
New Foundations for Separation Logic
Hiep, H.A.

Citation
Hiep, H. A. (2024, May 23). New Foundations for Separation Logic. IPA
Dissertation Series. Retrieved from https://hdl.handle.net/1887/3754463

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3754463

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3754463

Chapter 4

Reynolds’ logic

In Chapter B, we recall Hoare’s logic for reasoning about while-programs and
recursive programs. In this chapter, we investigate Reynolds’ logic, an extension of
Hoare’s logic for reasoning about pointer programs. We introduce a novel semantics
and several original proof systems for Reynolds’ logic, all interpreted with respect
to the same semantics: it is possible to reinterpret the original proof systems in the
novel semantics. We then introduce an extension to dynamic logic, called dynamic
separation logic, and show how to simplify program modalities. This yields the
discovery of an alternative proof system of Reynolds’ logic.

What is remarkable is that all the proof systems in this chapter are equivalent
in the following sense: the original proof system proposed by Reynolds and all
other proof systems in this chapter have exactly the same set of provable objects!
This justifies us to call all these proof systems which have a single common
semantics ‘Reynolds’ logic’, in honor of J.C. Reynolds. But, why an alternative
proof system for Reynolds’ logic? It would be fair to say, that the alternative
proof systems sheds light on the same matter from a different angle. In fact, what
distinguishes the new proof systems (both the weakest precondition calculus and
the strongest postcondition calculus) from the original ones is the property of
gracefulness. Gracefulness means that the weakest precondition of any statement
and a first-order formula remains a first-order formula, and similar for the strongest
postcondition. Furthermore, by the techniques developed in this chapter, we are
able to fill in a missing gap of proving that the global axioms can be derived from
the local axioms and the frame rule without using the magic wand, the connective
of separating implication.

Reynolds’ logic can be seen as an extension of Hoare’s logic in two ways:

• In Hoare’s logic the programming language is based on a first-order program
signature, but in Reynolds’ logic the programming language is based on a
pointer program signature. Moreover, the proof objects of the two proof
systems are specifications {ϕ} S {ψ}. In Hoare’s logic the formulas ϕ and ψ
are first-order formulas, whereas in Reynolds’ logic these formulas are further
extended to the formulas of separation logic.

81

82 CHAPTER 4. REYNOLDS’ LOGIC

• Since every formula of first-order logic is also a formula of separation logic, all
the instances of the axioms and rules of Hoare’s logic can also be considered
part of Reynolds’ logic.

However, the second point raises the question: how much rules of Hoare’s logic
remain sound also when extending the instances to formulas of separation logic? If
we consider the invariance rule

{ϕ} S {ψ}
{ϕ ∧ χ} S {ψ ∧ χ}

of Hoare’s logic, where the free variables of χ are not changed by the statement
S, then clearly we cannot extend this rule to arbitrary formulas of separation
logic: the rule would become unsound. The problem here lies in the fact that the
program S may change a location on the heap, but it is not easily recognized from
the syntax of the program what location has changed. This is in contrast to the
invariance rule, where an approximation of the effects of a statement in Hoare’s
logic is captured by access(S) and change(S).

Thus, an important proof rule that is novel in Reynolds’ logic, that is not part
of Hoare’s logic, is the so-called frame rule

{ϕ} S {ψ}
{ϕ ∗ χ} S {ψ ∗ χ}

where the free variables of χ are not changed by the statement S. Note that in this
rule we use separating conjunction instead of logical conjunction. However, it turns
out that the soundness of the frame rule is quite delicate [232]. In this chapter we
shall revisit the soundness proof of the frame rule, and give an alternative proof
that is more proof theoretic in nature.

As one can recall in Chapter B, due to the compositional nature of the semantics
of programs, it suffices here to restrict our attention to the base case, the pointer
manipulating operations, and not to the control structures of sequential composition,
if and while-statements, or recursive procedures, since these latter constructs of
the programming language are orthogonal to our current concerns. In fact, already
in [125], Ishtiaq and O’Hearn recognize that the novelty of Reynolds’ logic lies in
the treatment of the basic operations:

“We will not give a full syntax of [statements], as the treatment of
conditionals and looping statements is standard. Instead, we will
concentrate on assignment statements, which is where the main novelty
of the approach lies.”

It is the case that our previous discussion concerning the compositional nature of
program semantics naturally transfers to the context of pointer programs.

First, we introduce the proper semantic basis in which we can interpret the
proof objects of Reynolds’ logic. Although the semantics is a generalization of the
standard semantics of separation logic, it is quite remarkable to observe that the

83

original axiomatization due to Reynolds is still sound with respect to this general
semantics.

Secondly, we present Reynolds’ logic in its usual way. There are four ways in
which the proof system of Reynolds’ logic can be presented: a local axiomatization,
and a global axiomatization, a backwards weakest precondition axiomatization, and
a forwards strongest postcondition axiomatization. In the first proof system with
the local axiomatization, however, the frame rule plays a crucial role. One can
recover the global axiomatization from the local axiomatization by using the frame
rule. Our only contribution here, is that we shall argue there is an alternative way
of proving the soundness of the frame rule, from a proof theoretical point of view,
rather than the ‘surprisingly delicate’ semantic point of view as done by Yang and
O’Hearn [232].

Third, we show the soundness and (relative) completeness of a novel weakest
precondition axiomatization, by introducing an extension to separation logic, called
dynamic separation logic, in which a logical modality is added that captures the
weakest precondition. We introduce pseudo-operations corresponding to heap
update and heap clear. It is crucial that these pseudo-operations are not part of
the programming language, and for both of them we show they satisfy a useful
meta-property that we capture by proving corresponding substitution lemmas. That
these pseudo-operations are not part of the programming language is crucial, since
the frame rule is not sound with respect to them. However, by introducing the
pseudo-operations on the logical level, and thereby not allowing the application of
the frame rule over them, we obtain a way of expressing the weakest precondition
of all other basic instructions in terms of these pseudo-instructions. In fact,
the pseudo-instructions satisfy a property called gracefulness, in the sense that
computing the weakest precondition of a pseudo-instruction with respect to a first-
order postcondition results in a first-order weakest precondition. Even stronger,
computing the weakest precondition of a pseudo-instruction with respect to the
fragment of separation logic without magic wand also results in a formula without
magic wand: thus eliminating magic wand from the generated weakest precondition.
It turns out that all the previous axiomatizations of Reynolds’ logic lack this
property of gracefulness.

Fourth, we recall two strongest postcondition axiomatizations of Reynolds’ logic,
again a local strongest postcondition axiomatization and a global strongest post-
condition axiomatization. We then also introduce a novel strongest postcondition
axiomatization by again using our previously introduced pseudo-instructions, and
we compare our alternative axiomatization with the two existing calculi.

In this chapter, we focus on classical separation logic as assertion language. In
Appendix C, our approach is also extended to intuitionistic separation logic, also
resulting in novel weakest preconditions and strongest postconditions. This shows
that our approach, of introducing pseudo-instructions, is robust under different
interpretations.

84 CHAPTER 4. REYNOLDS’ LOGIC

4.1 General semantics and memory models

In the Sections 2.2 and 2.3 we have established that both the standard semantics and
the full semantics of separation logic are not compact, leading to the impossibility
to have a complete finitary proof system. In this section we investigate two
more general semantics for separation logic. We introduce general heap structures,
which extends structures to include a set of heaps over which quantification in the
semantics of the separating connectives ranges. This approach is similar to the
general structures of Henkin semantics [108]. Although this semantics is sufficient
for interpreting separation logic formula, the set of heaps does not necessarily
contain all heaps needed to reason about memory modification effects of pointer
programs. Therefore, we also introduce the heap semantics, in which we extend
structures with a particular set of heaps called a memory model. We further show
the relation between the semantics based on memory models and the standard
semantics, full semantics, and novel semantics of separation logic for which we
obtained a sound and complete, finitary proof system in Section 3.2 and Section 3.4.

Given a structure A = (A, I) with domain A, and let H be a set of heaps
(partial functions from A to A) with h, h1, h2 ∈ H. Recall that we can express the
partitioning of heaps by h ≡ h1 ⊎ h2 which satisfies the following properties:

h ≡ h1 ⊎ h2 =⇒ dom(h1) ∩ dom(h2) = ∅, (4.1)

h ≡ h1 ⊎ h2 =⇒ h(a) =

h1(a) if a ∈ dom(h1),

h2(a) if a ∈ dom(h2),

undefined otherwise.
(4.2)

A general heap structure (for separation logic) can be used to give semantics to
separating connectives, where only the heaps in a given set of heaps are considered.
Our approach here is similar to Henkin’s general heap structures for higher-order
logic, where quantification over values of higher-order arities is restricted to range
over a given set of values.

Definition 4.1.1 (General heap structures). A general heap structure H = (A, H)
consists of a structure A = (A, I) with domain A and interpretation I and a set of
heaps H of partial functions from A to A.

A general heap structure thus includes a set of possible heaps, and in the general
semantics one limits quantification in the semantics of the separating conjunction
and separating implication to the given set of heaps. The satisfaction relation over
general heap structures can now be given. It is similar to Definition 2.2.1, except
for the following clauses that are relative to the given set of heaps.

Definition 4.1.2 (Satisfaction relation). Given a general heap structure H =
(A, H), a valuation ρ of A, a heap h of H, and a separation logic formula ϕ. The
satisfaction relation H, h, ρ |= ϕ is defined inductively on the structure of ϕ:

• . . .

4.1. GENERAL SEMANTICS AND MEMORY MODELS 85

• H, h, ρ |=GSL ϕ ∗ ψ iff H, h1, ρ |= ϕ and H, h2, ρ |= ψ for some h1, h2 ∈ H
such that h ≡ h1 ⊎ h2,

• H, h, ρ |=GSL ϕ −∗ ψ iff A, h′, ρ |= ϕ implies A, h′′, ρ |= ψ for every h′, h′′ ∈ H
such that h′′ ≡ h ⊎ h′,

• . . .

The superscript GSL on |= stands for General Separation Logic. Note that in
general heap structures H = (A, H) we have that H can be empty, similar to the
situation of an empty domain in the classical semantics. However, in the context
of the satisfaction relation, we may assume the set of heaps is non-empty since h is
a heap in H. This situation is similar to the situation in classical logic where the
domain must be non-empty, since a valuation ρ assigns values to variables.

Similar to before, we have the coincidence condition and invariance under
renaming. Both propositions are with respect to a fixed heap in our memory model.

Proposition 4.1.3 (Coincidence condition). Given that ρ[FV (ϕ)] = ρ′[FV (ϕ)], it
follows that H, h, ρ |=GSL ϕ if and only if H, h, ρ′ |=GSL ϕ.

Proposition 4.1.4 (Invariance under renaming). Given a renaming π such that
all free variables of ϕ stay the same, i.e. π(v) = v for all v ∈ FV (ϕ). It follows
that H, h, ρ |=GSL ϕ if and only if H, h, ρ |=GSL π(ϕ).

Definition 4.1.5 (Denotation). The denotation of a formula HJϕKGSL is defined:

HJϕKGSL = {(h, ρ) | H, h, ρ |=GSL ϕ}.

