specific effects, rs1154155 is also strongly asso-
ciated with TRA-J28 expression in total RNA sequencing from blood
(P = 1.36 × 10−10, beta = −0.212, Fig. 2E) with posterior probability for
shared variant pp = 0.958 (see Supplementary Data 3 for all rs1154155
effects) and the findings were also consistent when testing across
CD4+ memory cells (P = 2.29 × 10). Interestingly, rs1154155 is entirely
linked with rs3764159, a polymorphism located 14 bp upstream of
TRAJ-28 within the 12-base pair recombination signal sequence spacer,
possibly explaining the J28 usage effect (Fig. 2C). Controlling for the
NT1TCRA association by leadQTLSNPs for J24 and J28usage abolishes
all effects, except for a minor peak at rs72638479, itself a minor eQTL
(r2 = 0.95 with TRAV8-6, Supplementary Fig. 6).

Within the TRB region, rs7458379 is an eQTL for increased
expression of TRBV4-2. However, based on our functional analysis,
rs1108955 has the strongest evidence for increasing TRBV4-2 usage

(pp = 0.99, Table S7, Supplementary Data 4). Furthermore, rs1008955
is in partial LDwith rs7458379, but tags independent haplotypes at the
TRB locus (Supplementary Fig. 7). Both variants are eQTLs for TRBV4-2
expression but reflect independent signals with NT1, such that analysis
conditioning for rs7458379 shows remaining association with
rs1108955 (P = 0.00019), whereas conditioning the association for
rs1108955 removed all association at both the TRB locus and with
rs7458379 (P = 0.72) (Supplementary Fig. 8). Taken together, this
indicates that higher expression of TRBV4-2 is related to NT1 and
mediatedby rs7458379 and rs1108955, with the latter as the potentially
causal variant at this locus.

Discussion
In this study, we explored genetic risk for NT1 and potential disease
mechanisms of identified genetic risk factors. The strongest associa-
tions were seen within the HLA region. In addition, we confirmed six
previously described risk loci (TRA, TRB, CTSH, IFNAR1, ZNF365 and
TNFSF4) and discovered seven novel associations in CD207, IKZF4-
ERBB3, NAB1, CTSC, DENND1B, SIRPG, and PRF1.

Individual associations and partitioned heritability enrichment
analysis indicate a primary role of the immune system for all loci
identified. Most of these loci, often to the exact same SNP, have also
been involved in other autoimmune diseases (Supplementary Data 1).
These findings, together with the fact that narcolepsy is associated
with increased risk of other autoimmune diseases in FinnGen, suggest
that NT1 is an autoimmune disease, even if it does not meet all
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Fig. 3 | Postulated potential disease mechanisms in autoimmune narcolepsy.
(1) Peripheral response: Influenza virions or vaccine protein debris are ingested by
DCs facilitated by CD207; flu proteins are processed by cathepsins CTSH and CTSC
for presentation by HLA molecules to specific TCRα-bearing CD4+ cells, initiating
an immunological synapse and responses to influenza. Presentation by DC is
modulated by IFNAR1 in the context of influenza infection and the type 1 INF
response. Cross presentation of influenza antigens processed via the MHC class I
pathway in concert with TNFSF4 in DCs is necessary to activate CD8+ cells that
mature into cytotoxic lymphocytes (CTLs), initiating cell killing of viron infected
cells. Activated Th1 CD4+ cells produce cytokines such as IFNγ and IL-2, which
augment cytotoxic activity of CTLs via perforin (PRF1). SIRPG on activated T cells
may also promote cell-to-cell adhesion and proliferation in this response. (2) CNS
autoimmunity: Activated and primed specific CD4+ cellsmigrate to the CNS,where

