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Abstract
The objective is to assess the performance of seven semiautomatic and two fully automatic segmentation methods on [18F]
FDG PET/CT lymphoma images and evaluate their influence on tumor quantification. All lymphoma lesions identified in 65 
whole-body [18F]FDG PET/CT staging images were segmented by two experienced observers using manual and semiauto-
matic methods. Semiautomatic segmentation using absolute and relative thresholds, k-means and Bayesian clustering, and a 
self-adaptive configuration (SAC) of k-means and Bayesian was applied. Three state-of-the-art deep learning–based segmen-
tations methods using a 3D U-Net architecture were also applied. One was semiautomatic and two were fully automatic, of 
which one is publicly available. Dice coefficient (DC) measured segmentation overlap, considering manual segmentation the 
ground truth. Lymphoma lesions were characterized by 31 features. Intraclass correlation coefficient (ICC) assessed features 
agreement between different segmentation methods. Nine hundred twenty [18F]FDG-avid lesions were identified. The SAC 
Bayesian method achieved the highest median intra-observer DC (0.87). Inter-observers’ DC was higher for SAC Bayesian 
than manual segmentation (0.94 vs 0.84, p < 0.001). Semiautomatic deep learning–based median DC was promising (0.83 
(Obs1), 0.79 (Obs2)). Threshold-based methods and publicly available 3D U-Net gave poorer results (0.56 ≤ DC ≤ 0.68). 
Maximum, mean, and peak standardized uptake values, metabolic tumor volume, and total lesion glycolysis showed excellent 
agreement (ICC ≥ 0.92) between manual and SAC Bayesian segmentation methods. The SAC Bayesian classifier is more 
reproducible and produces similar lesion features compared to manual segmentation, giving the best concordant results of all 
other methods. Deep learning–based segmentation can achieve overall good segmentation results but failed in few patients 
impacting patients’ clinical evaluation.

Keywords  Lymphoma · [18F]FDG PET/CT · Computer-assisted image analysis · Reproducibility of results · Artificial 
intelligence

Abbreviations
SUV	� Standardized uptake value
MTV	� Metabolic tumor volume
TLG	� Total lesion glycolysis
DLBCL	� Diffuse large B-cell lymphoma

EANM	� European Association of Nuclear Medicine
ROI	� Region of interest
SAC	� Self-adaptive configuration
DC	� Dice coefficient
ICC	� Intraclass correlation coefficient

Introduction

Lymphomas are one of the most heterogeneous groups of 
cancers having a different biological behavior depending on 
the type and degree of differentiation. Its diagnosis, stag-
ing, and therapy response assessment are nowadays evalu-
ated using [18F]FDG PET/CT imaging for the majority of 
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lymphoma types [1, 2]. As for other oncological diseases 
[3–5], quantification based on maximum standardized 
uptake value (SUVmax), mean standardized uptake value 
(SUVmean), metabolic tumor volume (MTV), and total lesion 
glycolysis (TLG) has demonstrated prognostic value and 
prediction of treatment outcome in various lymphoma sub-
types [6–8]. Moreover, the use of features reflecting tumor 
burden dissemination (spatial measures) has improved the 
prediction of outcomes in diffuse large B-cell lymphoma 
(DLBCL) patients [9, 10].

Despite promising results with disease quantification, 
quantitative evaluation of [18F]FDG PET/CT imaging is 
not performed, as often as it should be, due to the need for 
careful lesion segmentation and further feature extraction. 
In addition, standardized and harmonized image acquisi-
tion and reconstruction protocols are mandatory. Manual 
segmentation is a challenging and time-consuming task, 
especially for lymphoma patients with a heavy disease bur-
den. Besides, manual segmentation is susceptible to natural 
intra- and inter-observer variability. Nevertheless, manual 
segmentation by an expert is considered the segmentation 
ground truth. Reproducible and accurate semiautomatic and/
or fully automatic segmentation methods are of paramount 
importance to provide comprehensive lymphoma disease 
quantification using a PET-directed personalized approach 
for lymphoma patients.