We write H, h |=GSL ϕ to mean H, h, ρ |=GSL ϕ for all valuations ρ of A, and we
write H |=GSL ϕ to mean A, h |=GSL ϕ for all heaps h ∈ H. Given a sentence that
is satisfied, using the coincidence condition we can obtain that it is also satisfied
by the same general heap structure but with any other valuation: the valuation
has no influence on whether a sentence is satisfied by the structure, but the heap
does have such influence (as it does with standard and full semantics). So if ϕ is a
sentence, H, h |=GSL ϕ if and only if H, h, ρ |=GSL ϕ for some valuation ρ.

Given a sentence ϕ, we write |=GSL ϕ to mean that H |=GSL ϕ for all gneral
structures H, and we then say that ϕ is valid. Valid sentences in general separation
logic thus are properties that hold for all general heap structures.

An interesting instance is the general heap structure (A, {ϵ}) where ϵ is the
partial function that is never defined anywhere. This general heap structure clearly
satisfies the formula emp. Further, since we can split the empty heap only in
two empty heaps, we have that separating conjunction is equivalent to logical
conjunction. For a similar reason we have that separating implication is equivalent
to logical implication. Thus, any valid classical formula in which we replace (some)
logical conjunction and implication connectives by separating conjunction and
implication, respectively, is a valid separation logic formula with respect to the
general semantics. Note that this works since classical formulas do not have any
occurrence of a points-to relation, since the points-to relation is only available to
separation logic and not present in the signature.

86 CHAPTER 4. REYNOLDS’ LOGIC

A well-known example of a valid formula in the general semantics is

|=GSL (ϕ ∗ (ϕ −∗ ψ)) → ψ

where ϕ and ψ are arbitrary separation logic formulas. It is easily verified that this
formula is indeed valid: if a split is possible, then we can always recombine the two
separate parts of the heap by the separating implication to obtain the succedent of
the separating implication.

However, in the general semantics, there are formulas which are not valid, but
which are valid in both the standard and the full semantics of separation logic.
Take the formulas (x ↪→ y) and (x 7→ y) ∗ true. These formulas are equivalent in
both WSL and FSL. While it is the case that

|=GSL ∀x, y. ((x 7→ y) ∗ true) → (x ↪→ y),

the converse does not hold. Take the general heap structure H = (A, H) with the
domain A of A having at least two elements, and H being the set {ϵ, h} where
h(a) = a for some a ∈ A, and h(b) = b for some other b ∈ A, and undefined on all
other elements. Now we have H, h, ρ |=GSL (x ↪→ y) where ρ assigns x and y to a.
However, it is not the case that H, h, ρ |=GSL (x 7→ y) ∗ true, since H contains the
heap h but not the two subheaps making the split possible.

Another counter-example is the following implication (for any formula ϕ):

(x ↪̸→ −) ∧ ((x 7→ −) −∗ ((x 7→ −) ∗ ϕ)) → ϕ

which is valid in both WSL and FSL (in WSL we do not even need (x ↪̸→ −)).
However, this fails for GSL. We now take H = {ϵ}. Now, clearly, both a and b are
not allocated in every heap. Take a valuation in which x has value a, and y has
the value b. We could for example let ϕ express that y is allocated: (y ↪→ −). The
antecedent of the implication is satisfied in the empty heap: x is not allocated, and
for every heap in which x is allocated the succedent of the separating implication
holds for the joined heap (vacuously). However, ϕ is not satisfied, since y is not
allocated.

The counter-examples above demonstrates two issues with the general semantics.
We expect certain closure conditions to hold for the set H to be able to naturally
reason about the semantics of separation logic (stated informally):

• we expect that ϕ ∗ emp and ϕ are equivalent, so ϵ ∈ H;

• we expect that (x 7→ y) ∗ true and (x ↪→ y) are equivalent, but for that to
work we need that splitting off finite parts from any heap in H is also in H;

• under the assumption that there is some free space, that is (x ↪̸→ −), we
expect that (x 7→ −) −∗ ((x 7→ −) ∗ ϕ) and ϕ are equivalent, but for that to
work every finite extension of any heap in H must be in H too.

We thus consider sets of heaps which satisfy certain closure conditions, called
memory models. A memory model is a set of heaps that is closed under the opera-
tions of heap update and heap clear, and closed under heap existence conditions.

4.1. GENERAL SEMANTICS AND MEMORY MODELS 87

The combination of heap update and heap clear operations allows us to express
finite splits and finite extension as required. For example, for any heap h where
a ̸∈ dom(h) we can apply the heap update h[a := a′] to obtain a larger heap, which
can be split into the disjoint heaps h and ϵ[a := a′], since h[a := a′] ≡ h⊎ ϵ[a := a′].
Similarly, if a heap h can be split so that h ≡ h1 ⊎ ϵ[a := a′] then we know
a ̸∈ dom(h1) and consequently that h1 = h[a := ⊥].

Definition 4.1.6 (Memory model). A memory model over A is a set H of heaps
(partial functions from A to A) such that all the following conditions hold:

ϵ ∈ H, (4.3)
h[a := a′] ∈ H, (4.4)
h[a := ⊥] ∈ H, (4.5)

dom(h1) ∩ dom(h2) = ∅ =⇒ h′ ≡ h1 ⊎ h2 for some heap h′ ∈ H, (4.6)
h1 ⊆ h =⇒ h ≡ h1 ⊎ h′ for some heap h′ ∈ H, (4.7)

for every h, h1, h2 ∈ H and a, a′ ∈ A.

A memory model which satisfies all conditions except Equation (4.7) is called
a classical memory model. In fact, in the remainder of this chapter, all results
also hold for classical memory models: only in Chapter C, where we introduce
intuitionistic separation logic, it is necessary to consider memory models with the
additional condition of Equation (4.7). However, for uniformity in presentation, we
shall include the condition, even when it is strictly speaking not necessary.

It is not a problem to confuse a memory model and the set H of heaps, as long
as we have that H is a memory model: this convention is not different from taking
H as the carrier set that is closed under the given operations and conditions. There
are many memory models, and we have a look at various ways of constructing
them later in this section.

The above conditions require compatibility conditions on the heap partitioning
relation. In particular, Equation (4.6) imposes the condition on the set H of
heaps that any two disjoint heaps can be merged, and Equation (4.7) imposes the
condition on H that if we know that heap h is an extension of heap h1 then there
must exists a heap h2 which consists of the remaining location-value mappings.
In fact, the last condition imposes that the empty heap must be in H by taking
h1 = h, thus Equation (4.3) is redundant.

Note that, in the case we work with the set of finite heaps, Equations (4.6) and
(4.7) do not add much. For any two disjoint finite heaps h1, h2, we can always
construct the heap which is their union h1 ⊎h2. This is easy to see, since any finite
heap can simply be regarded as a finite construction from the empty heap and a
finite association list of locations and values. The resulting finite heap simply zips
the two association lists together. Similarly, for any finite heap h, and hence also a
finite heap h1 ⊆ h, we clearly can find a heap h′ that is the remainder: we just
look at the association list of locations and values that comprise h and filter out
any of the locations that are in h1. These constructions are rather obvious.

88 CHAPTER 4. REYNOLDS’ LOGIC

However, and this is crucial, in the case of infinite heaps these constructions are
no longer straightforward. Equation (4.6) thus expresses that it must always be
possible to merge heaps, even if one of the two heaps is infinite. And, furthermore,
Equation (4.7) expresses that in case we have an infinite heap h and a (finite or
infinite) heap h1 we can always find the remainder of ‘subtracting’ h1 from h, that
is potentially infinite too.

Proposition 4.1.7. If h ≡ h1 ⊎ h2 and g ≡ h1 ⊎ h2 then h = g.

Proof. We have heap extensionality, h = g if h(a) = g(a) for all a ∈ A. But
h(a) is fixed by Equation (4.2), and so is g(a). Our property follows from a
case analysis of a: for either a ∈ dom(h1), or a ∈ dom(h2), or a ̸∈ dom(h1) and
a ̸∈ dom(h2), h(a) = g(a). The case a ∈ dom(h1) and a ∈ dom(h2) does not occur
by Equation (4.1).

Now we can use memory models to give semantics to the separating connectives,
where we consider memory models instead of arbitrary non-empty sets of heaps.

Definition 4.1.8 (Memory structures). A memory structure H = (A, H) is a
general heap structure consisting of a structure A = (A, I) with domain A and
interpretation I, and as set of heaps a memory model H over A.

Since MSL can be seen as GSL but restricted to a certain class of structures, we
also have the coincidence condition, invariance under renaming, and the denotation
of a formula HJϕKMSL:

HJϕKMSL = {(h, ρ) | H, h, ρ |=MSL ϕ}.

We shall use the superscript MSL to mean that the notions of satisfaction, validity,
and denotation, previously defined for general heap structures, are restricted to
memory structures.

Given a theory, i.e. a set of sentences Γ, we write H, h |=MSL Γ to mean that
all sentences in Γ are satisfied by all memory structures H = (A, H) and heaps
h ∈ H, that is, H, h |=MSL ϕ for all ϕ ∈ Γ. We may also speak of ‘Γ is satisfied by
H and h’. A theory Γ is satisfiable if there exists a memory structure H and heap
h such that H, h |= Γ. A theory Γ is finitely satisfiable if every finite subset of Γ is
satisfiable.

Given a sentence ϕ, we write Γ |=MSL ϕ to mean H, h |=MSL ϕ for all memory
structures H = (A, H) and heaps h ∈ H such that H, h |=MSL Γ, and say that
ϕ is a semantic consequence of Γ. In case Γ is a context and ϕ a formula, then
by Γ |=MSL ϕ we mean H, h, ρ |=MSL ϕ for all memory structures H = (A, H),
heaps h ∈ H, and valuations ρ of A such that H, h, ρ |=MSL ψ for all ψ ∈ Γ. Both
readings coincide if Γ and ϕ have no free variables. (The superscript MSL may be
dropped if clear from context.)

To investigate the relation between the semantics defined above, and the
standard and full semantics of separation logic defined earlier, we relate their
notions of validity. Our main objective now is to show that |=MSL ϕ implies
|=WSL ϕ and |=FSL ϕ. To do so, we construct a number of different memory

4.1. GENERAL SEMANTICS AND MEMORY MODELS 89

models given a fixed structure A with domain A. Note that there is a natural order
between memory models by measuring their cardinality. We will show that the
smallest memory model corresponds with the standard semantics, and the largest
memory model corresponds with the full semantics.

To consider the smallest memory model H, suppose we start out with the empty
set and add in only the necessary heaps to satisfy the requirements for H to be
a memory model. The empty heap ϵ must be in H. For every heap and pair of
elements of A, we can perform a heap update operation. Every finite sequence of
heap updates results in a heap. Performing a heap clear operation only removes a
location from the heap, which can be undone by performing a heap update again.
The set of finitely-based partial functions over A is the smallest memory model.

The largest memory model is simply the set of all partial functions over A.

Definition 4.1.9. A finite memory structure is a memory structure H = (A, H)
where H is the smallest memory model over A.

Definition 4.1.10. A full memory structure is a memory structure H = (A, H)
where H is the largest memory model over A.

