
New Foundations for Separation Logic
Hiep, H.A.

Citation
Hiep, H. A. (2024, May 23). New Foundations for Separation Logic. IPA
Dissertation Series. Retrieved from https://hdl.handle.net/1887/3754463

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3754463

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3754463

Chapter 3

Proof theory of separation logic

Our goal is to obtain a sound and complete, finitary proof system for reasoning
about the valid formulas of separation logic. To that end we introduce two calculi
consisting of separation logic formulas and rooted assertions, which are separation
logic formulas that are annotated with a representation of the heap with respect
to which the separation logic formula is evaluated. We shall argue that the
obtained finitary proof systems are sound and complete with respect to different
interpretations. However, before jumping to the conclusion, we first need to explain
the development of this result.

As seen in the previous chapter, the semantics WSL and FSL can not be
adequately used as interpretations, due to their failure of compactness (of the
satisfaction relation or the semantic consequence relation). The main model-
theoretic results are that WSL is already non-compact even for the pure formulas,
and in the setting of FSL we can express: (1) finiteness of structures, (2) well-
foundedness of the points-to relation, and (3) existence of countably infinite and
uncountable structures. As a consequence we have that FSL satisfies neither
compactness nor the downward and upward Löwenheim-Skolem theorems. In fact,
we have seen that the well-foundedness of the points-to relation can already be
expressed in FSL using only separating conjunction. Consequently, FSL without
separating implication is already non-compact. For FSL without separating
implication but in which separating conjunction only occurs positively, the fragment
which we called separation logic light (SLL), we do have compactness, but its
semantic consequence relation is not compact. Non-compactness (of the satisfaction
relation or the semantic consequence relation) implies that there does not exist a
finitary, sound and complete proof system with respect to these interpretations.

Recall that in Section 2.4 we have seen that it is possible to embed full separation
logic in dyadic second-order classical logic, and in Section 2.5 we have seen an
investigation of the converse: can dyadic second-order logic be embedded in full
separation logic too? This is a good starting point in light of the above goal,
since if separation logic is equally expressive as second-order logic we could simply
use Henkin’s semantics of second-order logic directly. However, this question is

57

58 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

still open, and we conjecture that the binding operator cannot be expressed in
separation logic due to its inherent local perspective.

The question thus arises whether there exists an alternative interpretation of
separation logic that does allow for a finitary, sound and complete proof system.
Clearly, the main complexity of separation logic stems from the (second-order)
quantification over heaps (or sub-heaps, in the case of the separating conjunction).
For second-order logic a sound and complete axiomatization can be obtained by
generalizing its semantics by means of so-called general structures. Such structures
extend first-order structures with a set of possible interpretations of the second-
order variables. For example, instead of interpreting a second-order variable of
arity 1 as ranging over all possible subsets of the given first-order domain, a
general structure restricts its interpretation to a given set of such subsets. The
standard structures of second-order logic are thus a particular instance of general
structure. This generalization of the semantics of second-order logic allows for a
sound and complete axiomatization by restricting to Henkin structures [108]. A
Henkin structure is a general structure for second-order logic which additionally
satisfies the comprehension axiom scheme

∃Rn∀x1, . . . , xn(Rn(x1, . . . , xn) ↔ ϕ(x1, . . . , xn))

for any second-order formula ϕ(x1, . . . , xn) which does not contain the n-ary variable
R. In the arithmetic comprehension axiom ϕ(x1, . . . , xn) is first-order.

Generalizing the semantics of separation logic accordingly in terms of a given set
of possible heaps, which does not necessarily contain all heaps, we can formulate
in separation logic the following version of the arithmetic comprehension axiom
scheme

♦(∀x, y((x ↪→ y) ↔ ϕ(x, y)))

which expresses the existence of a heap such that its graph, as denoted by the
points-to relation ↪→, satisfies the pure first-order formula ϕ(x, y). The formula ϕ is
pure in the sense that it does not involve the separation connectives or the points-to
relation. The ♦-modality expresses the existence of a heap which satisfies the
associated formula. Such an instance of the arithmetic comprehension axiom holds
if there exists a heap which is characterized by the formula ϕ(x, y). Therefore, we
introduce a new interpretation of separation logic that restricts the (second-order)
quantification over heaps to first-order definable heaps.

For this new interpretation we introduce a sequent calculus which is sound
and complete. In this sequent calculus we introduce so-called rooted formulas
ϕ@ψ where ψ(x, y) are pure first-order formulas. In the interpretation of rooted
formulas, ψ(x, y) determines the interpretation of the heap with respect to which ϕ
is evaluated. The completeness proof is based on the construction of a model for a
deductively consistent theory (a theory from which false is not derivable), following
Henkin’s approach. From the completeness proof we further derive that this new
interpretation satisfies both compactness and the downward Löwenheim-Skolem
theorem. By the seminal theorem of Lindström [217, 210] we then infer that this
new interpretation is as expressive as first-order logic.

3.1. SEQUENT CALCULUS 59

However, we cannot generalize arithmetic comprehension to arbitrary separation
logic formulas because that leads to obvious contradictions, such as

♦(∀x, y((x ↪→ y) ↔ ¬(x ↪→ y))).

Simply requiring that the points-to relation does not occur in ϕ(x, y) does not
give more than what the arithmetic comprehension axiom above gives, because
compositions of pure first-order formulas with separating connectives are equivalent
to some pure first-order formula (this easily follows from the semantics of separation
logic). To overcome this issue, we extend our rooted formulas ϕ@ψ without any
restrictions on ψ, where @ can now be understood as a special let binding connective.
We need a new interpretation of separation logic, which no longer can be captured
by a syntactic comprehension axiom scheme, and instead we consider a class of
general structures which satisfy a closure condition called semantic comprehension.

For this new, second interpretation of separation logic we introduce a natural
deduction calculus which is also sound and complete. We show completeness by
constructing models for deductively consistent theories, in a similar way as for our
sequent calculus.

3.1 Sequent calculus
In full relational separation logic we have that the following formulas are valid:

♦(∀x, y((x ↪→ y) ↔ ϕ(x, y)))

where ϕ is a pure, first-order formula. The above class of formulas, called the
arithmetic comprehension axiom scheme, expresses, for each pure first-order formula
ϕ(x, y), the existence of a relation such that its graph, as denoted by the points-to
relation ↪→, satisfies ϕ(x, y). In this section, we shall consider a restriction of full
relational separation logic in which we consider only those relations which have a
corresponding first-order description. These relations are called first-order definable.
This means that we restrict our attention to the interpretation of the separating
connectives to such first-order definable binary relations.

Let ϕ denote a first-order formula which does not contain occurrences of the
points-to relation ↪→ of separation logic. We have the standard inductive truth
definition A, ρ |=CL ϕ for first-order formulas ϕ. By ϕ(x1, . . . , xn) we denote that
the free (first-order) variables of ϕ are among the distinct variables x1, . . . , xn. A
formula ϕ(x, y) is called a binary formula. For notational convenience we assume
that the variables x and y of any binary formula are fixed and do not occur in any
separation logic formula. A binary formula is also simply denoted by ϕ, omitting
its free variables x and y. Given a structure A = (A, I) and a first-order formula
ϕ(x, y), we denote by RelA(ϕ) the relation {⟨ρ(x), ρ(y)⟩ | A, ρ |=CL ϕ} ⊆ A × A.
Note that the evaluation of ϕ(x, y) only depends on the values of its free variables
x and y, that is, A, ρ |=CL ϕ if and only if A, ρ′ |=CL ϕ, where ρ(x) = ρ′(x) and
ρ(y) = ρ′(y). By ϕ(t, t′) we denote the result of replacing in ϕ(x, y) the variables
x and y by terms t and t′, respectively (if necessary renaming bound variables to
ensure that the variables of t and t′ do not become bound).

60 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

Definition 3.1.1 (First-order definability). For a given structure A = (A, I), the
relation R ⊆ A×A is first-order definable if R = RelA(ϕ), for some binary formula
ϕ(x, y).

Note that, given a structure A = (A, I), we have I(R) = RelA(R), that is,
for any binary relation symbol R its interpretation I(R) is trivially a first-order
definable relation. We introduce the abbreviation ϕ = ϕ1⊎ϕ2 that denotes that the
binary formulas ϕ1(x, y) and ϕ2(x, y) represent a partition of the binary formula
ϕ(x, y) which is expressed by the conjunction of the three formulas

∀x, y(ϕ(x, y) ↔ (ϕ1(x, y) ∨ ϕ2(x, y))),

∀x, y, z(ϕ1(x, y) → ¬ϕ2(x, z)),

∀x, y, z(ϕ2(x, y) → ¬ϕ1(x, z)).