For clinical and research use, several PET tumor segmen-
tation tools have been purposed and validated. However, 
beneficial evidence remains more frequently reported for the 
lung, and head and neck tumors [11]. For lymphoma [18F]
FDG-avid lesions, segmentation presents additional chal-
lenges since the disease may be spread throughout the entire 
body, with several distant localizations, large variability in 
appearance, and sometimes difficult to distinguish from nor-
mal high uptake regions. Methodologies for lymphoma [18F]
FDG PET segmentation have been proposed, ranging from 
thresholding to deep learning, but there is no consensus on 
how the entire disease volume should be segmented. Several 
studies using quantification of [18F]FDG-avid lymphoma 
lesions applied fixed or adaptive threshold techniques [7]. 
Recently, efforts have been made to develop a fully auto-
matic segmentation method using deep learning specifically 
for DLBCL [12]. Despite promising results, verification of 
all lesions detected and segmented is still needed for clinical 
use and method validation in large independent datasets is 
essential. Furthermore, the ultimate purpose of segmenta-
tion is the quantification of the disease. Few studies have 
reported the effect of the different segmentation methods 
on the lesion’s features outcome [13].

This study has three main goals: (a) to validate improved 
versions of k-means and Bayesian clustering segmenta-
tion methods on [18F]FDG-avid lymphoma lesions; (b) to 
compare these improved methods against their standard 

versions, threshold-based methods, manual segmentation, 
and also against a semiautomatic and two fully automatic 
deep learning–based segmentation approaches based on a 
state-of-the-art deep learning framework; (c) to assess the 
influence of these segmentation methods on lesion charac-
terization, using features based on uptake, geometry, and 
dissemination.

Materials and Methods

Patient Population

This retrospective and single-center study included 65 
patients naive to treatment randomly selected (mean age: 
64 years; age range: 24–95 years; mean body mass index 
of 25 kg/m2 and ranging from 17 to 37 kg/m2; 37 women) 
who were diagnosed with B-cell lymphoma from 2009 to 
2018 (16 Hodgkin lymphoma; 29 follicular non-Hodgkin 
lymphoma, 19 DLBCL, and 1 low-grade non-Hodgkin lym-
phoma). For each patient, only the disease staging [18F]FDG 
PET/CT image was included (6 stage I, 9 stage II, 17 stage 
III, and 33 stage IV). The study was approved by the Ethics 
Committee of the Champalimaud Foundation.

Image Acquisition

All patients were scanned in the Philips Gemini TF 16 PET/
CT after intravenous injection of 3.5 ± 0.20 MBq/kg. Image 
reconstruction was performed onsite with manufacturer 
standard clinical parameters (Table 1 of the Supplemen-
tary Material). The scanner and reconstruction protocol is 
in accordance with the European Association of Nuclear 
Medicine (EANM) Research GmbH standard 1 (EARL1) 
with regular calibration and quality control according to the 
EANM guidelines [14]. The images’ SUV calculation was 
based on the injected activity and body weight.

Lesions Segmentation

All visible lymphoma lesions or clusters of lesions, as stated 
in the nuclear medicine reports, including splenic and liver 
diffuse involvement, were identified by experienced nuclear 
medicine physicians on the more convenient image plane (in 
most cases, the axial plane). This task was divided among 
six nuclear medicine physicians (five physicians with more 
than 7 years and less than 13 years of experience and one 
with more than 25 years of experience with [18F]FDG PET/
CT). Then, two experienced observers, Obs1 and Obs2 (both 
nuclear medicine researchers, one with 4 years of experience 
and the other with 10 years of experience, respectively), 
drew a large 3D region of interest (ROI) around each lesion, 
ensuring that the whole lesion and surrounding background 
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tissue were within the ROI, but without including nearby 
normal high uptake tissue (see an example in Fig. 1A). 
Physicians and observers could adjust the level of fusion 
between the PET and CT to facilitate the identification of the 
lesion. They could also use gray or other color scales. These 
ROIs were then used, as an initialization, to feed the clas-
sical semiautomatic segmentation algorithms (see below). 
The same two observers also performed manual segmen-
tation on all identified lesions in a slice-per-slice manner. 
ROI definition and manual segmentation were performed in 
3D Slicer 4.11.2 software (https://​www.​slicer.​org). The time 
consumed on each one of the previous tasks (ROI definition 
and manual segmentation) was registered for both observers.

Classical Semiautomatic Segmentation

In addition to manual segmentation, we implemented and 
tested different automatic segmentation methods inside of 
the 3D ROI previously drawn, which we call semiautomatic 
because they need an initialization (3D ROI). These methods 
are based on thresholding and clustering. The algorithms 
were implemented in C +  + language using the Insight Seg-
mentation and Registration Toolkit (ITK) (www.​itk.​org) and 
CImg (http://​cimg.​eu/) software libraries. An open-source 
implementation of these semiautomatic segmentation 
algorithms (Microsoft Windows version) is available upon 
request and can be integrated as an extension into 3D Slicer 
software platform version 4.11.2 or higher, for an integrative 
and user-friendly application. The thresholding and cluster-
ing methods implemented are briefly described below.