Every structure induces a full memory structure, since the largest memory model
is unique. Similarly, every structure also induces a finite memory structure, since the
smallest memory model is also unique. It is easy to verify that the general semantics
restricted to finite memory structures coincides with the standard semantics, and
the general semantics restricted to full memory structures coincides with the full
semantics of separation logic. If the underlying structure has a finite domain,
then the smallest and largest memory model coincide (and this confirms that the
standard and full semantics coincide in this case too). If the structure has an
infinite domain, the smallest and largest memory model are separated.

Proposition 4.1.11.

• |=GSL ϕ implies |=MSL ϕ,

• |=MSL ϕ implies |=WSL ϕ and |=FSL ϕ.

Proof. If |=GSL ϕ then H |= ϕ for all general heap structures H. That includes all
memory structures H. Since each structure A induces a finite and full memory
structure, we also have |=WSL ϕ and |=FSL ϕ.

From the above proposition, there is an easy heuristic for finding invalid
sentences with respect to the general semantics: sentences that are invalid in either
the standard semantics or the full semantics are also invalid in the general semantics.
The counter-examples for either of them can be used as counter-example in the
general semantics, by taking one of the induced memory structures corresponding
to the specific counter-example.

Finally, before turning to the semantics of pointer programs, we consider the
relation between MSL and the semantics underlying the proof system SL (or,
RSL under the assumption that every heap is functional). In the completeness

90 CHAPTER 4. REYNOLDS’ LOGIC

proof of Chapter 3, we have constructed a structure out of a maximally consistent
set of separation logic formulas. It turns out that this constructed structure also is
a memory structure. Consider that in the constructed structure we have as set H of
heaps the set of first-order definable heaps. Now it is easy to see that the empty heap
is first-order definable, and given any heap h then the operations of heap update
and heap clear are also first-order definable since every element of the domain is
expressible, since we have explicitly taken as domain the equivalence classes of
terms and hence every element of the underlying structure has a denotation as a
term. Going further, for any two first-order definable heaps that are disjoint, we can
also form the disjoint union by simply taking the disjunction of the corresponding
formulas. And, finally, for any first-order definable heap and any first-order definable
subheap, we can also express the ‘subtraction’ of one heap from the other as a
first-order formula based on the given descriptions.

In the remainder we shall speak of comprehensive memory structures to mean
structures which lie in the intersection of the two classes of general structures,
namely those general structures that satisfies both the properties of a comprehensive
structure (i.e. closed under semantic comprehension) and the properties of a memory
structure (i.e. the set of heaps must be a memory model).

4.2 Semantics of pointer programs
In this section, we introduce the semantics of pointer programs following along the
lines of Chapter B on Hoare’s logic.

Given a first-order signature Σ. A pointer program signature PPS (Σ) includes
the following operations:

• the assignment operation x := y
(where y is an accessible and x is a changed program variable),

• the lookup operation x := [y]
(where y is an accessible and x is a changed program variable),

• the mutation operation [x] := y
(where x and y are accessible program variables),

• the allocation operation x := new(y)
(where y is an accessible and x is a changed program variable),

• the deallocation operation delete(x)
(where x is an accessible program variable),

and every test is a quantifier-free pure formula ϕ(x1, . . . , xn), with as accessible
program variables x1, . . . , xn corresponding to the free variables of ϕ. Every pointer
program signature is also a first-order program signature (see Definition B.1.2).
A pointer program is a statement formed from statements based on a pointer
program signature (and, similarly, a recursive pointer program consists of a set
of declarations and a main statement). Note that the tests of (statements of)

4.2. SEMANTICS OF POINTER PROGRAMS 91

pointer programs are pure quantifier-free formulas, as before. To give semantics
to pointer programs, we introduce spatial machine models, analogous to logical
machine models of Chapter B. A spatial machine model is based on a memory
structure H. The spatial machine model is a failure-sensitive machine model in the
sense that its states are pairs of heaps (in the set of heaps of H) and valuations (of
the underlying structure of H).

Before introducing the semantics, we introduce auxiliary concepts needed in
the formulation of spatial machine models. Given two heaps h, h′ (partial functions
over some set), then we say that h′ has a finite distance to h whenever it is the
case that h′ = h[a1 := a′1] . . . [an := a′n][an+1 := ⊥] . . . [an+k := ⊥]. Informally,
one obtains h′ by finitely many applications of heap update and heap clear to h.
This notion is symmetric: h′ has a finite distance to h if and only if h has a finite
distance to h′. Note that it is also possible that h and h′ have a finite distance
even in the case that both h and h′ are partial functions without a finite basis
(i.e. both have an infinite domain). Further, when we compare sets of states in
the notations X ≡ Y mod Z and X ≡ f(X) mod Z, we speak only about the
valuations and leave the heaps untouched.

Definition 4.2.1. A spatial machine model M is a pair of a memory structure H
and an operationalization consisting of:

• for each operation O, a transition function which is a partial function OM of
valuations to a set of valuations of H,

• for every operation x := y, the transition function (x := y)M is defined by
mapping (h, ρ) to (h, ρ[x := ρ(y)]),

• for every operation x := [y], the transition function (x := [y])M is defined by
mapping (h, ρ) to (h, s[x := h(s(y))]) if s(y) ∈ dom(h) and to fail otherwise,

• for every operation [x] := y, the transition function ([x] := y)M is defined by
mapping (h, ρ) to (h[s(x) := s(y)], s) if s(x) ∈ dom(h) and to fail otherwise,

• for every operation x := new(y), the transition function (x := new(y))M is
defined by mapping (h, ρ) to the set {(h[n := s(y)], s[x := n]) | n ̸∈ dom(h)},

• for every operation delete(x), the transition function (delete(x))M is defined
by mapping (h, ρ) to (h[s(x) := ⊥], s) if s(x) ∈ dom(h) and to fail otherwise,

• for the transition function OM we have the change condition that either
OM(h, ρ) = fail or ρ′[V1 \ change(O)] = ρ[V1 \ change(O)] for every (h′, ρ′) ∈
OM(h, ρ),

• for the transition function OM we have the access condition that states that
OM(h, ρ) ≡ OM(h′, ρ′) mod var(O) for every ρ, ρ′ for which ρ[access(O)] =
ρ′[access(O)] holds,

• for the transition function OM we have the effect condition that for every
(h′, ρ′) ∈ OM(h, ρ) we have that h′ has a finite distance to h,

92 CHAPTER 4. REYNOLDS’ LOGIC

• for the transition function OM we have the frame condition that for every
OM(h0, ρ) ̸= fail and (h′, ρ′) ∈ OM(h0 ⊎ h1, ρ), there is a h′0 such that
(h′0, ρ

′
0) ∈ OM(h0, ρ) and h′ = h′0 ⊎ h1.

Since spatial machine models are failure-sensitive machine models, we get the
operational and denotational semantics ‘for free’. We also write ⟨M,H⟩ for a spatial
machine model to indicate its underlying memory structure H. A spatial machine
model is a failure-sensitive machine model in the following sense: the state space
of a spatial machine model is the set of pairs of heaps and valuations of H, and
the given operationalization induces an operationalization for tests by associating
every quantifier-free pure formula ϕ to the set HJϕKMSL that denotes the pairs of
heaps and valuations that satisfy ϕ in structure H. Note that for these formulas
ϕ we have (h, ρ) ∈ HJϕKMSL if and only if ρ ∈ AJϕKCL where A is the underlying
structure of H, that is, tests do not depend on the heap.

In fact, in the operational semantics of pointer programs, we have as con-
figurations triples consisting of a program S, a heap h, and a valuation ρ. The
successful execution of any basic instruction S is denoted by (S, h, ρ) −↠ (✓, h′, ρ′),
whereas (S, h, ρ) −↠ fail denotes a failing execution (e.g. due to access of a ‘dan-
gling pointer’). The small-step semantics (and similar for the big-step semantics)
of the primitive operations are as follows, as follows from the definition of the
operationalization of spatial machine models above:

• (x := y, h, ρ) −→ (✓, h, ρ[x := ρ(y)]),

• (x := [y], h, ρ) −→ (✓, h, ρ[x := h(ρ(y))]) if ρ(y) ∈ dom(h),

• (x := [y], h, ρ) −→ fail if ρ(y) ̸∈ dom(h),

• ([x] := y, h, ρ) −→ (✓, h[ρ(x) := ρ(y)], ρ) if ρ(x) ∈ dom(h),

• ([x] := y, h, ρ) −→ fail if ρ(x) ̸∈ dom(h),

• (x := new(y), h, ρ) −→ (✓, h[n := ρ(y)], ρ[x := n]) where n ̸∈ dom(h),

• (delete(x), h, ρ) −→ (✓, h[ρ(x) := ⊥], ρ) if ρ(x) ∈ dom(h),

• (delete(x), h, ρ) −→ fail if ρ(x) ̸∈ dom(h).

Crucially, with this definition we abstract from out of memory errors, e.g. from
the heap which has no free location it is not possible to take a step with the
program x := new(y). Intuitively, this makes ‘out of memory’ behave similarly as
a divergence: it is as if the underlying implementation would keep searching for a
free spot on the heap, but diverge since it will never find one.

The other operations do have explicit failures: looking up the value of an
unallocated location results in fail, so do mutation of an unallocated location, or
the deallocation thereof.

Note that it is possible to instantiate this program semantics with different
structures, and thus different conceptions of the heap. In the standard semantics
one would use finite heaps, but it is also possible to base the operational semantics

4.2. SEMANTICS OF POINTER PROGRAMS 93

on top of the full set of heaps (finite or infinite heaps) of any underlying structure,
or to base it on top of any other memory structure introduced in the previous
section. However, it is now obvious from the definition above that general structures
are insufficient, because we want to define transitions in terms of heap updates and
heap clear operations.

Since we also have an interpretation where there are potentially infinite heaps,
the design choice to let allocation behave as a divergence in case of no free location
becomes more clear. In the case of finite heaps (but an infinite domain of the
underlying structure), allocations do not diverge, as is the case in the standard
semantics.

Just like in Hoare’s logic, we have that the access and change conditions can be
lifted to statements S.

Lemma 4.2.2 (Change Lemma). Given a set of proper states X,

X ≡ ⟨M,H⟩JSK(X) mod change(S).

Lemma 4.2.3 (Access Lemma). Given two sets of proper states X,Y such that
X ≡ Y mod (V \ access(S)), then

⟨M,H⟩JSK(X) ≡ ⟨M,H⟩JSK(Y) mod (V \ var(S)).

Similar to Hoare’s logic, these express that a statement only modifies the
variables change(S), and that the outcome of a statement is only dependent on
the variables access(S). However, note that these notions require the same initial
heap. These properties do not capture the so-called ‘heap footprint’ of a statement.
For dealing with the heap, we have the other two conditions: the effect and frame
conditions can also be lifted to statements.

Lemma 4.2.4 (Effect Lemma). For any (h′, ρ′) ∈ ⟨M,H⟩JSK(h, ρ) we have that
h′ has a finite distance to h.

Proof. Intuitively we only have to check the small-steps, and check that the property
is preserved compositionally. Since we already have that for every primitive
operation this property holds due to the definition of spatial machine models, it
suffices to observe that in a terminating execution we have only finitely many
steps.