The latter two formulas, which state that the domains of the binary relations
represented by ϕ1(x, y) and ϕ1(x, y) are disjoint, we abbreviate by ϕ1 ⊥ ϕ2. A
similar abbreviation can be given for binary relation symbols R = R1 ⊎ R2. By
usual abuse of notation, we mean that the equality holds for the extension of R (so
we need to universally quantify two variables x, y and apply them to R,R1, R2).

In this section, to avoid confusion between formulas of separation logic and
formulas of first-order logic, we shall denote the former by p, q and the later by ϕ, ψ.
We introduce the semantics A,R, s |=FORSL p which is a restriction of the general
relational semantics of separation logic (see also Definition 3.4.2) such that instead
of quantifying over arbitrary binary relations, the separating connectives involve
quantification over first-order definable binary relations. It is worthwhile to observe
here that, as for Henkin models of second-order logic, the implicit second-order
quantification depends on the underlying signature of function and relation symbols.
Extending or restricting the signature affects the semantics of formulas of the ‘old’
signature.

To reason about the implicit quantification over definable (binary) relations,
we introduce rooted assertions of the form p@ϕ, where ϕ denotes a binary formula
and p is a formula of separation logic. We define A, ρ |=FORSL p@ϕ if and only if
A,R, ρ |=FORSL p, where R = RelA(ϕ). The variables x and y of the binary formula
ϕ(x, y) are thus implicitly bound by the @-connective, that is, A, ρ |=FORSL p@ϕ
if and only if A, ρ′ |=FORSL p@ϕ, for any ρ and ρ′ such that ρ(z) = ρ′(z), for any
free variable occurring in p.

We further assume that our signature includes a (countably) infinite set of
binary relation symbols R (needed for the selection of fresh ‘witnesses’). However,
definability of binary relation by a first-order formula should not depend on these
additional binary relation symbols. That is, these binary relation symbols are
added as ‘bookkeeping devices’. Alternatively, we could have introduced these as
(second-order) variables and extend evaluations so that ρ(R) ⊆ D×D, for any such
(second-order) variable. However, for both technical and notational convenience we
prefer to define their semantics as part of a structure.

Note that the separating connectives are interpreted in terms of relations
which are definable by first-order formulas which do not involve the points-to

3.1. SEQUENT CALCULUS 61

Separating conjunction

L∗

Γ, ϕ = R1 ⊎R2, p@R1, q@R2 ⇒ ∆

Γ, (p ∗ q)@ϕ⇒ ∆

R∗

Γ ⇒ ∆, ϕ = ϕ1 ⊎ ϕ2 Γ ⇒ ∆, p@ϕ1 Γ ⇒ ∆, q@ϕ2
Γ ⇒ ∆, (p ∗ q)@ϕ

Separating implication

L−∗

Γ ⇒ ∆, ϕ ⊥ ψ Γ ⇒ ∆, p@ψ Γ, q@(ϕ ∨ ψ) ⇒ ∆

Γ, (p −∗ q)@ϕ⇒ ∆

R−∗

Γ, R ⊥ ϕ, p@R⇒ ∆, q@(ϕ ∨R)

Γ ⇒ ∆, (p −∗ q)@ϕ

Points-to rules

Γ, p[ϕ/ ↪→] ⇒ ∆

Γ, p@ϕ⇒ ∆

Γ ⇒ p[ϕ/ ↪→],∆

Γ ⇒ p@ϕ,∆

Figure 3.1: Sequent calculus for FORSL. The binary relation symbols R1, R2

and R introduced in the rules L∗ and R−∗ are ‘fresh’. In the points-to rules p
denotes a semi-pure formula (which does not contain occurrences of the separating
connectives).

relation ↪→. This allows for the following alternative predicative1 characterization
of the semantics of the separating connectives in rooted assertions (used in both
the soundness and completeness proofs).

Lemma 3.1.2. We have

• A, ρ |=FORSL (p ∗ q)@ϕ if and only if there exist binary formulas ϕ1 and ϕ2
such that:
A, ρ |=FORSL ϕ = ϕ1 ⊎ ϕ2,
A, ρ |=FORSL p@ϕ1, and
A, ρ |=FORSL q@ϕ2.

• A, ρ |=FORSL (p −∗ q)@ϕ if and only if
A, ρ |=FORSL ψ ⊥ ϕ and A, ρ |=FORSL p@ψ implies
A, ρ |=FORSL q@(ϕ ∨ ψ), for all binary formulas ψ.

We now develop a calculus for sequents A1, . . . , An ⇒ B1, . . . , Bm, where each
Ai (given i = 1, . . . , n), and Bj (given j = 1, . . . ,m), is constructed from first-order

1For a foundational discussion concerning predicativity, see [57].

62 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

formulas and rooted assertions, which can be further composed using propositional
connectives and quantification of first-order variables. In particular, we have the
following abstract grammar:

ϕ, ψ ::= ⊥ | (x
.
= y) | C(x1, . . . , xn) | (ϕ→ ψ) | (∀xϕ)

p, q ::= ⊥ | (x
.
= y) | (x ↪→ y) | C(x1, . . . , xn) | (p ∗ q) | (p −∗ q) | (p→ q) | (∀xp)

A,B ::= ⊥ | p@ϕ | (A→ B) | (∀xA)

where in rooted formulas p@ϕ the first-order formula ϕ has at most free variables
x, y. Note that the free variables of p@ϕ are only the free variables of p, since the
@-connective binds the free variables x and y.

This calculus is an extension of standard first-order sequent calculus, where the
standard rules are applicable with respect to top-level propositional connectives
and quantifiers. Figure 3.1 shows the left and right rules for separating conjunction
and implication. These rules closely follow the translation of relational separation
logic into second-order logic, eliminating the explicit second-order quantification by
applying the standard proof rules for second-order quantification (which themselves
are straightforward generalizations of the rules for first-order quantification, instan-
tiating the second-order variables by formulas). The binary relation symbols R1, R2

and R introduced in the rules L∗ and R−∗ are ‘fresh’ binary relation symbols, that
is, they must not appear in the formulas of the conclusion of the rules.

We also have rules which allow classical reasoning under rooted assertions:
(p ◦ q)@ϕ↔ (p@ϕ) ◦ (q@ϕ), where ◦ denotes binary propositional connectives, e.g.,
conjunction, disjunction, and implication, (¬p)@ϕ ↔ ¬(p@ϕ), and (∃xp)@ϕ ↔
∃x(p@ϕ), and similarly (∀xp)@ϕ↔ ∀x(p@ϕ). Further, we have (∀x, y(ϕ↔ ψ)) →
(p@ϕ↔ p@ψ). It is straightforward to validate these rules, but we omit the details
of the semantics A, ρ |=FORSL A, which follows the standard Tarski-style classical
semantics, given the semantics of rooted assertions which may appear in the place
of atomic formulas.

In the so-called ‘points-to’ rules of Figure 3.1 the formula p does not involve
occurrences of the separating connectives. Such a formula of separation logic we
call semi-pure. Note that it differs from pure first-order formulas in that semi-pure
formulas additionally may involve the points-to relation. For such formulas we
denote by p[ϕ/ ↪→], for any binary formula ϕ(x, y), the result of replacing every
atomic assertion (t ↪→ t′) in p by ϕ(t, t′), which is a pure first-order formula. It
follows that A, ρ |=FORSL p[ϕ/ ↪→] if and only if A,RelA(ϕ), ρ |=FORSL p, for any
semi-pure formula p.

We now see a number of example proofs, in which we use the sequent calculus
defined above.