Two threshold-based methods were applied in this 
study: an absolute threshold of SUV (SUV of 2.5) and a 
relative one using a percentage of the maximum SUV in 
each lesion (41% of SUVmax). The SUV threshold of 2.5 
has been reported as optimal to measure baseline MTV in 
DLBCL, giving the best inter-observer agreement among 
other threshold methodologies [15], and has been gener-
ally chosen in lymphoma studies [16, 17]. A threshold of 
41% of the SUVmax within the lesion was also applied, 
as it is recommended by the EANM for solid tumors 
[18], and has been applied in patients with Hodgkin lym-
phoma [7, 19], DLBCL [7, 20], and peripheral T-cell  
lymphoma [21].

Two standard clustering segmentation methods were also 
implemented: k-means and Bayesian (both with 2 classes). 
k-means is frequently used due to its simplicity [22]. It 
iteratively assigns each voxel’s intensity to the nearest clus-
ter centroid. In this case, the mean SUV of the cluster is 
considered the centroid. The initialization for the centroids 
(k-initial cluster centers) was calculated based on the per-
centiles of the SUV distribution within the ROI delineated. 
Then, the algorithm uses a k-means statistical classifier to 
iteratively attribute each voxel into a cluster and update the 
centroids. Bayesian clustering algorithms allow noise sta-
tistical modeling; thus, they are less sensitive to noise than 
other classifiers [23]. This unsupervised classifier estimates 
the probability of a given voxel belonging to a cluster. The 
decision on the voxel class is based on the maximum a pos-
teriori likelihood. In the present implementation, the SUV 
of each class is modeled using a Gaussian mixture model.

Fig. 1   An example of the ROI 
definition (initialization for 
the semiautomatic methods) in 
a PET image of a lymphoma 
patient A and the correspond-
ing segmentation result using 
a semiautomatic method (SAC 
Bayesian). B Different colors 
represent different disconnected 
lesions

https://www.slicer.org
http://www.itk.org
http://cimg.eu/
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For clustering methods, only two classes/clusters need to 
be defined for segmentation (lesion and background). How-
ever, in some situations, this solution includes too many or 
too few voxels in the lesions, compared to manual segmen-
tation. This can be minimized using, for instance, 3 classes 
and then merging two of them (the two highest or the two 
lowest) (see Fig. 1 of Supplementary Materials). The prob-
lem here is to automatically define the number of classes to 
be initially considered and, if necessary, the classes to be 
merged. We have developed a self-adaptive configuration 
(SAC) solution that can be used in the k-means and Bayesian 
clustering methods. It is contrast-orientated and depends on 
the lesion-to-background values [24].

Self‑Adaptive Configuration Optimization

The algorithm starts by diving the sample (voxels’ intensi-
ties) automatically into 3 classes, according to the segmen-
tation process chosen (k-means or Bayesian). Thereafter, a 
coefficient (Eq. (1)) is calculated, and then, depending on 
their value, the classes to merge will be the two with lowest 
intensities or the two with highest intensities, or the program 
runs again the segmentation method but now defining only 
2 initial classes. The coefficient is calculated by,

where m3 is the mean SUV of the voxels in class 3 (with 
higher values) and m1 the mean SUV of the voxels in the 
class with lower values (class 1). This coefficient is similar 
to the asymmetry index frequently used in other contexts.

The empirical rule created based on prior knowledge 
defines the number of classes to be created and the criterion 
for the merging (if necessary). The rule is defined as follows, 
depending on the coefficient ( coef ∈ [0, 1]),

In practice, this rule means that when the voxels’ intensi-
ties are divided into three classes (“background,” “border,” 
and “lesion”) if there is a “big” relative difference between 
the “lesion” mean intensity and the “background” mean 
intensity, it is better to include the “lesion border” inside 
the “lesion.” If the relative difference is “small,” it is bet-
ter to include the “lesion border” inside the “background.” 
Otherwise, it is better to do a simple two classes classifica-
tion. The optimal thresholds were established and validated 
in previous work using a different dataset of whole-body 
[18F]FDG PET images from patients with different primary 
tumors [24].