A statement S which has no effect on the heap is called an effect-free statement,
whereas a statement that does have an effect on the heap is called effectful.

Lemma 4.2.5 (Frame Lemma I). If fail ̸∈ ⟨M,H⟩JSK(h0, ρ) then it is also the
case that fail ̸∈ ⟨M,H⟩JSK(h0 ⊎ h1, ρ).

Proof. We know an execution from the smaller heap h0 does not lead to failure.
Suppose we now add additional locations and this causes a failure to appear in the
computation. This failure must happen in some execution at a primitive operation
(the other statements do not cause failures). Due to the frame condition, and the

94 CHAPTER 4. REYNOLDS’ LOGIC

fact that the operationalization maps a state to either fail or a set of states, we
know that if a smaller heap does not lead to failure, a larger heap must also not.
But that contradicts the assumption that a failure appears in the computation
from a larger heap.

Lemma 4.2.6 (Frame Lemma II). Given fail ̸∈ ⟨M,H⟩JSK(h0, ρ) and (h′, ρ′) ∈
⟨M,H⟩JSK(h0 ⊎ h1, ρ), there is a h′0 such that (h′0, ρ

′
0) ∈ ⟨M,H⟩JSK(h0, ρ) and

h′ = h′0 ⊎ h1.

Proof. The intuition is that from the first premise, we know that statement S
accesses or changes the locations on heap h0. Hence, adding additional locations
to the heap does not affect the execution of the statement, and these additional
locations remain unmodified during the execution (otherwise, if it would change
these locations, then the statement S would lead to a failure when executing it on
the smaller heap h0 that lacks these additional locations).

In fact, the first premise suggests an important concept of pointer programs:
the ‘footprint’ of a program. Let the footprint of a statement S be the set of states
(h, ρ) such that fail ̸∈ ⟨M,H⟩JSK(h, ρ).

We again have program specifications {ϕ} S {ψ}, being a triple that consists
of a precondition ϕ, a program S, and a postcondition ψ. Note that, in Reynolds’
logic, the precondition and postcondition are formulas of separation logic, and
statements are formed according to a pointer program signature. Every program
specification of Hoare’s logic is also a program specification in Reynolds’ logic, since
every statement of a pointer program signature is also a statement of a first-order
program signature and every formula of classical logic is also a formula of separation
logic.

Again we formally define whether a program specification is satisfied, but now
in a spatial machine model. Recall that formulas never denote the improper state
fail. Thus we have the interpretation of program specifications called strong partial
correctness, defined as such:

⟨M,H⟩ |=RL {ϕ} S {ψ} if and only if ⟨M,H⟩JSK(HJϕKMSL) ⊆ HJψKMSL.

Since fail is never in HJψKMSL, this interpretation explicitly states that the machine
never fails when executing program S starting from any state in HJϕKMSL. The
superscript RL stands for Reynolds’ Logic.

Before introducing the proof system for Reynolds’ logic, note that in Hoare’s
logic we distinguish the background theory and program theory. Recall that a
program theory is a set of program specifications (see Section B.4): it is possible
to consider theories to consist of program specifications or formulas, since every
formula in the background theory can be encoded as a program specification over
the skip statement. As such, we directly introduce the following notion of semantic
consequence in Reynolds’ logic, without distinguishing the background theory from
the program theory.

Let Γ be a theory (a set of program specifications or formulas). We write
Γ |=RL {ϕ} S {ψ} to mean ⟨M,H⟩ |=RL {ϕ} S {ψ} for every spatial machine

4.3. STANDARD PROOF SYSTEM 95

model ⟨M,H⟩ such that ⟨M,H⟩ |=RL {ϕ′} S′ {ψ′} for each {ϕ′} S′ {ψ′} ∈ Γ. We
then say that the program specification {ϕ} S {ψ} is a semantic consequence of Γ.
For an empty theory, we simply write |=RL {ϕ} S {ψ} to mean that the program
specification is universally valid.

4.3 Standard proof system
The standard proof system of Reynolds’ logic RL is an extension of Hoare’s logic
HL (see Section B.4). Reynolds’ logic is an extension of Hoare’s logic, so we first
revisit the proof rules of Hoare’s logic.

If we would interpret the proof rules (axioms are proof rules without premises)
of HL under the intended interpretation of RL, being spatial machine models,
do they remain sound? Clearly, if we only consider the instances of the proof
rules where the formulas are restricted to pure formulas in separation logic, i.e.
those that are heap-independent, these proof rules remain sound also under our
new interpretation with respect to spatial machine models. This follows from the
fact that spatial machine models are extensions of logical machine models and as
such have the same conditions as logical machine models: the interpretation of the
basic assignment x := y is the same, and the access and change conditions are also
present.

But in Reynolds’ logic, we want to extend these rules to all formulas of separation
logic. The skip and halt axioms are easily shown sound, and so is the assignment
axiom. The rules concerning complex statements remain sound, since these do not
depend on the interpretation of formulas: their semantics is defined at the level
of states, which abstracts away from the particular logical structure (being either
valuations as in Hoare’s logic, or heaps and valuations in Reynolds’ logic).

What remains to be considered are the so-called adaptation rules.

• The consequence rule (conseq) is sound because

⟨M,A⟩JSK(AJϕ′KMSL) ⊆ AJψ′KMSL

follows from monotonicity of the semantics, and the fact that we have both
AJψ′KMSL ⊆ AJψKMSL and AJϕKMSL ⊆ AJϕ′KMSL.

• In the substitution rule (subst) we make use of the access lemma to take
any computation from {ϕ} S {ψ} and change the initial state with respect
to variable x that is not occurring in S to obtain another computation (the
variable x can then not be overwritten by S). This still works as before.
Further, the value to assign to x is the value of y, which must have the
same value in the initial and final state again due to the change lemma. The
specification then is satisfied by applying the substitution lemma on the
initial and final state. Since the substitution lemma also holds for separation
logic, this works out.

• The ∃-introduction rule (∃-intro) still follows from the access lemma, since
the value of x cannot have any effect on the computation of S nor influence
the denotation of ψ.

96 CHAPTER 4. REYNOLDS’ LOGIC

• However, the invariance rule (invar) no longer follows from the change lemma.
The problem is that the formula χ can be heap-dependent, whereas change(S)
only tracks variables and not locations on the heap. If S is effect-free, then it
does not change the heap and thus the formula remains invariant. Otherwise,
S is effectful and could thus affect (dynamic) parts of the heap on which the
formula χ depends. Concretely, we could take a program [x] := y that modifies
the location in x to become the value of y. However change([x] := y) is empty,
because none of the program variables change value after its execution. If we
take the (valid) program specification {(x ↪→ −)} [x] := y {true} as premise,
and we would take as invariant formula (x ↪→ z), then the resulting pro-
gram specification {(x ↪→ −) ∧ (x ↪→ z)} [x] := y {true ∧ (x ↪→ z)} no longer
is valid! Namely, take y and z to be different values in the initial state. No
variable is changed in the final state when compared to the initial state.
However, it no longer is the case that (x ↪→ z) holds in the final state, since
the location was modified.

Summarizing, in Reynolds’ logic we can have all proof rules of Hoare’s logic, also
extended to instances which have all formulas of separation logic, except for the
invariance rule: the invariance rule only remains sound for pure formulas χ.

Furthermore, in the standard proof system for Reynolds’ we have the following
proof rules [188]. The frame rule is introduced to fill up the gap left by the
invariance rule, allowing one to adapt local specifications to global specifications.
We first introduce RL−, and later give different sets of axioms to describe the
primitive operations of every pointer program.

Definition 4.3.1. The proof system RL− consists of:

• program specifications or formulas of separation logic as objects,

• the smallest deduction relation ⊢RL−
satisfying the conditions:

(skip) ⊢RL− {ϕ} skip {ϕ},
(halt) ⊢RL− {ϕ} halt {false},
(assign) ⊢RL− {ϕ[x := y]} x := y {ϕ},
(block) {ϕ[x⃗ := y⃗]} S {ψ} ⊢RL− {ϕ} begin local x⃗ := y⃗;S end {ψ}

if FV (ψ) ∩ x⃗ = ∅,
(comp) {ϕ} S1 {ψ}, {ψ} S2 {χ} ⊢RL− {ϕ} S1;S2 {χ},
(if) {ϕ ∧ χ} S1 {ψ}, {ϕ ∧ ¬χ} S2 {ψ} ⊢RL− {ϕ} if χ then S1 else S2 fi {ψ},
(while) {ϕ ∧ χ} S {ϕ} ⊢RL− {ϕ} while χ do S od {ϕ ∧ ¬χ},
(conseq) (ϕ′ → ϕ), {ϕ} S {ψ}, (ψ → ψ′) ⊢RL− {ϕ′} S {ψ′},
(subst) {ϕ} S {ψ} ⊢RL− {ϕ[x := y]} S {ψ[x := y]}

for x ̸∈ var(S), y ̸∈ change(S),

(invar) {ϕ} S {ψ} ⊢RL− {ϕ ∧ χ} S {ψ ∧ χ}
for either pure χ or effect-free S, FV (χ) ∩ change(S) = ∅,

4.3. STANDARD PROOF SYSTEM 97

(∃-intro) {ϕ} S {ψ} ⊢RL− {∃xϕ} S {ψ} for x ̸∈ var(S) ∪ FV (ψ),

(frame) {ϕ} S {ψ} ⊢RL− {ϕ ∗ χ} S {ψ ∗ χ} if FV (χ) ∩ change(S) = ∅.

Lemma 4.3.2 (Soundness).

Γ ⊢RL−
{ϕ} S {ψ} implies Γ |=RL {ϕ} S {ψ}.

Proof. By induction on the structure of the deduction. Most cases are already
discussed above, except the frame rule. The soundness of the frame rule goes along
the following lines, see also [230]. From the premise we know that Γ |=RL {ϕ} S {ψ}.
We thus know that the execution of S does not fail in a state that satisfies ϕ.
Due to the first frame lemma we know that, if we extend the initial heap with an
additional part, it does not lead to failure either. From the second frame lemma
we also know that the final state can be split again in the unaffected part of the
heap, in which the additional formula χ still holds as was assumed as part of the
semantics of the separating conjunction in the initial state.

Now consider the set of local axioms [188].

Definition 4.3.3. The set of local axioms is:

(lookup) ⊢ {(y 7→ z)} x := [y] {(x
.
= z) ∧ (y 7→ z)} where x ̸= y and z is fresh,

(lookup’) ⊢ {(x
.
= w) ∧ (x 7→ z)} x := [x] {(x

.
= z) ∧ (w 7→ z)} where z, w are fresh,

(mutation) ⊢ {(x 7→ −)} [x] := y {(x 7→ y)},

(allocation) ⊢ {emp} x := new(y) {(x 7→ y)} where x ̸= y,

(allocation’) ⊢ {(x
.
= z) ∧ emp} x := new(x) {(x 7→ z)} where z is fresh,

(deallocation) ⊢ {(x 7→ −)} delete(x) {emp}.

Lemma 4.3.4. The local axioms are sound with respect to MSL.