they interact with microglia and resident DCs via DQ0602 bound to an influenza-
mimic autoimmune-epitope (derived from hypocretin cells), initiating a secondary
memory response. Hypocretin cell proteins are processed by cathepsins CTSH and
CTSC for presentation by DQ0602 to specific TCRα-bearing CD4+ cells, initiating
an immunological synapse and autoimmune response. Chain usage for TRAJ24-2,
TRAJ28 and TRBV4-2 is associated with NT1 risk andmay be crucial for autoantigen
recognition. Further, cross presentation by resident DCs and microglial cells acti-
vates specific CD8+ cells via MHC class I binding of another HCRT neuron-derived
peptide. These primed cytotoxic CD8+ cells then kill HCRT neurons after recog-
nizingMHC class I (such as A*11:01, associated with NT1 independently of DQ0602)
bound, cognate HCRT neuron-derived peptide, may be derived from RFX4 or LHX9,
on hypocretin neurons. SIRPG1 on DCs, microglia or activated T cells may also
promote cell-to-cell adhesion and proliferation in this response.
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accepted criteria36. Further, most variants identified have effects in
antigen-presenting cells (HLA, CTSH, TNFSF4), e.g., dendritic cells
(IFNAR1,CD207), T cells (TRA, TRB, SIRPG), T helper cells (HLA-DQ, HLA-
DP) or cytotoxic T cells/NK cells (HLA-A, PRF1, NAB1), sketching a
remarkably narrow potential disease pathway (Fig. 3). In addition to
epidemiological data, examining genetic factors overcomes disease-
associated ascertainment bias in the recruitment of constitutive
cohorts. Finally, two loci were implicated at GWA significant level in
245 vaccination-associated NT1 (TRA and HLA), while five other loci
replicated nominally at P <0.05 (CD207, NAB1, TRB, IKZF4-ERBB3, and
CTSH), with overall strong genetic correlation between sporadic and
vaccination-associated cases. This indicates that vaccination-triggered
narcolepsy is essentially identical to sporadic narcolepsy.

Unlike what is reported in other autoimmune diseases, however,
narcolepsy is strongly associated with TCA and TCB genetic poly-
morphism that modulate the TCR repertoire in very specific ways. A
logical explanation for this observation could be that a TCR-mediated
reactivity that involves receptors containing TRAJ24F, TRAJ28 and
TRBV4-2 is an important step in the development of narcolepsy, per-
haps through TCR recognition of a viral trigger or an autoantigen by
CD4+ or CD8+ cells. This hypothesis is supported by recent studies
suggesting usage of TRAJ24 and TRBV4-2 in the DQ0602 recognition
of amidated HCRT, a likely autoantigen, as well as to specific influenza
peptides with increased reactivity in narcolepsy14.

Based on these observations, we propose that NT1 is an auto-
immune process where influenza A contributes to risk in the presence
of HLA-DQA1*01:02~DQB1*06:02 (DQ0602). The involvement of
influenza-A may explain why genetic associations found are shared
across ethnic groups, as influenza is one of few viruses that act
worldwide on a seasonal basis. It also relates to IFNAR1 and that both
affect and respond to influenza infections, although other infectious
triggers cannot be excluded. Notably, the literature suggests that
langerin with Asp-288 and Ile-313 shows no binding to 6SO4-Gal-
terminated glycans, increased binding to GlcNAc-terminated struc-
tures and overall decreased binding to glycans. This would make lan-
gerin more restricted in its ability to bind complex carbohydrates and
more able to bind GlcNAc-terminated structures, which overall would
favor influenza, but also many other organisms. Similarly, IFNAR1 has
been linked to antiviral immunity more generally as well, hence spe-
cificity to flu infections cannot be concluded with complete certainty.

The universal genetic association is especially clear for HLA-
DQ0602, as it is found with different nearby located HLA-DRB1
alleles: DRB1*15:01 in individuals of primary European (Europe and
USA) and Asian (China, Korea, Japan and India) descent, but
DRB1*15:03 or DRB1*11:01 in individuals of primary Africa descent5,6.
The primacy of DQ0602 over DRB1*15:01 (and thereby DRB5, as LD is
complete) is also demonstrated by the fact that the DRB1*15:01~
DQA1*01:02~DQB1*06:01 haplotype is not associatedwith narcolepsy
in China and by the fact additional DQ effects aremostlymediated by
DQA1 alleles that interact in trans with DQB1*06:02 (i.e., DQA1*01:01
and DQB1*01:03)33. Consequently, the association with DRB1*15:01
was slightly less significant than associationwithDQ0602. In contrast
to NT1, other autoimmune diseases, such as multiple sclerosis and
type 1 diabetes, commonly havedifferentHLAassociations or disease
presentations across countries, resulting in more complex HLA
associations. Type 1 diabetes, for example, is well known to bemostly
associated with HLA-DRB1*03:01 and DRB1*04 and associated DQ
alleles in Europe, whereas DRB1*04:05-specific effects are evident in
Japan, where the disease and these DRB1 alleles are rare37–39.