Γ ⇒ q@R,R1 ⊥ R2 Γ ⇒ q@R, p@R1 Γ, q@(R1 ∨R2) ⇒ q@R

R = R1 ⊎R2, p@R1, (p −∗ q)@R2 ⇒ q@R
L−∗

(p ∗ (p −∗ q))@R⇒ q@R
L∗

⇒ (p ∗ (p −∗ q))@R→ q@R

⇒ ((p ∗ (p −∗ q)) → q)@R

3.1. SEQUENT CALCULUS 63

As a first example of the use of the sequent calculus, above we have a derivation
of the sequent ⇒ ((p ∗ (p −∗ q)) → q)@R which represents the validity of (p ∗
(p −∗ q)) → q. This derivation essentially consists of an application of the rule
L∗ followed by an application of the rule L−∗. In this derivation Γ denotes the
formulas R = R1 ⊎R2, p@R1 generated by the application of rule L∗. The second
premise of the application of the rule L−∗ is derivable from an instance of the axiom
Γ, A⇒ A,∆. Note that ψ (in the L−∗ rule) is instantiated with R1. The first and
third premise follows from the fact that R = R1 ⊎ R2 reduces to R1 ⊥ R2 and
R = R1 ∪R2 (that part of the proof is not shown above).

Next we show how to use the calculus in reasoning about the equivalence of
weakest preconditions that arise in the practice of verifying the correctness of heap
manipulating programs. Let p denote the weakest precondition

(u ↪→ −) ∧ (z = 0 ◁ u = v ▷ v ↪→ z)

of the heap update [u] := 0 which ensures the postcondition v ↪→ z after assigning
the value 0 to the location denoted by the variable u, where ϕ ◁ b ▷ ψ abbreviates
(b ∧ ϕ) ∨ (¬b ∧ ψ) (in Section 4.4 a dynamic logic extension of separation logic
is introduced which generates this weakest precondition). The standard rule for
backwards reasoning in [188] gives the weakest precondition (u 7→ −) ∗ (u 7→ 0 −∗
v ↪→ z), which we denote by p′. These preconditions are equivalent because both
are the weakest.

In fact, the equivalence between the above two formulas can be expressed in
quantifier-free separation logic, for which a complete axiomatization of all valid
formulas has been given in [70]. In the sequent calculus we can express the
equivalence of p and p′ in terms of the sequent fun(R) ⇒ (p↔ p′)@R. Here R is an
arbitrary binary relation symbol used to represent the current interpretation of the
points-to relation. We abbreviate ∀x, y, z((R(x, y) ∧R(x, z)) → y = z) by fun(R).
A proof of the above sequent amounts to proving the sequents fun(R), p′@R⇒ p@R
and fun(R), p@R⇒ p′@R.

Proposition 3.1.3. ⊢ fun(R), p@R⇒ p′@R.

Proof. This direction is easy to prove, by a case analysis whether u = v holds or
not. If u = v, then z = 0 and so we can easily prove v ↪→ z in a heap where u ↪→ 0.
Otherwise, if u ̸= v, then v ↪→ z follows immediately.

Lemma 3.1.4. ⊢ fun(R), p′@R⇒ p@R.

Proof. Below we present a high-level proof of the first sequent, abstracting from
some basic first-order reasoning in the calculus. By an application of L∗ to derive
the sequent fun(R), p′@R⇒ p@R it suffices to derive

fun(R), R = R1 ⊎R2, (u 7→ −)@R1, (u 7→ 0 −∗ v ↪→ z)@R2 ⇒ p@R

for some fresh R1 and R2. Let ψ(x, y) denote the binary formula x = u ∧ y = 0.
Further, let Γ denote the set of formulas fun(R), R = R1 ⊎R2, (u 7→ −)@R1. By
an application of the rule L−∗ it then suffices to prove the following sequents (from

64 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

Γ ⇒ ∆ we can derive Γ ⇒ A,∆ by right-weakening). First we prove Γ ⇒ R2∩ψ = ∅:
By the points-to rules the rooted assertion (u 7→ −)@R1 (appearing in Γ) reduces to
∃z(R1(u, z)∧∀x, y(R1(x, y) → x = u∧y = z)) (the forall-part of the formula is due
to the ‘strict’ points-to which states that the domain contains u as its only location).
Further, R2 ∩ ψ = ∅ logically boils down to ¬∃x, y(R2(x, y) ∧ (x = u ∧ y = 0)),
that is, ¬R2(u, 0), which in basic first-order logic follows from ∃zR1(u, z) and the
assumptions R = R1 ⊎R2 and fun(R).

Second, we prove Γ ⇒ (u 7→ 0)@ψ: By the points-to rules (u 7→ 0)@ψ (using
the expanded definition ϕ of u 7→ 0 and the definition of the substitution ϕ[ψ/ ↪→])
reduces to (u = u) ∧ (0 = 0) ∧ ∀x, y((x = u ∧ y = 0) → (x = u ∧ y = 0)) which is
equivalent to true.

And, finally, we prove Γ, (v ↪→ z)@(R2 ∨ ψ) ⇒ p@R: First note that (again, by
the points-to rules)

((u ↪→ −) ∧ (z = 0 ◁ u = v ▷ v ↪→ z))@R

reduces to
(∃zR(u, z)) ∧ (z = 0 ◁ u = v ▷ R(v, z))).

The assertion ∃zR(u, z) clearly follows from the assumptions R = R1 ⊎ R2 and
(u 7→ −)@R1 in Γ. To prove z = 0 ◁ u = v ▷ R(v, z), we first reduce the assumption
(v ↪→ z)@(R2 ∨ ψ) to R2(v, z) ∨ (v = u ∧ z = 0). Now, if v = u then ¬R2(v, z),
because of the assumptions fun(R), R = R1⊎R2 and (u 7→ −)@R1. So we have that
z = 0. Otherwise, we have R2(v, z), and thus R(v, z), because R = R1 ⊎R2.

3.2 Soundness and completeness

We denote by ⊢ Γ ⇒ ∆ that there exists a proof of the sequent Γ ⇒ ∆. To define
|= Γ ⇒ ∆, let σ denote a substitution which assigns to every binary relation symbol
R of the sequent Γ ⇒ ∆ a binary formula ϕ. Such a substitution σ simply replaces
occurrences of R(t, t′) by ϕ(t, t′), where σ(R) = ϕ(x, y). By |= Γ ⇒ ∆ we then
denote that A, ρ |=

∧
Γσ (that is, A, ρ |= Aσ, for every A ∈ Γ) implies A, ρ |=

∨
∆σ

(that is, A, ρ |= Bσ, for some B ∈ ∆), for every A, ρ and every substitution σ.
In the soundness proof below we use these substitutions to instantiate the fresh

binary relation symbols introduced in the rules L∗ and R−∗. Note that updating
the interpretation of these symbols (as provided by A) would affect the semantics
of the separating connectives if binary formulas would refer to these fresh binary
relation symbols (note that they are only supposed not to appear in formulas of
the conclusion of the rules L∗ and R−∗). See also the previous discussion about
‘bookkeeping devices’.

We generalize the above notions of derivability and validity to possibly infinite
Γ: Γ ⊢ ∆ indicates that ⊢ Γ′ ⇒ ∆, for some finite Γ′ ⊆ Γ, and Γ |= ∆ indicates
that for every substitution σ we have that A, ρ |= Γσ (that is, A, ρ |= Aσ, for every
A ∈ Γ) implies A, ρ |= Bσ, for some B ∈ ∆.

For the soundness proof we need the following substitution lemma.

3.2. SOUNDNESS AND COMPLETENESS 65

Lemma 3.2.1 (Substitution lemma). A,RelA(ϕ), ρ |= p if and only if A, ρ |=
p[ϕ/ ↪→], for any semi-pure formula p.

Theorem 3.2.2 (Soundness). We have that ⊢ Γ ⇒ ∆ implies |= Γ ⇒ ∆.

Proof. We prove that the rules for the separating connectives preserve validity. The
points-to rules are sound because A,RelA(ϕ), ρ |= p if and only if A, ρ |= p[ϕ/ ↪→],
for any semi-pure formula p (note that p[ϕ/ ↪→] is a pure first-order formula which
does not depend on the heap).

L∗: Let A, ρ |= Γσ and A, ρ |= (pσ ∗ qσ)@ϕσ. We have to show that A, ρ |=∨
∆σ. By Lemma 3.1.2, there exist ϕ1 and ϕ2 such that A, ρ |= (ϕσ) = ϕ1 ⊎ ϕ2,

A, ρ |= pσ@ϕ1, and A, ρ |= qσ@ϕ2. Let σ′ = σ[R1, R2 := ϕ1, ϕ2]. Since R1 and R2

are fresh and as such do not appear in Γ, (p ∗ q)@ϕ, it follows that A, ρ |= Γ′σ′,
where Γ′ = Γ, ϕ = R1 ⊎ R2, p@R1, q@R2. By the validity of the premise we thus
obtain that A, ρ |=

∨
∆σ′. Since R1 and R2 also do not appear in ∆, we conclude

that A, ρ |=
∨

∆σ.
R∗: Let A, ρ |= Γσ and suppose that A, ρ ̸|=

∨
∆σ. From the validity of

the premises it then follows that A, ρ |= ϕσ = (ϕ1 ⊎ ϕ2)σ, A, ρ |= pσ@ϕ1σ, and
A, ρ |= qσ@ϕ2σ, By Lemma 3.1.2 we conclude A, ρ |= (pσ ∗ qσ)@ϕσ.