(1)coef = (m3 − m1)∕(m3 + m1)

(2)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

if coef < 0.90,merge the two lower classes

if coef ≥ 0.94, merge the two higher classes

otherwise, do the segmentation with just 2 classes

Deep Learning–Based Segmentation

Three different approaches were used for segmentation using 
deep learning–based techniques: (1) a fully automatic method 
based on a 3D U-Net trained by Blanc-Durand et al. [12]; 
(2) a fully automatic method based on a 3D U-Net trained 
by us; (3) a semiautomatic approach based on a 3D U-Net 
trained by us. All these three networks were built and trained 
using the nnU-Net, a state-of-the-art framework for biomedi-
cal image segmentation based on a 3D full-resolution U-Net 
proposed by Isensee et al. [28]. This framework estimates the 
optimal network architecture and hyperparameters based on 
heuristic rules. For the three approaches, a standard U-Net 
architecture composed of an encoder and a decoder network 
with skipped connections between the two paths was applied. 
The networks were trained using fivefold cross-validation 
with a random split into 80% for training and 20% for internal 
validation.

Fully Automatic Deep Learning–Based Segmentation

The first fully automatic deep learning–based segmentation 
here used is a trained 3D U-Net publicly available. It was 
trained by Blanc-Durand et al. [12] using a dataset of 639 
DLBCL patients and two input channels: PET and CT. It 
achieved a median validation Dice coefficient (DC) of 0.79 
and interquartile range (IQR) of [0.66 to 0.87] in the internal 
validation performed by the authors.

The second fully automatic deep learning–based segmen-
tation is also a 3D U-Net, but trained by us using a dataset 
of 144 whole-body [18F]FDG PET images from lymphoma 
patients (46 ± 19 years old, 68 women) extracted from The 
Cancer Imaging Archive [25] published by the autoPET MIC-
CAI challenge [26, 27]. All images were acquired in a single 
PET/CT scanner (Siemens Biograph mCT), and all FDG-avid 
lymphoma lesions were manually segmented by a radiolo-
gist and a nuclear medicine physician in consensus. This 3D 
U-Net was trained on an Ubuntu 20.04 Windows Subsystem 
for Linux (WSL) in a computer equipped with a NIVIDA RTX 
A6000 graphics.

Semiautomatic Deep Learning–Based Segmentation

In this approach, a 3D U-Net was trained on small patches 
of 64 × 64 × 64 voxels which correspond to 256 × 256 × 256 
mm3. The same dataset as previously described from the 
autoPET MICCAI challenge was used. In total, 2537 iso-
lated lesions were identified and used to extract the patches 
centered on them. This simulates a real-world application, 
where the physician should indicate approximately the 
center of the lesion he/she wants to segment to start the deep 
learning–based segmentation. The 3D U-Net was trained in 
the same computer previously indicated.
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For testing the trained network in our dataset, for each 
lesion identified by the physician, based on ROI delineation 
previously described, a patch centered on it was extracted 
and given as input to the network for lesion segmentation. 
Thus, only patches containing lymphoma lesions were given 
for segmentation. All other regions not contained in the 
patches were considered not having lymphoma. This net-
work could be used for fully automated segmentation but 
was not optimized for it. Thus, it was here tested only in 
patches containing lesions.

Lesion Quantification

In this work, the goal of lesion quantification is to evaluate the 
influence of different segmentation methods on potential clin-
ically relevant lymphoma lesion features. Quantitative lesion 
features were extracted automatically after patients’ lesions 
segmentation. Thirty-one features based on intensity (SUV 
scale), geometry, and spatial distribution were computed. 
Implementation of intensity and geometric features were 
based on the definitions given by Aerts et al. [29], except for 
SUVpeak and TLG. SUVpeak was measured in neighborhoods 
of 3 × 3 × 3 voxels. TLG was obtained by multiplying MTV 
by the SUVmean. Moreover, as tumor burden dissemination 
measures have shown prognostic value [9], 8 dissemination 
features were also implemented and calculated. These are 
described in detail in Supplementary Material.

Statistical Analysis

To evaluate the proportion of overlap between segmentation 
methods, the DC was calculated between manual segmenta-
tions and the semi- and fully automatic segmentations. Then, 
the same coefficient was used to evaluate inter-observer 
manual segmentation; intra-observer manual versus semi-
automatic segmentation; and inter-observer semiautomatic 
segmentation. For statistical inference, Friedman and Wil-
coxon tests were used with a significance level of 5%.