In this study, a hypomorph of perforin, a gene of critical impor-
tance to NK and T-cell cytotoxicity, was protective of NT1. Supporting
this, we saw enrichment through tissue-specific partitioned heritability
in cytotoxic NK and T cells. Although it is conceivable that NK cells or
cytotoxic CD4+ T cell could be involved, the most likely explanation is
involvement of CD8+ T cell in hypocretin cell killing. Indeed, neurons

never express HLA class II, so expression of HLA class I and recognition
of hypocretin neuronal antigens would be needed for hypocretin cell
pathology to occur. This is also supported by the CTSC association, an
enzyme of critical importance to cytotoxic CD8+ activation of pro-
granzymes40. Further, Bernard-Valnet et al.41 used transgenicmicewith
expression of a neoantigen in HCRT neurons and found that infusion
of CD8+ T-cell targeting the neoantigen were able to cause hypocretin
cell destruction, while infusion of neoantigen-specific CD4+ T-cell
alone was insufficient, although CD4+ T cells migrated closely to the
target neurons. Pedersen et al. (2019) also found NT1-associated CD8+

T-cell targeting intracellular transcription factors such as RFX4 and
LXH9, known to be enriched in HCRT cells15. Finally, CD8+mediation of
cell killing has also been suggested by observation of a CD8+ T-cell
infiltrate in a paraneoplastic anti-Ma2 encephalitis case with sympto-
matic hypocretin cell destruction, although these cases are complex
and not associated with DQ060242.

In summary, genetic data indicates T-cell autoimmunity in NT1
with genetic overlap of autoimmune traits. A particularity of the dis-
ease is involvement of polymorphisms such as in IFNAR1 and CD207
that regulate antigen-presenting cell responses to infection. Another
peculiarity is strong association with TCR polymorphisms, possibly
reflecting oligoclonality of T-cell responses. With epidemiological
studies indicating seasonality of disease onset16, and increased inci-
dence following vaccination with Pandemrix® in Europe17,20, a role of
influenza or other infections is likely. CTSH implicates dendritic pro-
cessing of antigens, perhaps of post-translationally modified HCRT
itself11–15. Presentation by DQ0602 to CD4+ T cells ensue, with likely
involvement of very few autoantigen epitopes and a restricted number
of T-cell receptors, explaining the large effect of these loci. Subsequent
cell killing of hypocretin neurons by CD8+ cells, may be through
involvement of other, intracellular autoantigens43, complete the pro-
cess. Altogether, this work illustrates how GWAS can identify the
involvement of different cell types in a specific condition, thus ulti-
mately providing further insight to the possible pathophysiological
mechanisms underlying disease onset.

