
New Foundations for Separation Logic
Hiep, H.A.

Citation
Hiep, H. A. (2024, May 23). New Foundations for Separation Logic. IPA
Dissertation Series. Retrieved from https://hdl.handle.net/1887/3754463

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3754463

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3754463

Chapter 2

Model theory of
separation logic

In this chapter, we introduce the syntax and semantics of separation logic. We
shall present the standard interpretation of separation logic, but also investigate
a new interpretation of separation logic and the relations between the different
interpretations of separation logic, and between separation logic and second-order
logic. The first result is the inadequacy of the standard of separation logic, by
showing it is non-compact. We then introduce a new interpretation, the full
interpretation of separation logic based on the possibility of infinite heaps, and
show it is inadequate too. We investigate the sufficient and necessary conditions
for an embedding of the standard interpretation into the full interpretation, and we
introduce relational separation logic to compare separation logic to second-order
logic. An interesting result is that the full interpretation of separation logic is
close to the standard interpretation of second-order logic, in the sense that the
expressivity of a binding operator is sufficient for the two logics to coincide. As
such, this chapter is a model theoretic investigation of separation logic.

Informally, the purpose of separation logic is to formalize and allow reasoning
about the notion of spatial separation. This intuition can best be elucidated by
the following examples, in which we see the different meaning in natural language
of the conjunction of two facts:

• “I know the moon orbits the earth.”

• “I have a Euro in one of my pockets.”

Notice how the meaning of conjunction differs in the following sentences:

• “I know the moon orbits the earth, and I know the moon orbits the earth.”

• “I have a Euro in one of my pockets, and I have a Euro in one of my pockets.”

In the first sentence, describing the knowledge that the moon orbits the earth twice
does not change the way we could interpret the overall sentence. Once you know

27

28 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

something, it does not matter how often you think of it: we have the classical
propositional law that states that A ∧A is equivalent to A for any proposition A.
This works for any ‘pure’ proposition.

However, in the second sentence there is a difference between our classical
intuition, and our spatial intuition. Classically, we are able to substitute any
sentence for the proposition A, and hence the propositional law should also apply
here. But this does not entirely capture our spatial intuition. The second sentence
is not precise: is the Euro in the same pocket, or in different pockets? Phrased
differently, is the expression ‘one of my pockets’ in both conjuncts referring to the
same pocket or to two different pockets? Classically, to be precise, one would have
to explicitly describe this situation: “I have a Euro in one of my pockets, and I
have a Euro in another of my pockets.”

Notice how the explicit difference in location, which we classically need to
describe to be precise, can also be resolved differently: by changing the way we
interpret the conjunction—no longer classically, but spatially: “I have a Euro in
one of my pockets, and separately, I have a Euro in one of my pockets.” Surely the
two pockets must now be different pockets, because how could otherwise one fact
be separate from the other fact?

We introduce the following symbols to abbreviate our intuition. We write
(x ↪→ y) to express that the location x has the value y. If we interpret x as
being the location of one of my pockets and y as the value of one Euro, then
(x ↪→ y) expresses that “I have a Euro in one of my pockets”. Further, we introduce
the spatial conjunction, or separating conjunction, by using ∗ as a connective.
Symbolically, we can evaluate the following formulas:

1. ∃x(x ↪→ y),

2. (∃x(x ↪→ y)) ∧ (∃x(x ↪→ y)),

3. (∃x(x ↪→ y)) ∗ (∃x(x ↪→ y)),

4. ∃x((x ↪→ y) ∧ ∃z(z ̸ .= x ∧ (z ↪→ y))).

Notice how the first two formulas are equivalent (due to the classical law that A∧A
is equivalent to A). However, the second and third formulas are not equivalent.
The second formula expresses that at least one pocket has a Euro in it. The
third formula expresses that at least two (different) pockets have a Euro in them.
Intuitively, the third and fourth formula are again equivalent, where in the fourth
formula we classically express that the second pocket is different from the first
pocket.

If we scale up our argument to more and more pockets (for example, imagine
the many pockets of a handyman), we observe the following pairs of equivalences:

• (∃x(x ↪→ y)) ∗ (∃x(x ↪→ y)) ∗ (∃x(x ↪→ y)),

• ∃x((x ↪→ y) ∧ ∃z(z ̸ .= x ∧ (z ↪→ y) ∧ ∃w(w ̸ .= x ∧ w ̸ .= z ∧ (w ↪→ y)))).

and

29

• (∃x(x ↪→ y)) ∗ (∃x(x ↪→ y)) ∗ (∃x(x ↪→ y)) ∗ (∃x(x ↪→ y)),

• ∃x((x ↪→ y) ∧ ∃z(z ̸ .= x ∧ (z ↪→ y) ∧ ∃w(w ̸ .= x ∧ w ̸ .= z ∧ (w ↪→ y)∧
∃v(v ̸ .= x ∧ v ̸ .= z ∧ v ̸ .= w ∧ (v ↪→ y))))).

We see how, classically, we need to describe more and more facts that state that
the locations are all pairwise different, whereas with our spatial intuition we simply
declare these locations to be separate by the separating conjunction connective.
The separation is either described ‘bottom up’ using explicit equational facts, or
‘top down’ using separating connectives.

Especially in the setting of programming with pointers, this spatial intuition is
natural to reason about. Often, data structures are laid out in separate parts of
the memory, and describing explicitly that these parts of the memory are separate
quickly grows in complexity. Consider, for example, the circular singly-linked list
of Figure 2.1. Whenever we informally reason about the data structure of a linked
list, we mentally model the memory state by means of a picture in which each
box represents some storage space in memory, and pointers to boxes represent the
address value of the location of that memory space. Already by choosing such
a picturesque model, we have the graphical intuition that locations in space are
separate: drawing two boxes on paper means the two boxes have to be separate.
However, classically, one would have to explicitly describe that to be precise.