By applying the frame rule it becomes possible to extend some of these program
specifications to a global description of the heap.

Next, consider the set of global axioms [188].

Definition 4.3.5. The set of global axioms is:

(lookup) ⊢ {∃z. (y 7→ z) ∗ ϕ[w := x]} x := [y] {∃w. (y[x := w] 7→ x) ∗ ϕ[z := x]}
where z, w, x are distinct, z, w, y are distinct and x ̸∈ FV (ϕ),

(mutation) ⊢ {(x 7→ −) ∗ ϕ} [x] := y {(x 7→ y) ∗ ϕ},

(allocation) ⊢ {ϕ} x := new(y) {∃z. (x 7→ y[x := z]) ∗ ϕ[x := z]} where z is fresh,

(deallocation) ⊢ {(x 7→ −) ∗ ϕ} delete(x) {ϕ}.

Lemma 4.3.6. The global axioms are sound with respect to MSL.

98 CHAPTER 4. REYNOLDS’ LOGIC

There is also the set of backwards axioms [188], in the sense that these axioms
allow reasoning backwards from a given postcondition.

Definition 4.3.7. The set of backwards axioms is:

(assign) ⊢ {ϕ[x := y]} x := y {ϕ},

(lookup) ⊢ {∃z. (y ↪→ z) ∧ ϕ[x := z]} x := [y] {ϕ} where z is fresh,

(mutation) ⊢ {(x 7→ −) ∗ ((x 7→ y) −∗ ϕ)} [x] := y {ϕ},

(allocation) ⊢ {∀z. (z 7→ y) −∗ ϕ[x := z]} x := new(y) {ϕ} where z is fresh,

(deallocation) ⊢ {(x 7→ −) ∗ ϕ} delete(x) {ϕ}.

These backwards axioms also express the weakest precondition:

Lemma 4.3.8. The backwards axioms are sound with respect to MSL, and
describe the weakest precondition with respect to the given primitive operations and
postcondition.

And finally the set of forwards axioms [15], in the sense that these axioms allow
reasoning forwards from a given precondition.

Definition 4.3.9. The set of forwards axioms is:

(assign) ⊢ {ϕ} x := y {∃z. ϕ[x := z] ∧ (y[x := z]
.
= x)} where z is fresh,

(lookup) ⊢ {ϕ ∧ (y ↪→ −)} x := [y] {∃z. χ ∗ ¬(χ −∗ ¬ϕ[x := z])}
where χ = (y[x := z] 7→ x) and z is fresh,

(mutation) ⊢ {ϕ ∧ (x ↪→ −)} [x] := y {(x 7→ y) ∗ ¬((x 7→ −) −∗ ¬ϕ)},

(allocation) ⊢ {ϕ} x := new(y) {∃z. (x 7→ y[x := z]) ∗ ϕ[x := z]},

(deallocation) ⊢ {ϕ ∧ (x ↪→ −)} delete(x) {¬((x 7→ −) −∗ ¬ϕ)}.

Lemma 4.3.10. The forwards axioms are sound with respect to MSL, and
describe the strongest postcondition with respect to the given primitive operations
and precondition.

These forwards axioms also express the strongest postcondition with respect to
the given primitive operations and precondition, but note that we have additional
assumptions in the precondition that ensures absence of failure.

Finally, we observe that we have admissibility of the frame rule for pure pointer
programs in case we take the backwards axioms for the primitive operations. In pure
pointer programs, there are no other operations than the operations of assignment,
lookup, mutation, allocation and deallocation.

Lemma 4.3.11. The frame rule is admissible in the proof system RL− with the
backwards axioms, given that the background theory is maximally consistent.

4.3. STANDARD PROOF SYSTEM 99

Proof. Consider a deduction that makes use of the frame rule. The strategy is
to ‘push upward’ the instance of the frame rule to the top of the deduction, i.e.
where there is an axiom applied that is either (skip), (halt), (assign), or one of the
pointer program operations (lookup), (mutation), (allocation), (deallocation). For
these axioms, it can be verified that the conclusion of the frame rule is deducible
(from the empty context). We then have to analyze the adaptation rules, and the
structural rules.

For the adaptation rule, we illustrate the proof by showing how to push the
frame rule up the consequence rule. Consider the following deduction in which the
frame rule is applied directly after the consequence rule:

ϕ′ → ϕ
D

{ϕ} S {ψ} ψ → ψ′

{ϕ′} S {ψ′}
{ϕ′ ∗ χ} S {ψ′ ∗ χ}

It is our induction hypothesis that the frame rule is admissible for shorter deductions,
so from deduction D with conclusion {ϕ} S {ψ} we obtain deduction D′ with
conclusion {ϕ ∗ χ} S {ψ ∗ χ}. By then applying the consequence rule we obtain
the following deduction:

ϕ′ ∗ χ→ ϕ ∗ χ
D′

{ϕ ∗ χ} S {ψ ∗ χ} ψ ∗ χ→ ψ′ ∗ χ
{ϕ′ ∗ χ} S {ψ′ ∗ χ}

since we know ϕ′ → ϕ and ψ → ψ′ are in the background theory and the back-
ground theory is maximally consistent, the two remaining premises must be in the
background theory too. The remaining adaptation rules are similar.

For the structural rules, we illustrate how the proof goes by looking at sequential
composition. Consider that we have a deduction in which the frame rule is applied
directly following the sequential composition:

D1

{ϕ} S1 {ψ}
D2

{ψ} S2 {χ}
{ϕ} S1;S2 {χ}

{ϕ ∗ ξ} S1;S2 {χ ∗ ξ}

By induction hypothesis, we obtain from D1 and D2 two deductions D′
1 and D′

2 with
respectively conclusions {ϕ ∗ ξ} S1 {ψ ∗ ξ} and {ψ ∗ ξ} S2 {χ ∗ ξ}. Note that the
changed variables of the smaller programs are contained in the changed variables of
the sequential composition, so the frame rule would be applicable. We then obtain
the following deduction:

D′
1

{ϕ ∗ ξ} S1 {ψ ∗ ξ}
D′

2

{ψ ∗ ξ} S2 {χ ∗ ξ}
{ϕ ∗ ξ} S1;S2 {χ ∗ ξ}

100 CHAPTER 4. REYNOLDS’ LOGIC

which finishes this case. The remaining structural cases are similar. For the while
and if rules, one also needs the equivalence (ϕ ∧ χ) ∗ ψ ≡ (ϕ ∗ ψ) ∧ χ, which holds
since χ is a pure quantifier-free formula.

Note that it is an open problem whether the proof above may be adapted to
the setting of recursive procedures, with or without parameters (see also the Ph.D.
thesis of Al Ameen [6]). Although intuitively we can ‘push’ the frame rule through
the assumptions about each procedure call, this may result in an infinite amount
of assumptions obtained that way and it is not obvious whether this infinite set
of assumptions is compact, in the sense that all consequences can also be derived
from a finite subset of these infinite assumptions without using the frame rule.

4.4 Dynamic separation logic

We have now seen different axiomatizations of the primitive operations of all
pointer programs. In particular, it can be observed that in the backwards and
forwards sets of axioms, we do not systematically analyze the structure of the given
postcondition or precondition. For example, in the mutation axiom of the backwards
set, the given postcondition is simply verbatim part of the weakest precondition.
Furthermore, the axioms for (mutation), (allocation) and (deallocation) all increase
the complexity of the generated formula as measured by their number of nested
separating connectives. Thus, even starting with a first-order formula, the resulting
generated formula necessarily is a formula of separation logic. This is contrary to
how, e.g., the (assign) axioms work in backwards and forwards, and the (lookup)
axiom works in backwards, which perform a substitution to perform a structural
analysis of the given postcondition, and do not introduce additional separating
connectives.

This raises the questions: are there alternative ways to axiomatize these oper-
ations? In particular, is there a way to axiomatize (mutation), (allocation) and
(deallocation) so that the structure of the given postcondition is analyzed, akin
to a substitution operator? Can we give weakest preconditions and strongest
postconditions without increasing the nesting depth of separating connectives?

To answer these questions, we introduce in our assertion language an additional
program modality for each statement S, which has highest binding priority, denoted
as [S]p. This extended language is called dynamic separation logic (DSL), and as
such the syntax of dynamic separation logic becomes:

p, q ::= . . . | [S]p

We shall use the Roman letters p, q to stand for formulas of DSL, whereas we use
the Greek letters ϕ, ψ to stand for formulas of separation logic. Note that in case
of the assignment x := y the program modality [x := y]ϕ is different from the
(capture-avoiding) substitution operator ϕ[x := y], since the former is a formula
of our extended language, whereas the latter is a meta-operation defined on the
separation logic formula ϕ.

4.4. DYNAMIC SEPARATION LOGIC 101

We also extend the semantics of separation logic to interpret the additional
program modalities. The intended semantics of dynamic separation logic extends
the semantics of separation logic by interpreting the modality [S]p as expressing
the weakest precondition of statement S with postcondition p:

• ...

• ⟨M,H⟩, h, ρ |=DSL [S]p iff (S, h, ρ) −̸↠ fail and ⟨M,H⟩, h′, ρ′ |= p for all
h′, s′ such that (S, h, ρ) −↠ (✓, h′, ρ′).

Note that to give semantics to formulas of dynamic separation logic, we need to
interpret the formulas with respect to a fixed spatial machine model ⟨M,H⟩, which
itself depends on a memory structure H = (A, H), with an underlying structure A
and memory model H, which is the same memory structure with which we evaluate
the formula of dynamic separation logic. This also explains the need for the effect
condition on spatial machine models, since we need the resulting heap h′ in every
final configuration to be in the set of heaps H. Since h′ is a finite distance from h,
and we know that memory models are closed under the operations of heap update
and heap clear, we know that h′ must be in the memory model too.

Extending Reynolds’ logic to also include formulas of dynamic separation logic
in its program specifications, it is not difficult to see that we have that

|= {[S]p} S {p}

holds, and |= {p} S {q} implies |=DSL p→ [S]q, that is, [S]q indeed expresses the
weakest precondition of statement S and postcondition q.

In dynamic logic axioms are introduced to simplify formulas in which modalities
occur. We have the following basic equivalences E1-3 for assignments.

Lemma 4.4.1 (Assignment). Let the statement S be the assignment x := y.

[S]false ≡ false (E1)
[S](p ◦ q) ≡ [S]p ◦ [S]q (E2)
[S](∀zp) ≡ ∀z([S]p) (E3)

[S]b ≡ b[S] (E4)

In E2 we have that ◦ stands for the binary connectives →, ∗, −∗.
In E3 we assume that z is not equal to x or y.
In E4 we have that b is either (z1

.
= z2), C(z1, . . . , zn), or (z1 ↪→ z2).

The proofs of these equivalences for [x := y]p proceed by a straightforward
induction on the structure of p. The base cases of logical equality, predicates, and
the weak ‘points to’ construct are handled by a straightforward extension of the
substitution lemma of separation logic. In fact, for assignments, by E4 as base case
and E1-3 for the inductive cases, we have for any formula of separation logic ϕ,

[x := y]ϕ ≡ ϕ[x := y],

102 CHAPTER 4. REYNOLDS’ LOGIC

where the latter is the (capture-avoiding) substitution operator. The reason we
present the axioms E1-4 in the way it is done above, is because we want to analyze
what happens when we take different statements in the place of S: do these axioms
then still hold?