Methods
Study approval
This study has been reviewed and approved by the Stanford University
Institutional Review Board (IRB) onMedical Human Subjects (Protocol
# 14325, genetic and blood markers in narcolepsy and hypersomnia,
Registration # IRB00005136) and by respective IRB panels in each
country providing samples for the study. Informed consent was
obtained from each participant in accordance with governing institu-
tions. Patients and control subjects in FinnGen provided informed
consent for biobank research, based on the Finnish Biobank Act.
Alternatively, separate research cohorts, collected prior the Finnish
Biobank Act came into effect (in September 2013) and start of FinnGen
(August 2017), were collected based on study-specific consents and
later transferred to the Finnish biobanks after approval by Fimea, the
National Supervisory Authority for Welfare and Health. Recruitment
protocols followed the biobank protocols approved by Fimea. The
Coordinating Ethics Committee of the Hospital District of Helsinki and
Uusimaa (HUS) approved the FinnGen study protocol Nr HUS/990/
2017. The FinnGen study is approved by Finnish Institute for Health
and Welfare (THL), approval number THL/2031/6.02.00/2017,
amendments THL/1101/5.05.00/2017, THL/341/6.02.00/2018, THL/
2222/6.02.00/2018, THL/283/6.02.00/2019, THL/1721/5.05.00/2019,
Digital and population data service agency VRK43431/2017-3, VRK/
6909/2018-3, VRK/4415/2019-3 the Social Insurance Institution (KELA)
KELA 58/522/2017, KELA 131/522/2018, KELA 70/522/2019, KELA 98/
522/2019, and Statistics Finland TK-53-1041-17. The Biobank Access
Decisions for FinnGen samples and data utilized in FinnGen Data
Freeze 5 include: THL Biobank BB2017_55, BB2017_111, BB2018_19,
BB_2018_34, BB_2018_67, BB2018_71, BB2019_7, BB2019_8, BB2019_26,
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Finnish Red Cross Blood Service Biobank 7.12.2017, Helsinki Biobank
HUS/359/2017, Auria Biobank AB17-5154, Biobank Borealis of Northern
Finland_2017_1013, Biobank of Eastern Finland 1186/2018, Finnish
Clinical Biobank Tampere MH0004, Central Finland Biobank 1-2017,
and Terveystalo Biobank STB 2018001. (for details, see supplementary
materials 1.7 FinnGen).We confirm that allmethodswere carried out in
accordance with relevant guidelines and regulations.

Study subjects
Six-thousand seventy-three unrelated individuals with NT1, some
included in prior studies8,9, and 84,856 ancestry-matched controls
were included in the study. In addition, 245 individuals with
vaccination-related NT1 and 18,862 controls were recruited in Finland
(N = 76 cases and 2796 controls), Sweden (N = 39 cases and 4894
controls), Norway (N = 82 cases and 429 controls) andUnitedKingdom
and Ireland (N = 48 cases and 10,743 controls)44–47. All cases had
documented immunization with Pandemrix®. All cases had narcolepsy
with clear-cut cataplexy and were DQB1*06:02 positive or had narco-
lepsy with documented low hypocretin-1 in the cerebrospinal fluid.
From FinnGen, we used ICD-10 code G47.4 and ICD-9 code 347, thus
including individuals who have narcolepsy with or without cataplexy
(for details, see Supplementary Materials 1.7 FinnGen).

Genotyping
Subjects were genotyped with Affymetrix Affy 5.0, Affy 6.0, Affymetrix
Axiom CHB1, Affymetrix Axiom EUR, Axiom EAS, Axiom LAT, Axiom
AFR, Axiom PMRA and Human Core Exome chip platforms (Table S1).
Genotypes were called with Affypipe48, Affymetrix genotyping console
or Genome Studio. Markers with genotyping quality (call rate < 0.95)
or deviation from Hardy-Weinberg equilibrium (P-value < 10−6) were
discarded. Samples were checked for relatedness by filtering based on
proportion of identity-by-descent using cut off >0.2 in PLINK 1.9
PI_HAT score. One pair of related individuals was removed. If related
individuals were a case and a control, cases were retained in the ana-
lysis. Three first principal components within each cohort were
visualized and outliers removed.

Imputation
We imputed samples by pre-phasing cases and controls together using
SHAPEIT v2.2 and imputed with IMPUTE2 v2.3.249,50 and 1000 Gen-
omes phase 1v3 build37 (hg19) in 5Mb chunks across autosomes.
Haplotype reference consortium data was used for the second Stan-
ford collection. For variants having both imputed and genotyped
values, the genotyped values were kept, whereas for those individuals
where genotype was missing, imputed values were kept.