L−∗: Let A, ρ |= Γσ and A, ρ |= (pσ −∗ qσ)@ϕσ, and suppose that A, ρ ̸|=
∨

∆σ.
From the validity of the first two premises it then follows that A, ρ |= ϕσ ⊥ ψσ and
A, ρ |= pσ@ψσ. By Lemma 3.1.2 again, it follows that A, ρ |= qσ@(ϕσ ∨ ψσ). By
the validity of the third premise we thus derive that A, ρ ̸|=

∨
∆σ, which contradicts

our assumption.
R−∗: Let A, ρ |= Γσ and suppose that A, ρ ̸|=

∨
∆σ. We have to show that

A, ρ |= (pσ −∗ qσ)@ϕσ. Let ψ be such that A, ρ |= ψ ⊥ (ϕσ) and A, ρ |= pσ@ψ.
Further, let R be a fresh variable and σ′ = σ[R := ψ]. It follows that A, ρ |= Γ′σ′,
where Γ′ = Γ, R ⊥ ϕ, p@R and A, ρ ̸|=

∨
∆σ′. And so we derive from the validity

of the premise of the rule that A, ρ |= qσ@(ϕσ ∪ψ). Since ψ was arbitrarily chosen,
by Lemma 3.1.2 again we conclude that A, ρ |= (pσ −∗ qσ)@ϕσ.

As a corollary we obtain that Γ ⊢ ∆ implies Γ |= ∆.
Following the completeness proof of first-order logic as described in [108], it

suffices to show that every consistent set of formulas is satisfiable (the so-called
‘model existence theorem’). A set of formulas Γ is consistent if Γ ̸⊢ ∅. We first
show that every consistent set of formulas can be extended to a maximal consistent
set. To this end we assume an infinite set of ‘fresh’ binary relation symbols R that
do not appear in Γ. We construct for any consistent set Γ a maximal consistent
extension Γ∞, assuming an enumeration of all formulas A (which also covers all
first-order formulas). We define Γ0 = Γ and Γn+1 satisfies the general rule: if
Γn, An ̸⊢ ∅ then Γn ∪{An} ⊆ Γn+1, otherwise Γn+1 = Γn. Additionally, in case An
is added and An is of the form ∃xA or a rooted assertion (p ∗ q)@ϕ or ¬(p −∗ q)@ϕ,
we also include corresponding witnesses in Γn+1:

• If An is of the form ∃xA we additionally add A(y), where A(y) results from
replacing all free occurrences of x in A by the fresh variable y which does
not appear in Γn.

66 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

Note that A(y) can indeed be added consistently because from Γn, A(y) ⊢ ∅ we
would derive Γn,∃xA ⊢ ∅, which contradicts the assumption that Γn,∃xA ̸⊢ ∅.

• If An is of the form (p ∗ q)@ϕ we additionally add the formulas ϕ = R1 ⊎
R2, R1 ⊥ R2, p@R1, and q@R2, whereR1 andR2 are fresh (e.g., not appearing
in Γn).
Note that these formulas can indeed be added consistently because from
Γn, ϕ = R1⊎R2, R1 ⊥ R2, p@R1, q@R2 ⊢ ∅ we would derive Γn, (p ∗ q)@ϕ ⊢ ∅
(by rule L∗).

• If An is of the form ¬(p −∗ q)@ϕ (which is equivalent to ¬((p −∗ q)@ϕ)) we
additionally add the formulas R ⊥ ϕ, p@R(x, y), and ¬q@(ϕ ∨R), where R
is fresh (e.g., not appearing in Γn).
Note that these formulas can indeed be added consistently because from
Γn, R ⊥ ϕ, p@R(x, y),¬q@(ϕ ∨R) ⊢ ∅ we would derive Γn ⊢ (p −∗ q)@ϕ (by
rule R−∗), which contradicts the assumption that Γn,¬(p −∗ q)@ϕ ̸⊢ ∅.

We define Γ∞ =
⋃
n Γn. By construction Γ∞ is maximal consistent. Given

a maximal consistent set of formulas Γ, let AΓ = (D, I), where D is the set of
equivalences classes [x] = {y | x = y ∈ Γ}. For any relation symbol R (excluding
the points-to relation ↪→) we define

I(R)([x1], . . . , [xn]) = true if and only if R(x1, . . . , xn) ∈ Γ.

Given a maximal consistent set of formulas Γ and the structure AΓ = (D, I),
a corresponding valuation ρ assigns to every variable x an equivalence class [x].
However, in the sequel we will represent such a valuation by a substitution s which
simply assigns to each variable a variable. The value Is(x) of a variable x then is
given by the equivalence class [s(x)] of the variable s(x).

Given a substitution s and formula A (of the sequent calculus) we denote by ts
and As the result of replacing every free occurrence of a (first-order) variable x in
t and A by s(x), respectively. Note that (p@ϕ)s = ps@ϕ, because the meaning of
p@ϕ does not depend on the free variables x and y of the binary formula ϕ(x, y).

Given a maximal consistent set of formulas Γ and the structure AΓ = (D, I), it
follows that Is(x) = [xs], for every variable x and substitution s.

Lemma 3.2.3. Given a maximal consistent set of formulas Γ and the structure
AΓ = (D, I), we have A, s |= A if and only if As ∈ Γ, for every formula A and
substitution s.

Proof. The proof proceeds by induction on the following well-founded ordering
A < B on formulas of the sequent calculus: Let #A = (n,m), where n denotes the
number of occurrences of the separating connectives and the @-connective of A and
m denotes the number of occurrences of the (standard) first-order logical operations
of A. Then A < B if #A < #B, where the latter denotes the lexicographical
ordering on N × N (w.r.t. the standard ‘smaller than’ ordering on the natural
numbers). We treat the following main cases (for notational convenience A denotes
the structure AΓ).

3.2. SOUNDNESS AND COMPLETENESS 67

• For any semi-pure formula p (that is, which does not involve occurrences of
the separating connectives) we have:
A, s |= p@ϕ if and only if (by definition)
A,RelA(ϕ), s |= p if and only if (substitution lemma 3.2.1)
A, s |= p[ϕ/ ↪→] if and only if (induction hypothesis)
(p[ϕ/ ↪→])s ∈ Γ if and only if
(p@ϕ)s ∈ Γ.
Note that by an application of the points-to rules (p[ϕ/ ↪→])s ∈ Γ implies Γ ⊢
(p@ϕ)s, and so (p@ϕ)s ∈ Γ, by the maximal consistency of Γ. On the other
hand, let (p@ϕ)s ∈ Γ and assume (p[ϕ/ ↪→])s ̸∈ Γ, that is, (¬p[ϕ/ ↪→])s ∈ Γ,
by the maximal consistency of Γ. By the points-to rules it then follows that
Γ ⊢ (¬p@ϕ)s, which contradicts the consistency of Γ.

• Let A, s |= A, where A denotes the formula (p ∗ q)@ϕ. By Lemma 3.1.2 there
exist ϕ1 and ϕ2 such that A, s |= ϕ = ϕ1 ⊎ ϕ2, A, s |= p@ϕ1 and A, s |= q@ϕ2.
From the induction hypothesis it follows that ps@ϕ1, qs@ϕ2, ϕ = ϕ1 ⊎ ϕ2 ∈ Γ
(note that the first-order formula ϕ = ϕ1 ⊎ ϕ2 does not contain free variables,
and thus is not affected by the substitution s). So we derive by rule R∗
that Γ ⊢ (ps ∗ qs)@ϕ. By maximal consistency of Γ, we then conclude that
(ps ∗ qs)@ϕ ∈ Γ, that is, As ∈ Γ.
On the other hand, let As ∈ Γ. That is, (ps ∗ qs)@ϕ ∈ Γ. By the construction
of Γ we have ϕ = R1 ⊎ R2, ps@R1, qs@R2 ∈ Γ, for some witnesses R1 and
R2. By the induction hypothesis it then follows that A, s |= p@R1 and
A, s |= p@R2. Further, the induction hypothesis gives A, s |= ϕ = R1 ⊎ R2

(again, note that the formula ϕ = R1 ⊎ R2 has no free variables, and thus
is not affected by the substitution s). We conclude by Lemma 3.1.2 that
A, s |= (p ∗ q)@ϕ.