The above equivalences E1-3 do not hold in general for the other primitive
operations of pointer programs. Let x, y be distinct variables. For example,

[x := [y]]false ≡ ¬(y ↪→ −),

showing that lookup fails E1. For allocation, we do have

[x := new(y)]false ≡ false,

but [x := new(y)](x ̸ .= y) is not equivalent to ¬([x := new(y)](x
.
= y)), since

[x := new(y)](x ̸ .= y) ≡ (y ↪→ −),

because to end up in a final state where x ̸ .= y we need to have that y is already
allocated in the initial state, whereas

[x := new(y)](x
.
= y) ≡ ∀z. ((z ̸↪→ −) → z

.
= y),

which forces the only free location to be y. But then it is also the case that
¬([x := new(y)](x

.
= y)) expresses that (z ̸↪→ −) for some z ̸ .= y. So this shows

allocation fails E2. Similar examples exists for the other primitive operations.
We now introduce new primitive operations, separate from pointer programs,

called pseudo-operations. These pseudo-operations are not part of pointer programs,
but we can give them semantics in the usual way through an operationalization.
We have the pseudo-operation

⟨x⟩ := e

called heap update, and
⟨x⟩ := ⊥

called heap clear. These pseudo-operations could be described by the following
small-step transitions:

(⟨x⟩ := y, h, ρ) −→ (✓, h[ρ(x) := ρ(y)], ρ)

(⟨x⟩ := ⊥, h, ρ) −→ (✓, h[ρ(x) :=⊥], ρ)

In contrast to the mutation and deallocation operations, these pseudo-operations
do not require that ρ(x) ∈ dom(h), e.g., if ρ(x) ̸∈ dom(h) then the heap update
⟨x⟩ := y extends the domain of the heap, whereas mutation [x] := y leads to failure
in that case.

It is now crucial to observe that these are pseudo-operations, precisely because
they fail the frame condition. As such, these operations can never occur in a spatial
machine model, which requires the frame condition to hold for all operations.
Before, we could establish the footprint of a pointer program simply by running a

4.4. DYNAMIC SEPARATION LOGIC 103

program on a small heap: if the program would lead to failure, then the location
that was missing from the initial heap necessarily is in the footprint. However,
these pseudo-operations never fail. Hence these cannot be used to determine the
footprint of a program.

That the pseudo-operations do not satisfy the frame condition can best be seen
by considering why the frame rule (in a hypothetical situation where we let the
pseudo-operations in the place of a statement) would become unsound. Clearly, we
have that

|= {emp} ⟨x⟩ := y {(x 7→ y)}
holds. However, the conclusion of the frame rule fails:

̸|= {emp ∗ (x 7→ y)} ⟨x⟩ := y {(x 7→ y) ∗ (x 7→ y)}

because the initial state is satisfiable (there surely is a heap in which only the
location x is allocated and has value y), and the execution successfully terminates
(the pseudo-operations never lead to failure). But, the final state does not satisfy
(x 7→ y) ∗ (x 7→ y) because that formula is equivalent to false.

Strictly speaking, we thus consider not only the modality [S]ϕ where S is given
semantics by a spatial machine model, but also consider modalities over these two
pseudo-operations: [⟨x⟩ := y]ϕ and [⟨x⟩ := ⊥]ϕ.

The above equivalences E1-3, with E2 restricted to the (standard) logical
connectives, do hold for the pseudo-operations.

In the following lemma we give an axiomatization in dynamic separation logic
of the primitive operations in terms of simple assignments and these two pseudo-
operations. For comparison we also give the standard backwards axiomatization
[188, 81, 15].

Lemma 4.4.2 (Axioms basic instructions).

[x := [e]]p ≡ ∃y((e ↪→ y) ∧ [x := y]p), (E5)

[[x] := e]p ≡
{

(x ↪→ −) ∧ [⟨x⟩ := e]p
(x 7→ −) ∗ ((x 7→ e) −∗ p) (E6)

[x := new(e)]p ≡
{

∀x((x ̸↪→ −) → [⟨x⟩ := e]p)
∀x((x 7→ e) −∗ p) (E7)

[delete(x)]p ≡
{

(x ↪→ −) ∧ [⟨x⟩ := ⊥]p
(x 7→ −) ∗ p (E8)

We require in the axiom for x := new(e) that x does not appear in e, for technical
convenience.

In the sequel E5-8 refer to the corresponding dynamic separation logic equiv-
alences. The proofs of these equivalences are straightforward (consist simply of
expanding the semantics of the involved modalities) and therefore omitted.

We have the following separation logic axiomatization of the heap update and
heap clear pseudo-operations.

[⟨x⟩ := e]p ≡ ((x 7→ −) ∗ ((x 7→ e) −∗ p)) ∨ ((x ↪̸→ −) ∧ ((x 7→ e) −∗ p))
[⟨x⟩ := ⊥]p ≡ ((x 7→ −) ∗ p) ∨ ((x ↪̸→ −) ∧ p)

104 CHAPTER 4. REYNOLDS’ LOGIC

This axiomatization thus requires a case distinction between whether or not x is
allocated.

Note that, letting p be any formula in separation logic ϕ, we have that [x := y]ϕ
in E5 reduces to ϕ[x := y] by E1-4. As such, it is possible to eliminate the
modality, in the case of the assignment and lookup instructions.

We now want to eliminate the modalities for the heap update and heap clear
instructions compositionally in terms of p, because such an elimination would also
allow us to eliminate the modalities of the other instructions. What thus remains
for a complete axiomatization is a characterization of [S]b, [S](e ↪→ e′), [S](p ∗ q),
and [S](p −∗ q), where S denotes one of the two pseudo-instructions. Lemma 4.4.3
provides an axiomatization in DSL of a heap update.

Lemma 4.4.3 (Heap update). We have the following equivalences for the heap
update modality.

[⟨x⟩ := e]b ≡ b, (E9)
[⟨x⟩ := e](e′ ↪→ e′′) ≡ (x = e′ ∧ e′′ = e) ∨ (x ̸= e′ ∧ e′ ↪→ e′′), (E10)

[⟨x⟩ := e](p ∗ q) ≡ ([⟨x⟩ := e]p ∗ q′) ∨ (p′ ∗ [⟨x⟩ := e]q), (E11)
[⟨x⟩ := e](p −∗ q) ≡ p′ −∗ [⟨x⟩ := e]q, (E12)

where p′ abbreviates p ∧ (x ̸↪→ −) and, similarly, q′ abbreviates q ∧ (x ̸↪→ −).

These equivalences we can informally explain as follows. Since the heap update
⟨x⟩ := e does not affect the store, and the evaluation of a Boolean condition b only
depends on the store, we have that ([⟨x⟩ := e]b) ≡ b.

Predicting whether (e′ ↪→ e′′) holds after ⟨x⟩ := e, we only need to make a
distinction between whether x and e′ are aliases, that is, whether they denote the
same location, which is simply expressed by x = e′. If x = e′ then e′′ = e should
hold, otherwise (e′ ↪→ e′′) (note again, that ⟨x⟩ := e does not affect the values of
the expressions e, e′ and e′′). As a basic example, we compute

[⟨x⟩ := e](y ↪→ −) ≡ (definition y ↪→ −)
[⟨x⟩ := e]∃z(y ↪→ z) ≡ (E3)
∃z[⟨x⟩ := e](y ↪→ z) ≡ (E10)
∃z((y = x ∧ e = z) ∨ (y ̸= x ∧ (y ↪→ z))) ≡ (semantics SL)
y ̸= x→ (y ↪→ −)

We use this derived equivalence in the following example:

[⟨x⟩ := e](y 7→ −) ≡ (definition y 7→ −)
[⟨x⟩ := e]((y ↪→ −) ∧ ∀z((z ↪→ −) → z = y)) ≡ (E2, E3, E9)
[⟨x⟩ := e](y ↪→ −) ∧ ∀z([⟨x⟩ := e](z ↪→ −) → z = y) ≡ (see above)
(y ̸= x→ (y ↪→ −)) ∧ ∀z((z ̸= x→ (z ↪→ −)) → z = y) ≡ (semantics SL)
y = x ∧ (emp ∨ (x 7→ −))

Predicting whether (p ∗ q) holds after the heap update ⟨x⟩ := e, we need
to distinguish between whether p or q holds for the sub-heap that contains the

4.4. DYNAMIC SEPARATION LOGIC 105

(updated) location x. Since we do not assume that x is already allocated, we
instead distinguish between whether p or q holds initially for the sub-heap that
does not contain the updated location x. As a simple example, we compute

[⟨x⟩ := e](true ∗ (x 7→ −)) ≡ (E9,E11)
(true ∗ ((x 7→ −) ∧ (x ̸↪→ −))) ∨ ((x ̸↪→ −) ∗ [⟨x⟩ := e](x 7→ −) ≡ (see above)
(true ∗ ((x 7→ −) ∧ (x ̸↪→ −))) ∨ ((x ̸↪→ −) ∗ (emp ∨ (x 7→ −))) ≡ (semantics SL)
(true ∗ false) ∨ ((x ̸↪→ −) ∗ (emp ∨ (x 7→ −))) ≡ (semantics SL)
true

Note that this coincides with the above calculation of [⟨x⟩ := e](y ↪→ −), which
also reduces to true, instantiating y by x.

The semantics of (p −∗ q) after the heap update ⟨x⟩ := e involves universal
quantification over all disjoint heaps that do not contain x (because after the
heap update x is allocated). Therefore we simply add the condition that x is not
allocated to p, and apply the heap update to q. As a very basic example, we
compute

[⟨x⟩ := 0]((y ↪→ 1) −∗ (y ↪→ 1)) ≡ (E12)
((y 7→ 1) ∧ (x ̸↪→ −)) −∗ [⟨x⟩ := 0](y ↪→ 1)) ≡ (E10)
((y 7→ 1) ∧ (x ̸↪→ −)) −∗ ((y = x ∧ 0 = 1) ∨ (y ̸= x ∧ y ↪→ 1)) ≡ (semantics SL)
true

Note that (y ↪→ 1) −∗ (y ↪→ 1) ≡ true and [⟨x⟩ := 0]true ≡ true.

Proof of Lemma 4.4.3.

