
New Foundations for Separation Logic
Hiep, H.A.

Citation
Hiep, H. A. (2024, May 23). New Foundations for Separation Logic. IPA
Dissertation Series. Retrieved from https://hdl.handle.net/1887/3754463

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3754463

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3754463

Appendix A

Classical (higher-order) logic

In this chapter we recall the definitions and results of classical logic, upon which
the rest of this thesis depends (see also [135, 217, 213, 214, 203, 31, 152, 91, 9, 82]).
Readers already familiar with classical logic may quickly skim this chapter: no
new results are presented. However, this chapter is included for the purpose of
completeness.1

Logic is used as a formal description language. With such language, we give
descriptions with an intention to describe or assert what is the case in a universe.
Logic has versatile uses in computer science. For example, logic can be used to
describe the universe as seen from the perspective of a computer. To be more
specific, we can use logic to describe the possible memory states of a computer
at a particular instant in time. Primitive descriptions can fix what values are
held in certain places of memory, or describe relations between the values such
places of memory hold. Complex descriptions are constructed by composing
simpler descriptions, e.g. by conditionals between descriptions or quantification
over possible values.

There are different orders of languages. In a zeroth-order language one can speak
of primitive propositions and their logical connection. In a first-order language
one furthermore has the ability to speak about, and quantify over, individuals,
which are the elements in a universe, or domain of discourse. This distinguishes a
first-order language from a zeroth-order language, since in the latter one cannot
quantify over individuals. Sometimes first-order logic is called predicate logic,
whereas zeroth-order logic is called propositional logic. In a second-order language
one goes beyond the ability to quantify over individuals, and one can also quantify
over properties of individuals (see also [216]). In a third-order language, one can
quantify over properties of properties of individuals, and so on for higher-order
languages.

1After submitting some parts of this thesis to a conference on logic in computer science, one of
the peer-reviewers made a claim that was directly in contradiction with a well-known result, also
included in this chapter: Gödel’s completeness theorem. Thus, without recalling the completeness
theorem, this thesis would not be complete.

123

124 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

We consider logic from three perspectives. In the first perspective, the syntactic
perspective, one looks at the formal structure of the description language: how to
form sequences of symbols called formulas, and systems to symbolically transform
formulas and to derive formulas from other formulas. In the second perspective, the
semantic perspective, one is interested in the meaning of formulas by interpretation
of the symbols and how symbolic transformations and deductions preserve meaning.
In the last perspective, the perspective of significance, one is interested in how the
syntactic and semantic perspectives are related. In some sense, the syntax and
semantics of a language can be chosen freely, and making such choices are called
design choices. To motivate some of these design choices, it is the relation between
the syntactic and semantic perspectives which bears significance.

The significance of logic is that it is a language that is useful for describing
the universe and to reason about such descriptions. We distinguish two levels: the
level in which we speak about the universe using logic, and the level in which we
speak about the logic itself. The first level is the object-level, in which elements of
the universe, their transformations and interrelations, are the prime subject. On
this level, formulas are used to describe properties about elements of the universe,
and we are interested in the logical connections between different properties (of the
elements of the universe) that formulas can describe. The significance, or usefulness,
of a logic depends on the richness of the object-level, in what properties can and
can not be expressed by formulas. The second level is the meta-level, in which we
study the properties of the syntax and semantics themselves. These properties are
called meta-properties, to distinguish them from the properties which are described
by formulas on the object-level. In particular, first-order logic is a well-known
logic with very rich meta-properties. An example meta-property is the relationship
between the so-called syntactic consequence relation between sets of formulas and
the semantic consequence relation between sets of formulas.

There are many different logics described in the scientific and philosophic
literature, including: classical logic, modal logic, intuitionistic logic. In this chapter
we keep ourselves to classical logic: the logic in which the law of the excluded
middle holds generally. This logic is most familiar to mathematicians and computer
scientists.

This chapter proceeds as follows. Section A.1 presents the languages of logic,
mostly from a syntactical perspective. Section A.2 introduces structures in which to
interpret formulas, so to speak, and thus takes a semantic perspective. This section
also introduces the concepts of validity and entailment. In Section A.3, going back
to a syntactical perspective, we then introduce a proof system for deducing formulas.
In Section A.5, we introduce terms as a shorthand for particular formulas and
contexts. Section A.4 demonstrates the significance of logic by recalling important
meta-properties that relates the semantic concept of entailment to the syntactic
concept of deduction.

The ideas presented in this chapter are largely based on material as presented
by any competent book on mathematical logic, such as [79, 31]. An introduction
to higher-order logic can be found in [82]. The model theory is based on [47, 119].
The proof theory is based on [212, 26]. See also [17, 199, 83].

A.1. ASSERTION LANGUAGE 125

A.1 Assertion language
In this section we introduce the languages of logic. In later chapters we also speak
of programming languages and program logics, so to avoid ambiguity, we may also
speak of assertion languages to mean the languages introduced here.

We shall introduce not a single language, but a family of languages that is
parameterized by variables and a signature. A signature consists of non-logical
symbols which are taken as primitive, out of which a particular language is con-
structed. A language consists of formulas, or synonymously assertions, which are
certain (finite) sequences of symbols. The formulas are formed using syntactic rules
that depend on the signature one chooses.

Moreover, we restrict ourselves to recursive languages, meaning that for each
language there must exist an algorithm that can decide whether a given sequence
of symbols is a formula or not. Phrased differently, for each language we could
systematically generate all sequences of symbols that are formulas and we could
systematically generate all sequences of symbols that are non-formulas. This
restriction is useful for computer scientists who want to implement such languages.
We shall properly define the set of formulas below, and in such a way that the set
is recursive. Before doing so, we introduce the concepts of arity and variables.

An arity is a (finite) sequence of arities. An arity is typically associated to a
symbol to represent how many arguments, and the arity of each argument, are
expected to be following that symbol. We write (α1, . . . , αn) for a sequence of
n > 0 arities, where each of α1, . . . , αn are again arities. We write () for the empty
sequence. We say nullary to mean an arity of length 0, unary to mean an arity of
length 1, binary to mean an arity of length 2, and so on. Note that, if we ignore
all commas, the set of arities is the full Dyck language consisting of all strings of
balanced parentheses.

The order of an arity is its maximal nesting depth, starting from first-order.
We have that () is a first-order arity since no arity is nested, (()) is a second-order
arity since it has a first-order arity nested, ((), ()) is also a second-order arity since
all nested arities are first-order, and (((), ()), ()) is a third-order arity since it has a
nested second-order arity, and so on. We may also treat a natural number n as
an arity, which has precisely n directly nested first-order arities (). As a special
case, 0 is the arity () since it contains no other nested arities. Arity 0 is first-order,
whereas arity n for n > 0 is second-order. For example, 1 = (()) and 2 = ((), ()).
All second-order arities are a natural number arity n for some n > 0. We may mix
parenthesis and natural numbers, for example ((), ()) = (0, 0).

Variables (or, more precisely, variable symbols) can be understood as names or
as value placeholder symbols. Given two variables, we are able to recognize whether
they are (syntactically) identical or not. Each variable has an arity associated to
it. Two variables of different arity are necessarily different.

Definition A.1.1 (Variables). There is a recursive set V of variables, such that
each variable is associated to an arity, and for each arity there are infinitely many
variables associated to that arity.

The order of a variable is the order of the arity of the variable. We write vα

126 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

to mean that v is a variable with as associated arity α. Note that ‘v’ itself is not
a variable, but a meta-variable standing for a variable symbol. We also use wα,
where ‘w’ is again a meta-variable standing for variable symbols, and we may use
subscripts to obtain any number of such variables. The variables of arity () are
called the first-order variables. These are also called the individual variables, and
are typically denoted x, y, z (without superscript). The set of first-order variables
is also denoted by V1. Note that there are no zeroth-order variables, since in
a zeroth-order language there is no need for variables. Variables that have a
second-order arity are called second-order variables. These are also called predicate
variables (if its arity is 1) or relation variables (if its arity is greater than 1) typically
denoted P,Q,R. For example, Q2 (or, equally, Q(0,0)) is a binary relation variable
(with arity 2). The set of second-order variables is denoted by V2, and so on for
higher-order variables. We may leave out arity superscripts if the arity of a variable
is clear from context; otherwise, we leave the superscript in place.

Intuitively, variables are called that way since their meaning depends on the
context and thus vary. In contrast, one may think of a signature as consisting of
constant symbols. These symbols are called constant since their meaning does not
depend on the context and remains fixed within one language. Variable symbols
and constant symbols are separate, and both together are the non-logical symbols.

Definition A.1.2 (Signatures). A signature is a recursive set of constant symbols
such that each constant symbol is associated to a non-zero arity.

We typically denote a signature by Σ. The signatures as defined above are
signatures without parameters. The order of a constant symbol is the order of its
arity. We speak of constants to mean constant symbols of a signature.

The order of a signature is one less than the maximum order of its constants. A
first-order signature thus has constants with at most second-order arity. In other
words, a first-order signature has no constants with a third or higher-order arity.
A second-order signature has constants with at most third-order arity. And so on
for higher-order signatures.

There are no first-order constant symbols in any signature, since the only
first-order arity is zero. The constant symbols of (second-order) arity 1 are called
predicate symbols. The constant symbols of (second-order) arity n where n > 1 are
called n-ary relation symbols.

Constant symbols of a signature are typically denoted Cα (with arity α, which
may be dropped under the same proviso that holds for variable symbols), but
specific signatures may also introduce additional notational conventions. For first-
order signatures we may also use P,Q,R as constant symbols (but care must be
taken not to confuse constant symbols and variable symbols).

Remark A.1.3. In some texts about logic, signatures also include ‘[individual]
constant symbols’ and ‘function symbols’ that are separate from predicate and
relation symbols and used to build complex terms. We do not yet (need to)
introduce terms, individual symbols and function symbols at this point, but we
shall introduce them later in Section A.5. In here, we consider all symbols of a

A.1. ASSERTION LANGUAGE 127

signature to be constant symbols, in the sense that their meaning does not depend
on the context and remains fixed within one language.

For the remainder of this section, we fix a particular signature Σ. We now
continue to define the fundamental concept of logic: formulas. More precisely, we
define Σ-formulas, since their formulation depends on the chosen signature Σ. We
may speak of formulas instead of Σ-formulas, if Σ is clear from context. In the
sequel, ϕ and ψ are meta-variables standing for arbitrary formulas.

Definition A.1.4 (Formulas). A formula is constructed inductively as follows:

1. ⊥ is a formula,

2. (x
.
= y) is a formula if x and y are individual variable symbols,

3. Ξ(vα1
1 , . . . , vαn

n) is a formula if Ξ is a non-logical symbol of arity (α1, . . . , αn)
and vα1

1 , . . . , vαn
n are variable symbols of the corresponding arity,

4. (ϕ→ ψ) is a formula if ϕ and ψ are formulas,

5. (∀vαϕ) is a formula if ϕ is a formula and v a variable symbol with arity α.

All formulas are constructed by one of these five clauses. Alternatively, we can
define formulas by the following abstract grammar:

ϕ, ψ ::= ⊥ | (x
.
= y) | Ξ(vα1

1 , . . . , vαn
n) | (ϕ→ ψ) | (∀vαϕ)

The first three clauses construct primitive formulas, the last two clauses con-
struct complex formulas. Note that in the third clause, variables with non-zero
arity can be used in the place of the non-logical symbol. Parentheses, comma, ⊥,
.
=, → and ∀ are logical symbols (and thus not part of the signature nor used as
variables). The symbol .

= is called identity. We put the dot on the equality sign to
distinguish (object-level) identity from (meta-level) equality. A formula can thus
be seen as a finite sequence of logical and non-logical symbols.

We speak of the logical symbols in the following manner. Of the primitive
formulas, ⊥ is called false, (x

.
= y) is called identity (as in ‘x and y are identical’).

If in Ξ(vα1
1 , . . . , vαn

n) we have that Ξ is a variable, then we speak of an application.
Of the complex formulas, (ϕ → ψ) is called (logical) implication, and (∀vαϕ) is
called universal quantification.

Often when proving meta-properties of formulas, we proceed by induction on
the complexity of formulas. There are different measures of complexity. Typically,
we use as complexity measure the height of a formula, by viewing the formula as
a parse tree and taking the height of that tree. Alternatively, one could take as
complexity the length of a formula, by viewing a formula as a sequence of symbols
and taking the length of that sequence.

We further have the logical symbols ⊤, ¬, ̸ .=, ∧, ∨, ↔, ∃ to construct formulas
that are commonly used in classical logic. These logical symbols are given as
abbreviations. Sometimes, we write true instead of ⊤, and false instead of ⊥.

128 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

Definition A.1.5 (Logical abbreviations).

⊤ abbreviates (⊥ → ⊥)

(¬ϕ) abbreviates (ϕ→ ⊥)

(x ̸ .= y) abbreviates (¬(x
.
= y))

(ϕ ∧ ψ) abbreviates (¬(ϕ→ (¬ψ)))

(ϕ ∨ ψ) abbreviates (¬((¬ϕ) ∧ (¬ψ)))

(ϕ↔ ψ) abbreviates ((ϕ→ ψ) ∧ (ψ → ϕ))

(∃vαϕ) abbreviates (¬(∀vα(¬ϕ)))

The logical symbols ∧, ∨, →, ↔ are called (logical) connectives, since they
describe a connection between two formulas. Formulas of the form (ϕ ∧ ψ) are
called conjunctions, and (ϕ ∨ ψ) are called disjunctions, and (ϕ ↔ ψ) are called
bi-implications. The logical symbols ∀ and ∃ are called (logical) quantifiers. We
have two kinds of quantifiers: ∀ quantifies universally, and ∃ quantifies existentially.
Note that some of the above syntactic abbreviations are arbitrary: it is also possible
to introduce these logical connectives in alternative but equivalent ways.

To reduce the use of parentheses, we employ syntactical conventions for resolving
ambiguity in case parentheses are dropped. The precedence of logical symbols, from
strongest to weakest binding force, is: ¬, ∀, ∃, ∧, ∨, →, ↔. All connectives associate
to the right. The process of adding back parentheses is called disambiguation. For
example, ∀xP (x) ∧Q(x) ∧ P (x) disambiguates to ((∀xP (x)) ∧ (Q(x) ∧ P (x))).

To further reduce the use of parentheses, we may employ a single dot after
the variable that immediately follows a quantifier, that disambiguates into a pair
of parentheses of which the closing parenthesis is placed as far as possible to the
right without interfering with the parenthesis already present in the surrounding
context. For example, ∀x. P (x) ∧ Q(x) disambiguates to ∀x(P (x) ∧ Q(x)), and
(∀x. P (x)) ∧Q(x) disambiguates to (∀x(P (x))) ∧Q(x).

We also have the syntactic convention that, given directly nested quantifiers of
the same kind, such sequence of quantified variables may be listed as a (non-empty)
sequence directly after the quantifier symbols. For example ∀vα1

1 , vα2
2 , . . . , vαn

n ϕ
expands to (∀vα1

1 (∀vα2
2 (. . . (∀vαn

n ϕ) . . .))).
How are variable occurrences bound to quantifiers? The scope of a quantifier

in the formula (∀vαϕ) is the variable vα and the formula ϕ that follows it, and
we say that vα is bound to that quantifier. Informally, we can imagine the parse
tree of how a formula is constructed. The possible leaves are variables with an
associated arity. An occurrence of a symbol in a formula is a path in the parse tree
leading to that symbol. A variable occurrence is an occurrence of a variable in a
given formula. A variable occurs bound if it occurs as the immediate left child of a
quantifier symbol, e.g. the formula (∀vαP (vα)) has ∀ as root and vα as left child
and P as right child with vα nested under it. A variable vα occurs free if, following
the occurrence of vα as a path, from the root of the parse tree towards the leaf
we do not encounter any quantifier with vα as immediate left child. A variable
occurrence of vα falls under the scope of a quantifier if either it immediately follows
a quantifier, or if we follow the path back to the root we encounter a quantifier

A.1. ASSERTION LANGUAGE 129

binding the same variable. In other words, a variable occurs free if each of that
variable occurrence does not fall under the scope of a quantifier.

We now define the set of free variables of a formula, being the set of all variables
that occur free in it. Similarly, we define the set of bound variables of a formula.

Definition A.1.6 (Free and bound variables). Given a formula ϕ. We define both
the set of free variables FV (ϕ) and the set of bound variables BV (ϕ) inductively
on the structure of ϕ as follows:

• FV (⊥) = ∅ = BV (⊥),

• FV (x
.
= y) = {x, y} and BV (x

.
= y) = ∅,

• FV (C(vα1
1 , . . . , vαn

n)) = {vα1
1 , . . . , vαn

n } and BV (C(vα1
1 , . . . , vαn

n)) = ∅,

• FV (wα(vα1
1 , . . . , vαn

n)) = {wα, vα1
1 , . . . , vαn

n } and BV (wα(vα1
1 , . . . , vαn

n)) = ∅
where α = (α1, . . . , αn),

• FV (ϕ→ ψ) = FV (ϕ) ∪ FV (ψ) and BV (ϕ→ ψ) = BV (ϕ) ∪ BV (ψ),

• FV (∀vαϕ) = FV (ϕ) \ {vα} and BV (∀vαϕ) = BV (ϕ) ∪ {vα}.

The set of variables V (ϕ) is defined V (ϕ) = FV (ϕ) ∪ BV (ϕ).

Note that the second and third clause are discriminated by the non-logical
symbol being either a constant symbol in our signature or a variable symbol. In
the second clause, the constant symbol C must have arity (α1, . . . , αn), and in the
third clause, the variable w must have arity (α1, . . . , αn): both constraints follow
from the construction of formulas. Other concepts that are inductively defined on
the structure of formulas follow a similar pattern.

Note that for every formula ϕ, we have that V (ϕ) is a finite set. This is easily
seen, since every formula is a finite sequence of symbols, thus there can only be
finitely many variables that occur in it. If V (ϕ) ⊆ {vα1

1 , . . . , vαn
n } we also write

ϕ(vα1
1 , . . . , vαn

n). For example, ϕ(x) is a formula ϕ in which at most x occurs free.

Definition A.1.7 (Sentences). A sentence is a formula without free variables.

It is important to note that the context ∀vα . . . is so-called referentially opaque
[205], meaning that the value each variable refers to in formulas under a quantifier
may change. For example, (x

.
= y) and ∀x(x

.
= y) may have a different meaning: in

one formula x could refer to a different value than the value x refers to in the other
formula. This distinction is especially important when substitutivity comes in play,
e.g. when replacing x by z, since referential opacity breaks our näiuve principle of
‘substitution of equals for equals’.

Convention A.1.8 (Barendregt’s variable convention). As a convention, we separate
the names used for free variables and bound variables. Formally, a formula ϕ
complies to this convention whenever it is the case that FV (ϕ) ∩ BV (ϕ) = ∅.

130 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

It is possible to transform every formula into a formula that complies to the
above convention. For that we introduce two concepts: fresh variables and variable
renaming. Fresh variables are variables that do not occur in some context. A
renaming allows us to transform a given formula into another formula in which
variables are uniformly replaced. Now, by choosing appropriate fresh variables for
bound variables, we can separate the free and bound variables of a given formula.

We can now motivate our choice in Definition A.1.1 to have for each arity an
infinite supply of variables associated to that arity. This allows us to always be
able, given a formula ϕ, to give a fresh variable of some arity. A variable vα is fresh
if it does not occur in a formula, i.e. vα ̸∈ V (ϕ). For every variable that occurs
bound in a formula, there are infinitely many fresh variables.

Definition A.1.9 (Variable renaming). A variable renaming is a mapping π of
variable symbols, such that variables of a given arity are mapped to variables of
the same arity. We define the application π(ϕ) of a renaming π to a formula ϕ
inductively on the structure of ϕ as follows:

• π(⊥) = ⊥,

• π(x
.
= y) = (π(x)

.
= π(y)),

• π(C(vα1
1 , . . . , vαn

n)) = C(π(vα1
1), . . . , π(vαn

n)) for constant symbol C,

• π(wα(vα1
1 , . . . , vαn

n)) = π(wα)(π(vα1
1), . . . , π(vαn

n)) where α = (α1, . . . , αn),

• π(ϕ→ ψ) = π(ϕ) → π(ψ),

• π(∀vαϕ) = ∀π(vα)π(ϕ).

It is worth pointing out that a renaming can potentially change multiple
variables simultaneously. For example, ∃y(∀xP (x) ∧ Q(y)) can be renamed to
∃x(∀yP (y) ∧Q(x)) by swapping x and y simultaneously. We may leave the exact
mapping used to rename implicit. To explicitly denote a renaming, we use the
notation

(
v
α1
1 ... vαn

n

w
α1
1 ... wαn

n

)
to denote the renaming which simultaneously renames vα1

1

into wα1
1 , . . ., vαn

n into wαn
n (from top to bottom) and leaves all other variables

identical. In the previous example, the renaming (x yy x) is used.
When performing renaming, it is sometimes important that the variable that

is renamed to is not captured by a quantifier. For example, in the formula
∀xP (x, y) ∧ Q(y) we have that both occurrences of y have the same referents
(they are both the same free variable), whereas if we rename y to x to obtain
∀xP (x, x) ∧ Q(x), the one occurrence of variable x falls under the scope of the
quantifier ∀x whereas the other occurrence remains free. We say that vα0 remains
free for wα1 in ϕ if all occurrences of wα1 in ϕ do not fall under the scope of a
quantifier binding vα0 .

Note that for formulas that comply to Barendregt’s convention, where the
bound and free variables are separate, we do not have a problem with renaming
of variables if the resulting formula also complies to Barendregt’s convention. To
ensure this, one could partition the variables into two sets: those potentially used

A.1. ASSERTION LANGUAGE 131

for free variables, and those potentially used for bound variables. If a renaming
retains the status of each variable (i.e. renaming free variables to other potentially
free variables, and renaming bound variables to other potentially bound variables),
no variable ever gets captured since free variables are never used under quantifiers.
When one formula is obtained from another by the application of a renaming of
the bound variables, we say the formulas are alphabetic variants.

Given non-empty lists of variables v⃗ = vα1
1 , . . . , vαn

n and w⃗ = wα1
1 , . . . , wαn

n

such that the lists match up in length and arity. We write ϕ[v⃗ := w⃗] to mean the
operation where first ϕ is suitable renamed to avoid capture of the variables in w⃗,
and then the renaming of the variables v⃗ into w⃗, respectively. This operation is
also called (capture-avoiding) substitution.

As a convention, if we are given a formula ϕ(vα1
1 , . . . , vαn

n) with its free variables
among the listed variables, then writing ϕ(wα1

1 , . . . , wαn
n) denotes a formula obtained

from ϕ by substituting the variables vα1
1 , . . . , vαn

n by respectively wα1
1 , . . . , wαn

n ,
leaving all other variables identical. For example, given ϕ(x, y), then ϕ(y, z) is the
result obtained from simultaneously substitution x to y and y to z in ϕ. We need
to take care to avoid variable capturing: if ϕ(x, y) is ∀z(x

.
= y), then ϕ(y, z) must

be ∀w(y
.
= z) where we have renamed the bound variable z appropriately. We may

sometimes be unclear, e.g. where ϕ(x) can have two meanings: either it declares
that ϕ has the free variable x, or by ϕ(x) we mean ϕ with the identity renaming
applied (which results in ϕ itself).

The order of a formula is determined as the maximum order of the arities of the
variable symbols that occur in it, and a formula is called a zeroth-order formula
if no variable occurs in it. So, if there is at least one variable occurrence and all
variables that occur are first-order, then the formula in question is first-order. And
so on for second and higher-order formulas.

In general, we can classify formulas by their order, and in doing so we also
include the formulas of lower order. In a zeroth-order formula, no variables occur.
In a first-order formula, all variables that occur are first-order and all constant
symbols that occur have a second-order arity. Hence, the set of first-order formulas
contains the set of zeroth-order formulas. In a second-order formula, all variables
that occur are at most second-order and all constant symbols that occur are at most
third-order. Hence, the set of second-order formulas contains the set of first-order
formulas. And so on for higher-order formulas.

A context is a list of formulas, typically denoted ϕ1, . . . , ϕn. We also have the
empty list of formulas, for which we do not need any special notation. We may
treat a single formula as a list of formulas of length 1 consisting of just that formula.
If Γ and ∆ are lists of formulas, then by Γ,∆ we mean the list formed by adjoining
the formulas in the first list to the formulas in the second list. Consequently, by
Γ, ϕ and ϕ,Γ we mean the lists formed by suffixing or prefixing the list consisting
of a single formula ϕ to the list of formulas Γ, respectively.

On the one hand, contexts are syntactic and finitary objects: every formula
is a finitary object, and every list of formulas can be seen as a finite sequence
of formulas. On the other hand, we now introduce theories, which are possibly
infinitary objects and in some cases are entirely semantic.

132 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

Definition A.1.10 (Theories). A theory is a set of sentences.

A first-order theory is a set of first-order sentences, a second-order theory is
a set of second-order sentences, and so on for higher orders. A finite theory is a
theory where its set of sentences is finite, and an enumerable theory is a theory
with a countable set of sentences. In particular, we shall look at three classes of
theories: satisfiable theories, consistent theories, and complete theories.

In Section A.2, we introduce the semantics of formulas, and in particular we
define when a theory is satisfiable (also called semantically consistent). A theory Γ
is satisfiable (viz. semantically consistent) if there exists a structure for which all
sentences in the theory are satisfied (one may think that the theory ‘consists of’ at
least one such structure). In a satisfiable theory Γ, it must be the case that not all
sentences are in Γ. However, the converse, if not all sentences are in Γ, does not
necessarily imply that Γ is satisfiable.

Then, in Section A.3, we introduce syntactic proof systems and we define when
a theory is deductively closed. A theory Γ is deductively consistent (or consistent
in short) if it is not possible to deduce false from it. Equivalently, the theory Γ
is consistent if there exists some sentence that is not contained in the deductive
closure of Γ.

A theory Γ is complete if for every sentence ϕ, either ϕ ∈ Γ or (¬ϕ) ∈ Γ. It is
called complete in the sense that it is no longer possible to add any more sentences
without the theory turning inconsistent: if one adds a sentence to a complete theory
that was not yet contained in it, closing the resulting theory deductively would
result in an inconsistent theory.

The significance of these definitions is described in Section A.4, where we give
the main result that the syntactic proof systems are, in a precise sense, adequate for
our semantics: the notion of syntactic consistency coincides exactly with the notion
of semantic consistency. Sometimes this is also called soundness and completeness
(not to be confused with complete theories).

A.2 Basic model theory

In this section we introduce models of the languages we introduced above, in the
style of Tarksi. Models are also called structures. Structures are used to give
meaning to formulas of a language. We thus take a semantic perspective in this
section. The meaning of formulas builds on two concepts: interpretations and
valuations. Each structure fixes a domain of discourse, also called the universe.
The domain restricts the values that are possible. Each structure also fixes the
interpretation of constant symbols, assigning to each constant symbol a value.
Structures further induce valuations, which assign to each variable symbol a value.
Given both an interpretation (for the constant symbols) and valuation (for the
variable symbols), we are able to give meaning to formulas relative to an ambient
structure.

Both interpretations and valuations employ the concept of value, albeit assigning
them to constants or variables, respectively. Values are structured by an arity and

A.2. BASIC MODEL THEORY 133

range over the domain. The values of first-order symbols range directly over the
elements of our domain. There are no first-order constant symbols, only first-order
variables. The values of second-order symbols range over particular sets comprising
elements of our domain, depending on their arity. Moreover, the role of quantifiers
in our language is to modify valuations, and thereby varying the value of variables
depending on their context.

Definition A.2.1 (Values). Given a domain D. Let D[α] denote the set of values
of D of arity α. A value of D of arity α is constructed inductively:

1. An element d ∈ D is a value of D of arity 0.

2. A set S ⊆ D[α1] × . . .×D[αn] is a value of D of arity (α1, . . . , αn).

All values are constructed by one of these two clauses.

It is easy to see that D[0] = D and D[(α1, . . . , αn)] = P(D[α1] × . . .×D[αn])
where P denotes the powerset operator on sets. Hence we have D[1] = P(D),
D[2] = P(D ×D), and D[n] = P(Dn) for arities n > 1.

Example A.2.2. Let N be our domain. We then have the following values of N:

• First-order values:

0, 1, 2, . . . are in N[0] = N. Every natural number is a first-order value.

• Second-order values:

{1, 3, 5, . . .} is in N[1] = P(N), {(0, 1), (1, 2), (2, 3), . . .} is in N[2] = P(N×N),
et cetera. Every possible set of natural numbers is a second-order value in
N[1], and every possible binary relation on natural numbers is a second-order
value in N[2], and so on.

• Third-order values:

{(f, S) | f : N ⇀ N and S = dom(f)} in N[(2, 1)] = P(P(N × N) × P(N)).
This value describes a relational between a relation f and a set S, where
f : N⇀ N means that f is a partial function on N, and dom(f) is the set of
elements on which f is defined. End of Example.

We have introduced values in this way to be able to attend to the higher-order
aspect of languages, namely how to give a value to second and higher-order variables.
We first introduce the so-called standard model theory of logic. In the standard
model, variables range over all values. It is also possible to consider a different
semantics of logic, resulting in the so-called general model theory of logic, where
variables range over a restricted set of values.

As can be seen in the example above, the first-order values are elements of
the domain. Sometimes we use elementary (or the adjective elementarily) as a
synonym of first-order, to remind the reader of this fact.

For the remainder of this section, we again fix a particular signature Σ.

134 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

Definition A.2.3 (Structures). A structure A is a pair of a domain A (a set of
elements) and an interpretation I. An interpretation I assigns every constant
symbol of arity α to a value of A of arity α.

Given that C is a constant symbol, we write CI to mean the value given to C
by the interpretation I (and it should be clear from context to which structure an
interpretation is part of). Sometimes we also speak of the extension of a constant
symbol, to mean its value given by an interpretation. Note that constant symbols
are never of arity zero, hence the extension of a constant symbol is always a set.
Further, as a convention, when we describe some structure using Gothic letters,
e.g. A,B, then we simply refer to the underlying domain using an uppercase roman
typeface, e.g. A,B, respectively.

We introduce two basic concepts involving structures: isomorphisms and sub-
structures. To do so, it is necessary to transport values of one domain to another
domain. Let f be a bijection between the domains A and B. We can use f directly
as a bijection between the values in A[0] and B[0]. We can construct a lifting
of the bijection f to higher-order values inductively. Let f1 : A[α1] → B[α1],
. . . , fn : A[αn] → B[αn] be bijections on values of arities α1, . . . , αn. Then there
exists a bijection f ′ : A[α1] × . . .×A[αn] → B[α1] × . . .×B[αn] by mapping each
component of the Cartesian product using f1, . . . , fn, respectively. Consequently,
there exists a bijection f ′′ : P(A[α1] × . . . × A[αn]) → P(B[α1] × . . . × B[αn])
between the values in A[(α1, . . . , αn)] and B[(α1, . . . , αn)].

Given two structures A and B. The structures are isomorphic, written A ∼= B,
if and only if there is a bijection f between the domains A and B such that
CJ = f ′′(CI) for every constant symbol C, where f ′′ is f lifted to a bijection
between the values of A and B of the arity associated to C, I is the interpretation
of A, and J is the interpretation of B.