• Let A, s |= A, where A denotes the formula (p −∗ q)@ϕ. Suppose As ̸∈ Γ.
By the maximal consistency of Γ, we then have ¬(ps −∗ qs)@ϕ ∈ Γ. By
construction R ⊥ ϕ, ps@R,¬qs@(ϕ ∨ R) ∈ Γ, for some witness R, which
contradicts A, s |= (p −∗ q)@ϕ (after application of the induction hypothesis
and using Lemma 3.1.2 again).
On the other hand, let As ∈ Γ. To show that A, s |= (p −∗ q)@ϕ, let
A, s |= ϕ ⊥ ψ and A, s |= p@ψ, for some binary formula ψ. By the induction
hypothesis we have that ϕ ⊥ ψ, ps@ψ ∈ Γ. Suppose that qs@(ϕ ∨ ψ) ̸∈ Γ,
that is ¬qs@(ϕ∨ψ) ∈ Γ (Γ is maximal consistent), and thus Γ, qs@(ϕ∨ψ) ⊢ ∅.
Applying rule L−∗ we then derive Γ, (ps −∗ qs)@ϕ ⊢ ∅, which contradicts the
consistency of Γ ((ps −∗ qs)@ϕ ∈ Γ). So we have that qs@(ϕ∨ψ) ∈ Γ, that is,
A, s |= q@(ϕ ∨ ψ), by the induction hypothesis. Since ψ is chosen arbitrarily,
it follows by Lemma 3.1.2 that A, s |= (p −∗ q)@ϕ.

• Let A be a formula p@ϕ, where p denotes a semi-pure formula. Let R =
RelA(ϕ). We then have:
A, s |= p@ϕ iff (by definition)
A,R, s |= p iff (straightforward induction on p)

68 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

A, s |= p[ϕ/ ↪→] iff (induction hypothesis for p[ϕ/ ↪→])
ps[ϕ/ ↪→] ∈ Γ iff (by the points-to rules)
ps@ϕ ∈ Γ.
Note that applying the substitution s to p@ϕ and p[ϕ/ ↪→] results in ps@ϕ
and ps[ϕ/ ↪→].

The downward Löwenheim–Skolem property follows. It should be noted that we
cannot remove from the constructed model the binary relation symbols which are
introduced as witnesses, as these determine the notion of first-order definability.

Theorem 3.2.4 (Completeness). We have that Γ |= ∆ implies Γ ⊢ ∆.

Compactness follows. We thus derive (by Lindström’s theorem [210]) that this
interpretation of separation logic is as expressive as first-order logic.

3.3 Natural deduction
The sequent calculus introduced and proven sound and complete in the previous
sections was defined in terms of three syntactic categories: the pure first-order
formulas, the separation logic formulas, and the rooted formulas closed under
propositional connectives and quantification. In this section, we investigate what
happens when we consider only a single syntactic category of formulas: those of
separation logic closed under the @-connective. We thus introduce the extended
separation logic formulas by the following abstract grammar:

ϕ, ψ ::= ⊥ | (x
.
= y) | C(x1, . . . , xn) | (ϕ→ ψ) | (∀xϕ) | (ϕ ∗ ψ) | (ϕ −∗ ψ) | (ϕ@ψ)

The new @-connective can be understood as a binder of ↪→, in the sense that it lets
the interpretation of ψ determine the denotation of ↪→ with respect to which the
formula ϕ is interpreted. Revisiting Definition A.1.6 (Free and bound variables),
we need to add the following clauses:

• FV (ϕ@ψ) = FV (ϕ) ∪ (FV (ψ) \ {x, y}), and

• BV (ϕ@ψ) = BV (ϕ) ∪ BV (ψ) ∪ {x, y}.

By abuse of notation, we may think of @ as a let binding in the following sense:

(ϕ@ψ) = let ↪→ := (λxλy. ψ) in ϕ

since the interpretation of ↪→ becomes ‘bound’ in ϕ by the let binding, and the
free variables x and y in ψ are ‘captured’ by the abstraction. Further, for technical
convenience, we also have second-order binary variables R,R1, . . ., but it is not
possible to quantify over such second-order variables.

We now give an extension of the natural deduction calculus for classical logic
in the following way. The objects of this proof system, called RSL, are the above
formulas of extended separation logic. Derivability in this proof system is denoted
by ⊢. We have the usual axioms and proof rules of natural deduction, and add the
axioms and proof rules of Figure 3.2.

We have the following example proofs using the above proof system.

3.3. NATURAL DEDUCTION 69

(ϕ@(x ↪→ y)) ↔ ϕ
(L)

(ϕ@ψ) ↔ ϕ[ψ/ ↪→]
(R)

((ϕ@ψ) → (χ@ψ)) ↔ ((ϕ→ χ)@ψ)
(@→)

((∀xϕ)@ψ) ↔ (∀x(ϕ@ψ))
(@∀)

(ϕ@(ψ@χ)) ↔ ((ϕ@ψ)@χ)
(A)

(∀x, y(ψ ↔ χ))

((ϕ@ψ) ↔ (ϕ@χ))
(E) ⊥@ψ

⊥ (@⊥)

(ϕ ∗ ψ)@χ

χ=R1⊎R2
ϕ@R1
ψ@R2

...
ξ

ξ
(∗E)

χ = χ1 ⊎ χ2 ϕ@χ1 ψ@χ2

(ϕ ∗ ψ)@χ
(∗I)

(ϕ −∗ ψ)@χ χ ⊥ χ′ ϕ@χ′

ψ@(χ∨χ′)

...
ξ

ξ
(−∗E)

χ⊥R
ϕ@R

...
ψ@(χ ∨R)

(ϕ −∗ ψ)@χ
(−∗I)

Figure 3.2: Natural deduction system for extended separation logic. In the rule
(R) the formula ϕ is semi-pure. In the rule (∗E), R1, R2 do not occur in ξ. In the
rule (−∗I), R does not occur in ϕ, ψ, χ.

70 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

Proposition 3.3.1. ⊢ emp@⊥.

Proof. Recall that emp abbreviates ∀x, y.¬(x ↪→ y). We apply (@∀) and (∀I)
twice, so now it suffices to show (¬(x ↪→ y))@⊥. The logical negation abbreviates
(x ↪→ y) → ⊥, so we apply (@→) and by (→I) we may assume (x ↪→ y)@⊥. From
(R) and the new premise we infer ⊥, and hence by (⊥E) we have ⊥@⊥.

Proposition 3.3.2. ⊢ ϕ ∗ ψ → ψ ∗ ϕ.

Proof. By (L), it suffices to show (ϕ ∗ ψ → ψ ∗ ϕ)@(x ↪→ y), and by (@→) we may
assume (ϕ ∗ ψ)@(x ↪→ y) and show (ψ ∗ ϕ)@(x ↪→ y). We do this by (∗E), where
we assume (x ↪→ y) = R1 ⊎R2 for fresh R1, R2, and ϕ@R1 and ψ@R2. It is easy to
see we also have (x ↪→ y) = R2 ⊎R1, and hence by (∗I) we have (ψ ∗ ϕ)@(x ↪→ y),
completing the proof.

Proposition 3.3.3. ⊢ ϕ ∗ (ψ ∗ χ) ↔ (ϕ ∗ ψ) ∗ χ.

Proof. We have two directions (classical conjunction). We show ϕ ∗ (ψ ∗ χ) →
(ϕ ∗ ψ) ∗ χ first. By (L) we wrap it under the trivial root, and by (@→) we thus
assume (ϕ ∗ (ψ ∗ χ))@(x ↪→ y). We use (∗E) twice, to obtain (x ↪→ y) = R1 ⊎R2

and R2 = R3 ⊎R4, so that ϕ@R1, ψ@R3, χ@R4. We have R1 ⊥ R3, so R1 ⊎R3 is
defined. Further, we have (R1 ⊎R3) ⊥ R4 so (R1 ⊎R3) ⊎R4 is also defined. The
latter is equivalent to (x ↪→ y). Now by (∗I) twice, we obtain (ϕ ∗ ψ)@(R1 ⊎R3)
and ((ϕ ∗ ψ) ∗ χ)@(x ↪→ y). The other direction goes in a similar way.