E9 h, s |= [⟨x⟩ := e]b
iff (semantics heap update modality)
h[s(x) := s(e)], s |= b
iff (b does not depend on the heap)
h, s |= b

E10 h, s |= [⟨x⟩ := e](e′ ↪→ e′′)
iff (semantics heap update modality)
h[s(x) := s(e)], s |= e′ ↪→ e′′

iff (semantics points-to)
h[s(x) := s(e)](s(e′)) = s(e′′)
iff (definition h[s(x) := s(e)])
if s(x) = s(e′) then s(e) = s(e′′) else h(s(e′)) = s(e′′)
iff (semantics assertions)
h, s |= (x = e′ ∧ e′′ = e) ∨ (x ̸= e′ ∧ e′ ↪→ e′′)

E11 h, s |= [⟨x⟩ := e](p ∗ q)
iff (semantics heap update modality)
h[s(x) := s(e)], s |= p ∗ q.
From here we proceed as follows. By the semantics of separating conjunction,

106 CHAPTER 4. REYNOLDS’ LOGIC

there exist h1 and h2 such that h[s(x) := s(e)] = h1 ⊎ h2, h1, s |= p, and
h2, s |= q. Let s(x) ∈ dom(h1) (the other case runs similarly). So h[s(x) :=
s(e)] = h1 ⊎ h2 implies h1(s(x)) = s(e) and h = h1[s(x) := h(x)] ⊎ h2, By
the semantics of the heap update modality, h1(s(x)) = s(e) and h1, s |= p
implies h1[s(x) := h(x)], s |= [⟨x⟩ := e]p. Since s(x) ̸∈ dom(h2), we have
h2, s |= q ∧ x ̸↪→ −. By the semantics of separation conjunction we conclude
that h, s |= [⟨x⟩ := e]p ∗ q′ (q′ denotes q ∧ x ̸↪→ −).

In the other direction, from h, s |= [⟨x⟩ := e]p ∗ q′ (the other case runs
similarly) we derive that there exist h1 and h2 such that h = h1 ⊎ h2, h1, s |=
[⟨x⟩ := e]p and h2, s |= q′. By the semantics of the heap update modality
it follows that h1[s(x) := s(e)], s |= p. Since s(x) ̸∈ dom(h2), we have that
h[s(x) := s(e)] = h1[s(x) := s(e)] ⊎ h2, and so h[s(x) := s(e)], s |= p ∗ q, that
is, h, s |= [⟨x⟩ := e](p ∗ q).

E12 h, s |= [⟨x⟩ := e](p −∗ q)
iff (semantics of heap update modality)
h[s(x) := s(e)], s |= p −∗ q
iff (semantics separating implication)
for every h′ disjoint from h[s(x) := s(e)]: if h′, s |= p then h[s(x) := s(e)] ⊎
h′, s |= q
iff (since s(x) ̸∈ dom(h′))
for every h′ disjoint from h: if h′, s |= p ∧ x ̸↪→ − then (h ⊎ h′)[s(x) :=
s(e)], s |= q
iff (semantics of heap update modality)
for every h′ disjoint from h: if h′, s |= p∧x ̸↪→ − then h⊎h′, s |= [s(x) := s(e)]q
iff (semantics separating implication)
h, s |= (p ∧ x ̸↪→ −) −∗ [⟨x⟩ := e]q. □

The equivalences for the heap clear modality in the following lemma can be
informally explained as follows. Since ⟨x⟩ := ⊥ does not affect the store, and
the evaluation of a Boolean condition b only depends on the store, we have that
b[⟨x⟩ := ⊥] = b. For e ↪→ e′ to hold after executing ⟨x⟩ := ⊥, we must initially
have that x ̸= e and e ↪→ e′. As a simple example, we have that ∀y, z(y ̸↪→ z)
characterizes the empty heap. It follows that [⟨x⟩ := ⊥](∀y, z(y ̸↪→ z)) is equivalent
to ∀y, z(¬(y ̸= x ∧ y ↪→ z)). The latter first-order formula is equivalent to
∀y, z(y = x ∨ y ̸↪→ z). This assertion thus states that the domain consists at most
of the location x, which indeed ensures that after ⟨x⟩ := ⊥ the heap is empty. To
ensure that p ∗ q holds after clearing x it suffices to show that the initial heap can
be split such that both p and q hold in their respective sub-heaps with x cleared.
The semantics of p −∗ q after clearing x involves universal quantification over all
disjoint heaps that do may contain x, whereas before executing ⟨x⟩ := ⊥ it involves
universal quantification over all disjoint heaps that do not contain x, in case x is
allocated initially. To formalize in the initial configuration universal quantification
over all disjoint heaps we distinguish between all disjoint heaps that do not contain
x and simulate all disjoint heaps that contain x by interpreting both p and q in
p −∗ q in the context of heap updates ⟨x⟩ := y with arbitrary values y for the

4.4. DYNAMIC SEPARATION LOGIC 107

location x.
As a very basic example, consider [⟨x⟩ := ⊥]((x ↪→ 0) −∗ (x ↪→ 0)), which should

be equivalent to true. The left conjunct ((x ↪→ 0) ∧ (x ̸↪→ −)) −∗ [⟨x⟩ := ⊥](x ↪→
0)) of the resulting formula after applying E16 is equivalent to true (because
(x ↪→ 0) ∧ (x ̸↪→ −) is equivalent to false). We compute the second conjunct (in
the application of E10 we omitted some trivial reasoning steps):

∀y([⟨x⟩ := y](x ↪→ 0) −∗ [⟨x⟩ := y](x ↪→ 0) ≡ (E10)
∀y(y = 0 −∗ y = 0) ≡ (semantics SL)
true

Lemma 4.4.4 (Heap clear). We have the following equivalences for the heap clear
modality.

[⟨x⟩ := ⊥]b ≡ b, (E13)
[⟨x⟩ := ⊥](e ↪→ e′) ≡ (x ̸= e) ∧ (e ↪→ e′), (E14)

[⟨x⟩ := ⊥](p ∗ q) ≡ [⟨x⟩ := ⊥]p ∗ [⟨x⟩ := ⊥]q, (E15)

[⟨x⟩ := ⊥](p −∗ q) ≡ ((p ∧ x ̸↪→ −) −∗ [⟨x⟩ := ⊥]q) ∧
∀y([⟨x⟩ := y]p −∗ [⟨x⟩ := y]q),

(E16)

where y is fresh.

Proof. Here we go.

E13 [⟨x⟩ := ⊥]b ≡ b. As above, it suffices to observe that the evaluation of b does
not depend on the heap.

E14 h, s |= [⟨x⟩ := ⊥](e ↪→ e′)
iff (semantics heap clear modality)
h[⟨s(x)⟩ := ⊥], s |= e ↪→ e′

iff (semantics points-to)
s(e) ∈ dom(h[⟨s(x)⟩ := ⊥]) and h[⟨s(x)⟩ := ⊥](s(e)) = h(s(e)) = s(e′)
iff (semantics assertions)
h, s |= x ̸= e ∧ e ↪→ e′

E15 h, s |= [⟨x⟩ := ⊥](p ∗ q)
iff (semantics heap clear modality)
h[⟨s(x)⟩ := ⊥], s |= p ∗ q
iff (semantics separating conjunction)
h1, s |= p and h2, s |= q, for some h1, h2 such that h[⟨s(x)⟩ := ⊥] = h1 ⊎ h2
iff (semantics heap clear modality)
h1, s |= [⟨x⟩ := ⊥]p and h2, s |= [⟨x⟩ := ⊥]q, for some h1, h2 such that
h = h1 ⊎ h2.
Note: h = h1 ⊎ h2 implies h[⟨s(x)⟩ := ⊥] = h1[⟨s(x)⟩ := ⊥] ⊎ h2[⟨s(x)⟩ := ⊥],
and, conversely, h[⟨s(x)⟩ := ⊥] = h1 ⊎ h2 implies there exists h′1, h′2 such that
h = h′1 ⊎ h′2 and h1 = h′1[⟨s(x)⟩ := ⊥] and h2 = h′2[⟨s(x)⟩ := ⊥].

108 CHAPTER 4. REYNOLDS’ LOGIC

E16 h, s |= [⟨x⟩ := ⊥](p −∗ q)
iff (semantics heap clear modality)
h[s(x) :=⊥], s |= p −∗ q.
From here we proceed as follows. First we show that h, s |= ((p ∧ x ̸↪→ −) −∗
[⟨x⟩ := ⊥]q) and h, s |= ∀y([⟨x⟩ := y]p −∗ [⟨x⟩ := y]q) implies h[s(x) :=⊥
], s |= p −∗ q. Let h′ be disjoint from h[s(x) :=⊥] and h′, s |= p. We have to
show that h[s(x) :=⊥] ⊎ h′, s |= q. We distinguish the following two cases.

• First, let s(x) ∈ dom(h′). We then introduce s′ = s[y := h′(s(x))]. We
have h′, s′ |= p (since y does not occur in p), so it follows by the semantics
of the heap update modality that h′[s(x) := ⊥], s′ |= [⟨x⟩ := y]p. Since
h′[s(x) := ⊥] and h are disjoint (which clearly follows from that h′ and
h[s(x) := ⊥] are disjoint), and since h, s′ |= [⟨x⟩ := y]p −∗ [⟨x⟩ := y]q,
we have that h ⊎ (h′[s(x) := ⊥]), s′ |= [⟨x⟩ := y]q. Applying again
the semantics of the heap update modality, we obtain (h ⊎ (h′[s(x) :=
⊥]))[s(x) := s′(y)], s′ |= q. We then can conclude this case observing
that y does not occur in q and that h[s(x) := ⊥] ⊎ h′ = (h ⊎ (h′[s(x) :=
⊥]))[s(x) := s′(y)].

• Next, let s(x) ̸∈ dom(h′). So h′ and h are disjoint, and thus (since
h, s |= (p ∧ x ̸↪→ −) −∗ [⟨x⟩ := ⊥]q) we have h ⊎ h′, s |= [⟨x⟩ := ⊥]q.
From which we derive (h ⊎ h′)[s(x) := ⊥], s |= q by the induction
hypothesis. We then can conclude this case by the observation that
h[s(x) := ⊥] ⊎ h′ = (h ⊎ h′)[s(x) := ⊥].

Conversely, assuming h[s(x) := ⊥], s |= p −∗ q, we first show that h, s |=
(p ∧ x ̸↪→ −) −∗ [⟨x⟩ := ⊥]q and then h, s |= ∀y([⟨x⟩ := y]p −∗ [⟨x⟩ := y]q).

• Let h′ be disjoint from h and h′, s |= p ∧ x ̸↪→ −. We have to show
that h ⊎ h′, s |= [⟨x⟩ := ⊥]q, that is, (h ⊎ h′)[s(x) :=⊥], s |= q (by the
semantics of the heap clear update). Clearly, h[s(x) := ⊥] and h′ are
disjoint, and so h[s(x) := ⊥] ⊎ h′, s |= q follows from our assumption.
We then can conclude this case by the observation that (h ⊎ h′)[s(x) :=
⊥] = h[s(x) := ⊥] ⊎ h′, because s(x) ̸∈ dom(h′).

• Let h′ be disjoint from h and s′ = s[y := n], for some n such that
h′, s′ |= [⟨x⟩ := y]p. We have to show that h ⊎ h′, s′ |= [⟨x⟩ := y]q. By
the semantics of the heap update modality it follows that h′[s(x) :=
n], s′ |= p, that is, h′[s(x) := n], s |= p (since y does not occur in p).
Since h′[s(x) := n] and h[s(x) := ⊥] are disjoint, we derive from the
assumption h[s(x) := ⊥], s |= p −∗ q that h[s(x) := ⊥] ⊎ h′[s(x) :=
n], s |= q. Again by the semantics of the heap update modality we
have that h ⊎ h′, s′ |= [⟨x⟩ := y]q iff (h ⊎ h′)[s(x) := n], s′ |= q (that
is, (h ⊎ h′)[s(x) := n], s |= q, because y does not occur in q). We then
can conclude this case by the observation that (h ⊎ h′)[s(x) := n] =
h[s(x) := ⊥] ⊎ h′[s(x) := n].