Genetic analyses and statistics
Analyses for all data sets were performed at Stanford University except
for the Finnish and Swedish vaccination-related cases and European
Narcolepsy Network samples, which were analyzed by respective study
teams using the same analytical methods. GWAS was first performed in
each case control group separately using SNPTEST v.2.5.251. To adjust
for cohort-specific population stratification issues, we used linear
regression implemented in SNPTEST method score adjusting for the
first ten principal components. Standard post imputation quality con-
trol was done. Variants with info score <0.5 and minor allele frequency
(MAF) <0.01 were removed from the analysis. Signals specific for one
genotyping platform only and variants in each locus with heterogeneity
P-value < 10−20 were removed. We used a fixed-effects model imple-
mented in METAv1.7 with an inverse-variancemethod based on a fixed-
effects model for combining association results52. In total, 12,600,187
markers across studies were included in the final case/control meta-
analysis. The significance level for statistically significant association
was set to genome-wide significance (P-value < 5 × 10−8), controlling for
multiple testing. Overall, test statistics showed no genomic inflation

(lambda < 1.05). GCTA was used for heritability and gene-based tests53.
Coloc analysis was done using coloc package in R version 3.4.2 (2017-
09-28)54 and Manhattan and QQ-plots were created with QQman or
FUMA. Shared andpartitionedheritabilitywas estimatedusing LD score
regression. To compare the main characteristics of the participants, we
used a multivariate logistic regression model as implemented in the R
glm package. Lastly, we used FUMA and the curated list of GWAS as
provided by FUMA to compute gene enrichment analysis for loci that
were associatedwith narcolepsy at genome-wide significant level and to
examine the association between narcolepsy loci and previous GWAS55.
We also computed genetic correlation between autoimmune traits and
narcolepsy using LD score regression and estimated PheWAS associa-
tions per lead variant in each locus using the Open targets resource
https://genetics.opentargets.org/.

Comparison of vaccination and non-vaccination cases
Vaccination samples were studied separately for GWAS. To compare
genetic architecture of narcolepsy cases following vaccination versus
other cases, we first examined association of each GWAS significant
SNPs of the primary (non-vaccinated) sample in the vaccination sam-
ple. In addition, we computed polygenic risk score in non-vaccination
narcolepsy cases and vaccination-related narcolepsy using PRSice56

and looked at overlap.

Typing and imputation of HLA variants
High-resolution HLA imputation in 4-digit resolution (2-field, amino
acid level) for HLA A, B, C, DRB1, DQA1, DQB1, DPA1 and DPB1 was
performedusingHLA*IMP:02 as implemented inAffymetrixHLAor the
HIBAG package in R version 3.1.2 (2014-10-31). HIBAG is an HLA
imputation tool that uses attribute bootstrap aggregation of several
classifiers (SNPs) to select groups of SNPs that predict HLA type and
allows for the use of ownHLA reference panels30. Reference HLA types
were used from published imputation models and for individuals of
primary Asian and African descent obtained with Sirona sequencing57

in ethnic-specific populations (N = 500 individuals of African descent,
N = 2000 individuals of European descent and N = 368 individuals of
Asian descent). Imputation accuracy was further verified by Luminex
HLA typing in a subset of samples and accuracy was over 95% for all
ethnic groups and common alleles with >5% frequency in population.
For all alleles, the accuracies for individuals of European descent were
98% forHLA-A, 97% forHLA-B, 98% forHLA-C, 96% forHLA-DRB1, 100%
for HLA-DQA1, 100% for HLA-DQB1, 100% for HLA-DPA1 and 92% for
HLA-DPB1. The accuracies for individuals of Asiandescent, where allele
typing was also available, were 95% for HLA-DRB1, 94% for HLA-DQA1
and 98% for HLA-DQB1.

Analysis of HLA variants
HLA effects in NT1 were analyzed as described before6 in 23,410
individuals, including 9789 individuals of primary Asian descent and
13,621 individuals of primary European descent as ancestry-matched
cases and controls. Within each ancestry group, HLA alleles were
analyzed using additive models and logistic regressions after
adjusting for the first 10 population-specific principal components.
We identify independent associations using conditional analysis
(stepwise forward regression in each cohort). Fixed-effects meta-
analysis was used to combine associations using Plink 1.958 and R
version 3.2.2. We considered alleles sustaining Bonferroni correc-
tion for correction of number of alleles with minor allele frequency
over 2% (N = 110 HLA alleles), thus significance resulting in Bonfer-
roni cut-off P = 0.00045.

Analysis of expression quantitative trait loci (eQTL)
We used tissue-specific summary statistics from the GTEx consortium
and from59 to examine total blood-specific effects of associating var-
iants on gene expression59,60. We used Garfield to compute
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enrichments using enhancer annotation data from ENCODE provided
by the Garfield software61 and stratified LD score regression to com-
pute tissue-specific enrichment using ENCODE data as provided by the
LCSC package34.