The cardinality of the domains of isomorphic structures are equal. In other
words, structures with a finite domain are isomorphic only to structures with also
a finite domain, and similar for structures with countable or uncountable domains.

Given two structures A and B. Structure A is a substructure of B, written
A ⊆ B, if and only if A ⊆ B and CI = CJ ∩ A(α) for every constant symbol C,
where I is the interpretation of A, and J is the interpretation of B.

Definition A.2.4 (Valuations). Given a structure A. A valuation ρ of A assigns
every variable symbol of arity α to a value of A of arity α.

For a variable vα, by ρ(vα) we mean the value given to vα by the valuation ρ.
Note that if the domain of A is empty, there are no first-order values and thus
there cannot be a valuation, since we have (infinitely many) first-order variables
that need to be assigned a value. Hence, in the context of a valuation, we may
assume the domain of A to be non-empty.

Given a valuation ρ and a variable vα, if a is a value of A of arity α, then
ρ[v := a] is the updated valuation obtained so to satisfy the following two equations:

ρ[v := a](v) = a

ρ[v := a](w) = ρ(w) if v and w are different

A.2. BASIC MODEL THEORY 135

where w is a meta-variable standing for a variable symbol. Note that if v and w
have a different arity, they are necessarily different.

Definition A.2.5 (Satisfaction relation). Given a structure A and a valuation ρ
of A, and a formula ϕ. The satisfaction relation A, ρ |=CL ϕ is defined inductively
on the structure of ϕ:

1. A, ρ |=CL ⊥ never holds,

2. A, ρ |=CL (x
.
= y) holds iff ρ(x) = ρ(y),

3. A, ρ |=CL C(vα1
1 , . . . , vαn

n) holds iff (ρ(vα1
1), . . . , ρ(vαn

n)) ∈ P I ,

4. A, ρ |=CL wα(vα1
1 , . . . , vαn

n) holds iff (ρ(vα1
1), . . . , ρ(vαn

n)) ∈ ρ(w)
where α = (α1, . . . , αn),

5. A, ρ |=CL ϕ→ ψ holds iff A, ρ |=CL ϕ implies A, ρ |=CL ψ,

6. A, ρ |=CL ∀vαϕ holds iff A, ρ[v := a] |=CL ϕ holds for every a ∈ A[α].

The superscript CL stands for Classical Logic. Instead of writing A, ρ |=CL ϕ,
we may also speak of ‘A and ρ (classically) satisfy ϕ’, or ‘ϕ is (classically) satisfied
by A and ρ’, or ‘ϕ is (classically) satisfiable’ if there is some A and ρ. We may leave
out the superscript CL or the word ‘classically’, if no confusion can arise about
the logic we use. In the remainder of this section we drop CL and ‘classically’.

Note that the definition of the satisfaction relation above breaks down for
structures with an empty domain, since there does not exist a valuation if the
domain is empty. We still, however, have that some formulas could be considered
satisfied in such empty structures (e.g. ⊥ → ⊥ and ∀x⊥) whereas other formulas
should not (e.g. ∀P (P (x))). This technical inconvenience can be resolved by
introducing a pseudo valuation for use in empty structures only, which does not
assign first-order variables a value. However, we shall leave out the tedious details,
and keep ourselves to non-empty structures.

Also the abbreviations can be given a semantics, which follow easily from the
definition above:

• A, ρ |=CL ⊤ always holds,

• A, ρ |=CL ¬ϕ holds iff A, ρ |=CL ϕ does not hold,

• A, ρ |=CL ϕ ∧ ψ holds iff A, ρ |=CL ϕ and A, ρ |=CL ψ holds,

• A, ρ |=CL ϕ ∨ ψ holds iff A, ρ |=CL ϕ or A, ρ |=CL ψ holds,

• A, ρ |=CL ∃vαϕ holds iff A, ρ[v := a] |=CL ϕ holds for some a ∈ A[α].

The satisfaction relation depends on only finitely many variables being assigned
a value by a valuation. This is formally captured by the following proposition.
Given a set of variables X, by ρ[X] = ρ′[X] we mean that the valuations ρ and ρ′
coincide on X, that is, ρ and ρ′ assign the same values to variables in X.

136 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

Proposition A.2.6 (Coincidence condition). Given that ρ[FV (ϕ)] = ρ′[FV (ϕ)],
it follows that A, ρ |= ϕ if and only if A, ρ′ |= ϕ.

Similarly, the choice of bound variables bears no significance on the meaning of
a formula. This is formally captured by the following proposition.

Proposition A.2.7 (Invariance under renaming). Given a formula ϕ, and a
renaming π such that all free variables of ϕ stay the same, i.e. π(v) = v for all
v ∈ FV (ϕ). It follows that A, ρ |= ϕ if and only if A, ρ |= π(ϕ).

The proposition above is significant, as it provides a semantic justification for
Barendregt’s variable convention (see Convention A.1.8). It is always possible to
rename the bound variables of a formula, so that the bound variables and free
variables are separated, without changing the meaning of a formula.

Lemma A.2.8 (Substitution lemma). Given a formula ϕ and variables vα, wα,
then A, ρ |= ϕ[vα := wα] if and only if A, ρ[vα := ρ(wα)] |= ϕ.

Sometimes, it is more convenient to work with the set of valuations by which a
formula is satisfied given a particular structure.

Definition A.2.9 (Denotation). The denotation of a formula AJϕKCL is defined:

AJϕKCL = {ρ | A, ρ |=CL ϕ}.

Similar as before, we may drop CL if clear from context. We write ϕ ≡A ψ for
AJϕK = AJψK, and say that ϕ and ψ are equivalent.

We write A |= ϕ to mean A, ρ |= ϕ for all valuations ρ, and we say that ϕ is
true in A. If ϕ is a sentence that is satisfied by A and some valuation, using the
coincidence condition, we can obtain that it is also satisfied by the same structure
but with any other valuation: the valuation has no influence on whether a sentence
is satisfied by the structure. So if ϕ is a sentence, it is true in A if and only if it is
satisfied by A, that is, A |= ϕ if and only if A, ρ |= ϕ for some valuation ρ.

Given a sentence ϕ, we write |= ϕ to mean that A |= ϕ for all structures A, and
we then say that ϕ is valid.

Given a theory, i.e. a set of sentences Γ, we write A |= Γ to mean that all
sentences in Γ are true in A, that is, A |= ϕ for all ϕ ∈ Γ. We may then also speak
of ‘Γ is satisfied by A’. A theory Γ is satisfiable if there exists a structure A such
that A |= Γ. A theory Γ is finitely satisfiable if every finite subset of Γ is satisfiable.

Theorem A.2.10 (Compactness). Given a first-order theory Γ. Γ is satisfiable if
and only if Γ is finitely satisfiable.

Proof. Follows from Loś’s theorem and an ultraproduct construction, see [87,
Theorem 2.10].

We write Γ |= ϕ to mean A |= ϕ for all structures A such that A |= Γ, and
say that ϕ is a semantic consequence of Γ. As an additional case of semantic
consequence, we consider a context, i.e. a list of formulas Γ, and a formula ϕ. We

A.2. BASIC MODEL THEORY 137

write Γ |= ϕ to mean A, ρ |= ϕ for all structures A and valuations ρ such that
A, ρ |= ψ for every formula ψ ∈ Γ. Note that for contexts, we deal with formulas
that may contain free variables. As such, there is one valuation that is used in
both checking the satisfaction of all formulas of the context, and in satisfaction of
the given formula ϕ. If we have only sentences in Γ and ϕ is also a sentence, then
both readings of Γ |= ϕ coincide.

By ThCL(A) we mean the set of all sentences ϕ such that A |=CL ϕ, and we
speak of the higher-order theory of A. (Again, we may drop the superscript CL
if clear from context.) If we restrict Th(A) to the first-order formulas, denoted
Th1(A), we speak of the first-order theory of A. If we restrict Th(A) to the second-
order formulas, denoted Th2(A), we speak of the second-order theory of A. And so
on for higher orders. By the way we classify formulas, higher-order theories always
include lower-order theories, i.e. Th1(A) ⊆ Th2(A) ⊆

In general, we have for every structure A and formula ϕ that either A |= ϕ
or A |= ¬ϕ. Thus, the (first-order, second-order, . . . , higher-order) theory of a
structure is necessarily complete.

Given two structures A and B. The structures are elementarily equivalent,
written A ≡CL

1 B, if and only if for every first-order sentence ϕ we have A |=CL ϕ if
and only if B |=CL ϕ. (We may drop the superscript CL under the same proviso.)
In other words, two elementarily equivalent structures satisfy exactly the same
first-order sentences, i.e. Th1(A) = Th1(B).

Given a set of sentences Γ, by ModCL(Γ) we mean the class of all structures A
such that A |=CL Γ. (Same treatment of the superscript CL.) Gaining insight in
the classification of structures is the main goal of model theory. A first result of
model theory is given below.

Proposition A.2.11. A first-order theory Γ is complete if and only if all structures
A,B ∈ Mod(Γ) are elementarily equivalent, i.e. A ≡1 B.

The class of finite structures consists of structures A = (A, I) where the domain
A is finite. A natural question to ask is: is it possible to give a sentence that
characterizes finite structures? To be able to answer that question, it is worthwhile
to give an informal proof of the following proposition.

Proposition A.2.12. A set D is finite if and only if every injective total function
f : D → D is a surjection.

Proof. Suppose D is finite, and let f be an injective total function. Suppose,
towards contradiction, that f is not a surjection. Then there is an unreachable
element, i.e. some x for which there is no input y such that the output f(y) = x.
Since f is a total function, the function f must be defined for every input: there is
exactly one outgoing pointer for every element in D. Since D is finite, there are
n points. So there are n pointers, but at most n − 1 points are reached. Then,
according to the pigeonhole principle, there must be one point which can be reached
through f from two different inputs. This is in contradiction with the fact that f
is injective.

Suppose every injective total function f : D → D is a surjection. Suppose,
towards contradiction, that D is infinite. Then D must be non-empty, and let d be

138 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

some element of D (it does not matter which one you choose). Now consider the
set D \ {d}, which is still infinite. We can place every element of D \ {d} next to
precisely one element of D, and thus there is a bijection between D and D \ {d}.
However, this shows that we have a total function that is an injection from D to
D, but not a surjection, since d is never reached. Contradiction!

Let R be a 2-ary variable, and x, y, z distinct individual variables. We have the
following abbreviations:

• fun(R) abbreviates ∀x, y, z. R(x, y) ∧R(x, z) → y
.
= z,

• inj (R) abbreviates ∀x, y, z. R(x, z) ∧R(y, z) → x
.
= y,

• tot(R) abbreviates ∀x∃yR(x, y),

• surj (R) abbreviates ∀y∃xR(x, y).

Our characterizing sentence is now the following.

Proposition A.2.13 (Characterization of finite structures). A is a finite structure
if and only if

A |= ∀R. fun(R) ∧ tot(R) ∧ inj (R) → surj (R).

Proposition A.2.14. Given structures A and B. Then A ∼= B implies A ≡1 B.
The converse also holds for finite structures.

Thus, first-order logic is sufficiently powerful for classifying the finite structures
(up to isomorphism).

An important class of structures is that of countable structures, which are
structures with a countable domain. We say that a set X is countable if there
exists an enumeration function f : N → X ∪ {⊥} from the natural numbers to
the set (X ∪ {⊥}) in which ⊥ is a dummy element not in X, such that for every
element x ∈ X there exists a natural number n such that f(n) = x. We make use
of a dummy element to ensure that finite sets are also considered countable.

In a countable structure, the first-order values are countable although the second
and higher-order values are not countable. Although it is the case that for given
countable sets their finitary Cartesian product is again countable, this fails for
power sets. For a given countable set its power set is not countable (which follows
from a diagonalization argument).

Lemma A.2.15. Given a finite signature and countable structures A and B. Then
A ≡2 B implies A ∼= B.

Proof. The proof requires the axiom of constructibility, see also [5].

Thus, second-order logic is sufficiently powerful for classifying the countable
structures (up to isomorphism).

If we restrict ourselves to first-order signatures, we also have an important class
of structures called data structures. Essentially, a data structure is a countable
structure with a computable interpretation. Formally, this amounts to the following
conditions, where X is the domain:

A.3. BASIC PROOF THEORY 139

• there exists an enumeration function f : N → X ∪ {⊥} such that for each
x ∈ X there exists a unique natural number n such that f(n) = x,

• the set {n | f(n) ̸= ⊥} is computable (i.e. it is decidable whether a natural
number represents an element of the domain of the data structure or not),

• the interpretation is computable (i.e. the extension of every constant symbol
is a decidable set).

The unique natural number corresponding to each element of the domain is called
its encoding. One uses the encoding of an element in showing that the interpretation
is computable, since in data structures one can easily go back and forth between
the elements of the domain and their encoding as a natural number.

Proposition A.2.16. It is decidable whether a quantifier-free formula is satisfied
in a given data structure and valuation.

Note that data structures induce a natural order relation on its element, by their
enumeration order. With some additional effort, one could also define bounded
formulas (in which existential and universal quantification is always bounded) and
extend the above decidability property to bounded formulas as well. Further, given
a bounded formula ϕ, it is semi-decidable whether the formula ∃xϕ is satisfied in a
given data structure and valuation.

A.3 Basic proof theory
We now investigate syntactical systems for deduction, also called proof systems.
First, we introduce proof systems in abstracto, in the sense that we abstract
from the (syntactic) objects which are involved in deductions. Many interesting
properties of proof systems can already be stated in the abstract, regardless of the
syntactic objects [26]. Then, we investigate a particular proof system for classical
logic, by instantiating objects by the formulas of our assertion language. Later in
this thesis, we also introduce proof systems for reasoning about separation logic
and program correctness, thus further motivating the approach of giving proof
systems in the abstract first.

Definition A.3.1 (Proof system). A proof system D = (O, /) consists of a class
of objects O and a deduction relation / on lists of objects and objects, that satisfy
the following conditions:

(Rg) a1, . . . , an / ai for any 1 ≤ i ≤ n,

(Tg)
a1, . . . , an / b1,
...

... ,
a1, . . . , an / bm

 and b1, . . . , bm / c implies a1, . . . , an / c.

Whenever a list of objects a1, . . . , an and an object b are related by the deduction
relation /, we say that ‘b follows from a1, . . . , an’ or ‘a1, . . . , an leads to b’. If that is

140 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

the case, the objects a1, . . . , an are called the premises and b is called the conclusion.
The witness that the deduction relation between premises and a conclusion holds
is called a deduction. It should be clear from context to which proof system
the deduction relation / belongs. We fix some proof system D = (O, /) until
Definition A.3.4.

The condition (Rg) is called generalized reflexivity, and the condition (Tg) is
called generalized transitivity. Note that the we require an expressive meta language
due to the many ellipsis: the condition (Tg) reads as ‘if bi follows from a1, . . . , an
for all 1 ≤ i ≤ m and c follows from b1, . . . , bm, then c also follows from a1, . . . , an’.
Both conditions imply the non-generalized facts:

(R) a / a,

(T) a / b and b / c implies a / c,

which establishes that the deduction relation is reflexive and transitive.
In some logic texts, deductions are depicted in a different way. Instead of

writing a1, . . . , an / b1 up to a1, . . . , an / bm, deductions are rendered as

a1 . . . an
D1

b1 . . .

a1 . . . an
Dm
bm

Deductions are tree shaped, where a conclusion is at the root of the tree and the
premises are its leaves. Note that in the depiction above the premises and the
conclusions are all part of the deductions. So, above, a1, . . . , an and b1 are all part
of D1. With this perspective in mind, we may also call deductions proof trees.
Using this notation we can depict generalized transitivity as follows. Assuming the
deduction given above, and the deduction given below

b1 . . . bm
D′

c

we can imagine pasting the proof trees D1 up to Dn in the place of the leaves
b1, . . . , bm of the proof tree of D′, where the conclusions of the former proof trees
overlap with the premises of the latter, to finally obtain the deduction:

a1 . . . an
D1

b1 . . .

a1 . . . an
Dm
bm

D′

c

which is to say, there exists a deduction D:

a1 . . . an
D
c

A.3. BASIC PROOF THEORY 141

A proof system is called finitary if the class of objects is a decidable set and
if there are finitary means to establish that the deduction relation holds. We do
not require that the class of objects is a finite set, but we do require a recursive
deduction relation. This can be imagined by having finite certificates that serve as
witnesses for establishing that the deduction relation holds. Finitary proof systems
play an essential rôle in computer science, since the certificates that establish
deductions of a finitary proof system can be checked by a computer. This allows
for the development of tools for constructing and checking deductions. In the
remainder, we shall pay attention mostly to finitary proof systems.

Lemma A.3.2 (Exchange, weakening, contraction).

(E) a1, . . . , ai, ai+1, . . . , an / b implies a1, . . . , ai+1, ai, . . . , an / b,

(W) a1, . . . , an / c implies a1, . . . , an, b1, . . . , bm / c,

(C) a1, . . . , an, b, b, c1, . . . , cm / d implies a1, . . . , an, b, c1, . . . , cm / d.

The proof follows easily from generalized reflexivity and transitivity. The
conditional (E) is called the property of exchange. It describes, intuitively, that if
there is a deduction from a list of premises, then we must also have a deduction in
which the premises are permuted. The conditional (W) is called the property of
weakening. Intuitively it says, if there is a deduction from a list of premises, we
must also have a deduction in which additional (but unused) premises are present.
Finally, the conditional (C) is called the property of contraction. Intuitively, the
multiplicity of premises do not matter. Thus, it is possible to see the list of
premises of any deduction as a finite set of objects (where duplicates and order do
not matter), which can always be extended with additional premises.

We now introduce concepts that are derived from the deduction relation. If we
have two objects and one object follows from the other and vice versa, then we say
that the two objects are mutually deducible. For that purpose we introduce the
following abbreviation,

a // b abbreviates a / b and b / a

Mutual deducibility has two important properties, namely that we can replace any
conclusion or premise with an object which is mutually deducible. The proof of
the following lemma is again simple.

Lemma A.3.3 (Substitutivity). a // b and c1, . . . , cn / a implies c1, . . . , cn / b,
a // b and c1, . . . , cn, a, d1, . . . , dm / e implies c1, . . . , cn, b, d1, . . . , dm / e.

An important derived concept is that of relative demonstrability. When describ-
ing proof systems, one is foremost interested in this concept. We introduce the
following notation: ⊢D. The symbol ⊢ is called a turnstile. The superscript anno-
tates which proof system is used, and may be dropped if the proof system is clear
from context. We first define the concept of relative demonstrability, which can
then be refined into four concepts familiar to most users of logic: complementarity,
demonstrability, contradictoriness, and refutability.

142 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

Definition A.3.4 (Relative demonstrability). Let D = (O, /) be a proof system.
We define relative demonstrability as a relation ⊢D on lists of objects, as follows:
a1, . . . , an ⊢D b1, . . . , bm if and only if

b1, d1, . . . , dk / c and . . . and bm, d1, . . . , dk / c implies a1, . . . , an, d1, . . . , dk / c

for all d1, . . . , dk and for all c.

Given that a list of objects a1, . . . , an and a list of objects b1, . . . , bm are related
by the relative demonstrability relation, i.e. a1, . . . , an ⊢ b1, . . . , bm, then we call
the objects a1, . . . , an the antecedents and the objects b1, . . . , bm the succedents.
We shall talk about the exceptional cases, when either of the two lists is empty, as
follows: if ⊢ b1, . . . , bm then we call b1, . . . , bm complementary, if ⊢ b then we call b
provable, if a1, . . . , an ⊢ then we call a1, . . . , an contradictory, and if a ⊢ then we
call a refutable.

We have the following important property of relative demonstrability:

a1, . . . , an ⊢ b if and only if a1, . . . , an / b.

It captures that relative demonstrability and the deduction relation coincide in
case there is a single succedent. Furthermore, we have

a1, . . . , an / b1 or . . . or a1, . . . , an / bm implies a1, . . . , an ⊢ b1, . . . , bm.

Note that the converse does not hold in general. While the deduction relation
must be recursive, relative demonstrability is not necessarily recursive (this can be
seen from its definition, where we have an unbounded universal quantification over
sequences of objects).

Example A.3.5. Construct a proof system: take O to be two distinct objects, say a
and b, and take the smallest deduction relation that satisfies generalized reflexivity
(and thus generalized transitivity). Then we do have that /a or /b implies ⊢ a, b.
But the converse fails. Clearly ⊢ a, b holds (consider on the meta-level that only
instances of generalized reflexivity satisfy the premise when both a and b are in
d1, . . . , dn). But we have neither /a nor /b.

Similar to Lemma A.3.2 we also have properties of exchange, weakening, and
contraction, but on either sides of the turnstile.

Lemma A.3.6 (Left/right exchange, weakening, contraction).

(LE) a1, . . . , ai, ai+1, . . . , an ⊢ b1, . . . , bm implies
a1, . . . , ai+1, ai, . . . , an ⊢ b1, . . . , bm,

(RE) a1, . . . , an ⊢ b1, . . . , bi, bi+1, . . . , bm implies
a1, . . . , an ⊢ b1, . . . , bi+1, bi, . . . , bm,

(LW) a1, . . . , an ⊢ c1, . . . , ck implies a1, . . . , an, b1, . . . , bm ⊢ c1, . . . , ck,

(RW) a1, . . . , an ⊢ c1, . . . , ck implies a1, . . . , an ⊢ c1, . . . , ck, b1, . . . , bm,

A.3. BASIC PROOF THEORY 143

(LC) a1, . . . , an, b, b, c1 . . . , cm ⊢ d1, . . . , dk implies
a1, . . . , an, b, c1 . . . , cm ⊢ d1, . . . , dk,

(RC) a1, . . . , an ⊢ c1, . . . , cm, b, b, d1, . . . , dk implies
a1, . . . , an ⊢ c1, . . . , cm, b, d1, . . . , dk.

Note that an easy corollary that follows from right exchange and right weakening
is that we also have generalized reflexivity for ⊢, as follows:

a1, . . . , an ⊢ b1, . . . , bm if ai = bj for some i, j.

Another important consequence of the definition of relative demonstrability is:

Lemma A.3.7 (Cut). If a1, . . . , an ⊢ b1, . . . , bm, e and e, a1, . . . , an ⊢ b1, . . . , bm
then a1, . . . , an ⊢ b1, . . . , bm.

Proof. Fix arbitrary d1, . . . , dk and c. It is sufficient, assuming bi, d1, . . . , dk / c
for 1 ≤ i ≤ m, to show a1, . . . , an, d1, . . . , dk / c. Applying (LW) and (LE) on our
assumptions, we obtain bi, a1, . . . , an, d1, . . . , dk / c for 1 ≤ i ≤ m. From the second
premise we know that e, a1, . . . , an, d1, . . . , dk / c. Applying all these facts to the
first premise we obtain a1, . . . , an, a1, . . . , an, d1, . . . , dk / c. After applying (LE)
and (LC) we reach our goal.

Now that we have explored proof systems in the abstract, we can construct
particular and concrete proof systems. Typically, one constructs a finitary proof
system by following three steps:

1. One first specifies what is the class of objects. The class of objects typically
has a certain structure, e.g. there are operations defined on objects such that
the class of objects is closed under application of the operations.

2. One defines the deduction relation: this can be done by introducing axioms
and proof rules, often in the form of axiom and proof rule schemata.

3. One checks that the resulting proof system is finitary (i.e. the class of objects
and the deduction relation are recursive), by showing there is an algorithm
that can decide the deduction relation.

The third step is easy if one takes a recursive set of objects and defines the
deduction relation inductively. However, an alternative to the second step above
is by imposing constraints on the deduction relation, e.g. in terms of relative
demonstrability. Then the third step is non-trivial.

We consider two classes of proof rules: simple and complex. Axioms and simple
proof rules are often depicted as follows:

b

a1 . . . an
b

where the axiom on the left denotes ⊢ b (the conclusion b follows from no premises)
and the proof rule on the right denotes a1, . . . , an ⊢ b (the conclusion follows from

144 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

the premises a1, . . . , an). One may consider an axiom to be a proof rule without
premises. Contrastingly, one may depict complex proof rules as follows:

D1
a1 . . .

Dn
an

b

which expresses how to construct a deduction with conclusion b, given deductions
D1 up to Dn with conclusions a1 up to an, respectively. In such constructions,
one also has to describe how to treat the premises of the deductions on top of the
rule. For example, the constructed deduction may have less premises than the
premises of D1 up to Dn combined. In such cases, the object used as premise in
the deduction on top is called an assumption, which is closed by the complex proof
rule. Such situations are also depicted as follows:

a1 . . .

c1
...
ck

an

b

to indicate that the premises of the deduction on top of a1 are also taken to be
premises of the resulting deduction, but that the objects c1, . . . , ck in the deduction
on top of an are assumptions, and hence not premises of the resulting deduction.

A simple proof rule can be considered to be a complex proof rule where the
premises are shared among all deductions and no assumptions are closed: this is
what generalized transitivity ensures. Axiom and (simple or complex) proof rule
schemata employ meta-linguistic constructs to describe constraints that must hold
for its instances.
Example A.3.8. Consider the set N of objects, where 0 is zero and s : N → N the
successor function. We have the following axiom and simple proof rule schema:

0
x
s(x)

The proof rule is a schema, where x is a meta-linguistic variable standing for any
object x ∈ N, and s(x) is the object obtained after applying the successor function
s at the meta-level. The deduction relation can now inductively be defined: only
the above axiom and proof rules (instances of the above proof rule schema) may
be employed, next to generalized reflexivity and generalized transitivity that hold
for every proof system. As an example, we have 1 / 3 as shown by its deduction:

1
2
3

which we read as stating that both 2 follows from 1 (that is, 1 / 2), and 3 follows
from 2 (that is, 2 / 3), which can be combined in one deduction by transitivity.
The above is one of the many possible deductions establishing the same conclusion
(in this case 3) with the same premises (in this case just 1). End of Example.

A.3. BASIC PROOF THEORY 145

An important aspect of proof theory is the analysis of proof systems. Recall, if
we have ⊢ a, we say that a is provable. Given a proof system D, one could consider
the class of all provable objects {a | ⊢D a}. Proof systems can be compared by
comparing their classes of provable objects. In particular, one can ask whether a
given proof rule is redundant. A proof rule is redundant if in a proof system without
that proof rule, the class of provable objects is the same as for the proof system
with that proof rule. We introduce two concepts that capture such redundancy, in
essentially different ways: derivability and admissibility of proof rules.

Given a proof system D which has a simple proof rule

a1 . . . an
b

then if a1, . . . , an ⊢D−
b in a proof system D− without the above proof rule, we

call that proof rule derivable. Clearly, a derivable proof rule is redundant, since the
class of all provable objects of D and D− are the same. Indeed, for any deduction
in D where the rule is used, we can ‘cut’ out the rule and ‘paste’ in the deduction
witnessing a1, . . . , an ⊢D−

b at the place where the rule is used. If this ‘cut and
paste’-procedure is applied for every occurrence of the proof rule, one ends up with
a deduction in D−.

Similarly, given a proof system D which has a complex proof rule

D1
a1 . . .

Dn
an

b

then if c1, . . . , cmi
⊢D−

ai for all 1 ≤ i ≤ n implies d1, . . . , dk ⊢D−
b in a proof

system D− without the above proof rule, we call that proof rule admissible (the com-
plex proof rule imposes conditions on how the premises of the involved deductions
c1, . . . , cmi are related to the premises of the constructed deduction d1, . . . , dk).
Informally, a complex proof rule is admissible if it can be mimicked by a con-
struction involving the deductions D1 up to Dn. Also an admissible proof rule is
redundant. Consider a deduction of D in which the above complex proof rule is
used. Consider the context where the proof rule occurs, such that the proof rule
does not occur in the deductions of the premises, but each deduction Di has a list
of premises c1, . . . , cmi . We cut out the derivations with as conclusion the premises
a1, . . . , an, to establish (possibly after weakening) c1, . . . , cm1

⊢D−
a1 and . . . and

c1, . . . , cmn
⊢D−

an, from which we then obtain a new deduction by the fact that
the rule is admissible, which can be placed in the place of the rule. After this
procedure is applied for every occurrence of the proof rule, from the leaves to the
root, one ends up with a deduction in D−.

A proof rule is weakly admissible if we have that ⊢D−
ai for all 1 ≤ i ≤ n

implies ⊢D−
b. Thus weakly admissible proof rules are not necessarily eliminable

in arbitrary contexts. If a proof rule is not weakly admissible, it is not admissible
either. Further, in some cases, the requirement of admissible proof rules that the
resulting deduction d1, . . . , dk ⊢D−

b does not contain the proof rule at all is too
strong. If our goal is to eliminate the rule from any deduction, it is sufficient that

146 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

the proof rule can be pushed upward in every deduction in which it occurs, and
eliminated when it occurs near the top: so that either the size of the deductions
used as premises become smaller, or the resulting deduction is indeed in D−.

When comparing derivability with admissibility, there is an important distinc-
tion: derivability can be applied to any rule occurrence, but admissibility can only
be applied to rule occurrences where the deductions of the premises are already free
from occurrences of the redundant rule. In admissibility, the resulting deduction
with the redundant rule eliminated is constructed from the leaves back to the root,
whereas no such order is imposed when eliminating derivable rules. Moreover, to
obtain a deduction where the redundant rule is eliminated, for admissible proof
rules, the original deductions of the premises can be changed (except for for their
premises and conclusion), whereas for derivable rules those deductions remain
intact.

In fact, derivability of a proof rule is stronger than admissibility. This can
be demonstrated by the following example, where we analyze a proof rule with
conclusion b and a single premise a. Consider the following two properties:

if a / b then ⊢ a implies ⊢ b (A.1)
if ⊢ a implies ⊢ b then a / b (A.2)

The first property (A.1) states that derivability implies weak admissibility. Given a
deduction a / b, we know that the provability of a implies the provability of b. This
is a consequence of transitivity, by applying the deduction without premises of a
in the place of the premise a in the deduction a / b to obtain ⊢ b. This argument
also works when there are arbitrary additional premises c1, . . . , cm from which a
follows, hence derivability also implies admissibility. Hence, the first property holds
for every proof system.

The second property (A.2) states that weak admissibility implies derivability.
However it can be shown that the second property does not hold in general: there
is a proof system in which it fails. Hence, admissibility does not imply derivability,
since weak admissibility already does not imply derivability.

Example A.3.9. Consider the set Z of objects, where 0 is zero, s : Z → Z the
successor function, and p : Z → Z the predecessor function. Take the same axiom
and proof rule schema as we did in the last example (so we have only the instances
where x ∈ N):

0
x
s(x)

Comparing this proof system to the previous example, we see that their sets of
provable objects must be the same. We now consider the simple proof rule schema

p(x)
x

with the question: is this proof rule admissible? Consider a deduction and the
top-most occurrence of an instance of this proof rule (i.e. those occurrences where
deductions of the premise do not have an instance of this proof rule as an occurrence).