Consider running through the execution of a program that manipulates the
memory states of a linked list:

(a) In the initial state we have one item which is linked back to itself. This is
the so-called head of the list. In Figure 2.1 we see this situation, where x is
a variable that points to the location of the box, and the value of the box
points to itself. Symbolically, we would describe this by stating:

(x ↪→ x) ∧ ∀z((z ↪→ −) → z = x)

where (z ↪→ −) means ∃y(z ↪→ y). This describes that the value of x
represents a location, which is allocated since we see it points to a box, and
the value of the location is the address of itself, since we see a pointer from
inside the box to the edge of the box itself. The second conjunct expresses
that there are no other locations. We can abbreviate this formula, by simply
writing:

(x 7→ x)

where the symbol 7→ indicates that the location is the sole location that is
allocated.

(b) Next, we allocate new space. So y now points to a location that was previously
unallocated, but now it is allocated since it takes up space as a box. We
obtain the ‘paperclip’ state, in which the box to which x points still points to
itself, but also the box to which y points points to the box to which x points.
Symbolically we have

(x 7→ x) ∗ (y 7→ x)

30 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

x

(a) Initial state

x y

(b) After creation

x y

(c) Relinking

Figure 2.1: Three different memory states of a circular singly-linked list.

since we can imagine to split the memory in two parts: the box on the left,
and the new box on the right. The box on the left still points to itself. The
box on the right points to the box on the left.

(c) Finally, we relink the previous box to the new box: the box to which x points
itself now points to the box to which y points. Symbolically, we express this
situation as:

(x 7→ y) ∗ (y 7→ x)

and this description is quite precise. We know, from the picture, that x and y
must point to different boxes, because we have drawn these boxes apart from
each other. Notice that the two components each point to each other. The
components, when viewed isolated from each other, have dangling pointers.
However, by putting the components in separating conjunction, these former
dangling pointers now resolve to the proper location, being the box in each
component.

This simple example convincingly shows that pointer structures can be described,
component-wise, using the connective of separating conjunction. Separating con-
junction directly captures the intuition that the locations to which one refers to are
separated among the components of the conjunction. Further examples of cyclic
data structures and containers can be given: doubly-linked lists, tree structures
with pointers from parents to children but also back links from children to parents.
In fact, our intuition of these pointer structures quite naturally transfers to the
memory states of object-oriented programs, in which the precise identity of objects
is abstracted away, where different pointers coming out of a box represent the
different fields of an object.

Another important aspect of spatial intuition is hypothetical space: the question
what happens if one would allocate locations according to a description, where
those locations are previously not allocated. To describe hypothetical situations
we introduce the connective −∗ that is called separating implication, or the magic
wand. Consider Figure 2.2 in which there are two situations depicted. In the
situation on right we are dealing with a hypothetical extension of the situation
depicted on the left, as represented by a dashed arrow. We can describe these
situations as follows:

(a) This situation is described precisely by the formula

(x 7→ y) ∧ (y ̸↪→ −).

31

x y

(a) Original state

x y

(b) Original state and extended state

Figure 2.2: Hypothetical extension of locations.

The location pointed to by y is not allocated, as depicted by a crossed-out
box. Hence both the box pointed to by x, and to which y points, are dangling
pointers: the location to which is pointed is not allocated.

(b) Now, we could imagine a hypothetical extension of the state, in which the
box pointed to by y actually exists and points back to x. This hypothetical
situation can be described by the formula

(x 7→ y) ∧ (y ̸↪→ −) ∧ ((y 7→ x) −∗ ((x 7→ y) ∗ (y 7→ x))).

The connective −∗ describes on the right of the connective what holds of
the resulting, hypothetical memory state after the current memory state
is extended by any separate part of the memory for which the left of the
connective holds.

In this chapter we shall formally introduce separation logic. In separation logic
we aim to formally capture our intuition as given above. We introduce the language
in which formulas are described, their interpretation by means of structures. In this
chapter we focus on the model theoretic development of the semantics of separation
logic. Next chapter we develop the proof theory for reasoning about formulas of
separation logic.

Technically, we restrict ourselves to classical first-order separation logic. By
classical we mean that we interpret the formulas of first-order logic embedded in
separation logic classically. Although the language of separation logic extends the
language of first-order logic, not all classical laws such as the law of excluded middle
hold for all classical separation logic formulas. The embedding of first-order logic
in separation logic is also called the ‘pure’ part of separation logic; it is pure since
it does not depend on our spatial intuition. Further, we restrict to first-order logic
and do not develop higher-order separation logic, to keep the presentation light. In
principle, nothing restrains us from allowing higher-order variables and higher-order
quantification in separation logic too. Furthermore, just like in Chapter A that
introduced first-order logic, we keep terms orthogonal to our discussion. Although
terms can be easily added to the syntax, and we can interpret constant symbols
and function symbols specially as individuals and functions, it is not necessary
to do so—we do not miss out any expressivity of the logic, but we get simpler
definitions by leaving them out.

Throughout this chapter, we will introduce different classes of separation logic
formulas. An overview of these classes of formulas is given in Figure 2.3.

32 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

formulas of separation logic

formulas without magic wand

formulas of separation logic light

semi-pure formulas

formulas of classical logic

Figure 2.3: Overview of the classes of formulas of separation logic. Formulas are
included from bottom to top.

2.1 Syntax of separation logic
The language of separation logic imports many of the concepts already present
in classical logic, such as variables and signatures. Formulas, or synonymously
assertions, of separation logic extend the formulas of classical logic in two aspects:
first, we add a new primitive formula, called points-to, denoted by ↪→, and, sec-
ondly, we add two new connectives, called separating conjunction and separating
implication, denoted by ∗ and −∗, respectively. After extending formulas, some
concepts imported from classical logic require some adjustments to the setting of
separation logic. We also introduce new concepts that are were not yet present in
classical logic.

In our presentation of the assertions of separation logic, we shall not introduce
terms at first. This makes a comparison with our presentation of classical logic
easier, and also makes the technical development easier to follow. However, by
taking this approach, we do not lose any expressive power: later in this section we
add terms in an orthogonal way, regardless of whether the assertion language of
classical logic or separation logic is used.

Based on a given signature (see Definition A.1.2), we construct the formulas of
separation logic. Although we follow [125] in the definition of the syntax (and later
also the standard semantics) of the assertion language of separation logic, we now
work in this more general setting with signatures and we use a different atomic
‘weak points to’ formula. For the remainder of this section, we fix a first-order
signature Σ that consists of constant symbols, similar to what we did for classical
logic. It should be clear from context whether one speaks of formulas of separation
logic or formulas from classical logic. In this chapter, ‘formula’ refers to ‘formula
of separation logic’ unless explicitly mentioned otherwise.