We denote by E the rewrite system obtained from the equivalences E1-16 by
orienting these equivalences from left to right, e.g., equivalence E1 is turned into

4.4. DYNAMIC SEPARATION LOGIC 109

a rewrite rule [S]false ⇒ false. The following theorem states that the rewrite
system E is complete, that is, confluent and strongly normalizing. Its proof is
straightforward (using standard techniques) and therefore omitted.

Theorem 4.4.5 (Completeness of E).

• Normal form. Every standard formula of separation logic is in normal form
(which means that it cannot be reduced by the rewrite system E).

• Local confluence. For any two reductions p⇒ q1 and p⇒ q2 (p a formula
of DSL) there exists a DSL formula q such that q1 ⇒ q and q2 ⇒ q.

• Termination. There does not exist an infinite chain of reductions p1 ⇒
p2 ⇒ p3 ⇒ · · · .

We now show an example of the interplay between the modalities for heap
update and heap clear. We want to derive

{∀x((x ̸↪→ −) → p)} x := new(0);delete(x) {p}

where statement x := new(0);delete(x) simulates the so-called random assignment
[107]: the program terminates with a value of x that is chosen non-deterministically.
First we apply the axiom E8 for de-allocation to obtain

{(x ↪→ −) ∧ [⟨x⟩ := ⊥]p} delete(x) {p}.

Next, we apply the axiom E8 for allocation to obtain

{∀x((x ↪̸→ −) → [⟨x⟩ := 0]((x ↪→ −) ∧ [⟨x⟩ := ⊥]p))}
x := new(0)

{(x ↪→ −) ∧ [⟨x⟩ := ⊥]p}.

Applying E10 (after pushing the heap update modality inside), followed by some
basic first-order reasoning, we can reduce [⟨x⟩ := 0](∃y(x ↪→ y)) to true. So we
obtain

{∀x((x ↪̸→ −) → [⟨x⟩ := 0][⟨x⟩ := ⊥]p)}
x := new(0)

{(x ↪→ −) ∧ [⟨x⟩ := ⊥]p}.
In order to proceed we formalize the interplay between the modalities for heap
update and heap clear by the following general equivalence:

[⟨x⟩ := e][⟨x⟩ := ⊥]p ≡ [⟨x⟩ := ⊥]p

We then complete the proof by applying the sequential composition rule and
consequence rule, using the above equivalence and the following axiomatization of
the heap clear modality:

(x ̸↪→ −) ∧ [⟨x⟩ := ⊥]p ≡ (x ̸↪→ −) ∧ p

Now it is possible to define meta-operations on formulas of separation logic ϕ.

110 CHAPTER 4. REYNOLDS’ LOGIC

Definition 4.4.6. We define the meta-operations ϕ[⟨x⟩ := y] and ϕ[⟨x⟩ := ⊥]:

ϕ[⟨x⟩ := y] = [⟨x⟩ := y]ϕ,

and
ϕ[⟨x⟩ := ⊥] = [⟨x⟩ := ⊥]ϕ.

Note that due to Theorem 4.4.5, we can completely eliminate the modality
when it is applied to a formula of separation logic. Hence the resulting formulas are
again formulas of separation logic, and no longer in the extended language of DSL.

The above axiomatization can be extended in the standard manner to a program
logic for sequential while programs, see [107], which does not require the frame rule,
nor any other adaptation rule besides the consequence rule. For recursive programs
however one does need more adaptation rules: a further discussion about the use
of the frame rule in a relative completeness proof for recursive pointer programs is
outside the scope of this thesis, and left for future work.

4.5 Alternative axiomatizations

Based on the heap update and heap clear pseudo-instructions of the previous section,
we can give two alternative axiomatizations of Reynolds’ logic. It is remarkable
that these alternative axiomatizations can be proven to be also the weakest precon-
ditions, respectively strongest postconditions, of the primitive operations of pointer
programs.

Definition 4.5.1. The set of alt-backwards axioms is:

(assign) ⊢ {p[x := y]} x := y {p},

(lookup) ⊢ {∃z((y ↪→ z) ∧ ϕ[x := z])} x := [y] {ϕ} where z is fresh,

(mutation) ⊢ {(x ↪→ −) ∧ ϕ[⟨x⟩ := y]} [x] := y {ϕ},

(allocation) ⊢ {∀x((x ̸↪→ −) → ϕ[⟨x⟩ := y])} x := new(y) {ϕ} where x ̸= y,

(deallocation) ⊢ {(x ↪→ −) ∧ ϕ[⟨x⟩ := ⊥]} delete(x) {ϕ}.

These alternative backwards axioms also express the weakest precondition:

Lemma 4.5.2. The alt-backwards axioms are sound with respect to MSL, and
describe the weakest precondition with respect to the given primitive operations and
postcondition.

We can also give the set of alt-forwards axioms, in the sense that these axioms
allow reasoning forwards from a given precondition.

4.5. ALTERNATIVE AXIOMATIZATIONS 111

Definition 4.5.3. The set of alt-forwards axioms is:

(assign) ⊢ {ϕ} x := y {∃z(ϕ[x := z] ∧ y[x := z] = x)},

(lookup) ⊢ {(y ↪→ −) ∧ ϕ} x := [y] {∃z(ϕ[x := z] ∧ y[x := z] ↪→ x)},

(mutation) ⊢ {(x ↪→ −) ∧ ϕ} [x] := y {(∃z(ϕ[⟨x⟩ := z])) ∧ (x ↪→ y)},

(allocation) ⊢ {ϕ} x := new(y) {(∃z(ϕ[x := z]))[⟨x⟩ := ⊥] ∧ (x ↪→ y)},

(deallocation) ⊢ {(x ↪→ −) ∧ ϕ} delete(x) {∃z(ϕ[⟨x⟩ := z]) ∧ (x ̸↪→ −)},

where z is fresh.

Lemma 4.5.4. The alt-forwards axioms are sound with respect to MSL, and
describe the strongest postcondition with respect to the given primitive operations
and precondition.

Another application of the modality for the heap update and heap clear pseudo-
instructions is that we are able to prove the completeness of the local axioms of
Reynolds’ logic and the frame rule, without employing the separating implication
as the invariant formula.

Theorem 4.5.5 (Completeness local axioms). For any primitive pointer operation
S, if |= {p} S {q} then {ϕ} S {ψ} is derivable from the local axioms and the frame
rule, the consequence rule, and the invariance rule for basic assignment and look-up.

Proof. Let |= {ϕ} S {ψ}.

Basic assignment By the invariance rule for basic assignments, we first derive

{true ∧ ∃x(ϕ)} x := e {x = e ∧ ∃x(ϕ)}

Clearly, ϕ implies ∃x(ϕ). Let h, s |= x = e, that is, s(x) = s(e), and h, s[x :=
n] |= ϕ, for some n. From the assumption |= {ϕ} x := e {ψ} we then derive
h, s[x := s[x := n](e)] |= ψ, that is, h, s |= ψ (since s[x := n](e) = s(e) = s(x)).

Look-up By the restricted invariance rule, we first derive

{∃x(ϕ) ∧ (e ↪→ −)} x := [e] {∃x(ϕ) ∧ (e ↪→ x)}

Since |= {ϕ} x := [e] {ψ}, we have that ϕ implies e ↪→ −, and so ϕ implies ∃x(ϕ) ∧
(e ↪→ −). On the other hand, let h(s(e)) = s(x) and h, s′ |= ϕ, where s′ = s[x := n],
for some n. From the assumption |= {ϕ} x := [e] {ψ} we then derive h, s[x :=
h(s′(e))] |= ψ, that is, h, s |= ψ (since x does not occur in e and h(s(e)) = s(x), we
have that s[x := h(s′(e))] = s[x := h(s(e))] = s).

112 CHAPTER 4. REYNOLDS’ LOGIC

Mutation Let ϕ′ denote ∃y(ϕ[⟨x⟩ := y]). By the frame rule, we first derive

{(x 7→ −) ∗ ϕ′} [x] := e {(x 7→ e) ∗ ϕ′}

Let h, s |= ϕ. We show that h, s |= (x 7→ −) ∗ ϕ′: Since |= {ϕ} [x] := e {ψ}
we have that s(x) ∈ dom(h). So we can introduce the split h = h1 ⊎ h2 such
that h1, s |= x 7→ − and h2 = h[s(x) :=⊥]. By the above substitution lemma
it then suffices to observe that h2, s[y := h(s(x))] |= ϕ[⟨x⟩ := y] if and only if
h2[s(x) := h(s(x))], s |= ϕ (y does not appear in ϕ), that is, h, s |= ϕ. On the
other hand, we have that (x 7→ e) ∗ ϕ′ implies ψ: Let h, s |= (x 7→ e) ∗ ϕ′. So
there exists a split h = h1 ⊎ h2 such that h1, s |= x 7→ e and h2, s |= ϕ′. Let n be
such that h2, s[y := n] |= ϕ[[x] := y]. By the above substitution lemma we have
that h2, s[y := n] |= ϕ[⟨x⟩ := y] if and only if h2[s(x) := n], s |= ϕ (y does not
appear in ϕ). Since |= {ϕ} [x] := e {ψ} it then follows that h2[s(x) := s(e)], s |= ψ,
that is, h, s |= ψ (note that h = h2[s(x) := s(e)] because h(s(x)) = s(e) and
h2 = h[s(x) := ⊥]).

Allocation By the frame rule, we first derive

{emp ∗ ∃x(ϕ)} x := new(e) {(x 7→ e) ∗ ∃x(ϕ)}

Clearly, ϕ implies emp ∗ ∃x(ϕ). On the other hand, let h, s |= (x 7→ e) ∗ ∃x(ϕ). So
there exists a split h = h1 ⊎ h2 such that h1, s |= x 7→ e and h2, s[x := n] |= ϕ, for
some n. Since |= {ϕ} x := new(e) {ψ}, we derive that h2[s(x) := s[x := n](e)], s |=
ψ, that is, h, s |= ψ (note that s(x) ̸∈ dom(h2) and, since x does not appear in e,
we have s[x := n](e) = s(e), and thus h = h2[s(x) := s(e)]).

Dispose Let ϕ′ denote (x ̸↪→ −) ∧ ∃y(ϕ[⟨x⟩ := y]). By the frame rule, we first
derive

{(x 7→ −) ∗ ϕ′} [x] := ⊥ {emp ∗ ϕ′}

See above (mutation) for the kind of argument that establishes that ϕ implies
(x 7→ −) ∗ ϕ′. On the other hand, Let h, s |= emp ∗ ϕ′, that is, h, s |= ϕ′, and so
by the above substitution lemma, we have h[s(x) := n], s |= ϕ, for some n (again, y
does not appear in ϕ). Since {ϕ} [x] := ⊥ {ψ}, we derive h[s(x) := ⊥], s |= ψ, that
is, h, s |= ψ, since h, s |= x ̸↪→ −.