A.3. BASIC PROOF THEORY 147

Then it must be the case that the conclusion p(x) is in N. We can then eliminate
the proof rule by replacing its instance by an instance of the other rule, which
deduces s(p(x)) from p(x). Keep working downwards and we eventually obtain
a deduction in which this proof rule no longer occurs. Hence the proof rule is
admissible.

But is it derivable? Consider the following instance: 0 follows from −1. Since
the instances of the remaining proof rule are limited to x ∈ N, we cannot apply it
to construct a deduction with the conclusion 0. Hence the new proof rule is not
derivable. End of Example.

When considering the relative demonstrability relation ⊢D of a proof system
D = (O, /), one typically considers Γ to denote a sequence of objects in the case
of Γ ⊢D a. It is natural to extend the relative demonstrability relation to sets of
objects too.

Definition A.3.10. Let Γ ⊆ O be a set of objects. Then Γ ⊢D a holds if and only
if there exists a sequence Γ0 of elements in Γ such that Γ0 ⊢D a.

In fact, we can generalize the succedent too.

Definition A.3.11. Let Γ,∆ ⊆ O be sets of objects. Then Γ ⊢D ∆ holds if and
only if there exists sequence Γ0 of elements in Γ and sequence ∆0 of elements in ∆
such that Γ0 ⊢D ∆0.

We construct a proof system for first-order classical logic in the style of Hilbert.
Let Γ be a context (a finite sequence) of first-order formulas, and ϕ, ψ, ξ be first-
order formulas.

Definition A.3.12. Let CL be a proof system consisting of:

1. the first-order formulas of classical logic as objects,

2. the smallest deduction relation ⊢CL satisfying the conditions:

(MP) Γ ⊢CL (ϕ→ ψ) and Γ ⊢CL ϕ implies Γ ⊢CL ψ,

(G) Γ ⊢CL ϕ implies Γ ⊢CL (∀y (xy)ϕ)
where x ̸∈ FV (Γ) and either y = x or y ̸∈ FV (ϕ),

(A1) ⊢CL (ϕ→ (ψ → ϕ)),

(A2) ⊢CL ((ϕ→ ψ) → ((ϕ→ (ψ → ξ)) → (ϕ→ ξ))),

(A3) ⊢CL ((∀x(ϕ→ ψ)) → (ϕ→ (∀y (xy)ψ)))
where x ̸∈ FV (ϕ) and either y = x or y ̸∈ FV (ψ),

(DN) ⊢CL (¬¬ϕ→ ϕ),

(∀E) ⊢CL ((∀xϕ) → (xy)ϕ) where y remains free for x in ϕ,

(=I) ⊢CL (x
.
= x),

(=E) ⊢CL ((x
.
= y) → ((zx)ϕ→ (zy)ϕ)) where x, y remain free for z in ϕ.

148 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

It is easy to see that the above proof system is finitary. Each first-order formula
is a finite object. Further, the witness of a deduction, Γ ⊢CL ϕ, is a proof tree with
premises in Γ and conclusion ϕ. The leaves of the proof tree are instances of an
axiom scheme or a premise in Γ, and the internal nodes of the proof tree are either
obtained from the proof rule (MP) where there are two branches, or the proof rule
(G) where there is one branch. These proof trees also satisfy generalized reflexivity
and generalized transitivity: compositions of proof trees are themselves proof trees.

This proof system is in the style of Hilbert, since the only proof rules are modus
ponens (MP) and generalization (G). Proof rule (MP) is also called implication
elimination (→E), and (G) is also called universal introduction (∀I). Note the
distinction between (MP) stated above with additional premises in the context Γ,
and the stronger condition below:

⊢CL (ϕ→ ψ) and ⊢CL ϕ implies ⊢CL ψ (MP’)

which is stated only at the level of provability, i.e. without context. We call (MP’)
a ‘rule of provability’, whereas (MP) is called a ‘proof rule’ (since it is equivalent
to (ϕ → ψ), ϕ ⊢CL ψ). The difference between these two is that only for a proof
system with (MP) we can establish the following property, since in a proof system
that has (MP’) instead of (MP) we have only deductions from premises obtained
from generalized reflexivity or generalization.

Lemma A.3.13. Γ ⊢CL (ϕ→ ψ) implies Γ, ϕ ⊢CL ψ.

Proof. Applying weakening we obtain Γ, ϕ ⊢CL (ϕ → ψ), and by generalized
reflexivity we have Γ, ϕ ⊢CL ϕ. Hence by (MP) we obtain Γ, ϕ ⊢CL ψ.

In fact, the converse also holds.

Theorem A.3.14 (Deduction theorem). If Γ, ϕ ⊢CL ψ then Γ ⊢CL (ϕ→ ψ).

Proof. Consider the proof tree corresponding to Γ, ϕ ⊢CL ψ, and perform induction
on the structure of that tree. Either the proof tree is a leave (base case), or it is an
instance of the (MP) proof rule with two smaller proof trees on top, or an instance
of the (G) proof rule with one smaller proof tree on top.

Base case 1. If ϕ = ψ then we obtain Γ ⊢CL (ϕ→ ϕ) from (MP), (A1) and (A2).

Base case 2. If ψ was obtained by reflexivity from Γ or ψ is an instance of an
axiom scheme, then we obtain Γ ⊢CL (ϕ→ ψ) from (MP) and (A1).

Induction step (MP). Let ψ be the conclusion, where Γ, ϕ ⊢CL (ϕ′ → ψ) and
Γ, ϕ ⊢CL ϕ′ are on top. Our induction hypotheses are Γ, ϕ ⊢CL (ϕ′ → ψ)
implies Γ ⊢CL (ϕ → (ϕ′ → ψ)), and Γ, ϕ ⊢CL ϕ′ implies Γ ⊢CL (ϕ → ϕ′).
Then we obtain Γ ⊢CL (ϕ→ ψ) from (MP) and (A2).

Induction step (G). Let ψ = (∀y (xy)ψ′) be the conclusion, where Γ, ϕ ⊢CL ψ′

is on top and x ̸∈ FV (ϕ). Our induction hypothesis is Γ, ϕ ⊢CL ψ′ implies
Γ ⊢CL (ϕ→ ψ′). We obtain the result from (MP) and (A3).

A.3. BASIC PROOF THEORY 149

The deduction theorem proves that the following proof rule is admissible:

ϕ

ψ

ϕ→ ψ
(→I)

where the deduction (inside the box) with conclusion ψ may use the assumption
ϕ, which may not be a premise of the overall deduction. The ϕ at the top of the
box means that the assumption ϕ is closed, that is, although ϕ is a premise of
the inner deduction it is not a premise in the resulting, outer deduction. Another
consequence of the deduction theorem is that we can clear out the context. Let
Γ = ϕ1, . . . , ϕn, then (Γ → ψ) is abbreviates (ϕ1 → (. . .→ (ϕn → ψ) . . .)). In case
Γ is an empty sequence, then (Γ → ψ) is just ψ. Note that this does not work for
arbitrary sets, since our formulas are finitary.

Corollary A.3.15. Γ ⊢CL ψ if and only if ⊢CL (Γ → ψ).

Lemma A.3.16. We have the following derived axioms and proof rules:

(⊤I) ⊢CL ⊤,

(⊥E) ⊥ ⊢CL ϕ,

(DN) ¬¬ϕ ⊢CL ϕ,

(→I) Γ, ϕ ⊢CL ψ implies Γ ⊢CL (ϕ→ ψ),

(→E) (ϕ→ ψ), ϕ ⊢CL ψ,

(∧I) ϕ, ψ ⊢CL (ϕ ∧ ψ),

(∧EL) (ϕ ∧ ψ) ⊢CL ϕ,

(∧ER) (ϕ ∧ ψ) ⊢CL ψ,

(∨IL) ϕ ⊢CL (ϕ ∨ ψ),

(∨IR) ψ ⊢CL (ϕ ∨ ψ),

(∨E) (ϕ→ ξ), (ψ → ξ), (ϕ ∨ ψ) ⊢CL ξ,

(∀I) Γ ⊢CL ϕ implies Γ ⊢CL (∀y (xy)ϕ)
where x ̸∈ FV (Γ) and either y = x or y ̸∈ FV (ϕ),

(∀E) (∀xϕ) ⊢CL (xy)ϕ where y remains free for x in ϕ,

(∃I) (xy)ϕ ⊢CL (∃xϕ) where y remains free for x in ϕ,

(∃E) Γ ⊢CL (∃xϕ) and Γ, (xy)ϕ ⊢CL ψ implies Γ ⊢CL ψ
where y ̸∈ FV (Γ, ψ) and either x = y or x ̸∈ FV (ϕ),

150 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

(=I) ⊢CL (x
.
= x),

(=E) (x
.
= y) ⊢CL ((zx)ϕ→ (zy)ϕ) where x, y remain free for z in ϕ.

Proof. See Basic Proof Theory by Troelstra and Schwitchenberg, Section 2.4.

The proof system consisting of the axiom and proof rules of Lemma A.3.16 is
called natural deduction. From this proof system it is also possible to derive the
axioms and proof rules of Definition A.3.12.

Further, employing the fact that relative demonstrability is a relation on two
lists of formulas, we have the following properties. In the following, let Γ and ∆ be
contexts (finite sequences of formulas). The antecedent context can be seen as a
conjunction of its formulas, and the succedent context can be seen as a disjunction
of its formulas.

Corollary A.3.17. ϕ, ψ ⊢CL ξ if and only if (ϕ ∧ ψ) ⊢CL ξ.

Let Γ = ϕ1, . . . , ϕn, then
∧

Γ is an abbreviation for the formula (ϕ1 ∧ (. . . ∧
(ϕn ∧ ⊤) . . .)). In case Γ is empty,

∧
Γ is just ⊤.

Corollary A.3.18. Γ ⊢CL ∆ if and only if
∧

Γ ⊢CL ∆.

Lemma A.3.19. Γ ⊢CL ϕ, ψ if and only if Γ ⊢CL (ϕ ∨ ψ).

Proof. Given Γ ⊢CL ϕ, ψ, and apply (∨IL) and (∨IR), to obtain Γ ⊢CL (ϕ ∨ ψ).
The other direction is more interesting. Given Γ ⊢CL (ϕ ∨ ψ), and let ∆ and
ξ be arbitrary. We assume ϕ,∆ ⊢CL ξ and ψ,∆ ⊢CL ξ. From these, we have
ϕ ⊢CL (∆ → ξ) and ψ ⊢CL (∆ → ξ) by Corollary A.3.15. Hence Γ ⊢CL (∆ → ξ)
by (∨E), and thus Γ,∆ ⊢CL ξ.

Let Γ = ϕ1, . . . , ϕn, then
∨

Γ is an abbreviation for the formula (ϕ1 ∨ (. . . ∨
(ϕn ∨ ⊥) . . .)). In case Γ is empty,

∨
Γ is just ⊥.

Corollary A.3.20. Γ ⊢CL ∆ if and only if Γ ⊢CL
∨

∆.

The observations above together motivate the introduction of another abbrevia-
tion. Let Γ ⇒ ∆ abbreviate

∧
Γ →

∨
∆. We call Γ ⇒ ∆ a sequent.

Lemma A.3.21. Γ ⊢CL ∆ if and only if ⊢CL Γ ⇒ ∆.

Lemma A.3.22. We have the following derived axioms and rules of proof:

(L⊥) ⊢CL ⊥,Γ ⇒ ∆,

(L∧) ⊢CL ϕ, ψ,Γ ⇒ ∆ implies ⊢CL (ϕ ∧ ψ),Γ ⇒ ∆,

(R∧) ⊢CL Γ ⇒ ∆, ϕ and ⊢CL Γ ⇒ ∆, ψ implies ⊢CL Γ ⇒ ∆, (ϕ ∧ ψ),

(L∨) ⊢CL ϕ,Γ ⇒ ∆ and ⊢CL ψ,Γ ⇒ ∆ implies ⊢CL (ϕ ∨ ψ),Γ ⇒ ∆,

(R∨) ⊢CL Γ ⇒ ∆, ϕ, ψ implies ⊢CL Γ ⇒ ∆, (ϕ ∨ ψ),

A.3. BASIC PROOF THEORY 151

(L→) ⊢CL Γ ⇒ ∆, ϕ and ⊢CL ψ,Γ ⇒ ∆ implies ⊢CL (ϕ→ ψ),Γ ⇒ ∆,

(R→) ⊢CL ϕ,Γ ⇒ ∆, ψ implies ⊢CL Γ ⇒ ∆, (ϕ→ ψ),

(L∀) ⊢CL (∀xϕ), (xy)ϕ,Γ ⇒ ∆ implies ⊢CL (∀xϕ),Γ ⇒ ∆
where y remains free for x in ϕ,

(R∀) ⊢CL Γ ⇒ ∆, (xy)ϕ implies ⊢CL Γ ⇒ ∆, (∀xϕ) where y is fresh,

(L∃) ⊢CL (xy)ϕ,Γ ⇒ ∆ implies ⊢CL (∃xϕ),Γ ⇒ ∆ where y is fresh,

(R∃) ⊢CL Γ ⇒ ∆, (xy)ϕ, (∃xϕ) implies ⊢CL Γ ⇒ ∆, (∃xϕ)
where y remains free for x in ϕ,

(Ref) ⊢CL x
.
= x,Γ ⇒ ∆ implies ⊢CL Γ ⇒ ∆,

(Rep) ⊢CL x
.
= y, (zy)ϕ, (

z
x)ϕ,Γ ⇒ ∆ implies ⊢CL x

.
= y, (zx)ϕ,Γ ⇒ ∆

where ϕ is a primitive formula.

where the condition of freshness of y means that y does not occur free in the contexts
Γ,∆ nor is y = x.

Proof. See Basic Proof Theory by Troelstra and Schwitchenberg, Section 3.5 and
Section 4.7.

The proof system consisting of the axioms and proof rules of Lemma A.3.21
and Lemma A.3.22 is called sequent calculus. The fact that this is indeed a proof
system is non-trivial, since to show that generalized transitivity holds it relies on
the elimination of cuts (not further discussed here). In fact, as can be easily seen
from the definition above, this proof system has a recursive relative demonstrability
relation, an important result due to Gentzen. From this proof system it is also
possible to derive the axioms and proof rules of Lemma A.3.16.

The classically provable formulas are formulas that can be proven using one of
the proof systems described above.

Definition A.3.23. A theory T of first-order formulas is deductively closed if for
every subset Γ ⊆ T and first-order formula ϕ such that Γ ⊢CL ϕ also ϕ ∈ T .

The notion of deductively closed can be generalized to other proof systems as
well, and is not specific to CL.

Proposition A.3.24. Every first-order theory Th1(A) of a structure A is deduc-
tively closed (with respect to CL).

A proof system is finitary whenever we have recursive enumerability of the
provable formulas. Finitary proof systems are useful in practice, since they allow a
computer to systematically generate proofs.

152 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

A.4 Soundness and completeness
The main results of first-order logic are now given. We assume Γ is a set of
first-order formulas, and ϕ is a first-order formula.

Lemma A.4.1 (Soundness). Γ ⊢CL ϕ implies Γ |=CL ϕ.

Lemma A.4.2 (Completeness). Γ |=CL ϕ implies Γ ⊢CL ϕ.

Proof. Originally proven by Gödel [93]. See also the proof by Henkin [108], and
Kleene’s overview [136]. It can also be formally established using the interactive
theorem provers Isabelle/HOL [191] and Coq [134].

Although we already established compactness of the satisfiability relation, in
the sense of the compactness theorem (see Theorem A.2.10), we can now also show
compactness of the semantic consequence relation in an alternative way. This
follows easily from the fact that we have a finitary proof system that is sound and
complete.

Theorem A.4.3. Γ |=CL ϕ if and only if Γ0 |=CL ϕ for some finite subset Γ0 ⊆ Γ.

Proof. Given that Γ |=CL ϕ holds, by completeness we have that Γ ⊢CL ϕ. Since
our proof system is finitary, there are only finitely many formulas in Γ used in the
deduction of ϕ. Let Γ0 be those formulas. Hence Γ0 ⊢CL ϕ, and by soundness
Γ0 |=CL ϕ. The other direction is easy: given that Γ0 |=CL ϕ for some finite subset
Γ0 ⊆ Γ, then we may always add more formulas to obtain Γ |=CL ϕ.

Theorem A.4.4 (Undecidability). There is no algorithm that can decide whether
Γ |=CL ϕ or not, for every signature, theory Γ, and formula ϕ.

Proof. This is Church’s theorem, see [23]. This result can also be established using
Coq [120].

Note that the undecidability result is an existential statement: it does not mean
there are no some signatures, theories, and formulas, for which the satisfiability
relation is decidable. In fact, there are signatures and theories, for which the
satisfiability relation is decidable.

A.5 Adding back terms
Up until now we have only considered signatures that consists of constant symbols,
which are associated to a non-zero arity. In particular, signatures may contain
predicate symbols (of arity 1) and relations symbols (of arity n for some n > 1)
or constant symbols with third-order or higher-order arity. From a practical
perspective, however, this set-up limits our ability to directly refer to individuals
of the domain. Although we are able to give a name to individuals, e.g. in the
context of a quantifier where an individual variable ranges over elements of the
domain, and we are able to identify two individuals, we lack the ability to directly

A.5. ADDING BACK TERMS 153

refer to individuals by some name, that denotes the individual regardless of the
context in which that name appears.

In this section we consider an extension of the assertion language of classical
logic in which we add facilities for referring to individuals of the domain directly.
In our discussion we shall not formalize all aspects of our extension explicitly,
leaving some details to the reader, and focus on first-order assertion languages.
The purpose of our exposition is to show that this extension does not change the
expressive power of first-order logic.

We have added .
= as a logical symbol, but consider for a moment an alternative

approach: what if .
= is a 2-ary relation symbol? In second-order languages it is

not needed to add such a relation to the signature, since the concept of identity is
indirectly definable. The second-order sentence

∀x, y. (x
.
= y) ↔ ∀P. P (x) ↔ P (y)

expresses that identity satisfies Leibniz’s law of the identity of indiscernibles and
its converse, the indiscernability of identicals: two elements share every property
if and only if the two elements are identical. However, in first-order languages
without identity as logical symbol, this cannot be expressed. Every structure gives
an interpretation to the relation symbols, including .

= taken as relation symbol.
A structure A = (A, I) has a standard interpretation of identity if I assigns to
the identity relation symbol .

= the value {(x, y) | x = y} ⊆ A × A. Thus, in the
standard interpretation, the extension of identity coincides with our meta-level
concept of equality. This amounts to the same what we have accomplished in our
definition of the satisfaction relation for the logical symbol .

=.
Now we can introduce the derived concept of unique existence. We introduce

the following abbreviation:

∃!xϕ abbreviates ∃x(ϕ ∧ ∀y(ϕ′ → x
.
= y))

where y is fresh (i.e. y is not x and does not occur in ϕ), and ϕ′ is obtained from ϕ
by renaming x to y. Semantically, we have that

A, ρ |= ∃!xϕ holds iff A, ρ[x := a] |= ϕ for a unique a ∈ A.

The ability to express unique existence has two important consequences. Suppose
that A |=ρ ∃!xϕ holds. Consider the case in which formula ϕ has only x as a free
variable. By the coincidence condition, we then have that there must exists a
unique a ∈ A regardless of the valuation ρ. As such we say that ϕ defines the
element a (in A). Similarly, consider the cases where all the free variables of formula
ϕ are in the sequence of variables x1, . . . , xn, x (where we assume that all variables
are distinct). Again by the coincidence condition we have that there must exists a
unique total function f : An → A regardless of the valuation ρ:

f = {(a1, . . . , an, a) | A, ρ[x1 := a1] . . . [xn := an][x := a] |= ϕ}

and we can again say that ϕ defines the total function f (in A).

154 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

Example A.5.1. Suppose we have a signature comprising the following constant
symbols (and nothing else):

• we have the predicate symbol Z of arity 1,

• we have the relation symbol S of arity 2.

We can now state that there is exactly one element of the domain x such that Z(x)
holds by asserting

∃!xZ(x).

Further, we can state that for every element of the domain x, there must be a
unique y such that S(x, y) holds, by asserting

∀x∃!yS(x, y).

However, can we also state that every element of the domain x is reachable either
directly through Z, i.e. Z(x) holds, or through a chain of S, i.e. S(y, x) for some
other reachable y? The following second-order sentence states this property:

∀R.(∀x.Z(x) → R(x)) ∧ (∀x, y.R(y) ∧ S(y, x) → R(x)) → ∀xR(x)

Note that not all structures (with a standard interpretation of identity) that satisfy
the two first-order sentences also satisfy the second-order sentence.
End of Example.

A useful pattern emerges: if a predicate holds for exactly one element d of the
domain, we can use that predicate as a way to identify element d. Intuitively, such
a predicate identifies the element for which it holds. Similarly, if for a relation
R, we have exactly one element of the domain d given elements d1, . . . , dn−1 and
(d1, . . . , dn−1, d) ∈ R, then we can use that relation as a way to identify d once
we are also able to identify the values of the first n− 1 places. Taking both cases
together, we say that a second-order constant symbol C of arity n has the property
of functionality if

∀x1, . . . , xn−1∃!xC(x1, . . . , xn−1, x),

holds (if n = 1 the universal quantifiers are dropped).
We now extend our definition of signature in which we explicitly declare which

constant symbols must have the above property of functionality. Predicate symbols
of arity 1 that have the property of functionality are called individual symbols (or,
more precisely, individual constant symbols). Relation symbols of arity n for n > 1
that have the property of functionality are called function symbols.

Remark A.5.2. We must make sure not to confuse constant symbols and individual
(constant) symbols. Although individual symbols are constant symbols, the converse
is not the case: all predicate symbols, relation symbols and function symbols are
also constant symbols in the sense that their meaning does not depend on the
context and remains fixed.

A.5. ADDING BACK TERMS 155

We fix a first-order signature Σ. As a syntactical convention, the uppercase
constant symbols C are used for the constant symbols of our signature. If a constant
symbol, say B, has been declared to have the property of functionality, then we use
the lowercase symbol b instead. For individual constant symbols, we typically use
the lowercase symbol c, and for function symbols we typically use the lowercase
symbol f .

We now define terms and formulas and revisit some of the concepts introduced
earlier. Note that we restrict ourselves to first-order assertion languages.

Definition A.5.3 (Terms). A term of is constructed inductively as follows:

• any individual variable symbol x is a term,

• any individual constant symbol c is a term,

• given terms t1, . . . , tn and function symbol f of arity n+ 1 then f(t1, . . . , tn)
is a term.

In the third clause, the terms t1, . . . , tn are called the arguments of the function
symbol f in the term f(t1, . . . , tn). To be able to speak of the arity of a term,
we let every term have the arity 0. We may see a term as a parse tree in which
individual variable symbols or individual constant symbols appear at the leaves
and function symbols at the branches.

Definition A.5.4 (Formulas). A formula is constructed inductively as follows:

• ⊥ is a formula,

• P (t1, . . . , tn) is a formula if P is a constant symbol of arity n and t1, . . . , tn
are terms,

• (ϕ→ ψ) is a formula if ϕ and ψ are formulas,

• (∀xϕ) is a formula if ϕ is a formula and x an individual variable.

In the second clause, we do not restrict ourselves to only predicate symbols and
relation symbols. All constant symbols (including those that have the property of
functionality) are allowed at this level. This turns out to be useful when we show
that extending first-order logic with terms does not increase the expressive power.

We can again define the set of free variables FV (ϕ) and bound variables BV (ϕ),
but to do so we need to also introduce the set of free variables FV (t) and bound
variables BV (t) for a given term t. The set of free variables FV (t) consists precisely
of all variables that occur in the term t, and the set of bound variables BV (t) is
empty. We can also extend variable renaming to terms, so that if π is a renaming
of variable symbols (that preserves arity) we can define π(t) by simultaneously
replacing all the variable occurrences in t according to π.

A more general operation than variable renaming is the operation of substitution.
Substitution is not simply a matter of replacing variables by terms. Rather, we
define substitution as a transformation of formulas in two stages. This can be

156 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

motivated by the following example. Given the formula (∀x.y = z), if we naively
replace y by a term in which x occurs as a variable, then that variable now falls
under the scope of the quantifier that binds x. The resulting formula thus has a
term which may now have a different meaning than when considering that term in
a different context, outside of the scope of the quantifier. That x would fall under
the scope of the quantifier is called variable capturing. We intend to avoid variable
capturing to ensure we can show the relation between (syntactic) substitutions and
the semantics of terms, later on.

We also have substitutions of variables for terms that prevents variable capturing.
Capture-avoiding substitution can be generalized to arbitrary formulas by first
performing a renaming to obtain an alphabetic variant, for which the condition of
the capture-avoiding substitution is always satisfied.

Definition A.5.5 (Capture-avoiding substitutions). A substitution ϕ[x := t] is
defined by replacing in ϕ all free occurrences of x by t, as long as the bound
variables of ϕ are disjoint from the free variables of t.

It is now also possible to extend the definition of structures, so that the
interpretation is extended to also interpret individual symbols and function symbols
in a certain way to guarantee that the declared properties hold. For a given
interpretation I, we let cI denote the interpretation of the constant symbol c, and
fI denote the interpretation of the function symbol f .

Definition A.5.6 (Evaluation function). Given a structure A = (A, I) and a
valuation ρ of A, and a term t. The evaluation function AJtKCL

ρ is defined inductively
on the structure of t:

• AJxKCL
ρ = ρ(x),

• AJcKCL
ρ = a where a ∈ cI ,

• AJf(t1, . . . , tn)KCL
ρ = a where (AJt1KCL

ρ , . . . ,AJtnKCL
ρ , a) ∈ fI .

We may drop the superscript CL if clear from context. In the second and third
clause, we can pick any such a. Due to the restriction on the interpretation I on
constant symbols which have the property of functionality, we know there exists
a unique one. We may also simply write ρ(t) for AJtKCL

ρ , since every valuation is
defined in a context where there is a known structure A.

It is also possible to redefine the satisfaction relation for formulas with terms,
but we shall leave out the details. An important consequence of defining such
satisfaction relation is the following lemma.

Lemma A.5.7 (Substitution lemma).

A, ρ |=CL ϕ[x := t] if and only if A, ρ[x := ρ(t)] |=CL ϕ.

There is also a translation of formulas with terms to formulas without terms
which has the same denotation, which allows us to eliminate all terms.

A.5. ADDING BACK TERMS 157

Bibliographic notes
C. Grabmayer’s PhD thesis [97] contains a more detailed analysis of abstract proof
systems and introduces the notions of derivability and admissibility of proof rules
in an abstract setting [98].

158 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

Appendix B

Hoare’s logic

Hoare’s logic (some authors write: Hoare logic) was introduced by C.A.R. Hoare in
1969 [118], based on the inductive assertion method on flow charts as was introduced
in 1967 by R.W. Floyd [84, 62]. See also the collection of fundamental papers on
program verification by T.T.R. Colburn, J.H. Fetzer, and R.L. Rankin [54].

The main philosophical idea underlying both Hoare’s logic and Floyd’s inductive
assertion method is that we have two ‘modes’ of description: that of being, and that
of change. These two concepts are also understood as the statics and dynamics
of a system, respectively. By making use of a logical language (e.g. first-order
logic or separation logic) we can describe the state of being, by which one can
think of a static snapshot in time of the currently realized memory state of a
computer. By making use of a control structuring language (e.g. a flow chart or a
program in a programming language), we can describe the change of state, which
essentially describes a dynamic process which transforms initial states into final
states or chains together such transformations. By combining descriptions of both
modes, being and change, we obtain the program specification (also called the
Hoare triple):

{ϕ} S {ψ}

where ϕ is a description of the possible initial states (the precondition), S is a
description of the program that transforms an initial state into a final state, and
ψ is a description of the possible final states (the postcondition). A program
S is correct with respect to a specification whenever it is indeed the case that,
after executing the program from an initial state that satisfies the precondition,
we obtain a state as prescribed by the postcondition. In some sense, a program
specification describes the expected behavior of a program, whereas a program
simply describes behavior.

Ideally there is no need for program specifications: by making sure a program
exactly describes the change intended, it is always correct. Popularly, this is known
by the phrase: “it is not a bug, it is a feature.” However, the program specification
adds redundancy to the program. The program describes how the state changes
from an initial state into a final state, whereas the pre- and postconditions in

159

160 APPENDIX B. HOARE’S LOGIC

a program specification describes logically what is the state of being before and
after the execution of the program. The basic premise of program verification is
that humans err—and by means of program specifications, where we combine two
different languages in which one describes both the ‘intended’ program behavior
and the ‘actual’ program behavior, we can detect errors if these two behaviors do
not match.

Concretely, during execution of a program, there exists a current state of the
values of memory. A basic program either performs a test, or performs an operation.
A test is an inspection of the current state to check whether a condition on the
state holds or not. An operation performs an action that may or may not change
the state. By performing tests and operations, programs direct or control the
flow of states, from an initial state to possibly a final state. Complex programs
are composed out of programs with the intention to structure the flow of control,
where tests can be used to influence the direction of flow of control. A processor
is the component of a computer which, step by step, either performs a test or an
operation, as specified by a program. The program thus is an input to the processor,
and the program indirectly controls which tests and operations are performed by
the processor. The result of the tests consequently direct the flow of control as
described by a program, thus resulting in a feedback loop.

This conception of program originated in 1945, by the initial designs of John
von Neumann’s computer architecture [94]. Already in this early work, we can
see that memory and program are separate, and we follow this design choice and
also exclude so-called self-modifying programs. For practical reasons, we also see
differences in the storage locations of memory: the current state of the memory
of a computer can be divided into the internal state and the external state. The
internal state stores the value of registers, the external state stores the value of
addressable memory. The internal state is always directly accessible in tests, and
can be operated on. The external state can be loaded and stored, being special
operations. Thus, we do not have direct access to external state, only indirectly
through load and store operations.

This division between internal and external state is more blurred in modern
computer architectures of the past decades, by the introduction of cached memory—
where parts of the external state is duplicated into hidden registers, which cannot
be directly controlled by the program but mirror the behavior of the external
memory. This architectural choice is mainly motivated by a further division of the
use of the external memory into so-called stack memory and heap memory [111].

Since memory management is error-prone, high-level languages feature auto-
matic memory management, while some high-level languages also still allow manual
memory management. One form of automatic memory management is by using
block scopes, in which a local variable is temporarily allocated on the stack and
deallocated once the block has finished executing. Another form of automatic
memory management is using garbage-collected heaps, in which all heap memory
is scanned and regions of memory automatically deallocated if they no longer
can influence the outcome of the execution of a program. We shall consider a
programming language which features automatic stack memory management, but

B.1. SYNTAX OF PROGRAMS 161

manual heap memory management—without garbage collection.
In this chapter we shall introduce the abstract syntax of programs, introduce

three different styles of giving programs semantics (operational semantics, deno-
tational semantics, and axiomatic semantics), and discuss the proof system for
deriving correct program specifications called Hoare’s logic. The ideas presented in
Sections B.1, B.2, B.3 can be found in any competent book on program verification,
such as [71, 61, 227, 100, 86, 10]. The use of program signatures and machine
models, however, may be novel. The main motivation for revisiting the basic
material is to present it in such a way to make it easy to adapt to separation logic,
in Chapter 4. The material presented in Section B.5 is largely based on [29], but
the presentation here is novel and the proof system more modular than in [29].