Definition 2.1.1 (Formulas). A formula is constructed inductively as follows:

1. ⊥ is a formula,

2. (x
.
= y) is a formula if x and y are individual variables,

2.1. SYNTAX OF SEPARATION LOGIC 33

3. (x ↪→ y) is a formula if x and y are individual variables,

4. C(x1, . . . , xn) is a formula if C is a constant symbol of arity n and x1, . . . , xn
are individual variables,

5. (ϕ→ ψ) is a formula if ϕ and ψ are formulas,

6. (∀xϕ) is a formula if ϕ is a formula and x an individual variable,

7. (ϕ ∗ ψ) is a formula if ϕ and ψ are formulas,

8. (ϕ −∗ ψ) is a formula if ϕ and ψ are formulas.

All formulas are constructed by one of these eight clauses. Alternatively, we can
define formulas by the following abstract grammar:

ϕ, ψ ::= ⊥ | (x
.
= y) | (x ↪→ y) | C(x1, . . . , xn) |

(ϕ ∗ ψ) | (ϕ −∗ ψ) | (ϕ→ ψ) | (∀xϕ)

Note that in separation logic, we prefer using false and true instead of ⊥ and ⊤,
where false abbreviates ⊥, and true abbreviates (⊥ → ⊥).

The first four clauses construct primitive formulas, the last four clauses construct
complex formulas. Formulas can still be regarded as finite sequences of symbols,
but we consider the newly introduced symbols ↪→, ∗, −∗ to be separation symbols
disjoint from the earlier logical symbols and non-logical symbols. It is easy to verify
that the set of formulas, as defined above, is recursive.

We speak of formulas in the usual way, except for the new clauses. The primitive
formula (x ↪→ y) is called points-to (as in ‘x points to y’). As complex formulas,
two separating connectives are given: (ϕ ∗ ψ) is a separating conjunction, and
(ϕ −∗ ψ) is a separating implication. The latter connective is also called the magic
wand by some authors.

Again, when proving meta-properties of formulas, we proceed by induction on
the complexity of formulas. There are different obvious measures of complexity:
the height of a formula, by viewing the formula as a parse tree and taking the
height of that tree, or the length of a formula, by viewing a formula as a sequence
of symbols and taking the length of that sequence.

In a certain sense, Definition 2.1.1 includes all first-order formulas of classical
logic (cf. Definition A.1.4). Regarding formulas as sequences of symbols, if in
that sequence there is no separation symbols present then the formula must also
be a (first-order) formula of classical logic. The latter formulas are also called
pure formulas or heap-independent formulas. If a formula, seen as a sequence of
symbols, contains a separation symbol we call it impure or heap-dependent. If
a formula is impure but does not contain separating connectives (i.e. contains
primitive points-to constructs) then we call it semi-pure.

As such, we may use the usual classical abbreviations, given in Definition A.1.5,
too in separation logic. This means we have access to (logical) disjunction, con-
junction, bi-implication and existential quantification. Further, we also use these

34 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

abbreviations in the case where they are used to compose heap-dependent formulas.
Specifically, we may use separating connectives nested under logical connectives or
quantifiers.

We further have the separation symbols ↪̸→, emp, 7→ and we use the symbol −
as a placeholder, by introducing the following abbreviations:

(x ↪̸→ y) abbreviates (¬(x ↪→ y))

(x ↪→ −) abbreviates (∃z(x ↪→ z))

(x ↪̸→ −) abbreviates (¬(x ↪→ −))

emp abbreviates (∀x(x ↪̸→ −))

(x 7→ y) abbreviates ((x ↪→ y) ∧ (∀z, w((z ↪→ w) → x
.
= z)))

(x 7→ −) abbreviates (∃z(x 7→ z))

where z is a fresh individual variable (i.e. not the same as x). We may speak of
‘locations’ being on the left-hand side of either ↪→ or 7→, and ‘values’ being on
the right-hand side of either ↪→ or 7→. We may speak about these formulas in the
following way:

• for (x ↪→ y) we say ‘x points to y’ or ‘location x has value y’,

• for (x ↪→ −) we say ‘(at least) x is allocated’,

• for (x 7→ y) we say ‘strictly x points to y’ or we may say ‘x points to y and
only x is allocated’,

• for (x 7→ −) we say ‘x is solely allocated’ or ‘x is allocated alone’,

• for emp we say ‘nothing is allocated’.

When speaking of the negated forms, some care is needed:

• for (x ↪̸→ y) we say ‘x does not point to y’ or ‘x has not the value y’, but
note that does not necessarily mean x is not allocated,

• for (∀y(x ↪̸→ y)) we say ‘x has no value’ or ‘x is not allocated’,

• equivalently, for (x ↪̸→ −) we say ‘x is not allocated’ (but that does not say
anything about other allocations).

Remark 2.1.2. In some texts on separation logic, the symbols emp and 7→ are taken
as primitive formula (instead of ↪→). In this case we recover the same language as
we have here by taking (x ↪→ y) as an abbreviation of (true ∗ (x 7→ y)). In other
texts the ‘weak’ points to is taken as primitive (as in [187] and [70]). The reason
we take ↪→ as primitive is to avoid the use of separating connectives in expressing
our abbreviations, while still being able to express that an element is not allocated:
all abbreviations are semi-pure.

2.2. STANDARD SEMANTICS 35

The same conventions for reducing parentheses are employed, with the following
two additions to precedence: separating conjunction precedes logical conjunction
(and so also disjunction and logical implication), and separating implication precedes
logical implication (and so also bi-implication). All separating connectives also
associate to the right. For example, P (x) ∗ Q(x) ∧ P (x) disambiguates to ((P (x) ∗
Q(x)) ∧ P (x)), and P (x) → Q(x) −∗ P (x) → Q(x) disambiguates to (P (x) →
((Q(x) −∗ P (x)) → Q(x))). However, we shall try to use parentheses, even if not
necessary by these disambiguation rules, to present formulas as clearly as possible
also for readers less familiar with separation logic.