Agreement between lesion features extracted from man-
ual and semi- and fully automatic segmentations was meas-
ured using intraclass correlation coefficient (ICC) for abso-
lute agreement. The agreement was computed on a patient 
basis, i.e., considering all patients’ tumor burden, and also 
on a representative lesion basis, as has been recommended 
to characterize lymphoma [30, 31].

Statistical analysis was performed using the IBM SPSS 
version 26 and R software (version 3.2.5, https://​www.r-​
proje​ct.​org/).

Results

A total of 920 lymphoma lesions (single and/or clusters) 
were identified in the [18F]FDG PET/CT images from the 
65 patients (1st, 2nd, and 3rd quartile of lesions’ SUVmax 

Fig. 2   A Number of patients with lesions located in the head and 
neck, thorax, abdomen, and/or pelvis. B Venn diagram representing 
the distribution of lesions location in lymphoma patients included in 

the dataset. C The number of patients with lesions located at least in 
two different anatomical locations

https://www.r-project.org/
https://www.r-project.org/
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and MTV, respectively: 4.49, 6.20, and 10.32 and 1.34 cm3, 
3.01 cm3, and 9.66 cm3). The anatomical localization of the 
patient’s lesions is represented in Fig. 2. For patients’ total 
tumor burden characterization, the mean of SUVmax, MTV, 
and TLG obtained from manual segmentations of both observ-
ers is presented in Fig. 3.

Segmentation Assessment

Figure 4 illustrates the distribution of time consumed by 
observer per patient. The classical semiautomatic segmen-
tation methods used were approximately five times faster 
than the manual one (p < 0.001, Wilcoxon test): median time 
of 8 min (range 1 to 57 min) versus 42 min (range 3 to 

320 min). The time needed for the classical semiautomatic 
segmentation was almost exclusive for the manual deline-
ation of the 3D ROI. The automatic part is negligible (less 
than a second in most patients). The time needed by the 
physician to identify the lesions was not measured but may 
take several minutes depending on the number and localiza-
tion of the lesions.

Regarding the assessment of the semiautomatic and fully 
automatic segmentations, an example of the resulting seg-
mentation for 3 lesions is shown in Fig. 5. The DC distribu-
tion obtained from the semiautomatic and fully automatic 
segmentations having the manual segmentations as ground 
truth is represented in Fig. 6. Values were computed on a 
patient basis (total tumor burden). The lowest median DC 

Fig. 3   Patients’ tumor burden characterization using the mean SUVmax A, mean MTV B, and mean TLG C obtained from the two manual seg-
mentations (mean value of the features from both segmentations were used). Each combination of symbol and color represents a patient
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was achieved with the fully automatic model published by 
Blanc-Durand et al. and threshold-based segmentation meth-
ods (median DC ranging from 0.56 to 0.68). SAC Bayesian 
method achieved the best overlap with manual segmentation: 
median DC of 0.89 and 0.85 for Obs1 and Obs2, respec-
tively. These values are slightly superior to DC obtained 
between both manual segmentations (median DC = 0.84), 
however not statistically different (Friedman test, p = 0.148). 
Table 1 shows the DC obtained using the SAC Bayesian 
method. The median inter-observer DC achieved between 
SAC Bayesian was significantly higher (Wilcoxon test, 
p < 0.001) than between inter-observer manual segmenta-
tion (DC = 0.94 versus DC = 0.84). Comparatively to the 
inter-observer manual segmentation, higher median DC 
was constantly accomplished between manual and semiau-
tomatic SAC Bayesian segmentation, both intra- and inter-
observer. Results for the other semiautomatic and fully auto-
matic methods are in Table 2 of Supplementary Material. 
There were no statistically significant differences between 
the DC achieved among different subtypes of lymphoma 
(p-value ≥ 0.36, Kruskal–Wallis test), independently of the 
observer or segmentation method.

In terms of patient-based analysis, semiautomatic 
deep learning, fully automatic deep learning, and fully 

automatic by Blanc-Durand et al. presented lower DC 
compared with classical semiautomatic methods in 9, 11, 
and 8 patients, respectively (DC < 0.22). These poorer DC 
were found with all three approaches in the same 7 patients 
of these cohorts. No pattern of lesions localization and 
uptake was found in these 7 patients. This because the 
lesions close to normal high uptake regions in the whole 
body (brain, liver, kidneys, and bladder) were not iden-
tified and segmented. Furthermore, the correct identifi-
cation and segmentation of abdominal lesions was dif-
ficult. For the 3D U-Net of Blanc-Durand et al. that was 
trained with DLBCL patients, we highlight that these 8 
cases were from patients diagnosed with DLBCL (N = 3) 
and FL (N = 5). No patterns for the SUVmax or MTV were 
found in these patients with the lowest DC. Nevertheless, 
semiautomatic and fully automatic deep learning–based 
methods trained with the dataset from autoPET MIC-
CAI challenge had a median DC very close to SAC-based 
methodologies and to the median DC obtained from both 
observers’ manual segmentation. Of note, both deep learn-
ing–based segmentation methods trained with the autoPET 
MICCAI challenge dataset originated statistically higher 
DC than the 3D U-Net of Blanc-Durand et al. (p < 0.05,  
Wilcoxon test).