B.1 Syntax of programs
This section describes the syntax of a simplified programming language, necessary
for supporting the semantics and proof system for reasoning about correctness of
programs. Although we restrict ourselves to a simplified programming language, the
expressivity of programs is nonetheless interesting: we include the Turing-complete
programming languages.

When considering the syntax of programs, there is a design choice in formulating
the programming language. One could give the concrete syntax of programs
being particular constructions of statements, or one abstracts from the primitive
operations and tests. In the latter case one can obtain the concrete syntax as a
particular instance of the abstract syntax. This set-up of the syntax of programs is
not much different than the set-up of formulas in the assertion language, where one
separates the logical from the non-logical symbols by the introduction of a signature.
Similarly, we could introduce the concept of a program signature which collects the
primitive operations and tests out of which the statements are constructed.

Given a program signature that consists of the primitive operations and tests,
we can form the statements of a program. Complex statements are constructed
from compositions of simpler statements, recursively. One can represent statements
by their parse trees in which at the leaves of the tree primitive operations and tests
occur. One may compare statements of the programming language to formulas of
the assertion language.

In fact, when one wants to extend our programming language to include recursive
procedures, the abstract syntax approach is beneficial, since procedures can be
considered particular primitive operations with a fixed interpretation given by a
system of procedure declarations. This is not much different than having recursive
predicates in the assertion language. We shall first focus on programs without
recursive procedures, and can later add recursive procedures: in a sense, recursive
procedures are an orthogonal concern.

Before introducing the formal definition of statements, we consider the possible
effects that the executions of programs have on the states of a machine. We model
these effects as a state transition, and the behavior of a program essentially is
the possible sequences of state transitions. Each such sequence is also called an

162 APPENDIX B. HOARE’S LOGIC

execution. An important design choice, however, is to contain the effect of primitive
operations and tests, by limiting what part of the state an operation or test can
(at most) be accessed, and what part of the state can (at most) be changed by an
operation.

We reuse the concept of variables (see Definition A.1.1) to denote parts of the
state. The accessible variables of a program restricts what part of the state can
influence program behavior, and the changed variables of a program restricts what
part of the state can be modified in the state transitions that constitute program
behavior. In the context of a program we speak of program variables, whereas in
the context of assertions we speak of logical variables. Although it is possible to
also consider higher-order program variables, also called subscripted variables, we
restrict ourselves to first-order program variables.

Given a program variable x, a polarized variable is either x or x (we say ‘input
x’ or ‘output x’, respectively). The absence of the line indicates that the program
variable is accessible, and the presence of the line indicates that the program
variable is changed. Note that the presence of the line on top of a program variable
makes it a different polarized variable, i.e. x ̸= x.

Definition B.1.1 (Program signature). A program signature consists of a recursive
set of operations and tests, such that each operation is associated with a finite set
of polarized variables, and each test is associated with a finite set of (accessible)
program variables.

We typically denote a program signature by ∆. If P is an operation of ∆,
then we may speak of the accessible program variables x1, . . . , xn of P and the
changed program variables y1, . . . , ym of P to mean that P is associated to the
finite set {x1, . . . , xn, y1, . . . , ym} of polarized variables. If T is a test of I, we
write T (x1, . . . , xn) to mean that x1, . . . , xn are the accessible program variables
associated to T .

Every first-order signature Σ induces a program signature, where all the tests
are quantifier-free formulas. Although the tests are fixed, it still remains a design
decision to select the appropriate operations: the selection of primitive operations
thus affects what computations can be expressed by a program.

Definition B.1.2. A first-order program signature FPS (Σ) is a program signature
such that every test with accessible program variables x1, . . . , xn corresponds to a
quantifier-free formula ϕ(x1, . . . , xn), and also includes:

• the assignment operation y := x
(where x is an accessible and y is a changed program variable).

The first-order program signature corresponds to register machines, where
program variables are registers of the machine, and tests work on the registers of
the machine. Note that the operations of the inherited program signature may
access and change arbitrary program variables.

Block programs manipulate registers but may also temporarily store values by
pushing them on the stack, and later retrieve old values by popping them from

B.1. SYNTAX OF PROGRAMS 163

the stack. This is useful for implementing local variables, which are needed for
introducing terms later on.

Definition B.1.3. A block program signature BPS (Σ) is a first-order program
signature FPS (Σ) that also includes:

• the parallel assignment operation y⃗ := x⃗
(where x⃗ = x1, . . . , xn are accessible and y⃗ = y1, . . . , yn are changed),

• the push operation push(x)
(where x is an accessible program variable),

• the pop operation pop(x)
(where x is a changed program variable).

Note that for a push operation push(x) there are no changed variables. Al-
though the stack is modified by this operation, the stack is left implicit (as an
implementation detail) and as such not represented by a program variable.

Pointer programs not only manipulate values assigned to program variables but
also values assigned to locations on the heap. As such, we consider an extension of
first-order program signatures which includes operations for manipulating the heap.
A pointer program signature also includes operations for looking up a value from the
heap (lookup), modifying a value on the heap (mutation), allocating a new location
with an initial value (allocation), and deallocating a location (deallocation).

Definition B.1.4. A pointer program signature PPS (Σ) is a first-order program
signature FPS (Σ) that also includes:

• the lookup operation x := [y]
(where y is an accessible and x is a changed program variable),

• the mutation operation [x] := y
(where x and y are accessible program variables),

• the allocation operation x := new(y)
(where y is an accessible and x is a changed program variable),

• the deallocation operation delete(x)
(where x is an accessible program variable).

Note that for a mutation operation [x] := y there are no changed variables.
Although the heap is modified by this operation, the heap is implicit and as such
not represented by a program variable. Also the lookup, allocation and deallocation
operations above have a side-effect, namely they modify the implicit heap. This
phenomenon, where no variables (or not all) are changed but there is a (hidden)
state change, is in general called a side-effect.

Each program signature (including the standard, pointer and block program
signatures) can be used to generate statements. We fix some program signature for
the remainder of this section, unless explicitly mentioned otherwise.

164 APPENDIX B. HOARE’S LOGIC

Definition B.1.5 (Statements). Given a program signature ∆. A statement is
constructed inductively as follows:

1. O is a statement (called primitive operation) where O is an operation of ∆,

2. skip is a statement (called no operation),

3. halt is a statement (called halt operation),

4. S1;S2 is a statement (called sequential composition) given that S1 and S2

are statements,

5. if T then S1 else S2 fi is a statement (called conditional statement) given
that T is a test of ∆, and S1 and S2 are statements,

6. while T do S od is a statement (called looping statement) given that T is a
test of ∆ and S is a statement.

All statements are constructed by one of these five clauses. Alternatively, we can
define statements by the following abstract grammar:

S, S1, S2 ::= O | skip | halt | S1;S2 | if T then S1 else S2 fi | while T do S od.

The first two clauses construct primitive statements, the last three clauses
construct complex statements. Sequential composition S1;S2;S3 is ambiguous, but
harmless as turns out later, and we may use parentheses around statements to
disambiguate (S1;S2);S3 and S1; (S2;S3). We also consider a statement context,
denoted S[−], which is a statement with exactly one hole in the place of a statement.
The hole is denoted by □. Then S[S1] is a statement in which S1 is plugged into
the hole of the statement context.

The notion of accessible and changed variables can be lifted to statements S.
We write S(x1, . . . , xn; y1, . . . , ym) to mean that the accessible program variables of
S are x1, . . . , xn and the changed program variables of S are y1, . . . , ym. Sometimes
it is easier to work with the finite sets of accessible and changed variables, denoted
by access(S) and change(S), respectively. The accessible and changed variables
of a statement are an over-approximation, in the sense that these are the possible
accessed and changed variables. The set of program variables occurring in S is
denoted var(S) and is the union of the accessible and changed variables.

Definition B.1.6 (Accessible and changed variables). The accessible and changed
program variables of a statement S is defined inductively on the structure of S:

• access(O) = {x1, . . . , xn} and change(O) = {y1, . . . , ym} given that the
operation O is associated to the polarized variables {x1, . . . , xn, y1, . . . , ym},

• access(skip) = change(skip) = ∅,

• access(halt) = change(halt) = ∅,

• access(S1;S2) = access(S1) ∪ access(S2),

B.1. SYNTAX OF PROGRAMS 165

• change(S1;S2) = change(S1) ∪ change(S2),

• access(if T then S1 else S2 fi) = access(S1) ∪ access(S2) ∪ {x1, . . . , xn}
given T (x1, . . . , xn),

• change(if T then S1 else S2 fi) = change(S1) ∪ change(S2),

• access(while T do S od) = access(S) ∪ {x1, . . . , xn} given T (x1, . . . , xn),

• change(while T do S od) = change(S).

Note that the definitions of access and change do not depend on each other.
The accessible program variables can be approximated more precisely by stating

access(S1;S2) = access(S1) ∪ (access(S2) \ change(S1))

where now the changed program variables of S1 act as ‘binders’ with respect to
the statement S2. In fact,

access(S1; (S2;S3))

= access(S1) ∪ (access(S2;S3) \ change(S1))

= access(S1) ∪ ((access(S2) ∪ (access(S3) \ change(S2))) \ change(S1))

= access(S1) ∪ (access(S2) \ change(S1)) ∪ (access(S3) \ change(S1;S2))

= access(S1;S2) ∪ (access(S3) \ change(S1;S2))

= access((S1;S2);S3)

However, this may complicate the proofs involving accessible and changed variables
later on. Hence, we opt for the simpler definition given above, which is a cruder
approximation of the accessible variables.

We could define complex tests by the following abstract grammar:

B,B1, B2 ::= T | ¬B | B1 ∧B2 | B1 ∨B2

where negation binds strongest, conjunction binds more strongly than disjunction,
and the other ambiguities are harmless. We can then introduce abbreviations for
statements:

if ¬B then S1 else S2 fi := if B then S2 else S1 fi

if B1 ∧B2 then S1 else S2 fi := if B1 then if B2 then S1 else S2 fi else S2 fi

if B1 ∨B2 then S1 else S2 fi := if B1 then S1 else if B2 then S1 else S2 fi fi

if B then S1 fi := if B then S1 else skip fi

In the case of a first-order program signature, where tests are quantifier-free
formulas, this may lead to an ambiguous interpretation of tests. However, it turns
out that the semantics we give later on assigns the same meaning to both readings,
so this ambiguity is harmless.

We can introduce assertions by the following abbreviation:

assert(B) := if B then skip else halt fi.

166 APPENDIX B. HOARE’S LOGIC

B.2 Operational semantics

The first approach of giving semantics to programs is that of operational semantics.
In our operational semantics, we introduce machine models that consists of a
state space and an operationalization of the primitive operations and tests. The
semantics of a program is understood as a sequence of steps, which are taken as
the processor instructs the machine to perform primitive operations or tests. We
here abstract from the particular machine by the means of a machine model, hence
our operational semantics is too an abstraction of actual processor behavior.

This approach of abstractly giving semantics to programs is similar to giving
semantics to formulas, in which we have introduced structures that consists of a
domain of values and an interpretation of the non-logical symbols. A program
denotes behavior relative to a given machine model and initial state, similar to
how a formula denotes a truth value relative to a given structure and valuation.

Machine models can, for example, be used to show that program transformations
preserve the semantics of programs. Low-level programming languages are used to
instruct hardware to perform operations and tests, whereas high-level programming
languages abstract away from intricate or irrelevant low-level details (such as
ordering or encoding details). These programming languages have different program
signatures and machine models. A compiler transforms high-level programs into
low-level programs, and the preservation of behavior of the respective programs can
be shown by relating machine models (e.g. the behavior relative to one machine
model can be simulated by behavior of another machine model).

The syntactical structure by which statements are formed is chosen in such way
that it is suitable for giving semantics to programs, which is based on the execution
behavior of the statements of a program. This allows for structured programming,
or control-structured programming, where it is possible to recognize from the syntax
of a program what are the so-called control points for which it is possible to reason
about the possible states of the underlying machine model. Making the state of the
underlying machine model predictable is an important property of the semantics,
which ensures that one is able to reason about program correctness.

The set of control points of a program can be understood as follows. One may
consider a program to be the top-level statement containing sub-statements. Any
position before or after a sub-statement of a program is a control point. The
semantics of programs is given in terms of a current control point, which moves
around the program as statements are executed, one after the other. The intuitive
idea of control points are formalized by the continuation of a statement, that is,
what remains to be executed after a small-step in the execution of a statement
is taken. The continuation of a statement is either another statement, or the
termination marker ✓.

It is important to realize that the models we consider are abstractions of the
primitive operations and tests that can be performed on actual machines that exe-
cute programs. Based on a machine model, we can define a state transition system
that abstractly models the behavior of programs. The accuracy of the analysis of
program behavior thus relies on the precision of the chosen machine model.

B.2. OPERATIONAL SEMANTICS 167

Therefore, it is a design decision how much we are concerned about the possibility
of blocking, non-determinism, and failure. The execution of primitive operations
may result in a blocking (e.g. the machine hangs and cannot progress), in an
un(der)specified next state (e.g. the next state is not fully determined by the
previous state and the operation performed), or in an explicit failure (e.g. the
machine signals an error). We introduce failure-sensitive machine models which
take these possibilities into account.

Definition B.2.1 (Failure-sensitive machine model). A failure-sensitive machine
model M is a pair of a state space S (a set of states), and an operationalization
consisting of:

• for each operation O, a transition function which is a partial function OM of
states to a set of states,

• for each test T , a set of states TM.

Given input state s and operation O, we write s′ ∈ OM(s) if OM(s) is defined
and s′ is in the set OM(s). In that case, s′ is an output state. We write OM(s) = ∅
if OM(s) is defined and is empty. We write OM(s) = fail if OM(s) is undefined.

For a complex test B, we also have the induced set of states BM as follows:
TM as base case, ¬BM is the complement of BM, (B1 ∧B2)M is the intersection
of BM

1 and BM
2 , and (B1 ∨B2)M is the union of BM

1 and BM
2 .

One may picture a failure-sensitive machine model by means of a graph, in
which the states are vertices and directed edges, labeled by a primitive operation,
represent transitions from one state to another. The graph also may have loose
ends, which are outgoing edges from one state that leads to no state at all. The
transition function of a machine model determines the edges (possibly with a loose
end) that are present in the graph. We can then picture the following properties of
the transition function OM of a machine model M:

• If OM(s) = ∅, then the state s is an indeterminate state or a blocked state
(with respect to operation O), that is, the next state is implicitly undefined.
This may be picture by having no outgoing edges from the state s. We may
think of hanging at the indeterminate or blocked state, being unable to go to
the next state. Indeterminacy of the machine model M means that there
exists an indeterminate state, and a machine model M is progressive if there
are no blocked states (so it is impossible to hang by performing an operation).

• If OM(s) = {s′} for some s′, then the state s is a deterministic state (with
respect to operation O), that is, there is exactly one outgoing edge from s
into the next state s′. If every state of machine model M is deterministic,
then M is also called deterministic.

• If s′ ∈ OM(s) and s′′ ∈ OM(s) for different s′ and s′′, then the state s is
a non-deterministic state (with respect to operation O), that is, there are
multiple outgoing edges from s. We may think of the next state of s to be
arbitrary selected from the non-empty set OM(s). The machine model M is
called non-deterministic if there is a non-deterministic state.

168 APPENDIX B. HOARE’S LOGIC

• If OM(s) = fail, then the state s is a failing state (with respect to operation
O), that is, the next state is explicitly undefined. This may be pictured by a
loose end in the graph. A machine model which has a failing state is called
failing, and a machine model without any failing state is called non-failing.

To avoid confusion, we do not speak of the ‘determinacy’ of a machine model M.
Some authors use ‘determinacy’ to mean deterministic. However, ‘determinacy’
may also mean the lack of indeterminacy of a machine model, i.e. that performing
an operation in every state leads to some next state or is a failing state.

Now consider the processor, which consists of a programmable controller and a
machine which is being controlled. The controller takes a program that specifies
what operations the machine must perform, and what tests of the machine influence
the control flow. After the controller reaches the end of the program, the processor
terminates. Given a failure-sensitive machine model, we can also model the behavior
of programs as being executed step-by-step by an abstract processor. The processor
is abstractly modeled using configurations and transitions between configurations.

Definition B.2.2 (Configuration). Given a failure-sensitive machine model M. A
configuration is a pair of continuation and a state of M, or a failure signal fail.

Given a statement S and state s, we thus have that (S, s) is a configuration.
The configuration (✓, s) is called a terminal configuration, and fail is called the
failure configuration.

There are different approaches for modeling processor behavior, from fine-
grained to coarse-grained. In the fine-grained approach we transition from configu-
ration to configuration in small steps, and this approach is also called small-step
operational semantics where the intermediate configuration between initial and final
configuration are taken into account. In the coarse-grained approach we transition
from initial configuration directly to (one possible) final configuration. There, the
initial configuration is not related to any intermediary configurations.

The small-step semantics is closer to the behavior of an actual processor,
whereas the big-step semantics is easier to reason about and allows us to show
important closure properties of the semantics, such as compositionality. We take
both approaches, and, in fact, both approaches are equivalent in a certain sense.

Definition B.2.3 (Small-step operational semantics). Given a machine model M.
We define the binary relation −→ on configurations as the smallest relation satisfying
the following conditions:

(O, s) −→ (✓, s′) if s′ ∈ OM(s)

(O, s) −→ fail if OM(s) = fail

(skip, s) −→ (✓, s)

(S1;S2, s) −→ (S′
1;S2, s

′) if (S1, s) −→ (S′
1, s

′)

(S1;S2, s) −→ (S2, s
′) if (S1, s) −→ (✓, s′)

(S1;S2, s) −→ fail if (S1, s) −→ fail

B.2. OPERATIONAL SEMANTICS 169

(if B then S1 else S2 fi, s) −→ (S1, s) if s ∈ BM

(if B then S1 else S2 fi, s) −→ (S2, s) if s ̸∈ BM

(while B do S od, s) −→ (S;while B do S od, s) if s ∈ BM

(while B do S od, s) −→ (✓, s) if s ̸∈ BM

where s is a state and S1, S2, S are statements.

We write (S, s) −̸→ if there is no configuration C such that (S, s) −→ C. We
have (halt, s) −̸→.

Proposition B.2.4. If (S1, s) −̸→ then (S1;S2, s) −̸→.

Our intuition is that the small-step relation operates on a single statement
at a time. The sub-statement S′ of S on which we operate, is called the primed
statement of S. For each statement S, we also have a primed context S[−]′. It
is the case that S = S[S′]′, meaning that the statement S is obtained from its
primed context S[−]′ for which in the hole the primed statement S′ is plugged.
The primed statement of S is any statement that is not a sequential composition.
For any statement that is not sequential composition, the primed statement is that
statement itself and the primed context is just a single hole □. For the sequential
composition S1;S2, we have that the primed statement of S1;S2 is the primed
statement of S1 and the primed context is S1[−]′;S2 where S1[−]′ is the primed
context of S1.

Proposition B.2.5. Let S′ be the primed statement of S. We have the following:

• (S, s) −→ (S[S′′]′, s′) if (S′, s) −→ (S′′, s′),

• (S, s) −→ fail if (S′, s) −→ fail,

• (S, s) −̸→ if (S′, s) −̸→.

Proof. We have S = S[S′]′. By structural induction on S. If S[−]′ is just a hole,
the result follows immediately. Otherwise, we apply the small-step semantics for
sequential composition and the induction hypothesis.

After execution of the primed statement S′ of S is finished execution continues
with the remainder of statement S, which we denote by R(S). The remainder of a
statement is a continuation, to take into account the possibility that the remainder
is not a statement. For any statement that is not sequential composition, the
remainder is ✓. For the sequential composition S1;S2, there are two cases. The
remainder of S1;S2 is S2 if the remainder of S1 is ✓. The remainder of S1;S2 is
S′
1;S2 if the remainder of S1 is S′

1.

Proposition B.2.6. Let S′ be the primed statement of S. (S, s) −→ (R(S), s′) if
(S′, s) −→ (✓, s′).

170 APPENDIX B. HOARE’S LOGIC

Proof. Again by structural induction on S: all cases except sequential composition
are trivial. For the remaining case where S = S1;S2, we distinguish the two
cases whether R(S1) = ✓ or not, and apply the relevant small-step semantics for
sequential composition.

By the above proposition, we now have established that the small step semantics
either takes a step directly at top-level for any statement that is not a sequential
composition, or takes a step at the primed statement. Since the primed statement
is never a sequential composition, the step taken at the primed statement is a
top-level step as well.

In fact, we can say something stronger about the small-step semantics defined
above.

Proposition B.2.7 (Determinism). Given a deterministic machine model M,
then the small-step operational semantics satisfies the following property:

if C1 −→ C2 and C1 −→ C3 then C2 = C3.

The above definition of the small-step operation semantics defines a relation
between two configurations. We can imagine a chain of configurations as related
by the small-step relation −→:

C1 −→ C2 −→ . . . −→ Cn −→

Definition B.2.8. An execution is a chain of configurations related by −→, which
is either finite or infinite.

A complete execution is a finite chain with no further step possible, that is, there
is no Cn+1 such that Cn −→ Cn+1. A complete execution is necessarily finite. A
complete execution leading to termination is a complete execution that ends in some
terminal configuration (✓, s). A complete execution leading to failure is a complete
execution that ends in the failure configuration fail. A complete execution leading
nowhere is a complete execution that is neither leading to termination, nor leading
to failure. In particular a configuration C = (S, s), where s is an indeterminate
state with respect to O and O is a primed statement of S, is called an indeterminate
configuration. An complete execution that ends in an indeterminate configuration
leads to nowhere. Executions leading nowhere are also called stuck. A diverging
execution is an execution with an infinite chain of configurations.

For a given execution, the first configuration is called the initial configuration.
Conversely, an initial configuration I induces the set of complete or diverging
executions that start in the configuration I. For a complete execution, the last
configuration is called the final configuration. We may also speak of a reachable
configuration C from an initial configuration I if there exists an execution that starts
in configuration I which contains the configuration C in its chain. A configuration
is unreachable from an initial configuration if it is not reachable.

We may imagine the set of all executions, of a given machine model, to form
a forest: the roots are initial configurations which induce (possibly infinite) trees

B.2. OPERATIONAL SEMANTICS 171

formed by executions that share the same initial configuration, and for which
shared prefixes of two different executions forms the trunk of a tree. The trunk
splits in two or more branches by taking a small-step of an operation on a state
that is non-deterministic. There are three kinds of leaves. First, a leave represents
that a small-step of an operation is performed on a blocking state: there is no next
configuration. Second, a leave represents the failure configuration fail. Third, the
leave represents a terminal configuration (✓, s). The height of a configuration in a
tree represents the number of small steps taken from the initial configuration (and
as such there are no cycles back to earlier configurations), and this height is often
used to inductively reason about properties of executions.

The concepts of two executions reaching the same configuration is important
enough that it warrants its own definition.

Definition B.2.9 (Computations). Given an initial configuration I and a configu-
ration C, the set of executions starting in I and reaching C is a computation from
I to C.

A computation consists of zero or more executions, all reaching the same
intermediary configuration. A computation thus abstracts from the particular way
of reaching this configuration. A computation for which in the reached configuration
C there is still a further step possible may also consists of diverging executions. If
for the reached configuration C no further step is possible, we call the computation
complete. A complete computation necessarily consists of complete executions. A
complete computation leading to termination is a complete computation that ends
in some terminal configuration (✓, s). A complete computation leading to failure
is a complete computation that ends in the failure configuration fail. A complete
computation leading nowhere is a complete computation that is neither leading to
termination, nor leading to failure.

There may be different computations starting from the initial configuration.
In fact, an initial configuration I also induces a set of computations that start in
the configuration I. It may be the case that for the same initial configuration I,
there is a complete computation but also a computation which consists of diverging
executions.

We now introduce the big-step semantics, which captures the notion of complete
computations leading to termination or failure directly.

Definition B.2.10 (Big-step operational semantics). Given a machine model M.
We define the binary relation −↠ on configurations as the smallest relation satisfying
the following conditions:

(O, s) −↠ (✓, s′) if s′ ∈ OM(s)

(O, s) −↠ fail if OM(s) = fail

(skip, s) −↠ (✓, s)

(S1;S2, s) −↠ (✓, s′′) if (S1, s) −↠ (✓, s′) and (S2, s
′) −↠ (✓, s′′)

(S1;S2, s) −↠ fail if (S1, s) −↠ fail

(S1;S2, s) −↠ fail if (S1, s) −↠ (✓, s′) and (S2, s
′) −↠ fail

172 APPENDIX B. HOARE’S LOGIC

(if B then S1 else S2 fi, s) −↠ C if (S1, s) −↠ C and s ∈ BM

(if B then S1 else S2 fi, s) −↠ C if (S2, s) −↠ C and s ̸∈ BM

(while B do S od, s) −↠ C if (S;while B do S od, s) −↠ C and s ∈ BM

(while B do S od, s) −↠ (✓, s) if s ̸∈ TM

In the big-step semantics we can no longer distinguish between a diverging
execution or an execution leading to nowhere. In both cases we have that, for an
initial configuration I, there is no final configuration C such that I −↠ C. It is
possible to observe this difference from the small-step semantics: for the initial
configuration there is either a diverging execution, in the first case, or a complete
execution I −→ . . . −→ C that is stuck in C, when there is no step possible from
C, in the second case. However, this distinction disappears if we only consider
observing final configurations of either the form (✓, s) or fail.

In fact, there is a correspondence between big-step and small-step semantics.
Let −→+ be the transitive closure of the binary relation −→. And let I −→n C
denote that C can be reached in exactly n small steps from I. We then have that
I −→+ C holds if and only if there exists n > 0 such that I −→n C.

Proposition B.2.11. The following holds:

1. (S1;S2, s) −→+ (S′
1;S2, s

′) if (S1, s) −→+ (S′
1, s

′),

2. (S1;S2, s) −→+ (S2, s
′) if (S1, s) −→+ (✓, s′),

3. (S1;S2, s) −→+ (✓, s′′) if (S1, s) −→+ (✓, s′) and (S2, s
′) −→+ (✓, s′′),

4. (S1;S2, s) −→+ fail if (S1, s) −→+ fail.

Proposition B.2.12. C1 −↠ C3 if C1 −→ C2 and C2 −↠ C3.

Lemma B.2.13 (Correspondence small-step and big-step semantics).
I −→+ C if and only if I −↠ C for any terminal or failure configuration C.

Proof. I cannot be of the form (✓, s) or fail since both the small-step and big-
step operational semantics do not have terminal or failure configurations on the
left-hand side, while C must be of that form. So, we have that I = (S, s) for some
S, s, and C = (✓, s′) for some s′ or C = fail. (⇐=) By induction on the way
(S, s) −↠ (✓, s′) is established, transitivity of −→+, and Proposition B.2.11. (=⇒)
Assume (S, s) −→n (✓, s′) for some n > 0, we proceed by induction on n, and use
Proposition B.2.12.

Corollary B.2.14. Given a deterministic machine model M, then the big-step
operational semantics satisfies the following property:

if C1 −↠ C2 and C1 −↠ C3 then C2 = C3.

Observe that the final configurations obtained by the big-step semantics are
either (✓, s) or fail. Given an initial configuration, we have a result set of possible

B.3. DENOTATIONAL SEMANTICS 173

final configurations related to that initial configuration. The result set is either
empty (divergence or stuck), or it contains the failure configuration fail alongside
terminal configurations of the form (✓, s) for some state s ∈ S. Note that, due
to possible non-deterministic operationalizations of the machine model, the result
set may contain at the same time different terminal configurations and the failure
configuration. Each configuration in the result set is obtained by a different
computation.

Instead of considering only computations that begin in an initial configuration
with a fixed state, it is useful to abstract from the initial state. Thus, each statement
S induces a result set that is indexed by an initial state s ∈ S, i.e. {C | (S, s) −↠
C}s∈S . We can lift this construction to a set of initial states, and thereby also have
that each statement induces a result set indexed by a set of initial states X ⊆ S,
i.e. {C | (S, s) −↠ C for some s ∈ X}X⊆S .

We are interested in composing multiple results sets: given that a result set
determines the possible outcomes of parts of a statement, can we compose result
sets into the result set of the overall statement? To do so, we represent result sets
more abstractly as an element of P(S ⊎ {fail}), viz. as a subset of the disjoint
union of states and a failure marker. We could see the failure marker fail as an
improper state, and every state s ∈ S as a proper state. Every statement induces
a result set indexed by a (proper or improper) state. Equivalently, a statement
induces a function S ⊎ {fail} to P(S ⊎ {fail}), which we denote by M[S], with the
following specification:

M[S](fail) = {fail}, M[S](s) = {s′ | (S, s) −↠ (✓, s′)} ∪ {fail | (S, s) −↠ fail}

and we can lift this function to result sets, being a set of (proper or improper)
states Y ⊆ S ⊎ {fail}, with the following specification:

M[S](Y) =
⋃
y∈Y

M[S](y)

where y is either the improper state fail or a proper state in S. We thus obtain
our desired form: every statement induces a result set indexed by a result set.

B.3 Denotational semantics
We now see a second approach of giving semantics to statements, called a denota-
tional semantics. We can use functions on result sets as the domain of denotation
of statements, and we work towards characterizing our denotation of statements
in a syntax-directed manner. This allows for equational-style reasoning about the
semantics of statements.

We first introduce an approximate denotation of a statement, and then define
the denotation of a statement as the limit of the approximate denotation.

Definition B.3.1 (Denotational semantics). Given a failure-sensitive machine
model M and statement S. The approximate denotation of a statement MJSKn is
a function on result sets, defined inductively on n and structurally on S as follows:

174 APPENDIX B. HOARE’S LOGIC

• MJOKn(Y) = (Y ∩ {fail}) ∪
⋃
{OM(s)}s∈(Y ∩S),

• MJskipKn = id,

• MJhaltKn(Y) = Y ∩ {fail},

• MJS1;S2Kn = MJS2Kn ◦MJS1Kn,

• MJif B then S1 else S2 fiKn(Y) =
(Y ∩ {fail}) ∪MJS1Kn(Y ⊓BM) ∪MJS1Kn(Y ⊓ (¬B)M),

• MJwhile B do S odK0(Y) = Y ∩ {fail},

• MJwhile B do S odKn+1 =
MJif B then S; (while B do S od) fiKn,

where Y ⊆ S ⊎ {fail} is a result set, and Y ⊓X is the intersection of Y and a set
of proper states X but which propagates failure, so fail ∈ (Y ⊓X) if fail ∈ Y . We
define the denotation of a statement as the limit of the approximate denotation:

MJSK(Y) =

∞⋃
n=0

MJSKn(Y).

We may also write MJSK(s) to mean MJSK({s}) for a singleton proper state s.
One may think of the parameter n as the maximal number of loop iterations for
the outer while-statements, where the parameter decreases for statements that
are directly nested under a while-statement. By using this parameter we ensure
that the approximate denotational semantics is well-defined.

It is easy to see that the first three clauses of the approximate denotation also
hold for the limit of the approximate denotation, that is:

• MJOK(Y) = (Y ∩ {fail}) ∪
⋃
{OM(s)}s∈(Y ∩S),

• MJskipK = id,

• MJhaltK(Y) = Y ∩ {fail}.