The concept of variable occurrences in formulas can be imported in a straight-
forward manner. Formulas in separation logic can also be viewed as a parse tree,
in which variables occurs at leaves. We also have the sets FV (ϕ), and BV (ϕ), that
denote the variables that occur free in ϕ, and the variables that occur bound in ϕ,
respectively. Revisiting Definition A.1.6 (Free and bound variables), we need to
add the following clauses:

• FV (x ↪→ y) = {x, y} and BV (x ↪→ y) = ∅,

• FV (ϕ ∗ ψ) = FV (ϕ) ∪ FV (ψ) and BV (ϕ ∗ ψ) = BV (ϕ) ∪ BV (ψ),

• FV (ϕ −∗ ψ) = FV (ϕ) ∪ FV (ψ) and BV (ϕ −∗ ψ) = BV (ϕ) ∪ BV (ψ).

As such, we also import the following concepts: a formula without free variables is
a sentence, a context is a list of formulas, and a theory is a set of sentences.

Similarly, we have also the application π(ϕ) of a renaming π to a formula ϕ.
Revisiting Definition A.1.9 (Variable renaming), we need to add the following:

• π(x
.
= y) = (π(x)

.
= π(y)),

• π(ϕ ∗ ψ) = (π(ϕ) ∗ π(ψ)),

• π(ϕ −∗ ψ) = (π(ϕ) −∗ π(ψ)).

Also (capture-avoiding) substitution of variables for variables works in the same
way as in classical logic. We can also add terms to separation logic in the same
manner as is done in Section A.5.

2.2 Standard semantics

The standard semantics of separation logic formula is given in the style of Tarski,
extending the semantics of classical logic. There are two important aspects to
consider before we define the satisfaction relation formally.

The first aspect is that we employ the same structures that we used for giving
semantics to classical logic: this ensures that the semantics of the heap-independent
formulas of separation logic coincides with their classical semantics. Further,
terms are evaluated without depending on the heap. So the semantics of terms in
separation logic completely coincides with the semantics of terms in classical logic.

36 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

The second aspect is the context in which we define the satisfaction relation.
In separation logic, we employ another concept, next to structures and valuations,
called the heap. A heap is represented by a partial function. In the standard
semantics we furthermore restrict ourselves to finitely-based partial functions,
meaning that only finitely many locations are assigned a value by the partial
function representing the heap.

Let A = (A, I) be a structure (see Definition A.2.3). A finite heap of A is a
finitely-based partial function from A to A. A heap thus assigns to finitely many
elements of the domain of the structure a value, which is also an element of the
domain of the structure. Let h be a heap. By dom(h) we denote the domain of the
heap h, that is, the set of all elements of A on which h is defined. If a is an element
for which h is undefined we also write h(a) = ⊥ (where we implicitly know ⊥ ̸∈ A
since ⊥ is some dummy element), and if a is an element for which h is defined we
write h(a) = a′ for some value a′ ∈ A.

We may also speak of locations to mean elements that are (possibly) in the
domain of a heap. A finite heap thus assigns finitely many locations to values.
Note that speaking of just a domain may be unclear: is one speaking of the domain
of a structure, or the domain of a heap? The latter, however, is a (finite) subset of
the former.

We define three operations on finite heaps. There is the empty heap, denoted by
ϵ. The empty heap is undefined on every element of the domain, that is, dom(ϵ) = ∅.
Clearly the domain of the empty heap is finite. Given two elements a, a′ of A. By
h[a := a′] we denote the heap obtained after applying a heap update operation that
sets location a to the element a′. Formally,

h[a := a′](e) =

a′ if a = e

h(e) if a ̸= e and h(e) is defined
undefined otherwise

where e ranges over elements of the domain A of our structure. We now thus have
dom(h[a := a′]) = dom(h) ∪ {a}, and so the domain remains finite. By h[a := ⊥]
we denote the heap obtained after applying a heap clear operation that clears
location a from the domain. Formally,

h[a := ⊥](e) =

undefined if a = e

h(e) if a ̸= e and h(e) is defined
undefined otherwise

and thus dom(h[a := ⊥]) = dom(h) \ {a}, and also here the domain remains finite.
We have the property of heap extensionality : given two finite heaps h and g,

then h = g if and only if dom(h) = dom(g) and h(a) = g(a) for every a ∈ dom(h).
Intuitively, we could split and merge heaps. A finite heap that has more than

one element in its domain can be partitioned into two finite heaps, by selecting
for each element in the domain to what partition it should belong after the split.
Similarly, given two finite heaps that have a disjoint domain, we can form a new

2.2. STANDARD SEMANTICS 37

finite heap by merging the two. After splitting or merging, the values assigned to
locations remain the same. To formalize these intuitions, we introduce the concept
of a heap partitioning.

Let h1 and h2 be finite heaps with disjoint domains, dom(h1) ∩ dom(h2) = ∅.
We sometimes write h1 ⊥ h2 to abbreviate dom(h1) ∩ dom(h2) = ∅. Now h1 ⊎ h2
denotes a finite heap that can be split into two parts, h1 and h2, so has as domain
the union of the underlying domains, dom(h1 ⊎ h2) = dom(h1) ∪ dom(h2). Every
location in the resulting heap has the value of the corresponding underlying heap,
(h1 ⊎ h2)(e) = h1(e) if e ∈ dom(h1) and (h1 ⊎ h2)(e) = h2(e) if e ∈ dom(h2).
Locations outside of the domain remain undefined, (h1 ⊎h2)(e) = ⊥ if e ̸∈ dom(h1)
and e ̸∈ dom(h2). Thus one can think of h1 ⊎ h2 as a merged heap. It does not
exists when h1 and h2 both assign a value to the same location, even when both h1
and h2 assign the same value to shared locations. Although the latter makes sense
when merging heaps, its fails our intuition in the other direction, when splitting a
heap in two parts. Thus, we write h ≡ h1 ⊎ h2 to mean h1 ⊥ h2, that h1 and h2
have disjoint domains—and so the finite heap h1 ⊎ h2 exists, and h = h1 ⊎ h2, and
we say that there is a heap partitioning.

We are now able to give the formal definition of the satisfaction relation. Our
definition is an extension of Definition A.2.5 in two ways: we additionally consider
a finite heap h, and we have new clauses corresponding to points-to, separating
conjunction, and separating implication.