Proposition 3.3.4. ⊢ (emp@ϕ) ↔ (∀x, y. ϕ→ ⊥).

Proof. Two classical directions:

• Assume emp@ϕ, and take arbitrary x0, y0 and assume ϕ(x0, y0). We need
to show ⊥. Unfold the abbreviation emp and we have (∀x, y. ¬(x ↪→ y))@ϕ.
Specializing this assumption with x0 and y0, we obtain ¬(x0 ↪→ y0)@ϕ. To
show ⊥ it is sufficient to show ⊥@ϕ. We apply our assumption, so it suffices
to show (x0 ↪→ y0)@ϕ. But that follows from our assumption ϕ(x0, y0).

• Assume (∀x, y. ϕ → ⊥). Unfold the abbreviation emp, and take arbitrary
x0, y0, and assume (x0 ↪→ y0)@ϕ. We need to show ⊥@ϕ, but it suffices to
show ⊥. From our assumption, we know ϕ(x0, y0) holds. But that contradicts
our earliest assumption.

Proposition 3.3.5. ⊢ ϕ ∗ emp ↔ ϕ.

Proof. There are two directions (classically).

• We assume (ϕ ∗ emp)@(x ↪→ y) and need to show ϕ@(x ↪→ y). From
our assumption we have ϕ@R1 and emp@R2 and (x ↪→ y) = R1 ⊎ R2.
Since emp@R2 we know R2 = ⊥ (by previous proposition), and hence
(x ↪→ y) = R1. So by ϕ@R1 we then have ϕ@(x ↪→ y).

3.3. NATURAL DEDUCTION 71

• We assume ϕ@(x ↪→ y) and need to show (ϕ ∗ emp)@(x ↪→ y). To show the
latter it suffices to show (x ↪→ y) = (x ↪→ y) ⊎ ϵ where ϵ = ⊥. Clearly the
disjoint union of those two relations is defined, and we already have ϕ(x ↪→ y).
Also we have emp@ϵ (by our previous proposition).

Proposition 3.3.6. The following holds:

• ⊢ (ϕ ∨ ψ) ∗ χ↔ ϕ ∗ χ ∨ ψ ∗ χ,

• ⊢ (ϕ ∧ ψ) ∗ χ→ ϕ ∗ χ ∧ ψ ∗ χ,

• ⊢ (∃xϕ(x)) ∗ ψ ↔ ∃x(ϕ(x) ∗ ψ),

• ⊢ (∀xϕ(x)) ∗ ψ → ∀x(ϕ(x) ∗ ψ),

• ⊢ ϕ ∗ (ϕ −∗ ψ) → ψ.

Proof. Left as exercises for the reader, as their proofs are not long. The proofs are
also formalized, see Appendix D.

Note that distributivity of conjunction (universal quantification) and separating
conjunction only works in one direction.

Proposition 3.3.7. The following holds:

• ⊢ ■ϕ→ ϕ,

• ⊢ ■ϕ→ (ϕ@ψ),

• ⊢ ■(ϕ→ ψ) → ϕ@χ→ ψ@χ,

• ⊢ ■(ϕ→ ϕ′) → ■(ψ → ψ′) → ϕ ∗ ψ → ϕ′ ∗ ψ′,

• ⊢ (x ↪→ y) ↔ (x 7→ y) ∗ ⊤,

• ⊢ ¬(x ↪→ −) → (((x 7→ y) −∗ (x 7→ y) ∗ ϕ) ↔ ϕ).

Proof. Left as exercises for the reader, as their proofs are not long. The proofs are
also formalized, see Appendix D.

Proposition 3.3.8. If ϕ@ψ is deducible for every ψ, then ⊢ ■ϕ.

Proof. If ϕ@ψ is deducible for every heap description, then ϕ cannot depend
on the heap and as such it holds in every heap. The proof is formalized, see
Appendix D.

Proposition 3.3.9. If ϕ ↔ ψ is deducible, and we have a deduction of χ from
premises Γ then we may replace any occurrence of ϕ by ψ in any of the premises
in Γ and the conclusion χ.

We again investigate the weakest precondition of the postcondition (v ↪→ z)
and the program [u] := 0. As before, let p denote the weakest precondition
(u ↪→ −)∧(z = 0◁u = v▷v ↪→ z), where again ϕ◁b▷ψ abbreviates (b∧ϕ)∨(¬b∧ψ).
Let p′ denote the weakest precondition (u 7→ −) ∗ (u 7→ 0 −∗ v ↪→ z).

72 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

Proposition 3.3.10. ⊢ p→ p′.

Proof. The proof can be formalized, see Appendix D.

Lemma 3.3.11. ⊢ p′ → p.

Proof. The proof can be formalized, see Appendix D.

Note that it is not needed to assume functionality of the heap (since the
separating implication speaks of all disjoint relational heaps, including those that
satisfy functionality).

3.4 Soundness and completeness
We shall give a general relational semantics to these extended separation logic
formulas, but to do so we need to construct the satisfaction relation in two stages.

Definition 3.4.1. A general relational structure H = (A, H) consists of a structure
A = (A, I) with domain A and a set of binary relations H ⊆ P(A×A).

In the first stage, we give a general relational semantics GRSL which is suitable
for interpreting the let binding. We shall use valuations ρ that assign both the
first-order and binary second-order variables. The binary second-order variables
are not constrained and ranges over arbitrary binary relations between elements
of the domain of the underlying structure. Also the relation R is not constrained
and ranges over arbitrary relations, whereas in the interpretation of the separating
connectives quantification is restricted to the set of relations of the general relational
structure.

Definition 3.4.2 (Satisfaction relation). Given a general relational structure
H = (A, H) with domain A and interpretation I, a valuation ρ of A, a binary
relation R ⊆ A×A, and an extended separation logic formula ϕ. The satisfaction
relation H,R, ρ |=GRSL ϕ is defined inductively on the structure of ϕ:

• H,R, ρ |=GRSL ⊥ never holds,

• H,R, ρ |=GRSL (x
.
= y) iff ρ(x) = ρ(y),

• H,R, ρ |=GRSL (x ↪→ y) iff (ρ(x), ρ(y)) ∈ R,

• H,R, ρ |=GRSL R(x1, x2) iff (ρ(x1), ρ(x2)) ∈ ρ(R),

• H,R, ρ |=GRSL C(x1, . . . , xn) iff (ρ(x1), . . . , ρ(xn)) ∈ CI ,

• H,R, ρ |=GRSL ϕ→ ψ iff H,R, ρ |=GRSL ϕ implies H,R, ρ |=GRSL ψ,

• H,R, ρ |=GRSL ∀xϕ iff H,R, ρ[x := a] |=GRSL ϕ for every a ∈ A,

• H,R, ρ |=GRSL ϕ ∗ ψ iff H,R1, ρ |=GRSL ϕ and H,R2, ρ |=GRSL ψ for some
R1,R2 ∈ H such that R = R1 ∪R2 and R1 ⊥ R2,

3.4. SOUNDNESS AND COMPLETENESS 73

• H,R, ρ |=GRSL ϕ −∗ ψ iff H,R′, ρ |=GRSL ϕ implies H,R∪R′, ρ |=GRSL ψ
for every R′ ∈ H such that R ⊥ R′,

• H,R, ρ |=GRSL ϕ@ψ iff H,R′, ρ |=GRSL ϕ for R′ = RelH,R,ρ(ψ).

where RelH,R,ρ(ψ) denotes {⟨dx, dy⟩ | H,R, ρ[x, y := dx, dy] |=GRSL ψ} ⊆ A×A.

Note that if one takes H to be the set of all finite relations and restrict to the
(non-extended) formulas of separation logic, we obtain weak relational separation
logic, and similarly if one takes H to be the set of all relations, we obtain full
relational separation logic.

For the second stage, we define the following class of general relational structures.
This class captures semantic comprehension by means of a closure condition on
the set of relations, that constraints the range of second-order quantifiers implicitly
used for giving semantics to the separating connectives, in the sense that every
binary relation that can be expressed by an extended formula of separation logic
must be in the set of binary relations of the general structure too.

Definition 3.4.3. A comprehensive relational structure H = (A, H) is a general
relational structure such that for every relation R ∈ H, valuation ρ of A where
ρ(R) ∈ H for every second-order variable R, and extended formula of separation
logic ψ, we have RelH,R,ρ(ψ) ∈ H.