Fig. 4   Distribution of the time consumed in manual segmentation and ROI delineation for each [18F]FDG PET image by two experienced 
observers (Obs1 and Obs2)
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Fig. 5   Examples of segmenta-
tion results in three independ-
ent lymphoma lesions using 
semiautomatic, fully automatic, 
and manual segmentation from 
the observer 2 (Obs2), in blue, 
in comparison with manual 
segmentation of observer 1, in 
yellow
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Lesion Features Reproducibility

Regarding the three deep learning–based segmentation 
methods (semi- and fully automatic), we found out that 
in 20 out of 65 patients, the lesions SUVmax was wrong. 
Interestingly, in some of these patients, the lesion with the 
highest SUVmax, based on the physician identification, was 
correctly identified but non-malignant regions with higher 
SUVmax were also identified and segmented. For these rea-
sons, we decided not to report any more quantitative analysis 
on the “lesions” segmented using the deep learning–based 
segmentations.

On a patient basis analysis, the SAC Bayesian method 
produced the best lesion features reproducibility, having 
the features from manual segmentation as the reference. An 
excellent agreement (ICC ≥ 0.92) was obtained for the fre-
quently used features SUVmax, SUVmean, SUVpeak, MTV, and 

TLG (Table 2). The results for the remaining features are 
in Table 3 of Supplementary Material. The agreement was 
higher or equal between the two semiautomatic segmenta-
tions obtained from the SAC Bayesian method than between 
the two manual segmentations, for all features. Note that all 
features related to the disease dispersion were very reproduc-
ible (ICC ≥ 0.97), both for the manual and semiautomatic 
SAC Bayesian segmentation methods.

Statistical good agreement was also obtained from 
most of the features obtained from the k-means, SAC 
k-means, and Bayesian segmentations (Supplementary 
Material Tables 4, 5, and 6), however, in general, slightly 
inferiors to the ones obtained from the SAC Bayesian seg-
mentation. Lesion features from the threshold-based seg-
mentation methods originated the overall worst agreement 
with the features obtained from the manual segmentations 
(Supplementary Material Tables 7 and 8).

Table 1   Dice coefficient 
between manual and SAC 
Bayesian (SAC-B) segmentation 
methods for both observers 
(Obs1 and Obs2)

Segmentations Median Interquartile 
Range

Maximum Minimum

Manual (Obs1) vs manual (Obs2) 0.84 0.14 0.97 0.45
SAC-B (Obs1) vs SAC-B (Obs2) 0.94 0.07 1.00 0.61
Manual (Obs1) vs SAC-B (Obs1) 0.89 0.10 0.98 0.66
Manual (Obs1) vs SAC-B (Obs2) 0.87 0.13 0.97 0.52
Manual (Obs2) vs SAC-B (Obs2) 0.85 0.18 0.98 0.47
Manual (Obs2) vs SAC-B (Obs1) 0.86 0.16 0.97 0.46

Fig. 6   Box plots of the Dice coefficients between manual segmen-
tation (two observers) and the seven semiautomatic and two fully 
automatic segmentation methods. Results A considering manual seg-

mentation of observer 1 as reference, and B considering manual seg-
mentation of observer 2 as reference (SAC, self-adaptive configura-
tion)
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The ICC between the SUVmax, SUVmean, SUVpeak, MTV, 
and TLG extracted from the manual and SAC Bayesian 
segmentation, considering just the highest TLG lesion and 
highest SUVmax lesion as the disease’s representative, is also 
in Table 2. Excellent ICCs were achieved (ICC ≥ 0.94) con-
sidering the highest TLG lesion. Considering the highest 
SUVmax lesion, the ICC is also very high (ICC ≥ 0.90) for 
the SUVmax, SUVpeak, and SUVmean, but inferior for MTV 
and TLG. There were statistically significant differences 
between the features calculated based on the highest TLG 
lesion and highest SUVmax lesion as the disease’s representa-
tive (p < 0.01, Wilcoxon test). In some cases, the lesion with 
the highest SUVmax was within a large conglomerated, and in 
one segmentation method was connected to its neighbors, and 
in other segmentations was disconnected from its neighbors. 
In practice, the segmentation difference is minor, differentiat-
ing in just a few voxels, and thus has an insignificant impact 
when the disease is characterized by the total tumor burden.