Definition 2.2.1 (Satisfaction relation). Given a structure A = (A, I), a valuation
ρ of A, a finite heap h of A, and a separation logic formula ϕ. The satisfaction
relation A, h, ρ |=SSL ϕ is defined inductively on the structure of ϕ:

• A, h, ρ |=SSL ⊥ never holds,

• A, h, ρ |=SSL (x
.
= y) iff ρ(x) = ρ(y),

• A, h, ρ |=SSL (x ↪→ y) iff h(ρ(x)) is defined and h(ρ(x)) = ρ(y),

• A, h, ρ |=SSL C(x1, . . . , xn) iff (ρ(x1), . . . , ρ(xn)) ∈ CI ,

• A, h, ρ |=SSL ϕ→ ψ iff A, h, ρ |=SSL ϕ implies A, h, ρ |=SSL ψ,

• A, h, ρ |=SSL ∀xϕ iff A, h, ρ[x := a] |=SSL ϕ for every a ∈ A,

• A, h, ρ |=SSL ϕ ∗ ψ iff A, h1, ρ |=SSL ϕ and A, h2, ρ |=SSL ψ
for some h1, h2 such that h ≡ h1 ⊎ h2,

• A, h, ρ |=SSL ϕ −∗ ψ iff A, h′, ρ |=SSL ϕ implies A, h′′, ρ |=SSL ψ
for every h′, h′′ such that h′′ ≡ h ⊎ h′.

The superscript SSL stands for Standard Separation Logic. In the third clause
it is superfluous to state that h(ρ(x)) is defined, since we know that ρ(y) cannot
be the dummy element ⊥ and hence ρ(x) ∈ dom(h). Further, since we restrict
ourselves to first-order signatures, the valuation ρ of A only assigns individual

38 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

variables a value. We shall leave out the discussion how the satisfaction relation is
defined for empty structures, since it is similar to classical logic.

Based on this definition it is now also possible to give semantics of abbreviations,
similar to what we did in the case of classical logic. Also similar to classical logic, we
have the coincidence condition and invariance under renaming. Both propositions
are with respect to a fixed heap.

Proposition 2.2.2 (Coincidence condition). Given that ρ[FV (ϕ)] = ρ′[FV (ϕ)], it
follows that A, h, ρ |=SSL ϕ if and only if A, h, ρ′ |=SSL ϕ.

Proposition 2.2.3 (Invariance under renaming). Given a renaming π such that
all free variables of ϕ stay the same, i.e. π(v) = v for all v ∈ FV (ϕ). It follows
that A, h, ρ |=SSL ϕ if and only if A, h, ρ |=SSL π(ϕ).

Sometimes, it is more convenient to work with the set of heaps and valuations
by which a formula is satisfied given a particular structure.

Definition 2.2.4 (Denotation). The denotation of a formula AJϕKSSL is defined:

AJϕKSSL = {(h, ρ) | A, h, ρ |=SSL ϕ}.

Similar as before, we may drop SSL if clear from context. We write ϕ ≡A ψ
for AJϕK = AJψK, and say that ϕ and ψ are equivalent.

Note that the we can also add terms to separation logic, completely analogous
to what we did in Section A.5. An important result also holds for separation logic:

Lemma 2.2.5 (Substitution lemma).

A, h, ρ |=SSL ϕ[x := t] if and only if A, h, ρ[x := ρ(t)] |=SSL ϕ.

We write A, h |=SSL ϕ to mean A, h, ρ |=SSL ϕ for all valuations ρ, and we write
A |=SSL ϕ to mean A, h |=SSL ϕ for all finite heaps h. Given a sentence that is
satisfied, using the coincidence condition we can obtain that it is also satisfied by
the same structure but with any other valuation: the valuation has no influence
on whether a sentence is satisfied by the structure, but the heap does have such
influence. So if ϕ is a sentence, A, h |=SSL ϕ if and only if A, h, ρ |=SSL ϕ for some
valuation ρ.

Given a sentence ϕ, we write |=SSL ϕ to mean that A |=SSL ϕ for all structures
A, and we then say that ϕ is valid. Valid sentences in separation logic thus are
properties that hold for all finite heaps.

Given a theory, i.e. a set of sentences Γ, we write A, h |=SSL Γ to mean that
all sentences in Γ are satisfied by A and finite heap h, that is, A, h |=SSL ϕ for all
ϕ ∈ Γ. We may also speak of ‘Γ is satisfied by A and h’. A theory Γ is satisfiable
if there exists a structure A and heap h such that A, h |=SSL Γ. A theory Γ is
finitely satisfiable if every finite subset of Γ is satisfiable. Note that the finite heap
is considered existentially when speaking of (finite) satisfiability in separation logic.

We write Γ |=SSL ϕ to mean A, h |=SSL ϕ for all structures A and finite heaps
h such that A, h |=SSL Γ, and say that ϕ is a semantic consequence of Γ.

2.2. STANDARD SEMANTICS 39

By ThSSL(A) we mean the set of all sentences ϕ such that A |=SSL ϕ, and we
speak of the separation logic theory of A. Note that we have ThCL

1 (A) ⊆ ThSSL(A),
that is, the first-order theory of A is included in its separation logic theory. Further,
a separation logic theory contains only sentences that are universal in the heap,
i.e. sentences that hold for every finite heap.

Proposition 2.2.6. For any sentence ϕ we have A, h |=SSL ϕ or A, h |=SSL ¬ϕ.

However, contrasting to the first-order theory of a structure, which is necessarily
complete, we do not have that the separation theory of a structure is necessarily
complete. To see why, consider the counter-example used in the following proof.

Proposition 2.2.7. ThSSL(A) is complete if and only if the domain of A is empty.

Proof. Assume the domain of A is not empty. It is sufficient to show there is a
sentence ϕ such that there is a heap h1 such that A, h1 |=SSL ϕ, and there is a
heap h2 such that A, h2 |=SSL ¬ϕ. Take ϕ to be emp. Now h1 can be simply ϵ,
the empty heap. And h2 is any non-empty heap (which exists since the domain of
our structure is non-empty).