We then define our intended semantics as follows.

Definition 3.4.4 (Satisfaction relation). Given a comprehensive relational struc-
ture H = (A, H), a relation R ∈ H, and valuation ρ of A where ρ(R) ∈ H for every
second-order variable R, we define the satisfaction relation H,R, ρ |=RSL ϕ with
the same conditions as given before in Definition 3.4.2.

Notice how in this satisfaction relation, compared to the previous stage, the
relation R and the value of second-order variables are constrained to be in H.
Since the semantic comprehension condition imposed on comprehensive relational
structures is expressed using the first stage semantics, there is no circularity in the
condition that R (and the value of any second-order variable) needs to be in H.

Again, note that if one takes H to be the set of all finite relations, to obtain
weak relational separation logic, we may fail to make a comprehensive relational
structure out of it: there is a formula, such as ⊤, that express that infinitely many
locations are related to a value, but that contradicts the requirement that we restrict
to finite relations. There is no problem for structures with finite domain, since
there weak relational separation logic and full relational separation logic coincide.
If one takes H to be the set of all relations on a structure with infinite domain,
we obtain full relational separation logic, which is also trivially a comprehensive
relational structure. It does seem possible to construct a comprehensive relational
structure out of a set H consisting of all finite and cofinite relations, but we leave
that structure for the reader to investigate further.

From the definition above, we can see that the formula ψ in the let binding
(ϕ@ψ) is a type with free variables among x and y. In particular, we have the
properties (L)eft-root, (R)ight-root, (A)ssociative-root, and (E)quivalent-root:

74 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

Lemma 3.4.5 (Soundness I).

(L) H,R, ρ |=RSL (ϕ@(x ↪→ y)) ↔ ϕ,

(R) H,R, ρ |=RSL (ϕ@ψ) ↔ ϕ[ψ/ ↪→] where ϕ is semi-pure,

(A) H,R, ρ |=RSL (ϕ@(ψ@χ)) ↔ ((ϕ@ψ)@χ),

(E) H,R, ρ |=RSL (∀x, y(ψ ↔ χ)) → ((ϕ@ψ) ↔ (ϕ@χ)).

Proof. (L) Suppose H,R, ρ |=RSL (ϕ@(x ↪→ y)) holds, then we know that also
H,R, ρ |=RSL ϕ holds, since RelH,R,ρ(x ↪→ y) = R. The converse is similar.

(R) Suppose H,R, ρ |=RSL (ϕ@ψ) holds, then by definition we know that also
H,R′, ρ |=RSL ϕ holds for RelH,R,ρ(ψ) = R′. Since ϕ is semi-pure, in the
evaluation of ϕ we never change R′. Hence we can replace (z ↪→ w) by
ψ(z, w) in ϕ and we have that H,R, ρ |=RSL ϕ[ψ/ ↪→] holds. Note how the
free variables of ψ (other than x, y which are replaced by the variables z, w)
are still evaluated with respect to ρ. The converse is similar.

(A) Suppose H,R, ρ |=RSL (ϕ@(ψ@χ)) holds, then we know that H,R′, ρ |=RSL ϕ
holds for RelH,R,ρ(ψ@χ) = R′. We then also know that for every pair
⟨dx, dy⟩ ∈ R′ we have that H,R′′, ρ[x := dx, y := dy] |=RSL ψ where we take
RelH,R,ρ[x:=dx,y:=dy](χ) = R′′. Note that we have R′′ = RelH,R,ρ(χ), since
x and y are bound, and thus we have H,R′′, ρ |=RSL ϕ@ψ since we have
that H,R′′′, ρ |=RSL ϕ where RelH,R′′,ρ(ψ) = R′′′, from H,R′, ρ |=RSL ϕ and
knowing that R′ = R′′′.

(E) Similar to the cases before.

The following properties describe the interactions between connectives:

Lemma 3.4.6 (Soundness II).

(@⊥) H,R, ρ |=RSL (⊥@ψ) → ⊥,

(@→) H,R, ρ |=RSL ((ϕ@ψ) → (χ@ψ)) ↔ ((ϕ→ χ)@ψ),

(@∀) H,R, ρ |=RSL ((∀xϕ)@ψ) ↔ (∀x(ϕ@ψ)) where x is not free in ψ,

(∗E) H,R, ρ |=RSL ((ϕ ∗ ψ)@χ) ∧ (χ = R1 ⊎R2 ∧ (ϕ@R1) ∧ (ψ@R2) → ξ) → ξ
where R1, R2 do not occur in ξ,

(∗I) H,R, ρ |=RSL χ = χ1 ⊎ χ2 ∧ (ϕ@χ1) ∧ (ψ@χ2) → ((ϕ ∗ ψ)@χ),

(−∗E) H,R, ρ |=RSL ((ϕ −∗ ψ)@χ) ∧ χ ⊥ χ′ ∧ (ϕ@χ′) ∧ ((ψ@(χ ∨ χ′) → ξ)) → ξ,

(−∗I) H,R, ρ |=RSL (χ ⊥ R ∧ (ϕ@R) → (ψ@(χ ∨R))) → ((ϕ −∗ ψ)@χ)
where R does not occur in ϕ, ψ, χ.

We also have the following derived properties:

3.4. SOUNDNESS AND COMPLETENESS 75

Corollary 3.4.7.

• A,R, ρ |=RSL (ϕ@ψ) ↔ ϕ where ϕ is a pure formula,

• A,R, ρ |=RSL ((ϕ@ψ) ∧ (χ@ψ)) ↔ ((ϕ ∧ χ)@ψ),

• A,R, ρ |=RSL ((ϕ@ψ) ∨ (χ@ψ)) ↔ ((ϕ ∨ χ)@ψ),

• A,R, ρ |=RSL ((∃xϕ)@ψ) ↔ (∃x(ϕ@ψ)) where x is not free in ψ,

• A,R, ρ |=RSL ■ϕ→ (ϕ@χ).

The proof system RSL is sound with respect to the semantics RSL.

Lemma 3.4.8 (Soundness). Γ ⊢RSL ϕ implies Γ |=RSL ϕ.

Proof. By induction on the structure of a deduction. Note that the semantics
of RSL follows that of classical logic for all logical connectives, hence the proof
rules involving classical connectives are sound via their usual argument. For the
additional axioms and proof rules, see Lemma 3.4.5 and Lemma 3.4.6.

We now investigate a proof reduction technique. Every deduction in the natural
deduction proof system can be reduced to a deduction with only rooted formulas
of a particular shape, by introducing additional fresh binary variables. The shape
of rooted formulas we wish to obtain are precisely those that can be worked with
in our previous sequent calculus, i.e. rooted assertions with a pure right-side. The
purpose of the procedure is as follows. Suppose we are given a set of premises
Γ and a conclusion ϕ. Our goal is to obtain an equisatisfiable set of premises Γ′

and conclusion ϕ′ in which every occurrence of a rooted formula does not have
any roots occurring the left, has a first-order formula on the right, and is not
nested under separating connectives. Such equi-satisfiable set of premises then
allows us to obtain a proof using our previous sequent calculus, and that proof is
straightforwardly mapped to a proof in natural deduction.

We sketch out the following provability-preserving and semantics-preserving
operations on the premises and conclusion:

1. For all formula occurrences ψ@χ that are nested on the left under a top-
level root (. . . (ψ@χ) . . .)@ξ, we ‘push down’ the outer root until it reaches
the nested root, and we perform an associative root swap so that from
(. . . (ψ@χ) . . .)@ξ we obtain (. . . (ψ@(χ@ξ)) . . .). For the classical connectives
this ‘pushing down’ is straightforward. For (x ↪→ y), we can simply substitute
using the right root rule. For an occurrence that is a separating conjunction
(ψ1 ∗ ψ2)@ξ we introduce fresh binary variables R1, R2, replace the occurrence
with (ψ1@R1) ∧ (ψ2@R2), add the premise ξ = R1 ⊎R2, and proceed with
pushing down in the occurrences ψ1@R1 and ψ2@R2. A similar construction
happens for separating implication, but we leave one fresh variable open for
interpretation. We repeat this step until no longer we have roots nested
under the left.

76 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

2. For each formula occurrence ψ@χ that does not occur on the left under a
root and where χ is not first-order, in some formula of Γ or in the conclusion
ϕ, we introduce a fresh binary variable R. We add a premise on the top level
(∀x, y.R(x, y) ↔ χ), and replace χ in the occurrence ψ@χ by R(x, y).