Discussion

This is the first study addressing a quantitative comparison, 
based on 31 lesions’ features, between manual, semi-, and 
fully automatic segmentation methods on a set of whole-body 

[18F]FDG PET/CT images from patients with lymphoma. The 
number of patients and lesions/clusters is considerably higher 
than what other studies [19, 32, 33] have reported within the 
clinical setting of lymphoma.

Threshold-based methods and publicly available 3D 
U-Net from Blanc-Durand et al. demonstrated weaknesses 
(inferior median DC) in comparison with clustering-based 
methods and semi- and fully 3D U-Net trained in this work. 
Clustering-based methods showed a very good agreement 
with manual segmentations, especially the SAC version of 
the Bayesian classifier. The results from inter-observer vari-
ability showed that using the SAC Bayesian method, the DC 
(segmentation overlap) was higher between the SAC Bayes-
ian segmentation (both observers) than between the two 
manual segmentations, therefore suggesting that this semi-
automatic segmentation method may be a better option than 
the simple manual segmentation. Good results were also 
obtained from the SAC k-means. Threshold-based methods 
depend on the SUV value that is strongly influenced by the 
physical (real) image resolution of the scanner, especially 
the SUVmax. This reinforces the inadequacy of using fixed 
threshold methods, especially if no harmonized reconstruc-
tion protocols are used among different scanners.

A state-of-the-art deep-learning framework [28] was 
applied for training deep learning–based segmentation, both 

Table 2   ICC between features 
from manual and SAC Bayesian 
(SAC-B) segmentations on 
a patient basis (total tumor 
burden) and on a single lesion 
basis (patient’s lesion with 
highest TLG and highest 
SUVmax), for both observers 
(Obs1 and Obs2)

Features Segmentations

Intra-observer Inter-observer

Manual 
(Obs1) 
vs
SAC-B 
(Obs1)

Manual 
(Obs2) vs
SAC-B 
(Obs2)

Manual 
(Obs1) vs
SAC-B 
(Obs2)

Manual 
(Obs2) vs
SAC-B 
(Obs1)

SAC-B 
(Obs1) vs
SAC-B 
(Obs2)

Manual 
(Obs1) 
vs
Manual 
(Obs2)

Total tumor burden
  SUVmax 1.00 1.00 1.00 1.00 1.00 1.00
  SUVpeak 1.00 1.00 1.00 1.00 1.00 1.00
  SUVmean 0.94 0.97 0.95 0.95 1.00 0.98
  MTV 0.96 0.92 0.94 0.96 0.99 0.97
  TLG 0.99 0.99 0.99 1.00 1.00 1.00

Based on the lesion with the highest TLG
  SUVmax 1.00 1.00 1.00 1.00 1.00 1.00
  SUVpeak 1.00 1.00 1.00 1.00 1.00 1.00
  SUVmean 0.95 0.96 0.96 0.94 1.00 0.99
  MTV 0.96 0.90 0.95 0.90 0.98 0.94
  TLG 0.98 0.98 0.99 0.97 0.99 0.99

Based on the lesion with the highest SUVmax

  SUVmax 1.00 1.00 1.00 1.00 1.00 1.00
  SUVpeak 1.00 1.00 1.00 1.00 1.00 1.00
  SUVmean 0.90 0.94 0.91 0.92 0.99 0.97
  MTV 0.85 0.60 0.70 0.68 0.81 0.86
  TLG 0.76 0.72 0.76 0.72 0.94 0.97
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for semi- and fully automatic. For the network published by 
Blanc-Durand et al., one of the top-rated deep learning net-
works published and available in the literature, the median DC 
obtained was comparable with the threshold-based methods. 
This decrease in network performance in an external test set 
may be due to the ground truth used for the training process. 
Although Blanc-Durand et al. trained the network on a large 
dataset (639 whole-body images), a relative threshold (41% 
of SUVmax) was used to generate the ground truth for training. 
Thus, it may have compromised the results when this network 
is compared with manual segmentation.