However, to establish that the other clauses also hold for the complex statements,
we need to introduce further technical intermediary results. This is important to
do, since it allows for syntax-directed reasoning about the limit of the approximate
denotation

The approximate denotation given above has important properties, namely:

Lemma B.3.2 (Monotonicity).

1. Given result sets X ⊆ Y , MJSKn(X) ⊆ MJSKn(Y) if X ⊆ Y .

2. Given a result set Y , MJSKn(Y) ⊆ MJSKn+1(Y).

3. Given a result set Y and n ≤ m, MJSKn(Y) ⊆ MJSKm(Y).

B.3. DENOTATIONAL SEMANTICS 175

4. MJS2Kn ◦MJS1Km ⊆ MJS1;S2Kmax(n,m).

Proof. The third result depends on the second result, which depends on the first.
The first two by induction on n and S, and the last by induction on m. The fourth
result is by induction on n and S2: the case analysis is delicate and non-trivial,
and the other results are needed multiple times.

It is easy to lift the first result, and have MJSK(X) ⊆ MJSK(Y) if X ⊆ Y . The
second and third results become trivial when we lift them.

Based on the properties of monotonicity we can prove the following properties
of the (approximate) denotation. Recall that assert(B) abbreviates

if B then skip else halt fi.

We have a few intermediary technical properties, needed to establish later results.

Proposition B.3.3.

1. MJS1; (S2;S3)Kn = MJ(S1;S2);S3)Kn.

2. MJSKn = MJskip;SKn.

3. fail ∈ X implies fail ∈ MJSKn(X).

These properties are easily lifted to the limit of the approximate denotation.
We proceed to establish the following properties of the denotational semantics.

Lemma B.3.4.

• MJS1;S2K = MJS2K ◦MJS1K.

• MJif B then S1 else S2 fiK = MJassert(B);S1K ∪MJassert(¬B);S2K.

To allow for syntax-directed reasoning about while-statements, we make use
of syntactic approximations. We have the following recursively defined syntactic
approximation called loop unrolling :

(while B do S od)0 = halt,

(while B do S od)k+1 = if B then S; (while B do S od)k else skip fi.

The following holds for the denotational semantics.

Lemma B.3.5 (Loop unrolling).

MJwhile B do S odK =

∞⋃
k=0

MJ(while B do S od)kK.

It is now easy to establish, for the denotational semantics, that we can replace
statements by equivalent statements under any context. In other words, equivalent
statements cannot be discriminated by any context. Let S[−] be any statement
with a hole.

176 APPENDIX B. HOARE’S LOGIC

Corollary B.3.6 (Compositionality). MJS[S1]K = MJS[S2]K if MJS1K = MJS2K.

It is also possible to generalize compositionality to contexts with arbitrarily
many holes, for which a similar property as above holds.

We can now establish the correspondence between the operational semantics
and denotational semantics. This correspondence allows us to reason about the
operational semantics of a program using the denotational semantics, and vice
versa. Thus, both approaches in giving semantics coincide!

Lemma B.3.7 (Full abstraction). MJSK = M[S].

B.4 Axiomatic semantics
There is a third approach of giving semantics to statements, which is the axiomatic
semantics. In this approach we express the behavior of programs in terms of
program specifications. In contrast to the operational and denotational semantics
which are relative to a given machine model and—so to speak—works ‘from inside
out’, the axiomatic semantics consists of a set of program specifications and works
‘from outside in’. In the axiomatic semantics we declare which expectations we
have of the behavior of a program, without a priori knowing the inner workings of
the primitive operations of a machine model.

The behavior of a program can be modeled by its input/output behavior. Oper-
ationally, one may see program behavior as a relation between input and output
states, i.e. t ∈ M[S](s) indicates that output state t is related to the (singleton)
input state s and fail ∈ M[S](s) indicates that the program leads to failure from
the (singleton) input state s. Denotationally, we know that a statement S denotes
a state transformer MJSK, and when X is a set of (proper or improper) states that
MJSK(X) also is a set of (proper or improper) states. We have seen before that
operational and denotation semantics coincide. However, this raises the question:
what language can we use to describe states? We turn to that question later in
this section.

First, we outline the usefulness of axiomatic semantics. Expected program
behavior can be expressed by giving two descriptions: one of the set of input
states, and one of the set of output states. Formally, the description of the input
states is called a precondition, and the description of the output states is called
a postcondition. We work directly with these descriptions by the use of program
specifications. We introduce the notation {ϕ} S {ψ} for program specifications
which consists of a precondition ϕ, the statement S, and the postcondition ψ. Then,
given a suitable interpretation J−K of the precondition and postcondition as sets
of (proper or improper) states, we can interpret program specifications as follows
(called the partial correctness interpretation):

M |= {ϕ} S {ψ} if and only if MJSK(JϕK) ⊆ JψK.

By M |= {ϕ} S {ψ} we then mean that the program specification {ϕ} S {ψ} is
satisfied in the machine model M. Next, we consider sets of program specifications:
these are called program theories.

B.4. AXIOMATIC SEMANTICS 177

Similar how theories in (first-order or higher-order) logic can be used to classify
structures, we can use program theories to classify machine models. By giving a
set of program specifications which we expect to be satisfied in a given machine
model, we constrain the possible choices of machine models that are possible. Note
that such constraints can also be expressed for complex statements, e.g. involving
control structures such as loops!

Similar how each structure induces a (first-order or higher-order) theory, we
also have that each machine model induces a program theory. Given a machine
model M, then by Th(M) we denote the set of program specifications that are
satisfied in M. It is then also possible to compare machine models by their induced
program theories.

Example B.4.1. Say, we work with formulas of first-order logic for the pre- and
postconditions, and we want to introduce a new complex programming construct
which introduces local program variables with the syntax:

begin local x := y; S end

The intended meaning is that the variable x is local to the execution of the statement
S: it has an initial value determined by y, but the original value of x is restored after
execution of S ends. To describe the semantics of such a programming construct
using the axiomatic approach would amount to saying that the program theory
must be closed under the following rule:

{ϕ} x := y;S {ψ}
{ϕ} begin local x := y;S end {ψ}

where x ̸∈ FV (ψ)

Thus we are able to declaratively specify properties of the semantics of this complex
programming construct, without knowing how this construct decomposes into
primitive operations nor saying anything about the underlying denotational or
operational semantics. End of Example.

In the axiomatic approach of giving semantics, we intend to give semantics
to programs in an abstract setting, without explicitly knowing the underlying
(operational or denotational) semantics of the primitive operations. We thus need
a language in which we can express the precondition and postcondition, to be able
to describe the behavior of a program. In doing so, we have three desiderata of the
language we choose:

1. The tests (and thus assertions) can be described by the language,

2. the language is expressive enough to describe the behavior of the primitive
operations,

3. the language is closed under substitution, conjunction, and negation.

The first desideratum lets us speak of an assertion language. Although the second
desideratum is necessary, often one is still free to choose an appropriate level of
abstraction. Typically, one wishes to specify primitive operations in which the

178 APPENDIX B. HOARE’S LOGIC

(concrete) implementation details are hidden, i.e. at the level of abstraction of the
programming language itself. The third desideratum naturally leads us to choose a
logical language.

We take as assertion language the language of one of the logics that we have
introduced earlier. In doing so, we restrict the class of machine models to ensure
that the set of states and the tests are compatible with the chosen logic. In this
section we introduce logical machine models, corresponding to classical first-order
logic. In logical machine models we take valuations as states and the (denotation of)
quantifier-free formulas which are the tests. As such, we fix a first-order program
signature FPS (Σ), for a given first-order signature Σ.

Although we focus in this section on classical first-order logic, nothing prevents
us from considering other classes of machine models to be associated to different
logics. In fact, in later sections we also introduce the class of machine models
corresponding to separation logic. In principle, one can choose any logic and
make suitable design choices to map the chosen logic to a class of machine models.
For practical purposes, one makes design choices in such a way as to ensure that
assertions are decidable (i.e. tests can be effectively evaluated in any state) and
primitive operations are computable. This motivates our choice above to consider
the quantifier-free formulas as tests. In practice, one can also restrict the first-order
signature Σ to ensure only a subset of the signature of the logic can be used in
tests. When doing so, one may speak of the logical signature and the program
signature that is a subset of the logical signature. For technical simplicity, we shall
speak of only one signature.

Before giving logical machine models, we introduce the concept of equal sets of
valuations modulo a set of variables. Let X and Y be sets of valuations of some
structure A, and Z ⊆ V be a set of variables. Then by X ≡ Y mod Z we mean that
the sets X and Y are in a correspondence such that for each valuation ρ ∈ X that
corresponds to a valuation ρ′ ∈ Y we have that ρ[V \ Z] = ρ′[V \ Z]. This notion
is also defined when a function is applied on both sets that are in correspondence,
and then takes the original correspondence. Further, by X ≡ f(X) mod Z
we mean that for each valuation ρ ∈ X and valuation ρ′ ∈ f(ρ) we have that
ρ[V \ Z] = ρ′[V \ Z]. These notions can be lifted in the obvious way to result sets
(being sets consisting of valuations or fail), or sets of proper or improper states
(being the disjoint union of proper states and the fail marker).

Definition B.4.2. A logical machine model M is a pair of a structure A and an
operationalization consisting of:

• for each operation O, a transition function which is a partial function OM of
valuations to a set of valuations of A,

• for every operation x := y, the transition function (x := y)M is defined by
mapping ρ to ρ[x := ρ(y)],

• for the transition function OM we have the change condition that either
OM(ρ) = fail or ρ′[V1\change(O)] = ρ[V1\change(O)] for every ρ′ ∈ OM(ρ),

B.4. AXIOMATIC SEMANTICS 179

• for the transition function OM we have the access condition that states
that OM(ρ) ≡ OM(ρ′) mod var(O) for every ρ, ρ′ for which ρ[access(O)] =
ρ′[access(O)] holds.

The operations x := y have a fixed operationalization, namely by assigning the
value of y to the program variable x. Further, the change and access conditions
can be explained as follows. For every operation, we require that only the changed
program variables are actually modified by the operation. We require that only
the accessible program variables can have an influence on the outcome of an
operation. In fact, both conditions imply that operations depend only on finitely
many variables and can affect only finitely many variables.

We also write ⟨M,A⟩ for a logical machine model to indicate its underlying
structure A. A logical machine model is a failure-sensitive machine model in the
following sense: the state space of a logical machine model is the set of valuations
of A, and the given operationalization induces an operationalization for tests by
associating every quantifier-free formula ϕ to the set AJϕKCL that denotes the
valuations that satisfy ϕ in structure A.

The access and change conditions can be lifted to statements S.

Lemma B.4.3 (Change Lemma). Given a set of proper states X,

X ≡ ⟨M,A⟩JSK(X) mod change(S).

Lemma B.4.4 (Access Lemma). Given two sets of proper states X,Y such that
X ≡ Y mod (V \ access(S)), then

⟨M,A⟩JSK(X) ≡ ⟨M,A⟩JSK(Y) mod (V \ var(S)).

Intuitively, these express that a program only modifies the variables change(S),
and that the outcome of a program is only dependent on the variables access(S).

We now formally define whether a program specification is satisfied in a logical
machine model. Note that, contrary to our earlier discussion, there is a mismatch
in the denotation of formulas and the sets of (proper or improper) states: formulas
never denote the improper state fail. Thus we have a stronger interpretation for
program specifications, called strong partial correctness, defined as such:

⟨M,A⟩ |=HL {ϕ} S {ψ} if and only if ⟨M,A⟩JSK(AJϕKCL) ⊆ AJψKCL.

Since fail is never in AJψKCL, this interpretation explicitly states that the machine
never fails when executing program S starting from any state in AJϕKCL. Note that
the superscript HL (short for Hoare’s Logic) is used to be able to distinguish this
interpretation from the one introduced in the next chapter, but may be dropped if
it is clear from context what interpretation is intended.

It is useful to restrict our attention to particular logical machine models, that
are based on a structure that satisfies a particular theory. There are two levels at
which we recognize theories: background theories and program theories. Let T be a
set of first-order formulas, called a background theory. We write |=HL

T {ϕ} S {ψ} to
mean ⟨M,A⟩ |=HL {ϕ} S {ψ} for every logical machine model ⟨M,A⟩ such that

180 APPENDIX B. HOARE’S LOGIC

A |=CL T . We then say that the program specification is valid relative to the
given background theory. We write |=HL {ϕ} S {ψ} if the program specification is
valid in every logical machine model, regardless of background theory, and call it
universally valid.

Let Γ be a set of program specifications, called a program theory. We write
Γ |=HL

T {ϕ} S {ψ} to mean ⟨M,A⟩ |=HL {ϕ} S {ψ} for every structure A such
that A |=CL T and every logical machine model ⟨M,A⟩ such that ⟨M,A⟩ |=HL

{ϕ′} S′ {ψ′} for each {ϕ′} S′ {ψ′} ∈ Γ. We then say that the program specification
{ϕ} S {ψ} is a semantic consequence of Γ with respect to the background theory T .
The notion Γ |=HL {ϕ} S {ψ}, that {ϕ} S {ψ} is a semantic consequence of Γ, can
be defined (regardless of the background theory) in a similar way.

It is sufficient to focus on the semantic consequence relation, regardless of
the background theory, by the following argument. Observe that the program
specification {⊤} skip {ϕ} is satisfied in a logical machine model ⟨M,A⟩ if and only
if ⟨M,A⟩JskipK(AJ⊤KCL) ⊆ AJϕKCL if and only if AJϕKCL is the set of all proper
states if and only if A |=CL ϕ. Hence, every formula ϕ in the background theory can
be represented by the program specification {⊤} skip {ϕ}. Let T be a background
theory, and T ′ be the corresponding set of program specifications in which we
represent each formula ϕ ∈ T as a program specification {⊤} skip {ϕ} ∈ T ′. Then
we have Γ |=HL

T {ϕ} S {ψ} if and only if Γ ∪ T ′ |=HL {ϕ} S {ψ}. For notational
convenience, we simply work with formulas instead of their representations as
program specifications. Hence, we merge the notions of background theory and
program theory, and simply speak of a theory, being a set of program specifications
or formulas. Every theory has projections to its underlying background theory and
program theory.

We introduce a proof system in which program specifications can be deduced.
The purpose of using a proof system is that we can effectively check the deduction
of program specifications. The proof system is set-up as a proof system with
premises. Typically, we take the background theory as premises, from which we
can derive program specifications. Our proof system is called Hoare’s logic, or HL
in short, in honor of C.A.R. Hoare (but, as mentioned in Section 1.4, the proof
system given below is by K.R. Apt and F.S. de Boer).

Definition B.4.5. The proof system HL consists of:

• program specifications or formulas of first-order logic as objects,

• the smallest deduction relation ⊢HL satisfying the conditions:

(skip) ⊢HL {ϕ} skip {ϕ},
(halt) ⊢HL {ϕ} halt {false},
(assign) ⊢HL {ϕ[x := y]} x := y {ϕ},
(comp) {ϕ} S1 {ψ}, {ψ} S2 {χ} ⊢HL {ϕ} S1;S2 {χ},
(if) {ϕ ∧ χ} S1 {ψ}, {ϕ ∧ ¬χ} S2 {ψ} ⊢HL {ϕ} if χ then S1 else S2 fi {ψ},
(while) {ϕ ∧ χ} S {ϕ} ⊢HL {ϕ} while χ do S od {ϕ ∧ ¬χ},

B.4. AXIOMATIC SEMANTICS 181

(conseq) (ϕ′ → ϕ), {ϕ} S {ψ}, (ψ → ψ′) ⊢HL {ϕ′} S {ψ′},
(subst) {ϕ} S {ψ} ⊢HL {ϕ[x := y]} S {ψ[x := y]} for x ̸∈ var(S), y ̸∈ change(S),

(invar) {ϕ} S {ψ} ⊢HL {ϕ ∧ χ} S {ψ ∧ χ} if FV (χ) ∩ change(S) = ∅,
(∃-intro) {ϕ} S {ψ} ⊢HL {∃xϕ} S {ψ} for x ̸∈ var(S) ∪ FV (ψ).

Note how only the consequence proof rule (conseq) uses formulas as premises.
Every deduction is a proof tree constructed in the usual way. Hence, a deduction
has only finitely many premises, being either formulas or program specifications.

Let Γ be a given theory. We can now formulate that the proof system satisfies
the following meta-theoretical property, relating the proof system to the semantic
consequence relation on program specifications.

Lemma B.4.6 (Soundness).

Γ ⊢HL {ϕ} S {ψ} implies Γ |=HL {ϕ} S {ψ}.

Proof. Generalized reflexivity and generalized transitivity holds for the strong
partial correctness interpretation too, by induction on the structure of the deduction.
We then verify the axioms: For (skip), we have |= {ϕ} skip {ϕ} regardless of Γ,
and this easily follows from the denotational semantics. Also for (halt), we have
|= {ϕ} halt {false} regardless of Γ, similar to skip. For (assign), every logical
machine model has a fixed interpretation of x := y, and thus we have the result by
the substitution lemma. We have that (comp) follows directly from the denotational
semantics. For the proof rule (if) we can perform a case distinction on whether
χ holds or not, and from {ϕ ∧ χ} S {ψ} we can obtain {ϕ} assert(χ);S {ψ} and
similar for the other case. For the proof rule (while) we can do loop unrolling, and
then observe that

∞⋃
k=0

⟨M,A⟩J(while χ do S od)kK(AJϕKCL) ⊆ AJϕ ∧ ¬χKCL

holds by considering that the following holds

⟨M,A⟩J(while χ do S od)kK(AJϕKCL) ⊆ AJϕKCL

for every k; the latter can be shown by induction on k and the premise. For
the proof rule (conseq) the result holds for logical machine models in which the
premises are satisfied.

The remaining rules can be proven sound, given the following intuition:

• In the substitution rule (subst) we make use of the access lemma to take
any computation from {ϕ} S {ψ} and change the initial state with respect
to variable x that is not occurring in S to obtain another computation (the
variable x can then not be overwritten by S). The value to assign to x is
the value of y, which must have the same value in the initial and final state
due to the change lemma. The specification then is satisfied by applying the
substitution lemma on the initial and final state.

182 APPENDIX B. HOARE’S LOGIC

• The invariance rule (invar) follows from the change lemma, where the de-
notation of χ depends entirely on its free variables, which values cannot
change.

• The ∃-introduction rule (∃-intro) follows from the access lemma, since the
value of x cannot have any effect on the computation of S nor determine the
denotation of ψ.

In fact, under suitable assumptions of the expressivity of the assertion language,
the converse can be stated as well. To do so, we introduce the notions of a weakest
precondition and strongest postcondition, relative to a given theory Γ.

Remark B.4.7. Since we have limited the variables that are changed, and every
program depends only on finitely many variables, it is possible to express the
weakest precondition (strongest postcondition) by a formula. These conditions
cannot be described by a (finite) formula if, for example, a primitive operation
would affect the value of infinitely many variables, or would depend on the value
of infinitely many variables. End of Remark.

Given a program S and formula ψ, let WPΓ(S, ψ) denote the weakest (liberal)
precondition, a formula with the following properties:

• Γ |=HL {WPΓ(S, ψ)} S {ψ},

• Γ |=HL {ϕ} S {ψ} implies Γ |= ϕ→ WPΓ(S, ψ),

• Γ |=HL WPΓ(skip, ψ) → ψ,

• Γ |=HL WPΓ(halt, ψ) → ⊥,

• Γ |=HL WPΓ(x := y, ψ) → ψ[x := y],

• Γ |=HL WPΓ(S1;S2, ψ) → WPΓ(S1,WPΓ(S2, ψ)),

• Γ |=HL WPΓ(if χ then S1 else S2 fi, ψ) →
(WPΓ(S1, ψ) ∧ χ) ∨ (WPΓ(S2, ψ) ∧ ¬χ),

• Γ |=HL WPΓ(while χ do S od, ψ) →
(χ→ WPΓ(S,WPΓ(while χ do S od, ψ))) ∧ (¬χ→ ψ).

Note that in some of these conditions we use formulas ϕ, such that Γ |= ϕ means
that for every logical machine model ⟨M,A⟩ that satisfies the theory Γ, we must
have that the formula ϕ is valid, that is, A |= ϕ. Whether a formula exists, that
can express the weakest precondition, is a property of the assertion language and
the given theory: not all choices of signatures and theories allow us to express such
weakest precondition as a formula.

There are some general properties that hold of the weakest precondition, as
defined above, that show that the weakest precondition is closely related to our
denotational semantics:

Proposition B.4.8. Γ |=HL WPΓ(S1,WPΓ(S2, ψ)) → WPΓ(S1;S2, ψ).

B.4. AXIOMATIC SEMANTICS 183

Proof. By definition of the weakest precondition, we have

Γ |=HL {WPΓ(S2, ψ)} S2 {ψ}

and
Γ |=HL {WPΓ(S1,WPΓ(S2, ψ))} S1 {WPΓ(S2, ψ)}.

By the soundness of the composition rule, we thus have

Γ |=HL {WPΓ(S1,WPΓ(S2, ψ))} S1;S2 {ψ}.

But from this, it follows that Γ |=HL WPΓ(S1,WPΓ(S2, ψ)) → WPΓ(S1;S2, ψ)
also from the definition of weakest precondition.

Other converses of the other properties of the weakest precondition given above
can be shown too: this establishes that we deal with equivalence and not merely
logical implications.

In fact, for a given logical machine model ⟨M,A⟩ we can precisely specify what
the weakest precondition denotes. A logical machine model fixes the background
theory Th1(A) by the choice of the underlying structure A, and furthermore fixes
the program theory Th(⟨M,A⟩) by the operationalization of M. So we can take as
theory Γ = Th1(A) ∪ Th(⟨M,A⟩). In this case we can simply speak of WP(S, ϕ),
dropping the subscript and instead take the theory induced by the given model.
Then, the weakest precondition is understood, semantically, to denote

AJWP(S, ψ)KCL = {ρ | ⟨M,A⟩JSK(ρ) ⊆ AJψKCL}

where ρ ranges over proper states (the valuations of A). Since our semantics denotes
the empty set for diverging programs, and the empty set is always included in any
set of proper states, we thus have a weakest liberal precondition in the sense that
we do not care about diverging computations.1 Note that in this setting, we are
able to distinguish a primitive operation leading to failure from an indeterminate
primitive operation: in the former case the weakest precondition is empty (since
fail is never contained in any set of proper states), whereas in the latter case the
weakest precondition is the set of all proper states (since the empty set is always
contained in any set of proper states).

Next, let NFΓ(S) denote a formula expressing the precondition so that compu-
tations of S do not lead to failure, and let SPΓ(ϕ, S) denote a formula expressing
the strongest postcondition, with the following properties:

• Γ |=HL {NFΓ(S) ∧ ϕ} S {SPΓ(ϕ, S)},

• Γ |=HL {ϕ} S {ψ} implies Γ |= SPΓ(ϕ, S) → ψ.

Note the asymmetry between the weakest precondition and the strongest postcon-
dition due to the failure-sensitive semantics: the strongest postcondition is only

1If liberal is not caring about getting stuck without making any progress, then progressive is
caring about making progress. But ‘weakest progressive precondition’ is terminology I invented.

184 APPENDIX B. HOARE’S LOGIC

given in the case the precondition excludes the possibility any computation leads
to failure.

Again, for a given logical machine model ⟨M,A⟩ we can precisely specify what
the non-failing formula and the strongest postcondition denotes. Since a particular
logical machine model induces a particular theory, we simply write NF (S) and
SP(ϕ, S), dropping the subscript. We can take

AJNF (S)KCL = {ρ | fail ̸∈ ⟨M,A⟩JSK(ρ)}

and note that, for deterministic machine models, NF (S) and WP(S, true) denote
the same set of proper states. We also can take

AJSP(ϕ, S)KCL = {ρ | ρ ∈ ⟨M,A⟩JSK(AJϕKCL)}

where we take all proper final states starting from a state in the given precondition.
Note that, for a non-deterministic program S, we may have that a particular given
ϕ possibly leads to failure but in a non-deterministic way. In that case, NF (S) is
empty, since the failure cannot be avoided. However, SP(ϕ,S) then could still be
non-empty for the computations that do not lead to failure, whereas SP(false, S)
is empty. Hence there is a difference between SP(ϕ,S) and SP(NF (S) ∧ ϕ,S).

We now show the relative completeness result, by using the weakest (liberal)
precondition. This completeness result is called relative since we have two assump-
tions: we assume the expressivity of the weakest precondition, and we assume that
every logical truth is contained in the theory. The latter assumption is quite strong
and may go beyond what is computable or even recursively enumerable, and hence
we refer to that latter assumption as if we have access to an oracle.

Lemma B.4.9 (Relative completeness). Given a theory Γ where the weakest liberal
precondition WPΓ(S, ψ) is expressible and Γ is maximally consistent (with respect
to the background theory), then

Γ |=HL {ϕ} S {ψ} implies Γ ⊢HL {ϕ} S {ψ}

for all formulas ϕ, ψ.

Proof. We assume Γ |=HL {ϕ} S {ψ}. The proof goes as follows: it suffices to
show that Γ ⊢HL {WPΓ(S, ψ)} S {ψ}, since we obtain the desired result by an
application of the consequence rule and the property that Γ |=HL ϕ→ WPΓ(S, ψ).
Since Γ is maximally consistent we can actually apply the consequence rule.

The proof is by induction on S. For primitive operations, the specification
must follow from Γ (otherwise it contradicts our assumption). The skip, halt, and
assignment operations follow from the properties of the weakest precondition.

For sequential composition, we apply the consequence rule (together with the
property of the weakest precondition that distributes over composition) and need
to show Γ ⊢HL {WPΓ(S1,WPΓ(S2, ψ))} S1;S2 {ψ}. This can be done by an
application of the composition rule, with WPΓ(S2, ψ) as intermediary formula, and
the induction hypotheses. The other complex statements are similar.

B.4. AXIOMATIC SEMANTICS 185

Summarizing, the completeness result depends essentially on the expressivity of
the weakest precondition. That this is crucial boils down to the following observa-
tion: if we know that Γ |=HL {ϕ} S1;S2 {ψ}, how can we find a description of the
possible intermediate states? The weakest precondition offers such a description.
Similarly, the weakest precondition describes the loop invariant in the case of the
while-statement. The fact that we need an oracle is secondary. In the case we deal
with finite structures, for which the background theory is complete, we also have
completeness of Hoare’s logic. For example, in the case of 32-bit signed integers,
the oracle can be effectively implemented by means of a decision procedure, and the
question whether a program specification is deducible is decidable as well. However,
there are background theories such as the theory of stacks, for which one can give
concrete programs where the loop invariant is non-expressible [133]. In that case,
having an oracle does not help in overcoming an inexpressive background theory.

From a proof-theoretic and model-theoretic point of view, the discussion of
completeness becomes more interesting. We know that there is a sound and
complete, finitary proof system for first-order logic. We can combine that proof
system with the proof system for Hoare’s logic: any proof needed in the consequence
rule can be provided by a deduction in the proof system for first-order logic. The
relative completeness result now no longer needs a background theory that is
maximally consistent (the oracle), since by the completeness of first-order logic we
already know that every semantic consequence (of the background theory) can be
deduced. In this case, it is important to keep in mind that program theories are
interpreted with a semantics of programs with respect to arbitrary structures that
satisfies the background theory. This, in fact, further shows that expressivity of
the weakest precondition is essential to the completeness result.

Nothing prevents us from taking one of the axiomatic set theories (such as
Zermelo-Fraenkel set theory [49], Quine’s New Foundations [85], Von Neumann–
Bernays–Gödel set theory [153], among others) as a background theory. The
resulting program logic is very expressive: we can specify very rich specifications
of programs. However, in that case, the relation with practical computing becomes
less clear, although even Dijkstra did not mind speaking about programs that work
on sets or real numbers.1 It is an interesting avenue to see what assumptions (such
as encodability, recursive enumerability, and decidability) are needed for modeling
the primitive operations and tests out of which a program is constructed. One
assumption, for example, could be that the value of every accessible or changed
program variable must have a digital encoding, so it can actually be represented in
the memory of a classical digital computer. However, alternative assumptions may
be needed for programs intended to be executed by quantum computers.

Note that we can also prove relative completeness using the strongest postcon-
dition, but we leave that as an exercise for the reader. Also note that we did not
need all proof rules in the (relative) completeness proof, but this changes after
introducing recursively defined procedures with parameters. For while-programs
it is in fact the case that the invariance rule, substitution rule, and ∃-introduction
rule are admissible. However, these rules are not derivable from the other rules.

1https://www.youtube.com/watch?v=GX3URhx6i2E

https://www.youtube.com/watch?v=GX3URhx6i2E

186 APPENDIX B. HOARE’S LOGIC

B.5 Recursive procedures
This section sketches how to extend our approach to recursive procedures with
parameters. The purpose is to demonstrate that the set-up of the axiomatic
semantics above naturally extends to giving a proof system for programs with
recursive procedures. We shall limit our formal development to outline the main
ideas, and instead refer readers to the journal article Completeness and Complexity
of Reasoning about Call-by-Value in Hoare Logic for all technical details [29].
However, the presentation given here is slightly more elegant than that of [29], due
to the use of program signatures.

The axiomatic semantics above naturally leads to a programming methodology
called design by contract [154, 18]. In essence, every operation of the program
can be assigned a contract that declares a precondition (which the caller of the
procedure needs to guarantee) and a postcondition (which the caller of the procedure
may assume to hold after the procedure terminates). We follow this methodology
in the design of a proof system that supports verifying programs with recursive
procedures.

Given a program signature. A recursive program (D | S) consists of a main
statement S and a set of declarations D. A declaration declares the meaning of
an operation of the program signature, by defining it in terms of a procedure body
which is a statement of our language. Operations that lack such a declaration
are so-called native operations. A native operation thus lacks a procedure body.
The set D associates to each operation at most one declaration. Declarations are
denoted as follows

O⟨x1, . . . , xn, y1, . . . , ym⟩ :: S.

The operation is annotated with a set of polarized variables, that indicate that
execution of the operation may access variables x1, . . . , xn and may change variables
y1, . . . , ym. In the context of a set D, we call an operation O for which there is a
declaration in D a procedure, and say it has procedure body S. Since the operations
are already fixed by the program signature, they can occur in statements, including
the main statement.

Intuitively, a procedure body should only access and change the variables as
declared. A recursive program is well-formed if for all procedures O with body S,
we have access(S) ⊆ access(O) and change(S) ⊆ change(O).
Example B.5.1. Given a program signature which has the operations Z, S, P , +,
and the test Z? that accesses variable x. The following procedure declarations D:

Z⟨z⟩ :: native

S⟨x, z⟩ :: native

P ⟨x, z⟩ :: native

+⟨x, y, z, w, x, y, z, w⟩ :: if Z?(x) then z := y else

P ;w := z;x := y;S; y := z;x := w; +

fi

B.5. RECURSIVE PROCEDURES 187

and main statement + forms the recursive program (D | +). The intended data
structure is that of the natural numbers. The intuition is that Z resets the variable
x to the value 0, S computes the successor of the value in x and stores that in z, P
computes the predecessor of the value in x and stores it in z (and if x is 0 it does
not terminate). We are then able to give the procedure body of + that computes
the addition of the values in x and y and stores the result in z. End of Example.