3. For any rooted formula ψ@χ that occurs under a separating connective, we
dissolve the separating connective in a similar matter as described above.

Now we can show completeness of the natural deduction proof system by
reduction to the completeness of the sequent calculus.

Lemma 3.4.9 (Completeness). Γ |=RSL ϕ implies Γ ⊢RSL ϕ.

Proof. The proof goes along the following lines, and mostly uses standard techniques
from interpretational proof theory [212]. We adapt the premises and conclusion in
an equisatisfiable way, as sketched out above. We then obtain a sequent Γ′ ⇒ ϕ′

for which, by the completeness result of the sequent calculus established previously,
we can obtain a deduction. Every deduction in sequent calculus can be mapped to
a deduction in natural deduction. The operations to obtain the adapted premises
and conclusion can be reversed to obtain a proof of the original conclusion ϕ with
the original premises Γ in the natural deduction proof system.

We gloss over the details comparing the semantics RSL and FORSL. However,
these details are not essential to the completeness result above: it is also possible
to prove the completeness of the proof system RSL directly, by replicating much of
the work done previously to show completeness of the sequent calculus (the model
existence theorem): again by constructing a maximal consistent set of formulas
of (extended) separation logic out of a given set of formulas, and constructing a
model out of it to show the satisfiability of the given set of formulas. After doing
such a direct proof of completeness, one also establishes a relation between the two
semantics.

3.5 Discussion
One may think of relational separation logic to be an abstraction of (functional)
separation logic in the following sense: suppose, in an object-oriented setting, we
would have a functional ‘points to’ relation for each field of an object. In the
abstract view of (one-step) reachability, it does not matter by which field an object
points to another object, what only matters is that another object is reachable
through some field. Reachability is thus modeled as a points-to relation that is not
necessarily functional, and interpreting the separating conjunction thus involves a
partition of objects. In particular, we have that the formula (x ↪→ −) ∗ (x ↪→ −)
should be equivalent to false, because an object x cannot be in both separate parts
at the same time. With the condition on the disjointedness of the domains of R1

and R2 this equivalence indeed holds.
However, and contrary to our intuition of separation, it is possible to satisfy

(x ↪→ −) ∗ (x ↪→ −) if we merely require the relations R1 and R2 to be disjoint

3.5. DISCUSSION 77

Narrow Wide

Strict (x 7⇀ y) (x 7→ y)

Loose (x ↪⇀ y) (x ↪→ y)

Table 3.1: The four points-to relations.

(since one part can assign the location x to a different value than the other part).
But then what does separate mean if an object x can be in both separate parts at
the same time?

We discuss the consequence of the fact that in relational separation logic the
points-to relation is no longer functional. We previously have seen the following
two concepts:

• We have that the primitive formula (x ↪→ y) expresses ‘x points to y’ or
‘location x has value y’. In the relational setting, we no longer have that if
(x ↪→ y) holds that y is the only value that x points to, since it is possible
that there are other values that x points to as well.

• We have that (x 7→ y) abbreviates ((x ↪→ y) ∧ ∀z, w((z ↪→ w) → x = z)),
which expresses that ‘x strictly points to y’ or ‘x points to y and only x is
allocated’. Similarly, in the relational setting, we also no longer have that
if (x 7→ y) holds that y is the only value that x points to, since it is also
possible that there are other values that the location x points to. However,
we do have that x is the only allocated location.

In the relational setting, that a location points to a value does not necessarily mean
that this location points to only one value. Thus it is warranted that we introduce
the following abbreviations:

(x ↪⇀ y) abbreviates ((x ↪→ y) ∧ ∀z((x ↪→ z) → y = z))

(x 7⇀ y) abbreviates ((x ↪→ y) ∧ ∀z, w((z ↪→ w) → x = z ∧ y = w))

where z is a fresh variable. We speak about these formulas in the following way:

• for (x ↪→ y) we say ‘x points to y’ or ‘location x has value y’,

• for (x ↪⇀ y) we say ‘x points to y alone’ or ‘location x has (and only has)
value y’,

• for (x 7→ y) we say ‘strictly x points to y’ or ‘x points to y and only x is
allocated’,

• for (x 7⇀ y) we say ‘strictly x points to y alone’ or ‘x points to y alone and
only x is allocated’ or ‘the one and only location-value pair is (x, y)’.

Strictness (resp. looseness) indicates exactly one (resp. at least one) location on
the heap, and narrowness (resp. wideness) indicates precisely one (resp. at least

78 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

one) value is associated to that location. The four points-to relations can be
systematized as in Table 3.1. The following sentences are valid:

∀x, y. (x 7⇀ y) ↔ (x 7→ y) ∧ (x ↪⇀ y),

∀x, y. (x 7→ y) ∨ (x ↪⇀ y) → (x ↪→ y),

and (x 7→ y) and (x ↪⇀ y) are themselves incomparable. If we have

∀x, y. (x ↪→ y) → (x ↪⇀ y)

then the points-to relation must be functional. This is the case in (functional)
separation logic as introduced in the previous chapter, but no longer for relational
separation logic. The latter formula is equivalent to fun(↪→).

In this chapter we have investigated relational separation logic, but how much
work does it take to adapt the semantics and the proof system to (functional)
separation logic?1 Both the semantics and the proof system of relational separation
logic rely on the fact that we can express relations using arbitrary binary formulas.
We can not simply use the proof system but restrict to functional interpretations
of the binary variables: the problem lies in that rooted assertions p@ϕ allow any
binary formula ϕ, which may denote non-functional relations as well. And the same
problem happens when considering comprehensive relational structures. However,
without a lot of effort we can overcome this problem, by introducing additional
notational conventions, obligations, and assumptions.

Similar to how terms can be added to a first-order logic that only has constant
symbols such as predicate and relation symbols, by declaring constant symbols
as individual symbols and function symbols, we can also keep track of a subclass
of binary formulas for which we declare the property of functionality holds. By
writing such binary formulas ϕ̂, to mean that ϕ must be functional, then we can
keep track for which formulas we have additional obligations to show functionality,
or assumptions that witness their functionality.

We can then adapt the proof system RSL to obtain the proof system SL:
additional proof obligations are required for the introduction rule of separating
conjunction (because the disjoint union of two functional relations is not necessarily
functional) and the elimination rule of separating implication (where also the
disjoint union is not necessarily functional). In the case of the elimination rule of
separating conjunction, we already know that splitting a functional relation always
results in two functional relations, leading to additional assumptions. In the case
of the introduction rule of separating implication we can add functionality (of the
relation representing the extension, and of the disjoint union of the outer heap and
the extension) as an additional assumptions.

Adapting GRSL to GSL involves restricting to partial functions h instead of
relations R, to obtain general heap structures. We then have the set FunH,h,ρ(ψ̂)

1Many respectable colleagues have told the author that ‘nobody reads Ph.D. theses’—in the
interest of their reputation it is best to leave them anonymous. The full description of the proof
system SL and its soundness and completeness proof remain to be published in a forthcoming
journal article. However, from the sketch provided here, it is not difficult for a reader to come up
with it themselves.

3.5. DISCUSSION 79

that denotes a partial function based on the formula ψ for which we know it has
the property of functionality. Consequently, we can consider closed heap structures
in a similar way, to obtain SL.

Finally, notice how in the rooted assertion ϕ@ψ the @-connective is related to
the binding operator (↓Rϕ) of the previous chapter, by comparing their semantics:

• A,R, ρ |=FRSL↓ (↓Rϕ) if and only if A,R, ρ[R := R] |=FRSL↓ ϕ,

• H,R, ρ |=GRSL ϕ@ψ iff H,R′, ρ |=GRSL ϕ for R′ = RelH,R,ρ(ψ).

In some sense, the binding operator ‘captures’ the current interpretation of R,
whereas in the interpretation of the @-connective we replace the current interpreta-
tion of R. The connection is interesting from the perspective of Henkin models of
second-order logic, which satisfy a comprehension axiom, by which we know that
every formula also denotes a relation over which one can quantify. If we would add
second-order variables to GRSL, the connection may become more obvious:

• A,R, ρ |=FRSL↓ (↓Rϕ) if and only if A,R, ρ[R := R] |=FRSL↓ ϕ,

• H,R, ρ |=GRSL ϕ@R if and only if H, ρ(R), ρ |=GRSL ϕ.

80 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