Assume ThSSL(A) is not complete. Thus there is a sentence ϕ such that
it is not the case that A |=SSL ϕ or A |=SSL ¬ϕ. So there exists h1, h2 such
that A, h1 |=SSL ¬ϕ and A, h2 |=SSL ϕ. Now h1 and h2 are not equal due to
Proposition 2.2.6. If, however, A is empty then there is only one heap and h1 and
h2 thus must be equal. So A must be non-empty.

Another difference is that the standard semantics of separation logic is not
compact, in contrast to classical logic (see Theorem A.2.10). So see why, consider
the following counter-example: every finite subset of an infinite set of sentences
expressing that the domain of the heap contains at least so many elements is
satisfiable, but clearly no finite heap satisfies the entire set.

Lemma 2.2.8 (Non-compactness standard semantics). It is not the case that Γ is
finitely satisfiable implies that Γ is satisfiable.

Proof. Let x0, x1, x2, . . . be individual variables. We construct a set of sentences Γ
which is finitely satisfiable, but not satisfiable:

Γ = {ϕn | n ∈ N}

where ϕn expresses that there are at least n+ 1 allocated and distinct elements:

ϕn = ∃x0, . . . , xn. (
∧

0≤i≤n

(xi ↪→ −)) ∧
∧

0≤i<j≤n

xi ̸= xj .

Clearly, Γ is infinite. For any finite subset of Γ, there must exist a maximum m
such that ϕm ∈ Γ. Then we take a structure with as domain N and a finite heap
in which the locations 0, . . . ,m are allocated (their value does not matter). Every
formula ϕi for 0 ≤ i ≤ m is satisfied. This construction works for every finite
subset of Γ, so Γ is finitely satisfiable. However, Γ is not satisfiable, since for every
ϕi ∈ Γ there always exists ϕj ∈ Γ with j > i, and so we cannot construct a finite
heap that satisfies all sentences.

40 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

Above it is also possible to give ϕn using separating conjunctions, namely by

ϕn = ∃x0, . . . , xn. (x0 ↪→ −) ∗ . . . ∗ (xn ↪→ −).

From the semantics of separating conjunction, it follows that xi ̸= xj for every
0 ≤ i < j ≤ n: if it were the case that xi = xj for i ̸= j then one cannot split the
heap into disjoint parts that satisfies all components of the conjunction.

The failure of compactness has important ramifications to the design of a proof
system for separation logic.

Corollary 2.2.9. There is no sound, complete, finitary proof system for SSL.

Proof. Suppose there would be a finitary proof system SSL that allows us to define
what it means that a sentence ϕ is a syntactic consequence of a theory Γ, denoted
Γ ⊢SSL ϕ, and suppose that it is complete with respect to the standard semantics:

Γ |=SSL ϕ implies Γ ⊢SSL ϕ.

Now we have that compactness follows from it: Γ is finitely satisfiable if and only
if Γ is satisfiable. To see why, it is sufficient to show that if Γ is not satisfiable
then Γ is not finitely satisfiable. Suppose some theory Γ is not satisfiable, then
Γ |=SSL ⊥ is the case. By completeness, we then have Γ ⊢SSL ⊥. By the finitary
nature of our proof system, there must only be finitely many sentences in Γ on
which the deduction is based. Let Γ0 denote that finite subset of Γ such that the
same deduction can be used to witness Γ0 ⊢SSL ⊥. Thus Γ is not finitely satisfiable.
Hence, the existence of a complete finitary proof system is in contradiction with
the above non-compactness proposition.

2.3 Full semantics
One cause of non-compactness in the previous section is the assumption that we
deal with finite heaps only. In this section, we consider a more liberal semantics:
the full semantics of separation logic. In the full semantics, we leave out the
restriction that we only consider heaps that are finite. Recall the discussion in
the introduction chapter that motivates our choice (see Section 1.3). Does this
modification resolve the problem of non-compactness, or will the resulting semantics
also be non-compact? That is the main question we answer in this section.

Again, let A = (A, I) be a structure. A heap of A is a partial function from A
to A. Every finite heap is a heap, and also every function from A to A is a heap.
If A is infinite, then there are heaps that are not finite heaps. In the case A is
finite, then every heap is a finite heap. A heap that is not a finite heap is called an
infinite heap.

The concepts we have introduced earlier are easily adapted to the new situation.
Let h be a (finite or infinite) heap. The domain dom(h) is the set of locations for
which h is defined. For infinite heaps, dom(h) is an infinite set. The empty heap
remains. The two operations of heap update h[a := a′] and heap clear h[a := ⊥]
can be extended to infinite heaps: their definition remains the same. However,

2.3. FULL SEMANTICS 41

dom(h[a := a′]) and dom(h[a := ⊥]) remain infinite if dom(h) is infinite. Also the
concept of heap partitioning can be extended to infinite heaps: we have that either
h1 or h2 is an infinite heap if h ≡ h1 ⊎ h2 and h is an infinite heap.

Similarly, we can adapt the satisfaction relation, which for the full semantics we
denote by A, h, ρ |=FSL ϕ, where the superscript FSL stands for Full Separation
Logic. Revisiting Definition 2.2.1, we now have the following adapted clauses:

Definition 2.3.1 (Satisfaction relation). Given a structure A = (A, I), a valuation
ρ of A, a heap h of A, and a separation logic formula ϕ. The satisfaction relation
A, h, ρ |=FSL ϕ is defined inductively on the structure of ϕ:

• . . .

• A, h, ρ |=FSL ϕ ∗ ψ iff A, h1, ρ |=FSL ϕ and A, h2, ρ |=FSL ψ for some h1, h2
such that h ≡ h1 ⊎ h2,

• A, h, ρ |=FSL ϕ −∗ ψ iff A, h′, ρ |=FSL ϕ implies A, h′′, ρ |=FSL ψ for every
h′, h′′ such that h′′ ≡ h ⊎ h′,

• . . .

where the heaps h, h1, h2, h′, h′′ range over (finite or infinite) heaps, not only finite
heaps as in the standard semantics.

With this satisfaction relation, we can also introduce the usual no(ta)tions of
validity, semantic consequence, and theories, but we have to make sure that we
consider all, finite or infinite, heaps universally. For example, we write A |=FSL ϕ
to mean A, h |=FSL ϕ for all (finite or infinite) heaps h.