Both 3D U-Net trained in this work for semi- and fully 
automatic segmentation showed promising results. A good 
agreement with manual segmentation was achieved (Supple-
mentary Table 2), very close to SAC-based clustering meth-
ods. This may be due to the ground truth used for training 
being the manual segmentation. However, in a patient basis 
analysis, the results were inferior to SAC-based approaches 
since the segmentations originated incorrect patient’s total 
tumor burden SUVmax in 20 out of 65 patients. This is unac-
ceptable for clinical practice usage autonomously.

As shown in our study, there are still several difficulties 
when using deep learning–based approaches. External vali-
dation with independent datasets usually leads to a decrease 
in the performance of the models [34]. Clinical human 
supervision is still indispensable, and in some patients, the 
time needed for the verification and adjustment of the seg-
mentation may be close to the time needed for the classical 
semiautomatic or manual segmentations. The construction 
of large and accurate datasets (of sparse existence) needed to 
train, with reliable manual or semiautomatic segmentations, 
is a demanding and time-consuming task. Nevertheless, we 
believe that the future will pass through fully automatic seg-
mentation methods, using deep learning or other technology. 
The reproducible SAC Bayesian method may be an excellent 
option to build accurate large datasets to train/validate deep 
learning models.

For lesion characterization, the features extracted from the 
SAC Bayesian segmentation are very close to the ones extracted 
from the manual segmentation for all patients. The SAC 
k-means, k-means, and Bayesian segmentation methods origi-
nated an overall good agreement between the features extracted 
in comparison with manual segmentation. However, their 
agreement with manual segmentation features is, in general, 
inferior to the obtained with SAC Bayesian. This reinforces the 
adequacy of this semiautomatic segmentation method.

More often than not, lymphoma patients present with 
multiple lesions, rendering the segmentation methodology 
a very tough and challenging activity. Thus, some studies 
[30, 31] have recommended the use of a single representa-
tive lesion to characterize the disease. We used two cri-
teria to define the representative lesion: the one with the 
highest SUVmax and the one with the highest TLG. The 

results also showed an excellent agreement (ICC ≥ 0.90 
for SUVmax, SUVpeak, SUVmean, MTV, and TLG) when the 
lesion used was the one with the highest TLG. Poorer results 
were obtained when considering the lesion with the high-
est SUVmax for features that depend on the lesion volume 
(MTV and TLG). This suggests that using only the lesion 
with the highest SUVmax is not as reproducible as using 
the lesion with highest TLG or all tumor burden. A further 
study designed to evaluate the expected added value of using 
total tumor burden instead of the lesion with highest TLG 
is ongoing.

In the present work, besides the reproducibility of the 
traditional first-order and geometric lesion features, the 
reproducibility of 8 features representing the tumor/disease 
spreading was also assessed. As expected, the results showed 
excellent reproducibility both for manual and classical sem-
iautomatic methods, independently of the technique used 
(ICC ≥ 0.93 for all 8 features).

There are several limitations to our study. First, our data-
set comprises just 65 lymphoma patients, including 920 
lesions for analysis. Larger numbers of lymphoma patients 
than the ones used to validate the several different methods 
may improve the results herein described. Another limitation 
is the use of external datasets (different scanners, recon-
struction protocols, and NM physicians identifying and/or 
segmenting the lesions) to train the deep learning–based 
techniques. This renders the performance of the networks 
when applied to our independent dataset an even more dif-
ficult task. In addition, our single-scanner and single-center 
study may limit the reproducibility of our results, despite 
using EARL1 harmonized guidelines. Assessment of physi-
cians’ agreement in the identification of the lesions was not 
part of this work but is highly important. It would make the 
comparison of semiautomatic and fully automatic segmenta-
tion methods fairer than leaving it out.

Conclusion

The proposed semiautomatic segmentation method based 
on a SAC Bayesian classifier is very robust and more repro-
ducible than manual segmentation. In addition, it is faster 
than manual segmentation, producing similar lesion features. 
This method can replace manual segmentation of lymphoma 
lesions contributing to more consistent quantitative meas-
ures with potential to build accurate large datasets to train/
validate deep learning–based segmentation and improve 
models’ performance.

Absolute or relative threshold-based segmentation meth-
ods should be avoided, especially in clinical studies, since 
important lesion features such as SUVmean, MTV, and TLG 
may be substantially different from the ones obtained with 
manual segmentation.
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Deep learning–based segmentation methods showed 
promising results but are still not robust enough to be 
applied autonomously for lymphoma lesions segmentation 
in clinical practice.
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