For notational convenience, one may leave out the access and change variables
in procedure declarations, since the smallest sets of polarized variables can be
computed for a given set of declarations. Hence, we shall not write these variable
annotations anymore.

Up to now all variables are global, in the sense that the same variable in every
context refers to the same ‘storage location’. We extend the programming language
with a block statement for introducing local variables, which allow us to temporarily
change the value of a variable within the scope of the block. As such, the statements
are extended to include the complex block statement

S ::= . . . | begin local x⃗ := y⃗;S end

where x⃗ and y⃗ are sequences of variables of the same length, and x⃗ consists of
unique variables. The variables of x⃗ are local variables within the scope of the
block. We also extend the definitions of access and change as follows:

access(begin local x⃗ := y⃗;S end) = (access(S) \ x⃗) ∪ y⃗,
change(begin local x⃗ := y⃗;S end) = change(S) \ x⃗.

From the perspective of operational semantics, there is a problem with giving
the block statement a small-step semantics. The small-step semantics is in a sense
a ‘local’ semantics, which transforms the statement and state one step at a time.
However, the intended semantics is that after the block is exited, the values of the
local variables have to be restored to their original value, that is, at the time before
entering the block statement. A possible solution is to keep track of the original
values in the state by means of a stack, to which values can be pushed, and from
which original values can be popped. In that way, the block construct can be seen
as a structured short-hand of a program in a block program signature, where the
original value of each local variable is first pushed, then the parallel assignment is
performed, and after the block ends the original values are popped again in reverse
order.

For logical machine models, the big-step semantics of the block statement can
be given directly, i.e. without pushing and popping, by the following transition:

(begin local x⃗ := y⃗;S end, s) −↠ (✓, s′[x⃗ := s(x⃗)]) if (S, s[x⃗ := y⃗]) −↠ (✓, s′)

(begin local x⃗ := y⃗;S end, s) −↠ fail if (S, s[x⃗ := y⃗]) −↠ fail

where we have parallel update of, and parallel access from, proper states s (being
valuations of the underlying structure). These are denoted s[x⃗ := v⃗] for the updated
state where v⃗ is a sequence of new values (of the same length as x⃗), and s(x⃗) for a

188 APPENDIX B. HOARE’S LOGIC

sequence of values that the variables of x⃗ have in state s, respectively. Without
much difficulty it is also possible to extend the denotational semantics in a similar
way.

Having local variables and block statements allows us to introduce procedures
with parameters. In the signature, for each operation O we also record its arity
(being a set of variables), denoted arity(O). Consequently, we extend the notion of
declarations to display the arity of operations as follows:

O(x1, . . . , xn) :: S,

where x1, . . . , xn are distinct variables, exactly covering arity(O), called the formal
parameters of the operation O. The difference between the arity of an operation,
and the formal parameters of an operation is that in the latter the order of variables
is significant. (Note that the signature still assigns polarized variables to each
operation, indicating the potentially accessible and changed variables, but they are
left implicit in declarations.) The formal parameters are local to the procedure
body, and thus are never included in the variables that are potentially accessed or
changed: the latter variables are global variables that are not among the formal
parameters. As such, we require that arity(O) and access(O) are disjoint, as well
as arity(O) and change(O).

Further, we have the following call statement:

S ::= . . . | O(y1, . . . , yn)

where y1, . . . , yn are the actual parameters supplied as part of the call, where we
assume O has the arity x⃗, and y⃗ and x⃗ of equal length. It is permissible that
the actual parameters y⃗ have duplicate variables, while this is not the case for
the formal parameters x⃗. We speak of a procedure call in the context of a set of
declarations if the corresponding operation is a procedure, and otherwise speak of
a native call. We also extend the definitions of access and change as follows:

access(O(y⃗)) = access(O) ∪ y⃗,
change(O(y⃗)) = change(O).

Intuitively, a procedure body should only access and change the variables as
declared, but it is permissible to access and change the formal parameters. A
recursive program is well-formed if for all procedures O with body S, we have
(access(S) \ arity(O)) ⊆ access(O) and (change(S) \ arity(O)) ⊆ change(O).

In fact, procedures without parameters can be regarded as procedures with zero
parameters, that have an empty arity. The notions defined with parameters thus
are a refinement of the former notions without parameters.

To give semantics to recursive programs, we lift the semantics of statements
to a semantics of (well-formed) recursive programs by also considering the set of
declarations in each configuration. The big-step semantics of the procedure call
then is defined by the transition

(D | O(y⃗), s) −↠ C if (D | begin local x⃗ := y⃗;S end, s) −↠ C

B.5. RECURSIVE PROCEDURES 189

where O(x⃗) :: S is in the set of declarations D. We have that x⃗ and y⃗ match
in length, because the actual parameters and arity of an operation match in
length and also that the formal parameters gives an order of the variables of the
arity. This style of operational semantics is also called body replacement, since
intuitively we replace the procedure call by the body of the procedure wrapped in a
block statement. We here restrict ourselves to the call-by-value parameter passing
mechanism, meaning that the values of actual parameters are computed before
starting to execute the procedure body. This is in contrast to call-by-name where
we would have to perform substitution of formal parameters by actual parameters
in the procedure body, resulting in a different replacement for each procedure call
with different actual parameters, and requires handling variable capturing by block
statements. Note that the behavior of a native call is left unspecified, and as such
can be interpreted by the operationalization of a machine model.

The denotational semantics can be given iteratively. This is similar to how we
previously gave a denotational semantics to while-statements. We leave the details
out and instead refer the reader to [29]. What is more important concerning our
discussion is the proof system for recursive programs.

Procedures return values by the use of a global variables (that can be changed).
It is possible to designate a special variable, called result, that cannot occur as a
formal parameter of any procedure declaration, and to which the procedure may
assign an output value in the procedure body. For procedure declarations that
have the result variable listed among its changed variables, we can introduce the
following abbreviation:

x := O(y⃗)

which denotes the statement

O(y⃗);x := result.

Since we have introduced blocks that allow us to introduce local variables, we can
also introduce the following syntactic sugar. An expression e is constructed out
of either an individual variable, or a procedure call with as formal parameters
other expressions (matching in length the number of formal parameters of the
corresponding operation). For example, O(P (x, y), z,Q(w)) is an expression given
operations O,P,Q and variables x, y, z, w. Each expression O(e1, . . . , en) abbrevi-
ates a statement. If all expressions e1, . . . , en are variables then O(e1, . . . , en) is
simply a procedure call with the corresponding variables as actual parameters. Oth-
erwise, let ei be the first non-variable expression from the left, then O(e1, . . . , en)
abbreviates the following statement:

ei;begin local zi := result;O(e1, . . . , zi, . . . , en) end

and the statement x := O(e1, . . . , en) abbreviates

O(e1, . . . , en);x := result.

where we take z1, . . . , zn to be fresh variables (i.e. not occurring in any of the
sub-expressions, nor in accessible or changed variables of the operation). Note

190 APPENDIX B. HOARE’S LOGIC

that this effectively evaluates the expressions from the left to the right, storing the
result of each sub-expression in a local variable. Also note that the abbreviation is
recursively defined.

Note the resemblance between terms (in the assertion language) and expressions
(in the programming language). Terms can be added to a logic without terms,
by the introduction of an existential quantifier that binds the output value that
are assigned to inputs by a functional relation. In that way, terms can be used in
the place of variables. Similarly, we use local variables to capture the output of
an expression so that, as well, expressions can be used in the place of variables.
However, note that with expressions we also defined a so-called order of evaluation,
by evaluating the expressions from left to right. The reason to do so, and why this is
not needed in the assertion language, is because expressions can have side-effects on
global variables, which consequently affect the evaluation of subsequent expressions.

Also note that the programming language as described above employs dynamic
scoping. This means that a global variable can be captured by the use of a block
statement, to isolate the effects of procedures. We say that a program is statically
scoped if the local variables and global variables are separated, thus disallowing
capturing of global variables and ensuring that the referent of a global variable
remains the same in every context. This may remind the reader of Barendregt’s
variable convention, in which bound and free variables are separate. See also the
discussion of local variables by K.R. Apt and E.-R. Olderog [11, Section 5.2].

Finally, we consider extending the proof system HL with rules for proving
properties about block statements and procedure calls. The objects of the proof
system remain Hoare triples {ϕ} S {ψ} in which we are oblivious of the set of dec-
larations in the proof system. We furthermore add the Hoare triples {ϕ} D | S {ψ}
for specifying (well-formed) recursive programs (D | S).

We have the following additional proof rules:

(block) {ϕ[x⃗ := y⃗]} S {ψ} ⊢HL {ϕ} begin local x⃗ := y⃗;S end {ψ} if FV (ψ) ∩ x⃗ = ∅,

(inst) {ϕ} O(x⃗) {ψ} ⊢HL {ϕ[x⃗ := y⃗]} O(y⃗) {ψ} if FV (ψ) ∩ x⃗ = ∅,

(rec) If Γ,∆ ⊢HL {ϕi} Si {ψi} for every 1 ≤ i ≤ n and Γ,∆ ⊢HL {ϕ} S {ψ}, then
Γ ⊢HL {ϕ} D | S {ψ} where D = {O1(x⃗1) :: S, . . . , On(x⃗n) :: Sn}
and ∆ = {{ϕ1} O1(x⃗1) {ψ1}, . . . , {ϕn} On(x⃗n) {ψn}}
and FV (ψi) ∩ x⃗i = ∅ for every 1 ≤ i ≤ n.

Recall that ϕ[x⃗ := y⃗] is the substitution of the variables x⃗ by the corresponding
variables y⃗. The specifications in ∆ are called contracts, and we require that
the formal parameters of each procedure do not occur in the postcondition of
the contract. The difference between Γ and ∆ is that Γ consists of the program
theory and background theory, used for axiomatizing the native operations and
the underlying structure, whereas ∆ introduces contracts for the procedures which
have a procedure body.

It is now possible to formulate both soundness and (relative) completeness
for recursive programs too. The essence of the relative completeness proof is to
introduce most general contracts for each procedure, making use of a strongest

B.5. RECURSIVE PROCEDURES 191

postcondition axiomatization in the line of Gorelick [96]. We refer the reader to
[29] for more details.

Remark B.5.2. These rules are admissible in Hoare’s logic: every local block can
be eliminated by introducing fresh variables (that do not occur in any surrounding
program), and recursive procedures can be eliminated and reduced to simple while
loops. However, showing why this is the case in detail is out of scope of this thesis.

192 APPENDIX B. HOARE’S LOGIC

Appendix C

Intuitionistic separation logic

C.1 Standard semantics

Definition C.1.1 (Satisfaction relation). f Given a structure A = (A, I), a
valuation ρ of A, a finite heap h of A, and a separation logic formula ϕ. The
satisfaction relation A, h, ρ |=SISL ϕ is defined inductively on the structure of ϕ:

• A, h, ρ |=SISL ⊥ never holds,

• A, h, ρ |=SISL (x
.
= y) iff ρ(x) = ρ(y),

• A, h, ρ |=SISL (x ↪→ y) iff h(ρ(x)) is defined and h(ρ(x)) = ρ(y),

• A, h, ρ |=SISL C(x1, . . . , xn) iff (ρ(x1), . . . , ρ(xn)) ∈ CI ,

• A, h, ρ |=SISL ϕ→ ψ iff A, h′, ρ |=SISL ϕ implies A, h′, ρ |=SISL ψ
for every h′ ⊇ h,

• A, h, ρ |=SISL ∀xϕ iff A, h, ρ[x := a] |=SISL ϕ for every a ∈ A,

• A, h, ρ |=SISL ϕ ∗ ψ iff A, h1, ρ |=SISL ϕ and A, h2, ρ |=SISL ψ
for some h1, h2 such that h ≡ h1 ⊎ h2,

• A, h, ρ |=SISL ϕ −∗ ψ iff A, h′, ρ |=SSL ϕ implies A, h′′, ρ |=SISL ψ
for every h′, h′′ such that h′′ ≡ h ⊎ h′.

This definition is based on finite heaps. SISL stands for Standard Intuitionistic
Separation Logic. It crucially differs from SSL in the clause for logical implication.
Note that the pure fragment of separation logic still is interpreted classically, since
pure formulas do not depend on the heap. The definition above can be adapted
to obtain full intuitionistic separation logic, and general intuitionistic separation
logic, in a similar manner as before.

193

194 APPENDIX C. INTUITIONISTIC SEPARATION LOGIC

C.2 Intuitionistic Reynolds’ logic

In the intuitionistic version of separation logic we cannot express directly anymore
that a location x is not allocated. The definition of the substitution p[⟨x⟩ := e] and
p[⟨x⟩ := ⊥], and the above alt-backwards axiomatization of mutation, allocation and
dispose instructions therefore breaks down. We can use new modalities [[x] := e]
and [x] := ⊥] corresponding to the mutation and the dispose instruction. Differently
from the heap update operation and the heap clear operation, correctness of the
modalities [[x] := e] and [[x] := ⊥] require that x is allocated. In ISL we then
can define the heap update substitution p[⟨x⟩ := e] by (x ↪→ −) → p[[x] := e], as
explained in details below.

Further note, that we indeed can use in the allocation axiom disjunction
(instead of the intuitionistic implication) because of its classic interpretation (this
is explained in the soundness and completeness proof below).

Definition C.2.1 (Substitution for mutation). We define p[[x] := e] recursively
on p (assuming the variables of e and x do not occur bound in p).

• b[[x] := e] = b,

• (e′ ↪→ e′′)[[x] := e] = (x ̸= e′ ∧ e′ ↪→ e′′) ∨ (x = e′ ∧ e′′ = e),

• (p ∧ q)[[x] := e] = p[[x] := e] ∧ q[[x] := e], and similar for ∨ and →,

• (∃yp)[[x] := e] = ∃y(p[[x] := e]) and similar for ∀,

• (p ∗ q)[[x] := e] = ((p[[x] := e] ∧ x ↪→ −) ∗ q) ∨ (p ∗ (q[[x] := e] ∧ x ↪→ −))

• (p −∗ q)[[x] := e] = p −∗ (q[[x] := e])

Lemma C.2.2 (Correctness mutation substitution). Let s(x) ∈ dom(h). We then
have h, s |= p[[x] := e] iff h[s(x) := s(e)], s |= p.

Proof. The proof proceeds by induction on the structure of p. We treat the following
main cases.

• h, s |= (p→ q)[[x] := e] iff (definition substitution)
h, s |= p[[x] := e] → q[[x] := e] iff (semantics implication)
h′, s |= p[[x] := e] implies h′, s |= q[[x] := e], for all h′ such that h ⊑ h′

iff (induction hypothesis)
h′[s(x) := s(e)], s |= p implies h′[s(x) := s(e)], s |= q, for all h′ such that
h ⊑ h′

iff (see below)
h′, s |= p implies h′, s |= q, for all h′ such that h[s(x) := s(e)] ⊑ h′

iff (semantics implication)
h[s(x) := s(e)], s |= p→ q
Note that h[s(x) := s(e)] ⊑ h′ implies h′[s(x) := h(s(x))] = h′, and h ⊑ h′

implies h[s(x) := s(e)] ⊑ h′[s(x) := s(e)].

C.2. INTUITIONISTIC REYNOLDS’ LOGIC 195

• h, s |= (p ∗ q)[[x] := e]
iff (definition substitution)
h, s |= (x ↪→ −) → ((p[[x] := e] ∧ x ↪→ −) ∗ q) ∨ (p ∗ (q[[x] := e] ∧ x ↪→ −))
iff (see below)
h[s(x) := s(e)], s |= p ∗ q.
⇓: First, let s(x) ∈ dom(h). W.l.o.g. we may assume that h = h1 ⊎ h2,
h1, s |= p[[x] := e], and h2, s |= q, for some h1, h2 such that s(x) ∈ dom(h1).
Induction hypothesis: h1[s(x) := s(e)], s |= p. Further: h[s(x) := s(e)] =
h1[s(x) := s(e)] ⊎ h2. Next, let s(x) ̸∈ dom(h). Let h′ = h[s(x) := n],
for some arbitrary n. Again, w.l.o.g. we may assume that h′ = h1 ⊎ h2,
h1, s |= p[[x] := e], and h2, s |= q, for some h1, h2 such that s(x) ∈ dom(h1).
Induction hypothesis: h1[s(x) := s(e)], s |= p. Further: h′[s(x) := s(e)] =
h[s(x) := s(e)] = h1[s(x) := s(e)] ⊎ h2.
⇑: Let h[s(x) := s(e)] = h1 ⊎ h2 such that h1, s |= p and h2, s |= q. W.l.o.g.,
assume that s(x) ∈ dom(h1). Further , let h ⊑ h′. Let h′1 = h′ \ h2. It
follows that h′ = h′1 ⊎ h2. Monotonicity: h′1, s |= p. Induction hypothesis:
h′1, s |= p[[x] := e] (note that h′1[s(x) := s(e)] = h′1).

• h, s |= (p −∗ q)[[x] := e]
iff (definition of substitution)
h, s |= (x ↪→ −) → (p −∗ (q[[x] := e])) iff (semantics intuitionistic and
separating implication)
h′, s |= p implies h⊎h′, s |= q[[x] := e], for every h ⊆ h′, with s(x) ∈ dom(h′),
and h′′ disjoint from h′

iff (induction hypothesis)
h′′, s |= p implies (h′ ⊎ h′′)[s(x) := s(e)], s |= q, for every h ⊆ h′, with
s(x) ∈ dom(h′), and h′′ disjoint from h′

iff (see below)
h′, s |= p implies h[s(x) := s(e)] ⊎ h′, s |= q, for every h′ disjoint from
h[s(x) := s(e)]
iff (semantics of separating implication)
h[s(x) := s(e)], s |= p −∗ q.
⇓: First, let s(x) ̸∈ dom(h). So h ⊑ h[s(x) := s(e)], and we can take
h[s(x) := s(e)] for h′. Next, let s(x) ∈ dom(h). So it suffices to observe that
h′′#h implies h′′#h[s(x) := s(e)].
⇑: let h ⊆ h′, with s(x) ∈ dom(h′), and h′′ disjoint from h′ such that
h′′, s |= p. Clearly, h′′ is disjoint from h[s(x) := s(e)], and thus we have
that h[s(x) := s(e)] ⊎ h′′, s |= q, that is, (h ⊎ h′′)[s(x) := s(e)], s |= q. We
further have that (h ⊎ h′′)[s(x) := s(e)] ⊑ (h;⊎h′′)[s(x) := s(e)], and so by
monotonicity, we conclude that (h′ ⊎ h′′)[s(x) := s(e)], s |= q.

Corollary C.2.3 (Correctness intuitionistic heap update).
We have h, s |= p[⟨x⟩ := e] iff h[s(x) := s(e)], s |= p.

Proof. First let h, s |= p[⟨x⟩ := e], that is (by definition), h, s |= (x ↪→ −) →
p[[x] := e]. Let h′ = h, if s(x) ∈ dom(h), and h′ = h[s(x) := n], for some arbitrary
n, otherwise. So h ⊑ h′, and thus we infer from h, s |= (x ↪→ −) → p[[x] := e] that

196 APPENDIX C. INTUITIONISTIC SEPARATION LOGIC

h′, s |= p[[x] := e], and so by the correctness of the mutation substitution, we have
h′[s(x) := s(e)], s |= p, that is, h[s(x) := s(e)], s |= p.

On the other hand, assuming h[s(x) := s(e)], s |= p, let h ⊆ h′ such that
s(x) ∈ dom(h′). We show that h′, s |= p[[x] := e]: By the monotonicity property
of ISL we have that h[s(x) := s(e)], s |= p implies h′[s(x) := s(e)], s |= p. By
the correctness of the mutation substitution, it then suffices to observe that
h′, s |= p[[x] := e] if and only if h′[s(x) := s(e)], s |= p.

For the intutitionistic axiomatization of the dispose instruction we introduce
the following substitution.

Definition C.2.4 (Substitution for dispose). We define p[[x] :=⊥] recursively on
p (assuming that x does not occur bound in p).

• b[[x] :=⊥] = b

• (e ↪→ e′)[[x] :=⊥] = x ̸= e ∧ e ↪→ e′

• (p ∧ q)[[x] :=⊥] = p[[x] :=⊥] ∧ q[[x] :=⊥], and similar for ∨

• (p→ q)[[x] :=⊥] = (p[[x] :=⊥] → q[[x] :=⊥]) ∧ ∀y(p[[x] := y] → q[[x] := y])
where y is a fresh variable

• (∃yp)[[x] :=⊥] = ∃y(p[[x] :=⊥])

• (p ∗ q)[[x] :=⊥] = (p[[x] :=⊥] ∧ (x ↪→ −)) ∗ q

• (p −∗ q)[[x] :=⊥] = (p −∗ q[[x] :=⊥]) ∧ ∀y(p[⟨x⟩ := y] −∗ q[⟨x⟩ := y])
where y is a fresh variable.

Determining whether p ∗ q holds after disposing x, we predict whether p or q
holds for the sub-heap that contained the disposed x. Since the dispose instruction
[x] :=⊥ requires that x is allocated, we distinguish between between these two
cases by checking in which part of the heap x is allocated. But since after the
dispose instruction both p and q are evaluated in sub-heaps which do not contain
the location x, we can choose between where to allocate x initially. Formally, the
assertions (p[[x] :=⊥] ∧ (x ↪→ −)) ∗ q and (q[[x] :=⊥] ∧ (x ↪→ −)) ∗ p are equivalent.
For example, we that true ∗ (x ↪→ y) does not hold after execution of [x] :=⊥. By
definition (true ∗ (x ↪→ y))[[x] :=⊥] reduces to (true ∧ x ↪→ y) ∗ (x ↪→ y), which
further reduces to false. On the other hand, ((x ↪→ y) ∗ true)[[x] :=⊥] reduces
to (x ̸= x ∧ (x ↪→ −)) ∗ true, which further reduces to false ∗ true, which also is
equivalent to false.

Lemma C.2.5 (Correctness dispose substitution). Let s(x) ∈ dom(h). We then
have h, s |= p[[x] :=⊥] if and only if h[s(x) := ⊥], s |= p.

Proof. The proof proceeds by induction on the structure of p. We treat the following
main cases.

C.2. INTUITIONISTIC REYNOLDS’ LOGIC 197

• h, s |= (p→ q)[[x] :=⊥] iff (definition of substitution)
h, s |= (p[[x] :=⊥] → q[[x] :=⊥]) ∧ ∀y(p[[x] := y] → q[[x] := y])
iff (see below)
h[s(x) :=⊥], s |= p→ q.
First we show that h[s(x) :=⊥] ⊑ h′ and h′, s |= p implies h′, s |= q. We
distinguish the following two cases. First let s(x) ̸∈ dom(h′). It follows
that h′[s(x) := h(s(x))], s |= p[[x] :=⊥] (by the induction hypothesis we
have h′[s(x) := h(s(x))], s |= p[[x] :=⊥] if and only if h′, s |= p). Since
h ⊑ h′[s(x) := h(s(x))] we thus derive from h, s |= (p[[x] :=⊥] → q[[x] :=⊥])
that h′[s(x) := h(s(x))], s |= q[[x] :=⊥], and so by the induction hypothesis
again we obtain h′, s |= q.

Next let s(x) ∈ dom(h′). From h′, s |= p, it follows from the correctness of
the mutation substitution that h′[s(x) := h(s(x))], s′ |= p[[x] := y], where
s′ = s[y := h′(s(x))] (since y does not appear in p and x ̸= y). Since
h ⊑ h′[s(x) := h(s(x))] we thus derive from h, s′ |= p[[x] := y] → q[[x] := y]
that h′[s(x) := h(s(x))], s′ |= q[[x] := y], and so by the correctness of the
mutation substitution again we obtain h′, s′ |= q, that is, h′, s |= q (since y
does not appear in q).

Conversely, let h[s(x) :=⊥], s |= p→ q. First we show that h, s |= p[[x] :=⊥
] → q[[x] :=⊥]. Let h ⊑ h′ and h′, s |= p[[x] :=⊥], and so by the induction
hypothesis h′[s(x) :=⊥], s |= p. We have to show that h′, s |= q[[x] :=⊥]. By
the induction hypothesis (s(x) ∈ dom(h) ⊆ dom(h′)) it suffices to show that
h′[s(x) :=⊥], s |= q. Since h[s(x) :=⊥] ⊑ h′[s(x) :=⊥] and h′[s(x) :=⊥], s |= p
we thus derive from h[s(x) :=⊥], s |= p→ q that h′[s(x) :=⊥], s |= q.

Next we show that h, s |= ∀y(p[[x] := y] → q[[x] := y]). Let h ⊑ h′ and
h′, s′ |= p[[x] := y], where s′ = s[y := n], for some arbitrary n. We have
to show that h′, s′ |= q[[x] := y] which by the correctness of the mutation
substitution boils down to h′[s(x) := n], s |= q. By the correctness of
the mutation substitution again we have h′, s′ |= p[[x] := y] if and only if
h′[s(x) := n], s′ |= p. Since h[s(x) :=⊥] ⊑ h′[s(x) := n] we thus derive from
h[s(x) :=⊥], s |= p → q and h′[s(x) := n], s′ |= p that h′[s(x) := n], s |= q
(since y does not occur in p and q).

• h, s |= (p ∗ q)[[x] :=⊥] iff (definition substitution)
h, s |= (p[[x] :=⊥] ∧ x ↪→ −) ∗ q iff (semantics separating conjunction)
h1, s |= p[[x] :=⊥]∧x ↪→ − and h2, s |= q, for some h1, h2 such that h = h1⊎h2
iff (semantics of points-to) h1, s |= p[[x] :=⊥] and h2, s |= q, for some h1, h2
such that s(x) ∈ dom(h1) and h = h1 ⊎ h2
iff (induction hypothesis)
h1[s(x) :=⊥], s |= p and h2, s |= q, for some h1, h2 such that s(x) ∈ dom(h1)
and h = h1 ⊎ h2
iff (see below)
h1, s |= p and h2, s |= q, for some h1, h2 such that h = h1 ⊎ h2
iff (semantics separating conjunction)
h[s(x) :=⊥], s |= p ∗ q. Note that s(x) ∈ dom(h1) and h = h1 ⊎ h2 implies

198 APPENDIX C. INTUITIONISTIC SEPARATION LOGIC

h[[x] :=⊥] = h1[s(x) :=⊥] ⊎ h2, and h[[x] :=⊥] = h1 ⊎ h2 implies that
h = h1[s(x) := h(s(x))] ⊎ h2.

• h, s |= ((p −∗ q)[[x] :=⊥]
iff (definition substitution)
h, s |= (p −∗ q[[x] :=⊥]) ∧ ∀y(p[⟨x⟩ := y] −∗ q[⟨x⟩ := y])
iff (see below)
h[s(x) :=⊥], s |= p −∗ q.
First let h′ be disjoint from h[s(x) :=⊥] and h′, s |= p. We have to show that
h[s(x) :=⊥] ⊎ h′, s |= q. We distinguish the following two cases.

First, let s(x) ̸∈ dom(h′). So h′ and h are disjoint, and thus (since h, s |=
p −∗ q[[x] :=⊥]) we have h ⊎ h′, s |= q[[x] :=⊥]. From which we derive
(h ⊎ h′)[s(x) :=⊥], s |= q by the induction hypothesis (note that s(x) ∈
dom(h) ⊆ dom(h ⊎ h′)). We then can conclude this case by the observation
that h[s(x) :=⊥] ⊎ h′ = (h ⊎ h′)[s(x) :=⊥].

Next, let s(x) ∈ dom(h′). We then introduce s′ = s[y := h′(s(x))]. Since
h′, s′ |= p (y does not appear in p), it follows by the correctness of the intu-
itionistic heap update (see above corollary) that h′[s(x) :=⊥], s′ |= p[⟨x⟩ := y].
Since h′[s(x) :=⊥] and h are disjoint (which clearly follows from that h′ and
h[s(x) :=⊥] are disjoint), and so (since h, s′ |= p[⟨x⟩ := y] −∗ q[⟨x⟩ := y]) we
have that h ⊎ (h′[s(x) :=⊥]), s′ |= q[⟨x⟩ := y]. Applying again the correct-
ness of the intuitionistic heap update we obtain (h ⊎ (h′[s(x) :=⊥]))[s(x) :=
s′(y)], s′ |= q. We then can conclude this case by the assumption that y does
not appear in q and the observation that h[s(x) :=⊥]⊎h′ = (h⊎ (h′[s(x) :=⊥
]))[s(x) := s′(y)].

Conversely, let h[s(x) :=⊥], s |= p −∗ q. We first show that h, s |= p −∗
q[[x] :=⊥]: Let h′ be disjoint from h and h′, s |= p. We have to show that
h ⊎ h′, s |= q[[x] :=⊥]. Clearly, h′ and h[s(x) :=⊥] are disjoint, and so (since
h[s(x) :=⊥], s |= p −∗ q) h[s(x) :=⊥]⊎ h′, s |= q. By the induction hypothesis
(note that s(x) ∈ dom(h) ⊆ dom(h ⊎ h′)) we have h ⊎ h′, s |= q[[x] :=⊥] iff
(h ⊎ h′)[s(x) :=⊥], s |= q. We then can conclude this case by the observation
that (h⊎ h′)[s(x) :=⊥] = h[s(x) :=⊥] ⊎ h′, because s(x) ∈ dom(h) \ dom(h′).

Next we show that h, s |= ∀y(p[⟨x⟩ := y] −∗ q[⟨x⟩ := y]): Let h′ be disjoint
from h and s′ = s[y := n], for some n, such that h′, s′ |= p[⟨x⟩ := y].
We have to show that h ⊎ h′, s′ |= q[⟨x⟩ := y]. By the correctness of the
intuitionistic heap update it then follows that h′[s(x) := n], s′ |= p, that is,
h′[s(x) := n], s |= p (since y does not appear in p). Since h′[s(x) := n] and
h[s(x) :=⊥] are disjoint, we derive from the assumption h[s(x) :=⊥], s |=
p −∗ q that h[s(x) :=⊥] ⊎ h′[s(x) := n], s |= q. Again by the correctness
of the intuitionistic heap update, we have that h ⊎ h′, s′ |= q[⟨x⟩ := y] iff
(h ⊎ h′)[s(x) := n], s′ |= q (that is, (h ⊎ h′)[s(x) := n], s |= q, because y does
not appear in q). We then can conclude this case by the observation that
(h ⊎ h′)[s(x) := n] = h[s(x) :=⊥] ⊎ h′[s(x) := n].

C.2. INTUITIONISTIC REYNOLDS’ LOGIC 199

The following axiomatization is by Reynolds [187].

Definition C.2.6 (Weakest precondition axiomatization).

{p[x := e]} x := e {p}

{∃y((e ↪→ y) ∧ p[x := y])} x := [e] {p}

{(x ↪→ −) ∗ ((x ↪→ e) −∗ p)} [x] := e {p}

{∀y((y ↪→ e) −∗ p[x := y])} x := new(e) {p}

{(x ↪→ −) ∗ p} delete(x) {p}

The next two axiomatizations are novel.

Definition C.2.7 (Alternative weakest precondition axiomatization).