Comparing the standard semantics and the full semantics with respect to the
satisfaction relation, we can see some obvious connections. For structures, the full
semantics also has the first-order theory included in its separation theory: we have
ThCL

1 (A) ⊆ ThFSL(A). If the domain of our structure is finite, every heap is also a
finite heap: so there is no distinction between the two semantics. However, there
are structures with an infinite domain in which the full semantics and standard
semantics differ in the sentences they satisfy.

Consider the sentence ϕ = ∃x.(x ↪→ −) −∗ ⊥, and take a structure N with the
naturals N as domain. The sentence is considered false with respect to the standard
semantics, but the sentence is satisfiable with respect to the full semantics.

• (SSL) Let h be an arbitrary finite heap. Let m be the maximum location of
h, or 0 if h is empty. Then surely ϵ[m+ 1 := 0] is disjoint from h. However,
N, h[m+ 1 := 0] ̸|=SSL ⊥.

• (FSL) To show satisfiability, we give a heap h such that N, h |=FSL ϕ. Take
any function for h such that dom(h) = N, i.e. all locations are allocated. Now
there is no disjoint h′ that is not empty. Hence, for any choice of value for x,
the formula (x ↪→ −) −∗ ⊥ is vacuously satisfied.

42 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

To further explore the semantics of separation logic, we introduce the following
abbreviation (also called the box modality) that we characterize below:

■ϕ abbreviates ⊤ ∗ (emp ∧ (⊤ −∗ ϕ))

Formulas placed directly within the context of the box modality are interpreted
with respect to an arbitrary heap. Thus, this modality expresses a limited form of
second-order universal quantification. One may think of the box modality acting
as a binder of the points-to construct.

Proposition 2.3.2. The following holds:

• A, h, ρ |=SSL ■ϕ if and only if A, h′, ρ |=SSL ϕ for every finite heap h′,

• A, h, ρ |=FSL ■ϕ if and only if A, h′, ρ |=FSL ϕ for every heap h′.

Proof. We show it for the standard semantics first.
A, h, ρ |=SSL ⊤ ∗ (emp ∧ (⊤ −∗ ϕ))

if and only if
A, ϵ, ρ |=SSL ⊤ −∗ ϕ

if and only if
A, h′, ρ |=SSL ϕ for every finite heap h′.
The proof for the full semantics is similar, but quantifying over all heaps h′.

Dually, we introduce the diamond modality

♦ϕ abbreviates ¬■¬ϕ

which expresses a limited form of second-order existential quantification.

Corollary 2.3.3. The following holds:

• A, h, ρ |=SSL ♦ϕ if and only if A, h′, ρ |=SSL ϕ for some finite heap h′,

• A, h, ρ |=FSL ♦ϕ if and only if A, h′, ρ |=FSL ϕ for some heap h′.

The above box modality can be used to characterize finiteness of the domain of
the structure in the case of full separation logic. Let fin abbreviate

■(tot(↪→) ∧ inj (↪→) → surj (↪→))

where the abbreviations tot , inj , surj of Proposition A.2.13 can be reused, but
applied to points-to by considering the primitive separation logic formula (x ↪→ y)
to be obtained as if ↪→ were a 2-ary relation (cf. the abbreviations below).

Proposition 2.3.4. A |=FSL fin if and only if the domain of A is finite.

Proof. Recall Proposition A.2.12, that a set is finite if and only if every injective
total function on that set is a surjection. In contrast to Proposition A.2.13, we do
not need fun(↪→) because in the semantics of separation logic we already have that
heaps are partial functions from which this property holds for every heap.

2.3. FULL SEMANTICS 43

The above characterization fails for standard separation logic. In that semantics,
the formula is valid: if the domain of the structure is finite then every injective
total heap is already a surjection, and if the domain of the structure is infinite then
there is no finite heap that satisfies tot(↪→).

Going further, we can give a sufficient condition for the finiteness of the domain
of the heap. Surely, for the standard semantics, this condition is useless since every
heap already is finite. However, in the full semantics, the condition can be useful
in certain contexts to restrict attention to heaps with a finite domain. We extend
our signature with an additional 1-ary predicate symbol, P . We then have the
following sentence:

∀x. P (x) ↔ (x ↪→ −) (2.1)

which expresses that the extension of the predicate P coincides with the domain
of the current interpretation of the heap. This sentence can not be valid if the
structure has at least one element in its domain, since each structure gives an a
priori interpretation of P independently of the heap, which may satisfy the formula
for one heap (say, the empty heap) but not for another (say, the non-empty heap).

However, we are still able to use the formula to capture the domain of the heap
at top-level. How this can be used will become clear later. To express that the
extension of P is finite we adapt our previous formula in the following way:

■(totP (↪→) ∧ injP (↪→) → surjP (↪→)) (2.2)

where we introduce the following relativized abbreviations:

• injP (↪→) abbreviates ∀x, y, z. P (x)∧P (y)∧P (z)∧(x ↪→ z)∧(y ↪→ z) → x
.
= y,

• totP (↪→) abbreviates ∀x. P (x) → ∃y. P (y) ∧ (x ↪→ y),

• surjP (↪→) abbreviates ∀y. P (y) → ∃x. P (x) ∧ (x ↪→ y).

Even in case the domain of our structure is infinite and in the full semantics the
box modality universally quantifies over all heaps, the above formula expresses
that all total injective functions on P must be surjective on P , and thus that P is
finite (for the same reason as in Proposition A.2.12).

Given that we can capture the domain of the heap at the top-level by a
predicate P , and that we can express that the extension of P is finite, we have also
non-compactness for the full semantics.

Lemma 2.3.5 (Non-compactness full semantics). It is not the case that Γ is finitely
satisfiable implies that Γ is satisfiable.

Proof. The set of sentences Γ is finitely satisfiable but not satisfiable:

Γ = {ϕn | n ∈ N} ∪ {ψ}

where ϕn expresses that there are at least n+ 1 allocated and distinct elements as
in Lemma 2.2.8, and ψ is the conjunction of the sentences of Equations (2.1) and
(2.2). Each finite subset of Γ is satisfiable: we can construct structures in the same

44 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

way as before, but now also select as interpretation for P the domain of the finite
heap used. However, Γ is not satisfiable: due to ψ we need to choose a finite heap
h and then not all ϕn can be satisfied.