Expression assessment in monocyte-derived dendritic cells
We examined how the genetic variants modulated T cell and
antigen-presenting (dendritic cell and monocyte) gene expression
by RNA sequencing and RNA expression. To examine environment-
specific triggers for eQTLs, we challenged dendritic cells with an
influenza-A infection or stimulated them with interferon. We
recruited individuals free from earlier inflammatory disease, auto-
immune disease, chronic metabolic disorders or chronic infectious
disorders between 18 and 56 years of age (average 29.9), extracted
blood mononuclear cells and differentiated into mononuclear
dendritic cells, as previously described62. We then extracted RNA
from the samples using the RNeasy 96 kit (Qiagen, CAT#74182),
according to the manufacturer’s protocols and sequenced the
samples under baseline, influenza infected and interferon beta 1
(IFNB1) stimulation (99 baseline, 250 influenza infected, and 227
IFNB1 stimulated). Five hundred fifty-two pass-filter samples (94
baseline, 243 influenza, and 215 interferon) were sequenced to an
average depth of 38 million 76-bp paired-end reads using the Illu-
mina TruSeq kit. We aligned reads to hg19 genome with TopHat,
assembled transcriptomes for each sample using StringTie63 and
computed transcript quantities using Kallisto64. We merged tran-
scriptomes across the same condition and then across all three
conditions and removed redundant isoforms using cuffcompare65.
We performed QTLmapping using theMatrix eQTL66 package using
an empirically determined number of principal components (PCs)
as covariates in each analysis. We tested 0 to 44 PCs (local eQTLs) in
increments of two and the number of PCs was chosen to maximize
the number of local eQTLs detected. We computed empirical P-
values by comparing the nominal P-values with null P-values
determined by permuting each gene 1000 times. False-discovery
rates were calculated using the qvalue package (https://github.
com/StoreyLab/qvalue), as previously described67.

T-cell receptor eQTL analysis
For this analysis, we used data from 895 individuals that were ori-
ginally genotyped and sequenced as part of the Depression Genes
and Networks Project reported by68, identifying short range (cis)
SNPs and trans HLA alleles association with TCR V and J usage as
described before35. Briefly, expression/usage of each T-cell receptor
alpha and beta V- and J-gene was calculated relative to total chain
expression from peripheral blood RNA-sequencing. We mapped
sequencing reads as in Battle et al. (Bowtie254 with Tophat55 default
parameters) and counted the number of unique reads that mapped
to each V/J/C-TCR/Ig gene with a modified version of HTSeq56,
which allows reads to map to a sequence of more than one V/D/J/C-
gene. We then removed individuals and genes with low read counts,
normalized the reads using log transformation and regressed on
technical and biological covariates as described in Battle et al. as
well. Finally, we quantile-normalized the residuals to a normal dis-
tribution. Pearson correlations were used to test associations
between genotypes and V- or J-gene expression.

Targeted TCR sequencing in NT1 cases and DQ0602-positive
controls
In addition to using the data from Battle et al., (2014) we also con-
ducted TCR sequencing in T cells in 60 individuals with NT1 and 60
healthy DQ0602 individuals using RNA from total CD4+ T cells,
CD4+ T memory and CD8+ T-cell populations. We used fastqc to
infer quality and trimmed low-quality reads. We then performed
barcode demultiplexing, after which local blast was used to align

and extract CDR3s. Linear regression was fit for TRA usage per
genotype dosage adjusting for age and gender, RNA-sequencing
lane and case/control status as covariates. We also separately ana-
lyzed coding consequences for each TRAJ24 containing productive
CDR3 fragment, as one of themost significantly associated SNPs was
a coding SNP (rs1483979) changing an amino acid Leucine to Phe-
nylalanine. These “LQF” and “FQF” were extracted, and their fre-
quencies were computed. Ratio of FQF/(LQF + FQF) was further
computed across all samples.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sumstats generated in this study have been deposited in theDryad
database under https://doi.org/10.5061/dryad.kd51c5b9b.
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