{p[x := e]} x := e {p}

{∃y((e ↪→ y) ∧ p[x := y])} x := [e] {p}

where y is fresh
{(x ↪→ −) ∧ p[[x] := e]} [x] := e {p}

{∀x((x ↪→ −) ∨ p[⟨x⟩ := e])} x := new(e) {p}

where x ̸∈ fv(e)

{(x ↪→ −) ∧ p[[x] := ⊥]} delete(x) {p}

Definition C.2.8 (Strongest postcondition axiomatization).

{p} x := e {(∃y)(p[x := y] ∧ e[x := y] = x)}

{(e ↪→ −) ∧ p} x := [e] {∃y(p[x := y] ∧ e[x := y] ↪→ x)}

{(x ↪→ −) ∧ p} [x] := e {∃y(p[[x] := y]) ∧ (x ↪→ e)}

where x ̸∈ fv(e)

{p} x := new(e) {(∃y(p[x := y]))[[x] := ⊥] ∧ (x ↪→ e)}

{(x ↪→ −) ∧ p} delete(x) {(x ↪→ −) → ∃y(p[[x] := y])}

where y is fresh everywhere

We showcase the soundness and completeness of the strongest postcondition
axiomatization of dispose (soundness and completeness of the above axiomatization
of the other instructions follow in a straightforward manner from the corresponding
substitution lemmas).

200 APPENDIX C. INTUITIONISTIC SEPARATION LOGIC

• |= {p ∧ (x ↪→ −)} delete(x) {(x ↪→ −) → ∃y(p[[x] := y])}:
Let h, s |= r ∧ x ↪→ −. We have to show that h[s(x) :=⊥], s |= x ↪→ − →
∃y(p[[x] := y]). That is, for h[s(x) :=⊥] ⊑ h′ such that s(x) ∈ dom(h′) we
have to show that h′, s |= ∃y(p[[x] := y]): We show h′[s(x) := n], s[y := n] |= p
for n = h(s(x)): By Lemma C.2.2, we have h′, s[y := n] |= p[[x] := y] if
and only if h′[s(x) := n], s[y := n] |= p. By monotonicity (h, s |= p and
h ⊑ h′[s(x) := n]) it follows that h′[s(x) := n], s |= p. Since y does not
appear in p, we thus have that h′[s(x) := n], s[y := n] |= p.

• |= {p ∧ (x ↪→ −)} delete(x) {q} implies |= ((x ↪→ −) → ∃y(p[[x] := y])) → q:
This boils does to showing that h, s |= x ↪→ − → ∃y(p[[x] := y]) implies h, s |=
q, for any heap h and store s. So, let h, s |= x ↪→ − → ∃y(p[[x] := y]), that is,
h′, s |= x ↪→ − implies h′, s |= ∃y(p[[x] := y]), for any h ⊑ h′. Let h′ = h, in
case s(x) ∈ dom(h), and h′ = h[s(x) := n], for some arbitrary n, otherwise.
Clearly, h ⊑ h′ and h′, s |= x ↪→ −. So h′, s |= ∃y(p[[x] := y]). Let h′, s[y :=
k] |= p[[x] := y], for some k. By Lemma C.2.2 again, it follows that h′[s(x) :=
k], s[y := k] |= p. From our assumption |= {p ∧ x ↪→ −} [x] :=⊥ {q} we then
derive that h′[s(x) :=⊥], s[y := k] |= q. By definition of h′ we have that
h′[s(x) :=⊥] ⊑ h, and so by monotonicity we infer h, s[y := k] |= q, and so
h, s |= q, assuming w.l.o.g. that y does not appear (free) in q.

Appendix D

Formalization in Coq

The main motivation behind formalizing results in a proof assistant is to rigorously
check hand-written proofs. For our formalization we used the dependently-typed
calculus of inductive constructions as implemented by the Coq proof assistant.

This thesis is accompanied by an artifact [112]. In this appendix, we discuss
two parts of the artifact: one corresponding to the alternative axiomatization
of Reynolds’ logic (see Section 4.5 and Appendix C) based on the insights from
dynamic separation logic (see Section 4.4), and one corresponding to the natural
deduction proof system for separation logic (see Section 3.3).

D.1 Alternative axiomatization

In this part of the artifact, we have used no axioms other than the axiom of function
extensionality (for every two functions f, g we have that f = g if f(x) = g(x) for
all x) and propositional extensionality (equivalent propositions are equal). This
means that we work with an underlying intuitionistic logic: we have not used the
axiom of excluded middle for reasoning classically about propositions. However,
the decidable propositions (propositions P for which the excluded middle P ∨ ¬P
can be proven) allow for a limited form of classical reasoning.

We formalize the basic instructions of our programming language (assignment,
look-up, mutation, allocation, and deallocation) and the semantics of basic instruc-
tions. For Boolean and arithmetic expressions we use a shallow embedding, so that
those expressions can be directly given as a Coq term of the appropriate type (with
a coincidence condition assumed, i.e. that values of expressions depend only on
finitely many variables of the store).

There are two approaches in formalizing the semantics of assertions: shallow
and deep embedding. We have taken both approaches. In the first approach, the
shallow embedding of assertions, we define assertions of DSL by their extension of
satisfiability (i.e. the set of heap and store pairs in which the assertion is satisfied),
that must satisfy a coincidence condition (assertions depend only on finitely many
variables of the store) and a stability condition (see below). The definition of

201

202 APPENDIX D. FORMALIZATION IN COQ

the modality operator follows from the semantics of programs, which includes
basic control structures such as the while-loop. In the second approach, the deep
embedding of assertions, assertions are modeled using an inductive type and we
explicitly introduce two meta-operations on assertions that capture the heap update
and heap clear modality. We have omitted the clauses for emp and (e 7→ e′), since
these could be defined as abbreviations, and we restrict to the basic instructions.

In the deep embedding we have no constructor corresponding to the program
modality [S]p. Instead, two meta-operations denoted p[⟨x⟩ = e] and p[⟨x⟩ := ⊥]
are defined recursively on the structure of p. Crucially, we formalized and proven
the following lemmas (the details are almost the same as showing the equivalences
hold in the shallow embedding, Lemmas 4.4.3 and 4.4.4):

Lemma D.1.1 (Heap update substitution lemma).
h, s |= p[⟨x⟩ := e] iff h[s(x) := s(e)], s |= p.

Lemma D.1.2 (Heap clear substitution lemma).
h, s |= p[⟨x⟩ := ⊥] iff h[s(x) := ⊥], s |= p.

By also formalizing a deep embedding, we show that the modality operator can
be defined entirely on the meta-level by introducing meta-operations on formulas
that are recursively defined by the structure of assertions: this captures Theo-
rem 4.4.5. For technical simplicity we restrict ourselves to the basic instructions,
but it should be natural to extend the formalization of the completeness result to
languages with while-statements, e.g. following [81]. On the other hand, in the
shallow embedding it is easier to show that our approach can be readily extended
to complex programs including while-loops.

In both approaches, the semantics of assertions is classical, although we work in
an intuitionistic meta-logic. We do this by employing a double negation translation,
following the set-up by R. O’Connor [162]. In particular, we have that our satisfac-
tion relation h, s |= p is stable, i.e. ¬¬(h, s |= p) implies h, s |= p. This allows us to
do classical reasoning on the image of the higher-order semantics of our assertions.

The source code of our formalization is accompanied with this thesis as a digital
artifact. The artifact consists of the following files:

• shallow/Language.v: Provides a shallow embedding of Boolean expressions
and arithmetic expressions, and a shallow embedding of our assertion language,
as presented in the prequel.

• shallow/Proof.v: Provides proof of the equivalences (E1-16), and addition-
ally standard equivalences for modalities involving complex programs.

• deep/Heap.v: Provides an axiomatization of heaps as partial functions.

• deep/Language.v: Provides a shallow embedding of Boolean expressions and
arithmetic expressions, and a deep embedding of our assertion language, on
which we inductively define the meta operations of heap update and heap
clear. We finally formalize Hoare triples and proof systems using weakest
precondition and strongest postcondition axioms for the basic instructions.

D.2. NATURAL DEDUCTION 203

• deep/Classical.v: Provides the classical semantics of assertions, and the
strong partial correctness semantics of Hoare triples. Further it provides
proofs of substitution lemmas corresponding to our meta-operators. Finally,
it provides proofs of the soundness and completeness of the aforementioned
proof systems.

D.2 Natural deduction
In this part of the artifact we use the classical axiom of excluded middle.

The proof system based on natural deduction is embedded in the Coq proof
assistant using an axiomatic approach. It is known that adding axioms to Coq may
affect soundness: it is future work to show that the axioms can be consistently
used. Nonetheless, using the axiomatic approach allows us to stay close to the
natural deduction proof system as introduced in this thesis.

Axiom D: Type.
Axiom hasval: D -> D -> Prop.

The type D is used as domain, over which we let the relation hasval range. This
relation is the weak points to relation, so the strong points to relation can be
defined in terms of this relation.

Axiom sep: Prop -> Prop -> Prop.
Axiom sepimp: Prop -> Prop -> Prop.

We also introduce axiomatically new connectives for use in propositions. Coq is
also extended with syntax for constructing separation logic formulas.

Axiom rooted: Prop -> (D -> D -> Prop) -> Prop.
Axiom root_equiv: forall (A: Prop), A <-> rooted A hasval.
Axiom root_above: forall (A: Prop) h h',

(forall x y, h x y <-> h' x y) -> rooted A h -> rooted A h'.
Axiom root_assoc: forall (A: Prop) h h',

rooted (rooted A h) h' <-> rooted A (fun x y => rooted (h x y) h').

A rooted assertion consists of an assertion and a (first-order) description of the
heap with respect to which it is evaluated. Note that in our axiomatization we
do not limit that the given function actually is a first-order description. We also
axiomatize that any assertion ϕ is equivalent to the rooted assertion (ϕ@ ↪→),
that we can replace equivalent descriptions of the heap, and extensionality of the
description of the heap.

Axiom root_True: forall (h: D -> D -> Prop), rooted True h.
Axiom root_False: forall (h: D -> D -> Prop), rooted False h -> False.
Axiom root_hasval: forall (h: D -> D -> Prop) x y,

rooted (hasval x y) h <-> h x y.

204 APPENDIX D. FORMALIZATION IN COQ

Axiom root_eq: forall (h: D -> D -> Prop) (T: Type) (x y: T),
rooted (x = y) h <-> x = y.

Axiom root_split': forall (A B: Prop) h,
(rooted A h /\ rooted B h) -> rooted (A /\ B) h.

Axiom root_join': forall (A B: Prop) h,
(rooted A h \/ rooted B h) -> rooted (A \/ B) h.

Axiom root_and_elim: forall (A B: Prop) h,
rooted (A /\ B) h -> rooted A h /\ rooted B h.

Axiom root_or_elim: forall (A B: Prop) h,
rooted (A \/ B) h -> rooted A h \/ rooted B h.

Axiom root_imp': forall (A B: Prop) h,
(rooted A h -> rooted B h) -> rooted (A -> B) h.

Axiom root_imp_elim': forall (A B: Prop) h,
rooted (A -> B) h -> rooted A h -> rooted B h.

Axiom root_forall': forall (T: Type) (A: T -> Prop) h,
(forall (x: T), rooted (A x) h) -> rooted (forall (x: T), A x) h.

Axiom root_forall_elim': forall (T: Type) (A: T -> Prop) h,
rooted (forall (x: T), A x) h -> forall (x: T), rooted (A x) h.

Axiom root_exists': forall (T: Type) (A: T -> Prop) h,
(exists (x: T), rooted (A x) h) -> rooted (exists (x: T), A x) h.

Axiom root_exists_elim': forall (T: Type) (A: T -> Prop) h,
rooted (exists (x: T), A x) h -> exists (x: T), rooted (A x) h.

We also axiomatize reasoning about the classical connectives under a rooted
assertion.

Definition Par (h1 h2: D -> D -> Prop) :=
(forall x y, h1 x y -> forall z, ~h2 x z) /\
(forall x y, h2 x y -> forall z, ~h1 x z).

Definition Split (h h1 h2: D -> D -> Prop) :=
(forall x y, h x y <-> h1 x y \/ h2 x y) /\ Par h1 h2.

Axiom sep_elim': forall (A B C: Prop) (h: D -> D -> Prop),
rooted (A ** B) h ->
(forall h1 h2, Split h h1 h2 -> rooted A h1 -> rooted B h2 -> C) -> C.

Axiom sep_intro': forall (A B: Prop) (h: D -> D -> Prop),
(exists h1 h2, Split h h1 h2 /\ rooted A h1 /\ rooted B h2) ->
rooted (A ** B) h.

Axiom sepimp_elim': forall (A B C: Prop) (h h': D -> D -> Prop),
rooted (A -** B) h ->
Par h h' /\ rooted A h' /\

(rooted B (fun x y => h x y \/ h' x y) -> C) -> C.
Axiom sepimp_intro': forall (A B: Prop) (h: D -> D -> Prop),

(forall h', Par h h' -> rooted A h' ->
rooted B (fun x y => h x y \/ h' x y)) ->

rooted (A -** B) h.

D.2. NATURAL DEDUCTION 205

Finally, we introduce axioms for reasoning about the new separating connectives.
We use the syntax ** for separating conjunction and -** for separating implication.

From these axioms, it becomes possible to prove the following lemmas:

Lemma sep_assoc (A B C: Prop): (A ** B) ** C <-> A ** B ** C.
Lemma sep_Empty (A: Prop): A ** emp <-> A.
Lemma sep_or (A B C: Prop): (A \/ B) ** C <-> A ** C \/ B ** C.
Lemma sep_and (A B C: Prop): (A /\ B) ** C -> A ** C /\ B ** C.
Lemma adjoint (A B: Prop): A ** (A -** B) -> B.

Also the modalities can be defined and properties proven:

Definition box (A: Prop) := True ** (emp /\ (True -** A)).
Lemma box_elim (A: Prop): box A -> A.
Lemma box_indep (A: Prop): box A -> forall h, rooted (box A) h.
Lemma root_under: forall (A B: Prop),

box (A -> B) -> forall h, rooted A h -> rooted B h.
Lemma box_rooted (A: Prop): (forall h, rooted A h) -> box A.
Lemma sep_mono (A A' B B': Prop):

box (A -> A') -> box (B -> B') -> A ** B -> A' ** B'.

Finally, we can prove the equivalence:

Definition F1: Prop :=
alloc x /\ ((x = y /\ z = w) \/ (x <> y /\ hasval y z)).

Definition F2: Prop :=
pointsToDash x ** (pointsTo x w -** hasval y z).

Proposition F12': F1 -> F2.
Proposition F21: F2 -> F1.

The artifact consists of the following file:

• proof/Language.v: Provides an axiomatization of natural deduction for
separation logic, and proves a number of lemmas based on theses axioms.

206 APPENDIX D. FORMALIZATION IN COQ

Bibliography

[1] Andrew Aberdein. Mathematical wit and mathematical cognition. Topics in
Cognitive Science, 5(2):231–250, 2013.

[2] Sten Agerholm and Peter Gorm Larsen. A lightweight approach to formal
methods. In International Workshop on Current Trends in Applied Formal
Methods, pages 168–183. Springer, 1998.

[3] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H.
Schmitt, and Mattias Ulbrich, editors. Deductive Software Verification - The
KeY Book - From Theory to Practice, volume 10001 of Lecture Notes in
Computer Science. Springer, 2016.

[4] Wolfgang Ahrendt, Frank S. de Boer, and Immo Grabe. Abstract object
creation in dynamic logic: To be or not to be created. In 2nd World Congress
on Formal Methods (FM), volume 5850 of Lecture Notes in Computer Science,
pages 612–627. Springer, 2009.

[5] Miklós Ajtai. Isomorphism and higher order equivalence. Annals of Mathe-
matical Logic, 16(3):181–203, 1979.

[6] Mahmudul Faisal Al Ameen. Completeness of Verification System with
Separation Logic for Recursive Procedures. PhD thesis, Tokyo, 2016.

[7] Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge
University Press, 2016.

[8] Marc Andreessen. Why software is eating the world. Wall Street Journal,
2011.

[9] Peter B. Andrews. An introduction to mathematical logic and type theory: to
truth through proof, volume 27 of Applied Logic Series. Springer, 2013.

[10] Krzysztof R. Apt, Frank S. de Boer, and Ernst-Rüdiger Olderog. Verification
of sequential and concurrent programs. Springer, 3rd edition, 2009.

[11] Krzysztof R. Apt and Ernst-Rüdiger Olderog. Fifty years of Hoare’s logic.
Formal Aspects of Computing, 31(6):751–807, 2019.

207

208 BIBLIOGRAPHY

[12] Lukas Armborst and Marieke Huisman. Permission-based verification of
red-black trees and their merging. In 2021 IEEE/ACM 9th International
Conference on Formal Methods in Software Engineering (FormaliSE), pages
111–123. IEEE, 2021.

[13] Mario Rodriguez Artalejo. Some questions about expressiveness and relative
completeness in Hoare’s logic. Theoretical computer science, 39:189–206,
1985.

[14] Rob Arthan, Ursula Martin, Erik A. Mathiesen, and Paulo Oliva. A general
framework for sound and complete Floyd-Hoare logics. ACM Transactions
on Computational Logic (TOCL), 11(1):1–31, 2009.

[15] Callum Bannister, Peter Höfner, and Gerwin Klein. Backwards and forwards
with separation logic. In Jeremy Avigad and Assia Mahboubi, editors, 9th
International Conference on Interactive Theorem Proving (ITP), volume
10895 of Lecture Notes in Computer Science, pages 68–87. Springer, 2018.

[16] Gilles Barthe, Justin Hsu, and Kevin Liao. A probabilistic separation logic.
Proceedings of the ACM on Programming Languages, 4(POPL):1–30, 2019.

[17] Jon Barwise. Handbook of mathematical logic. Elsevier, 1982.

[18] Davide Basile. Specification and Verification of Contract-Based Applications.
PhD thesis, University of Pisa, 2016.

[19] Kevin Batz, Ira Fesefeldt, Marvin Jansen, Joost-Pieter Katoen, Florian
Keßler, Christoph Matheja, and Thomas Noll. Foundations for entailment
checking in quantitative separation logic. In 31st European Symposium on
Programming (ESOP), volume 13240 of Lecture Notes in Computer Science,
pages 57–84. Springer, 2022.

[20] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. A decidable
fragment of separation logic. In 24th International Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS), volume
3328 of Lecture Notes in Computer Science, pages 97–109. Springer, 2005.

[21] Jan A. Bergstra and John V. Tucker. Expressiveness and the completeness of
Hoare’s logic. Journal of computer and system sciences, 25(3):267–284, 1982.

[22] Jan A. Bergstra and John V. Tucker. Some natural structures which fail
to possess a sound and decidable Hoare-like logic for their while-programs.
Theoretical Computer Science, 17(3):303–315, 1982.

[23] Guram Bezhanishvili and Lawrence S. Moss. Undecidability of first-order
logic, 2009. Educational module for the NSF-sponsored project on Learning
Discrete Mathematics and Computer Science via Primary Historical Sources.

BIBLIOGRAPHY 209

[24] Jinting Bian, Hans-Dieter A. Hiep, Frank S. de Boer, and Stijn de Gouw.
Integrating ADTs in KeY and their application to history-based reasoning.
In 24th International Symposium on Formal Methods (FM), volume 13047 of
Lecture Notes in Computer Science. Springer, 2021.

[25] Leyla Bilge and Tudor Dumitraş. Before we knew it: an empirical study of
zero-day attacks in the real world. In ACM Conference on Computer and
Communications Security, pages 833–844, 2012.

[26] David Binder, Thomas Piecha, and Peter Schroeder-Heister. The Logical
Writings of Karl Popper. Springer, 2022.

[27] Lars Birkedal and Hongseok Yang. Relational parametricity and separation
logic. In 10th International Conference on Foundations of Software Science
and Computational Structures (FoSSaCS), volume 4423 of Lecture Notes in
Computer Science, pages 93–107. Springer, 2007.

[28] Aleš Bizjak and Lars Birkedal. On models of higher-order separation logic.
Electronic Notes in Theoretical Computer Science, 336:57–78, 2018.

[29] Frank S. de Boer and Hans-Dieter A. Hiep. Completeness and complexity
of reasoning about call-by-value in Hoare logic. ACM Transactions on
Programming Languages and Systems (TOPLAS), 43(4), October 2021.

[30] M. Boogaard and E. Spoor. The software crisis in the Netherlands. In Serie
Research Memoranda, No. 1994-21. Vrije Universiteit Amsterdam, 1994.

[31] George S. Boolos, John P. Burgess, and Richard C. Jeffrey. Computability
and logic. Cambridge University Press, 2002.

[32] Richard Bornat. Proving pointer programs in Hoare logic. In 5th International
Conference on Mathematics of Program Construction (MPC), pages 102–126.
Springer, 2000.

[33] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson.
Permission accounting in separation logic. In Proceedings of the 32nd ACM
Symposium on Principles of Programming Languages, pages 259–270, 2005.

[34] William D. Brewer. Gödel’s doctoral thesis, 1928–30: The completeness of
first-order logic. In Kurt Gödel: The Genius of Metamathematics, pages
101–129. Springer, 2022.

[35] Rémi Brochenin, Stéphane Demri, and Etienne Lozes. On the almighty wand.
Information and Computation, 211:106–137, 2012.

[36] Stephen Brookes. A semantics for concurrent separation logic. Theoretical
Computer Science, 375(1-3):227–270, 2007.

[37] Stephen Brookes. A revisionist history of concurrent separation logic. Elec-
tronic Notes in Theoretical Computer Science, 276:5–28, 2011.

210 BIBLIOGRAPHY

[38] Stephen Brookes and Peter W. O’Hearn. Concurrent separation logic. ACM
SIGLOG News, 3(3):47–65, 2016.

[39] James Brotherston, Richard Bornat, and Cristiano Calcagno. Cyclic proofs of
program termination in separation logic. ACM SIGPLAN Notices, 43(1):101–
112, 2008.

[40] James Brotherston and Max Kanovich. Undecidability of propositional
separation logic and its neighbours. In 25th IEEE Symposium on Logic in
Computer Science (LICS), pages 130–139. IEEE, 2010.

[41] Luitzen Egbertus Jan Brouwer. Intuitionism and formalism. In A. Heyting,
editor, Philosophy and Foundations of Mathematics, pages 123–138. Elsevier,
1975.

[42] Rodney M. Burstall. Some techniques for proving correctness of programs
which alter data structures. Machine intelligence, 7(23-50):3, 1972.

[43] Cristiano Calcagno. Semantic and Logical Properties of Stateful Programming.
PhD thesis, Universita di Genova, 2002.

[44] Cristiano Calcagno, Philippa Gardner, and Matthew Hague. From separation
logic to first-order logic. In 8th International Conference on Foundations of
Software Science and Computational Structures (FoSSaCS), volume 3441 of
Lecture Notes in Computer Science, pages 395–409. Springer, 2005.

[45] Cristiano Calcagno, Philippa Gardner, and Uri Zarfaty. Local reasoning about
data update. Electronic Notes in Theoretical Computer Science, 172:133–175,
2007.

[46] Qinxiang Cao, Santiago Cuellar, and Andrew W. Appel. Bringing order
to the separation logic jungle. In 15th Asian Symposium on Programming
Languages and Systems (APLAS), pages 190–211. Springer, 2017.

[47] Chen Chung Chang and H. Jerome Keisler. Model theory. Elsevier, 1990.

[48] Adam Chlipala. Mostly-automated verification of low-level programs in
computational separation logic. In 32nd ACM Conference on Programming
Language Design and Implementation (PLDI), pages 234–245, 2011.

[49] Krzysztof Ciesielski. Set theory for the working mathematician. Cambridge
University Press, 1997.

[50] Edmund M. Clarke Jr. Completeness and incompleteness theorems for Hoare-
like axiom systems. PhD thesis, Cornell University, 1976.

[51] Edmund M. Clarke Jr. Programming language constructs for which it is
impossible to obtain good Hoare axiom systems. Journal of the ACM,
26(1):129–147, 1979.

BIBLIOGRAPHY 211

[52] Edmund M. Clarke Jr. The characterization problem for Hoare logics. Philo-
sophical Transactions of the Royal Society of London. Series A, Mathematical
and Physical Sciences, 312(1522):423–440, 1984.

[53] Edmund M. Clarke Jr., Steven M. German, and Joseph Y. Halpern. Effective
axiomatizations of Hoare logics. Journal of the ACM, 30(3):612–636, 1983.

[54] Timothy T.R. Colburn, James H. Fetzer, and R.L. Rankin. Program veri-
fication: Fundamental issues in computer science, volume 14 of Studies in
Cognitive Systems. Springer, 2012.

[55] Stephen A. Cook. Soundness and completeness of an axiom system for
program verification. SIAM Journal on Computing, 7(1):70–90, 1978.

[56] Stephen A. Cook and Derek C. Oppen. An assertion language for data
structures. In 2nd ACM Symposium on Principles of Programming Languages
(POPL), pages 160–166, 1975.

[57] Laura Crosilla. Predicativity and Feferman. In Gerhard Jäger and Wilfried
Sieg, editors, Feferman on Foundations: Logic, mathematics, philosophy,
pages 423–447. Springer, 2017.

[58] H.-H. Dang, Peter Höfner, and Bernhard Möller. Algebraic separation logic.
Journal of Logic and Algebraic Programming, 80(6):221–247, 2011.

[59] Thibault Dardinier, Gaurav Parthasarathy, Noé Weeks, Peter Müller, and
Alexander J. Summers. Sound automation of magic wands. In 34th Interna-
tional Conference on Computer Aided Verification (CAV), volume 13372 of
Lecture Notes in Computer Science, pages 130–151. Springer, 2022.

[60] Clayton Allen Davis, Onur Varol, Emilio Ferrara, Alessandro Flammini,
and Filippo Menczer. Botornot: A system to evaluate social bots. In 25th
International Conference Companion on World Wide Web, pages 273–274.
ACM, 2016.

[61] Jacobus W. de Bakker. Mathematical theory of program correctness. Prentice-
Hall, 1980.

[62] Jacobus W. de Bakker and Lambert G.L.T. Meertens. On the completeness
of the inductive assertion method. Journal of Computer and System Sciences,
11(3):323–357, 1975.

[63] Frank S. de Boer. Reasoning about Dynamically Evolving Process Structures;
a proof theory for the parallel object-oriented language pool. PhD thesis, Vrije
Universiteit Amsterdam, April 1991.

[64] Stijn de Gouw, Frank S. de Boer, Richard Bubel, Reiner Hähnle, Jurriaan
Rot, and Dominic Steinhöfel. Verifying OpenJDK’s sort method for generic
collections. Journal of Automated Reasoning, 62(1):93–126, 2019.

212 BIBLIOGRAPHY

[65] Stijn de Gouw, Frank S. de Boer, and Jurriaan Rot. Proof Pearl: The KeY to
correct and stable sorting. Journal of Automated Reasoning, 53(2):129–139,
2014.

[66] Stijn de Gouw, Jurriaan Rot, Frank S. de Boer, Richard Bubel, and Reiner
Hähnle. OpenJDK’s java.utils.Collection.sort() is broken: The good, the bad
and the worst case. In 27th International Conference on Computer Aided
Verification (CAV), volume 9206 of Lecture Notes in Computer Science, pages
273–289. Springer, 2015.

[67] Stéphane Demri and Morgan Deters. Logical investigations on separation
logics. European Summer School on Logic, Language and Information
(ESSLLI), 2015.

[68] Stéphane Demri and Morgan Deters. Separation logics and modalities: a
survey. Journal of Applied Non-Classical Logics, 25(1):50–99, 2015.

[69] Stéphane Demri, Étienne Lozes, and Alessio Mansutti. The effects of adding
reachability predicates in propositional separation logic. In 21st International
Conference on Foundations of Software Science and Computation Structures
(FoSSaCS), volume 10803 of Lecture Notes in Computer Science, pages
476–493. Springer, 2018.

[70] Stéphane Demri, Étienne Lozes, and Alessio Mansutti. A complete axioma-
tisation for quantifier-free separation logic. Logical Methods in Computer
Science, 17(3), 2021.

[71] Edsger W. Dijkstra. A discipline of programming. Prentice-Hall, 1976.

[72] Yifan Ding, Nicholas Botzer, and Tim Weninger. Posthoc verification and
the fallibility of the ground truth. arXiv preprint arXiv:2106.07353, 2021.

[73] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew Parkin-
son, and Hongseok Yang. Views: compositional reasoning for concurrent
programs. In 40th ACM Symposium on Principles of Programming Languages
(POPL), pages 287–300. ACM, 2013.

[74] Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. A local shape
analysis based on separation logic. In 12th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 3920 of Lecture Notes in Computer Science, pages 287–302. Springer,
2006.

[75] Brijesh Dongol, Victor B.F. Gomes, and Georg Struth. A program con-
struction and verification tool for separation logic. In 12th International
Conference on Mathematics of Program Construction (MPC), volume 9129
of Lecture Notes in Computer Science, pages 137–158. Springer, 2015.

BIBLIOGRAPHY 213

[76] Frédérick Douzet, Louis Pétiniaud, Loqman Salamatian, Kevin Limonier,
Kavé Salamatian, and Thibaut Alchus. Measuring the fragmentation of
the internet: the case of the Border Gateway Protocol (BGP) during the
Ukrainian crisis. In 12th International Conference on Cyber Conflict (CyCon),
volume 1300, pages 157–182. IEEE, 2020.

[77] Mnacho Echenim, Radu Iosif, and Nicolas Peltier. On the expressive com-
pleteness of Bernays-Schönfinkel-Ramsey separation logic. arXiv preprint
arXiv:1802.00195, 2018.

[78] Mnacho Echenim, Radu Iosif, and Nicolas Peltier. The Bernays-Schönfinkel-
Ramsey class of separation logic with uninterpreted predicates. ACM Trans-
actions on Computational Logic (TOCL), 21(3):1–46, 2020.

[79] Herbert B. Enderton. A mathematical introduction to logic. Elsevier, 2001.

[80] Gergö Érdi. Compositional Type Checking. Master thesis, Eötvös Loránd
University, 2011.

[81] Mahmudul Faisal Al Ameen and Makoto Tatsuta. Completeness for recursive
procedures in separation logic. Theoretical Computer Science, 631:73–96,
2016.

[82] William M. Farmer. Simple Type Theory: A Practical Logic for Expressing
and Reasoning About Mathematical Ideas. Springer, 2023.

[83] Melvin Fitting. Proof methods for modal and intuitionistic logics, volume
169 of Synthese Library. Springer, 1983.

[84] Robert W. Floyd. Assigning meanings to programs. In Program Verification:
Fundamental Issues in Computer Science, pages 65–81. Springer, 1993.

[85] Thomas Forster. Quine’s New Foundations. In The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, 2019.

[86] Nissim Francez. Program verification. Addison-Wesley, 1992.

[87] Thomas Frayne, Anne Morel, and Dana Scott. Reduced direct products.
Fundamenta mathematicae, 51(3):195–228, 1962.

[88] Dan Frumin, Emanuele D’Osualdo, Bas van den Heuvel, and Jorge A Pérez.
A bunch of sessions: a propositions-as-sessions interpretation of bunched
implications in channel-based concurrency. Proceedings of the ACM on
Programming Languages, 6(OOPSLA2):841–869, 2022.

[89] Didier Galmiche and Dominique Larchey-Wendling. Expressivity properties
of Boolean BI through relational models. In 26th International Conference
on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), volume 4337 of Lecture Notes in Computer Science, pages 357–368.
Springer, 2006.

214 BIBLIOGRAPHY

[90] Didier Galmiche and Daniel Méry. Tableaux and resource graphs for separa-
tion logic. Journal of Logic and Computation, 20(1):189–231, 2010.

[91] Mohan Ganesalingam. The language of mathematics. Springer, 2013.

[92] Hubert Garavel, Maurice H. ter Beek, and Jaco van de Pol. The 2020 expert
survey on formal methods. In 25th International Conference on Formal
Methods for Industrial Critical Systems (FMICS), volume 12327 of Lecture
Notes in Computer Science, pages 3–69. Springer, 2020.

[93] Kurt Gödel. Über die vollständigkeit des logikkalküls. PhD thesis, University
of Vienna, 1929.

[94] Michael D. Godfrey and David F. Hendry. The computer as Von Neumann
planned it. IEEE Annals of the History of Computing, 15(1):11–21, 1993.

[95] Joseph A. Goguen et al. Formal methods: Promises and problems. IEEE
Software, 14(1):73–85, 1997.

[96] Gerald Arthur Gorelick. A complete axiomatic system for proving assertions
about recursive and non-recursive programs. Master thesis, University of
Toronto, 1975.

[97] Clemens Grabmayer. Relating proof systems for recursive types. PhD thesis,
Vrije Universiteit Amsterdam, 2005.

[98] Clemens Grabmayer. From abstract rewriting systems to abstract proof
systems. arXiv preprint arXiv:0911.1412, 2009.

[99] Michal Grabowski. On relative completeness of Hoare logics. Information
and control, 66(1-2):29–44, 1985.

[100] David Gries. The science of programming. Springer, 2012.

[101] Jan Friso Groote, Ammar Osaiweran, and Jacco H. Wesselius. Analyzing the
effects of formal methods on the development of industrial control software.
In 27th IEEE International Conference on Software Maintenance (ICSM),
pages 467–472. IEEE, 2011.

[102] Reiner Hähnle. Dijkstra’s legacy on program verification. In C.A.R. Hoare
Krzysztof R. Apt, editor, Edsger Wybe Dijkstra: His Life, Work, and Legacy,
pages 105–140. ACM, 2022.

[103] Anthony Hall. Seven myths of formal methods. IEEE software, 7(5):11–19,
1990.

[104] Anthony Hall. Realising the benefits of formal methods. In 7th International
Conference on Formal Engineering Methods (ICFEM), volume 3785 of Lecture
Notes in Computer Science. Springer, 2005.

BIBLIOGRAPHY 215

[105] Joseph Y. Halpern, Robert Harper, Neil Immerman, Phokion G. Kolaitis,
Moshe Y. Vardi, and Victor Vianu. On the unusual effectiveness of logic in
computer science. Bulletin of Symbolic Logic, 7(2):213–236, 2001.

[106] Richard Wesley Hamming. The unreasonable effectiveness of mathematics.
The American Mathematical Monthly, 87(2):81–90, 1980.

[107] David Harel. First-Order Dynamic Logic, volume 68 of Lecture Notes in
Computer Science. Springer, 1979.

[108] Leon Henkin. The completeness of the first-order functional calculus. Journal
of Symbolic Logic, 14(3):159–166, 1949.

[109] Leon Henkin. Completeness in the theory of types. Journal of Symbolic Logic,
15(2), 1950.

[110] Andreas Herzig. A simple separation logic. In 20th International Workshop
on Logic, Language, Information, and Computation (WoLLIC), volume 8071
of Lecture Notes in Computer Science, pages 168–178. Springer, 2013.

[111] Joel Hestness, Stephen W. Keckler, and David A. Wood. A comparative
analysis of microarchitecture effects on CPU and GPU memory system behav-
ior. In 2014 IEEE International Symposium on Workload Characterization
(IISWC), pages 150–160. IEEE, 2014.

[112] Hans-Dieter A. Hiep. New Foundations for Separation Logic (Coq artifact),
2024. https://dx.doi.org/10.5281/zenodo.10558424.

[113] Hans-Dieter A. Hiep, Jinting Bian, Frank S. de Boer, and Stijn de Gouw.
History-based specification and verification of Java collections in KeY. In
16th International Conference on Integrated Formal Methods (iFM), volume
12546 of Lecture Notes in Computer Science, pages 199–217. Springer, 2020.

[114] Hans-Dieter A. Hiep, Olaf Maathuis, Jinting Bian, Frank S. de Boer, and
Stijn de Gouw. Verifying OpenJDK’s LinkedList using KeY (extended
paper). International Journal on Software Tools for Technology Transfer,
24(5):783–802, 2022.

[115] Hans-Dieter A. Hiep, Olaf Maathuis, Jinting Bian, Frank S. de Boer, Marko
van Eekelen, and Stijn de Gouw. Verifying OpenJDK’s LinkedList using
KeY. In 26th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 12079 of Lecture
Notes in Computer Science, pages 217–234. Springer, 2020.

[116] Scott A. Hissam, Daniel Plakosh, and C. Weinstock. Trust and vulnerability
in open source software. IEEE Proceedings-Software, 149(1):47–51, 2002.

[117] Charles Anthony Richard Hoare. How did software get so reliable without
proof? In 3rd International Symposium of Formal Methods Europe (FME),
volume 1051 of Lecture Notes in Computer Science, pages 1–17. Springer,
1996.

https://dx.doi.org/10.5281/zenodo.10558424

216 BIBLIOGRAPHY

[118] Charles Antony Richard Hoare. An axiomatic basis for computer program-
ming. Communications of the ACM, 12(10):576–580, 1969.

[119] Wilfrid Hodges. A shorter model theory. Cambridge University Press, 1997.

[120] Johannes Hostert, Andrej Dudenhefner, and Dominik Kirst. Undecidability
of dyadic first-order logic in Coq. In 13th International Conference on
Interactive Theorem Proving (ITP). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2022.

[121] Zhé Hóu and Alwen Tiu. Completeness for a first-order abstract separation
logic. In 14th Asian Symposium on Programming Languages and Systems
(APLAS), volume 10017 of Lecture Notes in Computer Science, pages 444–463.
Springer, 2016.

[122] Zhe Hou and Alwen Tiu. Completeness for a first-order abstract separation
logic. In Atsushi Igarashi, editor, Programming Languages and Systems -
14th Asian Symposium, APLAS 2016, Hanoi, Vietnam, November 21-23,
2016, Proceedings, volume 10017 of Lecture Notes in Computer Science, pages
444–463, 2016.

[123] Marieke Huisman, Dilian Gurov, and Alexander Malkis. Formal methods:
From academia to industrial practice. arXiv preprint arXiv:2002.07279, 2020.

[124] Roberto Ierusalimschy. A denotational approach for type-checking in object-
oriented programming languages. Computer languages, 19(1):19–40, 1993.

[125] Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for muta-
ble data structures. In 28th ACM Symposium on Principles of Programming
Languages (POPL), pages 14–26, 2001.

[126] Sushil Jajodia, Paulo Shakarian, V.S. Subrahmanian, Vipin Swarup, and
Cliff Wang. Cyber Warfare: Building the Scientific Foundation, volume 56 of
Advances in Information Security. Springer, 2015.

[127] Jakob L. Jensen, Michael E. Jørgensen, Michael I. Schwartzbach, and Nils
Klarlund. Automatic verification of pointer programs using monadic second-
order logic. In 18th ACM Conference on Programming Language Design and
Implementation (PLDI), pages 226–234, 1997.

[128] Capers Jones. Measuring defect potentials and defect removal efficiency.
Journal of Defense Software Engineering, 21(6):11–13, 2008.

[129] Capers Jones and Olivier Bonsignour. The economics of software quality.
Addison-Wesley Professional, 2011.

[130] Paul C. Jorgensen and Byron DeVries. Software testing: a craftsman’s
approach. CRC Press, 5th edition, 2021.

BIBLIOGRAPHY 217

[131] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
RustBelt: Securing the foundations of the Rust programming language. In
Proceedings of the ACM on Programming Languages, volume 2 of POPL,
pages 1–34. ACM, 2017.

[132] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars
Birkedal, and Derek Dreyer. Iris from the ground up: A modular foun-
dation for higher-order concurrent separation logic. Journal of Functional
Programming, 28:e20, 2018.

[133] Samuel Kamin. The expressive theory of stacks. Acta informatica, 24:695–709,
1987.

[134] Dominik Kirst, Johannes Hostert, Andrej Dudenhefner, Yannick Forster, Marc
Hermes, Mark Koch, Dominique Larchey-Wendling, Niklas Mück, Benjamin
Peters, Gert Smolka, et al. A Coq library for mechanised first-order logic. In
The Coq Workshop 2022. hal.science, 2022.

[135] Stephen Cole Kleene. Introduction to metamathematics. Wolters-Noordhoff,
1971.

[136] Stephen Cole Kleene. The work of Kurt Gödel. Journal of Symbolic Logic,
41(4):761–778, 1976.

[137] Ralf Kneuper. Limits of formal methods. Formal Aspects of Computing,
9:379–394, 1997.

[138] Tomasz Kowaltowski. Correctness of programs manipulating data structures.
PhD thesis, University of California, Berkeley, 1973.

[139] Robbert Krebbers, Amin Timany, and Lars Birkedal. Interactive proofs
in higher-order concurrent separation logic. In 44th ACM Symposium on
Principles of Programming Languages (POPL), pages 205–217, 2017.

[140] Neelakantan R. Krishnaswami, Jonathan Aldrich, Lars Birkedal, Kasper
Svendsen, and Alexandre Buisse. Design patterns in separation logic. In 4th
International Workshop on Types in Language Design and Implementation,
pages 105–116. ACM, 2009.

[141] Krishan Kumar and Sonal Dahiya. Programming languages: A survey.
International Journal on Recent and Innovation Trends in Computing and
Communication, 5(5):307–313, 2017.

[142] Mark Steven Laventhal. Verification of programs operating on structured
data. Bachelor and master thesis, MIT, 1974.

[143] Wonyeol Lee and Sungwoo Park. A proof system for separation logic with
magic wand. ACM SIGPLAN Notices, 49(1):477–490, 2014.

218 BIBLIOGRAPHY

[144] Martti Lehto and Pekka Neittaanmäki. Cyber security: Critical infrastructure
protection, volume 56 of Computational Methods in Applied Sciences. Springer,
2022.

[145] Ewen Maclean, Andrew Ireland, and Gudmund Grov. Proof automation for
functional correctness in separation logic. Journal of Logic and Computation,
26(2):641–675, 2016.

[146] Ratul Mahajan, David Wetherall, and Tom Anderson. Understanding
BGP misconfiguration. ACM SIGCOMM Computer Communication Review,
32(4):3–16, 2002.

[147] Makarov Evgeny Maratovich. Dynamic separation logic and its use in
education. Современные информационные технологии и ИТ-образование,
16(3):543–550, 2020.

[148] Nicolas Marti and Reynald Affeldt. A certified verifier for a fragment of
separation logic. Information and Media Technologies, 4(2):304–316, 2009.

[149] Ursula Martin, Erik A. Mathiesen, and Paulo Oliva. Hoare logic in the
abstract. In 20th International Workshop on Computer Science Logic (CSL),
volume 4207 of Lecture Notes in Computer Science, pages 501–515. Springer,
2006.

[150] Jeferson Mart́ınez and Javier M. Durán. Software supply chain attacks, a
threat to global cybersecurity: Solarwinds’ case study. International Journal
of Safety and Security Engineering, 11(5):537–545, 2021.

[151] John Matthews, J. Strother Moore, Sandip Ray, and Daron Vroon. Ver-
ification condition generation via theorem proving. In 13th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR), volume 4246 of Lecture Notes in Computer Science, pages 362–376.
Springer, 2006.

[152] Tom F. Melham. Higher order logic and hardware verification. Cambridge
University Press, 2009.

[153] Elliott Mendelson. Introduction to Mathematical Logic. CRC Press, 6th
edition, 2015.

[154] Bertrand Meyer. Design by contract and the component revolution. In 34th
International Conference on Technology of Object-Oriented Languages and
Systems (TOOLS). IEEE Computer Society, 2000.

[155] Ronald Middelkoop. A proof system for object oriented programming using
separation logic. Master thesis, Technische Universiteit Eindhoven, 2003.

[156] Raúl E. Monti, Robert Rubbens, and Marieke Huisman. On deductive
verification of an industrial concurrent software component with VerCors.
In International Symposium on Leveraging Applications of Formal Methods,
pages 517–534. Springer, 2022.

BIBLIOGRAPHY 219

[157] J.H. Morris. Verification oriented language design. Technical report, Univer-
sity of California, Berkeley, 1972.

[158] Joseph M. Morris. A general axiom of assignment. Theoretical Foundations
of Programming Methodology: Lecture Notes of an International Summer
School, directed by F.L. Bauer, E.W. Dijkstra and C.A.R. Hoare, pages 25–34,
1982.

[159] Peter Müller, Malte Schwerhoff, and Alexander J Summers. Viper: A
verification infrastructure for permission-based reasoning. In Verification,
Model Checking, and Abstract Interpretation: 17th International Conference,
VMCAI 2016, St. Petersburg, FL, USA, January 17-19, 2016. Proceedings
17, pages 41–62. Springer, 2016.

[160] Glenford J. Myers, Tom Badgett, Todd M. Thomas, and Corey Sandler. The
art of software testing. Wiley Online Library, 2nd edition, 2004.

[161] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Del-
bianco. Communicating state transition systems for fine-grained concurrent
resources. In 23rd European Symposium on Programming Languages and
Systems (ESOP), volume 8410 of Lecture Notes in Computer Science, pages
290–310. Springer, 2014.

[162] Russell O’Connor. Classical mathematics for a constructive world. Mathe-
matical Structures in Computer Science, 21(4):861–882, 2011.

[163] Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theoretical
computer science, 375(1):271–307, 2007.

[164] Peter W. O’Hearn. A primer on separation logic (and automatic program
verification and analysis). Software safety and security, 33:286–318, 2012.

[165] Peter W. O’Hearn. Incorrectness logic. In Proceedings of the ACM on
Programming Languages, volume 4 of POPL, pages 1–32. ACM, 2019.

[166] Peter W. O’Hearn. Separation logic. Communications of the ACM, 62(2):86–
95, 2019.

[167] Peter W. O’Hearn and David J. Pym. The logic of bunched implications.
Bull. Symb. Log., 5(2):215–244, 1999.

[168] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning
about programs that alter data structures. In Laurent Fribourg, editor, 15th
International Workshop on Computer Science Logic (CSL), volume 2142 of
Lecture Notes in Computer Science, pages 1–19. Springer, 2001.

[169] Derek C. Oppen and Stephen A. Cook. Proving assertions about programs
that manipulate data structures. In 7th ACM Symposium on Theory of
Computing, pages 107–116, 1975.

220 BIBLIOGRAPHY

[170] Susan Owicki and David Gries. An axiomatic proof technique for parallel
programs i. Acta informatica, 6(4):319–340, 1976.

[171] Susan Owicki and David Gries. Verifying properties of parallel programs: An
axiomatic approach. Communications of the ACM, 19(5):279–285, 1976.

[172] Jens Pagel and Florian Zuleger. Strong-separation logic. ACM Transactions
on Programming Languages and Systems (TOPLAS), 44(3):1–40, 2022.

[173] Matthew J. Parkinson. Local reasoning for Java. Technical report, University
of Cambridge, Computer Laboratory, 2005.

[174] David Lorge Parnas. Really rethinking ‘formal methods’. Computer, 43(1):28–
34, 2010.

[175] David Parsons. Foundational Java: Key Elements and Practical Programming.
Springer, 2020.

[176] Cees Pierik and Frank S. de Boer. A syntax-directed Hoare logic for object-
oriented programming concepts. In 6th IFIP WG 6.1 International Conference
on Formal Methods for Open Object-Based Distributed Systems (FMOODS),
volume 2884 of Lecture Notes in Computer Science, pages 64–78. Springer,
2003.

[177] Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating separation
logic using SMT. In 25th International Conference on Computer Aided
Verification (CAV), volume 8044 of Lecture Notes in Computer Science, pages
773–789. Springer, 2013.

[178] Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating separation
logic with trees and data. In 26th International Conference on Computer
Aided Verification (CAV), volume 8559 of Lecture Notes in Computer Science,
pages 711–728. Springer, 2014.

[179] Vaughan R. Pratt. Semantical considerations on Floyd-Hoare logic. In 17th
Annual Symposium on Foundations of Computer Science, pages 109–121.
IEEE, 1976.

[180] David Pym, Jonathan M. Spring, and Peter W. O’Hearn. Why separation
logic works. Philosophy & Technology, 32:483–516, 2019.

[181] David J. Pym. The semantics and proof theory of the logic of bunched
implications. In Applied Logic Series, 2002.

[182] Panu Raatikainen. Gödel’s incompleteness theorems. In The Stanford En-
cyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
2020.

[183] Brian Randell. The 1968/69 NATO software engineering reports, 1996.

BIBLIOGRAPHY 221

[184] Habib ur Rehman, Eiad Yafi, Mohammed Nazir, and Khurram Mustafa. Se-
curity assurance against cybercrime ransomware. In International Conference
on Intelligent Computing & Optimization (ICO), pages 21–34. Springer, 2018.

[185] Andrew Reynolds, Radu Iosif, and Cristina Serban. Reasoning in the Bernays-
Schönfinkel-Ramsey fragment of separation logic. In 18th International
Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI), volume 10145 of Lecture Notes in Computer Science, pages 462–
482. Springer, 2017.

[186] Andrew Reynolds, Radu Iosif, Cristina Serban, and Tim King. A decision
procedure for separation logic in smt. In International Symposium on Au-
tomated Technology for Verification and Analysis, pages 244–261. Springer,
2016.

[187] John C. Reynolds. Intuitionistic reasoning about shared mutable data struc-
ture. In J. Davies, B. Roscoe, and J. Woodcock, editors, Millennial Per-
spectives in Computer Science, Cornerstones of Computing, pages 303–321.
Macmillan Education UK, 2000.

[188] John C. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In 17th IEEE Symposium on Logic in Computer Science (LICS), pages
55–74. IEEE Computer Society, 2002.

[189] John C. Reynolds. An overview of separation logic. In First Conference on
Verified Software: Theories, Tools, Experiments (VSTTE), volume 4171 of
Lecture Notes in Computer Science, pages 460–469. Springer, 2005.

[190] John C. Reynolds. An introduction to separation logic. In Engineering
Methods and Tools for Software Safety and Security, pages 285–310. IOS
Press, 2009.

[191] Tom Ridge and James Margetson. A mechanically verified, sound and
complete theorem prover for first order logic. In 18th International Conference
on Theorem Proving in Higher Order Logics, volume 3603 of Lecture Notes
in Computer Science, pages 294–309. Springer, 2005.

[192] Dennis M. Ritchie. The development of the C programming language. In
Richard G. Gibson Thomas J. Bergin, editor, History of Programming lan-
guages, pages 671–698. ACM, 1996.

[193] David S. Rosenblum. Formal methods and testing: why the state-of-the art
is not the state-of-the practice. ACM SIGSOFT Software Engineering Notes,
21(4):64–66, 1996.

[194] Yaman Roumani. Patching zero-day vulnerabilities: an empirical analysis.
Journal of Cybersecurity, 7(1), 2021.

222 BIBLIOGRAPHY

[195] Mohammad Salahuddin, Khorshed Alam, and Ilhan Ozturk. The effects of
Internet usage and economic growth on CO2 emissions in OECD countries: A
panel investigation. Renewable and Sustainable Energy Reviews, 62:1226–1235,
2016.

[196] Peter H. Schmitt, Mattias Ulbrich, and Benjamin Weiß. Dynamic frames
in Java dynamic logic. In International Conference on Formal Verification
of Object-Oriented Software (FoVeOOS), volume 6528 of Lecture Notes in
Computer Science, pages 138–152. Springer, 2011.

[197] Ravi Sen. Challenges to cybersecurity: Current state of affairs. Communica-
tions of the Association for Information Systems, 43(1):2, 2018.

[198] Syed Muhammad Ali Shah, Maurizio Morisio, and Marco Torchiano. An
overview of software defect density: A scoping study. In 19th Asia-Pacific
Software Engineering Conference, volume 1, pages 406–415. IEEE, 2012.

[199] Stewart Shapiro. Foundations without foundationalism: A case for second-
order logic. Clarendon Press, 1991.

[200] Sajjan G. Shiva. Advanced computer architectures. CRC Press, 2018.

[201] Mihaela Sighireanu, Juan A Navarro Pérez, Andrey Rybalchenko, Nikos
Gorogiannis, Radu Iosif, Andrew Reynolds, Cristina Serban, Jens Katelaan,
Christoph Matheja, Thomas Noll, et al. Sl-comp: competition of solvers for
separation logic. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 116–132. Springer, 2019.

[202] Raymond M. Smullyan. Gödel’s incompleteness theorems. Oxford University
Press, 1992.

[203] Raymond M. Smullyan. First-Order Logic. Dover, 1995.

[204] James Somers. The coming software apocalypse. The Atlantic, 26:1, 2017.

[205] Harald Søndergaard and Peter Sestoft. Referential transparency, definiteness
and unfoldability. Acta Informatica, 27:505–517, 1990.

[206] Bjarne Stroustrup. A history of C++ 1979–1991. In Richard G. Gibson
Thomas J. Bergin, editor, History of Programming languages, pages 671–698.
ACM, 1996.

[207] Johanna Stuber. Verification of Red-Black Trees in KeY: A Case Study
in Deductive Java Verification. Bachelor thesis, Karlsruher Institut für
Technologie (KIT), 2023.

[208] Andy S. Tatman. Analysis and Formal Specification of OpenJDK’s BitSet.
Bachelors thesis, Leiden University, 2023.

BIBLIOGRAPHY 223

[209] Makoto Tatsuta, Wei-Ngan Chin, and Mahmudul Faisal Al Ameen. Com-
pleteness and expressiveness of pointer program verification by separation
logic. Information and Computation, 267:1–27, 2019.

[210] Balder ten Cate, Johan van Benthem, and Jouko Vaananen. Lindström
theorems for fragments of first-order logic. In 22nd Annual IEEE Symposium
on Logic in Computer Science (LICS), pages 280–292. IEEE, 2007.

[211] Aditya Thakur, Jason Breck, and Thomas Reps. Satisfiability modulo abstrac-
tion for separation logic with linked lists. In International SPIN Symposium
on Model Checking of Software, pages 58–67. ACM, 2014.

[212] Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic Proof Theory.
Cambridge University Press, 2nd edition, 2000.

[213] Anne Sjerp Troelstra and Dirk Van Dalen. Constructivism in Mathematics,
Vol 1. Elsevier, 1988.

[214] Anne Sjerp Troelstra and Dirk Van Dalen. Constructivism in Mathematics,
Vol 2. Elsevier, 1988.

[215] Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and separa-
tion logic. In 34th ACM Symposium on Principles of Programming Languages
(POPL), pages 97–108, 2007.

[216] Jouko Väänänen. Second order logic or set theory? Bulletin of Symbolic
Logic, 18(1):91–121, 2012.

[217] Johan van Benthem and Kees Doets. Higher-order logic. In Handbook of
philosophical logic, pages 189–243. Springer, 1983.

[218] Guido van Rossum and Fred L. Drake Jr. Python tutorial. Technical report,
Centrum voor Wiskunde en Informatica, 1995.

[219] Moshe Y. Vardi. Move fast and break things. Communications of the ACM,
61(9):7–7, 2018.

[220] Philip Wadler. Propositions as types. Communications of the ACM, 58(12):75–
84, 2015.

[221] Benjamin Wagner. Understanding internet shutdowns: A case study from
Pakistan. International Journal of Communication, 12(1):22, 2018.

[222] Tjark Weber. Towards mechanized program verification with separation logic.
In 18th International Workshop on Computer Science Logic (CSL), volume
3210 of Lecture Notes in Computer Science, pages 250–264. Springer, 2004.

[223] Mark Allen Weiss. Data structures and algorithm analysis in Java. Pearson
Education, 2012.

224 BIBLIOGRAPHY

[224] Stephen B. Wicker. The ethics of zero-day exploits—the NSA meets the
trolley car. Communications of the ACM, 64(1):97–103, 2020.

[225] Eugene P. Wigner. The unreasonable effectiveness of mathematics in the
natural sciences. Communications on Pure and Applied Mathematics, 13:1–14,
1960.

[226] Jeannette M. Wing. A specifier’s introduction to formal methods. Computer,
23(9):8–22, 1990.

[227] Glynn Winskel. The formal semantics of programming languages: an intro-
duction. MIT Press, 1993.

[228] Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn, João C
Pereira, and Peter Müller. Gobra: Modular specification and verification of go
programs. In 33rd International Conference on Computer Aided Verification
(CAV), volume 12759 of Lecture Notes in Computer Science, pages 367–379.
Springer, 2021.

[229] Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. A
systematic evaluation of large language models of code. In 6th International
ACM Symposium on Machine Programming, pages 1–10. ACM, 2022.

[230] Hongseok Yang. Local reasoning for stateful programs. PhD thesis, University
of Illinois, 2001.

[231] Hongseok Yang. Relational separation logic. Theoretical Computer Science,
375(1-3):308–334, 2007.

[232] Hongseok Yang and Peter W. O’Hearn. A semantic basis for local reasoning.
In Mogens Nielsen and Uffe Engberg, editors, 5th International Conference
on Foundations of Software Science and Computation Structures (FoSSaCS),
volume 2303 of Lecture Notes in Computer Science, pages 402–416. Springer,
2002.

[233] Hongyu Zhang. An investigation of the relationships between lines of code and
defects. In 2009 IEEE International Conference on Software Maintenance,
pages 274–283. IEEE, 2009.

[234] Michael Zhivich and Robert K. Cunningham. The real cost of software errors.
IEEE Security & Privacy, 7(2):87–90, 2009.

[235] Job Zwiers, Ulrich Hannemann, Yassine Lakhnech, Willem P. de Roever, and
Frank A. Stomp. Modular completeness: Integrating the reuse of specified
software in top-down program development. In Marie-Claude Gaudel and
Jim Woodcock, editors, FME’96: Industrial Benefit and Advances in Formal
Methods, volume 1051 of Lecture Notes in Computer Science, pages 595–608.
Springer, 1996.

List of Publications

1. Dynamic separation logic
Frank S. de Boer, Hans-Dieter A. Hiep, Stijn de Gouw
In: Proceedings of MFPS XXXIX
Electronic Notes in Theoretical Informatics and Computer Science, volume 3
Episciences, 2023

2. Formal Specification and Analysis of OpenJDK’s BitSet Class
Andy S. Tatman, Hans-Dieter A. Hiep, Stijn de Gouw
In: iFM 2023: 18th International Conference, iFM 2023, Proceedings
Lecture Notes in Computer Science, volume 14300
Springer, 2023

3. The logic of separation logic: models and proofs
Frank S. de Boer, Hans-Dieter A. Hiep, Stijn de Gouw
In: Automated Reasoning with Analytic Tableaux and Related Methods: 32nd
International Conference, TABLEAUX 2023, Proceedings
Lecture Notes in Computer Science, volume 14278
Springer, 2023

4. Integrating ADTs in KeY and their application to History-Based Reasoning
about Collection
Jinting Bian, Hans-Dieter A. Hiep, Frank S. de Boer, Stijn de Gouw
Formal Methods in System Design, volume 61
Springer, 2022

5. Footprint logic for object-oriented components
Frank S. de Boer, Stijn de Gouw, Hans-Dieter A. Hiep, Jinting Bian
In: Formal Aspects of Component Software: 18th International Conference,
FACS 2022, Proceedings
Lecture Notes in Computer Science, volume 13712
Springer, 2022

6. Verifying OpenJDK’s LinkedList using KeY (extended paper)
Hans-Dieter A. Hiep, Olaf Maathuis, Jinting Bian, Frank S. de Boer, Stijn
de Gouw
International Journal on Software Tools for Technology Transfer, volume 24
Springer, 2022

225

226 LIST OF PUBLICATIONS

7. Integrating ADTs in KeY and their application to History-Based Reasoning
Jinting Bian, Hans-Dieter A. Hiep, Frank S. de Boer, Stijn de Gouw
In: Formal Methods, 24th International Symposium, FM 2021, Proceedings
Lecture Notes in Computer Science, volume 13047
Springer, 2021

8. Completeness and complexity of reasoning about call-by-value in Hoare logic
Frank S. de Boer, Hans-Dieter A. Hiep
In: ACM Transactions On Programming Languages And Systems
Volume 43, Issue 4
Association for Computing Machinery, 2021

9. History-Based Specification and Verification of Java Collections in KeY
Hans-Dieter A. Hiep, Jinting Bian, Frank S. de Boer, Stijn de Gouw
In: Integrated Formal Methods, 16th International Conference, IFM 2020,
Proceedings
Lecture Notes in Computer Science, volume 12546
Springer, 2020

10. A Tutorial on Verifying LinkedList Using KeY
Hans-Dieter A. Hiep, Jinting Bian, Frank S. de Boer, Stijn de Gouw
In: Deductive Software Verification: Future Perspectives, Reflections on the
Occasion of 20 Years of KeY
Lecture Notes in Computer Science, volume 12345
Springer, 2020

11. History-based specification and verification of Java collections in KeY
Frank S. de Boer, Hans-Dieter A. Hiep
In: Proceedings of the 22nd ACM SIGPLAN International Workshop on
Formal Techniques for Java-Like Programs
Association for Computing Machinery, 2020

12. Reowolf: Synchronous Multi-party Communication over the Internet
Christopher Esterhuyse, Hans-Dieter A. Hiep
In: Formal Aspects of Component Software, 16th International Conference,
FACS 2019, Proceedings
Lecture Notes in Computer Science, volume 12018
Springer, 2019

13. Verifying OpenJDK’s LinkedList using KeY
Hans-Dieter A. Hiep, Olaf Maathuis, Jinting Bian, Frank S. de Boer, Marko
van Eekelen, Stijn de Gouw
In: Tools and Algorithms for the Construction and Analysis of Systems, 26th
International Conference, TACAS 2020, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2020, Proceedings,
Part II
Lecture Notes in Computer Science, volume 12079
Springer, 2020

227

14. Reowolf 1.0: Project Documentation
Christopher A. Esterhuyse, Hans-Dieter A. Hiep
Technical Report
CWI, 2020

15. Axiomatic Characterization of Trace Reachability for Concurrent Objects
Frank S. de Boer, Hans-Dieter A. Hiep
In: Integrated Formal Methods, 15th International Conference, IFM 2019,
Proceedings
Lecture Notes in Computer Science, volume 11918
Springer, 2019

See also the ORCiD page (0000-0001-9677-6644) for the current list of publications.

https://orcid.org/0000-0001-9677-6644?ref=hansdieterhiep.nl

228 LIST OF PUBLICATIONS