Corollary 2.3.6. There is no sound, complete, finitary proof system for FSL.

The above argument of non-compactness relies on the presence of separating
implication (in the box modality), whereas in Lemma 2.2.8 we need not rely on
any separating connective. Can we also show non-compactness without relying on
separating implication?

We introduce the following abbreviation (also called the sub-heap modality):

□ϕ abbreviates ¬(⊤ ∗ ¬ϕ)

that expresses that ϕ holds for every sub-heap of the current heap. Bannister and
others have also introduced a related connective, called separating coimplication,
in [15], of which this sub-heap modality is an instance. Formally, a heap h′ is a
sub-heap of heap h, denoted h′ ⊆ h, if dom(h′) ⊆ dom(h) and h′(a) = h(a) for all
a ∈ dom(h′). We have that h ≡ h1 ⊎ h2 implies h1 ⊆ h and h2 ⊆ h. Conversely, if
h2 ⊆ h then there exists a heap h1 such that h ≡ h1 ⊎ h2.

Proposition 2.3.7. The following holds:

• A, h, ρ |=SSL □ϕ if and only if A, h′, ρ |=SSL ϕ for every finite heap h′ ⊆ h,

• A, h, ρ |=FSL □ϕ if and only if A, h′, ρ |=FSL ϕ for every heap h′ ⊆ h.

Proof. We show it for the standard semantics first.
A, h, ρ |=SSL ¬(⊤ ∗ ¬ϕ)

if and only if
A, h1, ρ |=SSL ⊥ or A, h2, ρ |=SSL ϕ for all h1, h2 such that h ≡ h1 ⊎ h2

if and only if
A, h′, ρ |=SSL ϕ for every h′ ⊆ h.
The proof for the full semantics is similar.

Since a heap is a partial function on the domain of a structure, the values that
are assigned to locations can themselves be used as locations. Intuitively, if (x ↪→ y)
and (y ↪→ z) are satisfied, we may think of traversing the pointer at location x
to obtain the value y, which is used as a location and can be traversed to obtain
the value z. Such traversal is denoted by (x ↪→ y ↪→ z). In general, we can form a
chain of traversals

(x0 ↪→ x1 ↪→ . . . ↪→ xn)

which means (xi ↪→ xi+1) for every 0 ≤ i < n. We traverse n locations to end up
with the value xn. We say one can reach value xn by traversing n locations. A
heap with cycles allows the same location to be revisited in a traversal:

x0 ↪→ . . . ↪→ xn ↪→ x0

2.3. FULL SEMANTICS 45

where we end up back at the starting location x0 and we can infinitely continue
traversing along the same locations of the chain. Although the cycle comprises
finitely many locations, the chain can be extended infinitely long.

A dead-end is a location that is not allocated: we are unable to continue
the traversal through that location. Formally, x is a dead-end if ∀y(x ↪̸→ y) (or,
equivalently, (x ↪̸→ −)). If a location is not a dead-end, we may progress our
traversal from that location. Conversely, an unreachable value (in the sense that it
is unreachable from the heap) is a value which is not pointed to by any location
allocated on the heap. Formally, x is unreachable if ∀y(y ↪̸→ x). A value is reachable
(from the heap) if it is not unreachable, so there exists a location which points to
that value. One can think of the set of all values that are reachable from the heap
as comprising the contents of the heap. Thus, a value unreachable from some heap
is a value that is not contained in that heap.

In both the standard semantics and the full semantics, there is a heap in which
every location is a dead-end: the empty heap. The empty heap has no contents. In
the full semantics, we can also have heaps in which all values of the domain of the
structure are reachable. Then the contents of the heap is the same as the domain
of the structure. This is not possible in the standard semantics for structures with
an infinite domain.

A heap h is well-founded if for every non-empty sub-heap h′ ⊆ h there is a
value not contained in h′. Alternatively, a heap h is well-founded if there exists
no infinite sequence of locations a0, a1, . . . such that h(an+1) = an. There are
non-well-founded heaps, for example, a heap which has a cycle.

With the sub modality we can express the heap is well-founded, by the sentence

□(emp ∨ ∃x((x ↪→ −) ∧ ∀y((y ↪→ −) → (y ↪̸→ x)))). (2.3)

Lemma 2.3.8 (Non-compactness full semantics). It is not the case that Γ is finitely
satisfiable implies Γ is satisfiable for theories Γ in which the separating implication
connective does not occur.

Proof. Let c0, c1, . . . be countably many individual constant symbols (these can be
encoded using unary predicate symbols with the appropriate property of existence
and uniqueness). The set of sentences Γ is finitely satisfiable but not satisfiable:

Γ = {cn+1 ↪→ cn | n ≥ 0} ∪ {ψ}

where ψ is Equation (2.3). Every finite subset of Γ is satisfiable: take as domain of
our structure N, interpret the individual constants c0, . . . by unique naturals, and
construct a finite heap that satisfies the (finitely many) points-to constraints. For
every sub-heap of the constructed finite heap there exists a value not contained in
it, so ψ is also satisfied. However, Γ is not satisfiable, as that would imply there is
an infinite sequence of locations a0, a1, . . . such that h(an+1) = an.

Note that we did not need to add to Γ any sentence expressing that ci ̸= cj for
i ≠ j, since this possibility is already ruled out by ψ: if ci = cj for some i ̸= j then
there is a cycle in the heap and thus is the heap non-well-founded.

46 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

Corollary 2.3.9. There is no sound, complete, finitary proof system restricted to
formulas without separating implication for FSL.

The diamond and sub modality together can be used to express that the domain
of the structure is countably infinite. The main idea is that we can express that
there is a smallest heap that has the same structure as the natural numbers,
and that every element of the domain is reachable in that heap. For notational
convenience, we introduce the following abbreviations: let zero abbreviate the
sentence

∃x((x ↪→ −) ∧ ∀y(y ↪̸→ x))

which expresses that there is some unreachable value in the domain of the heap,
and let nat abbreviate the sentence

tot(↪→) ∧ inj (↪→) ∧ zero.

If A, h |=FSL nat then h encodes some copy of the natural numbers. We can
then define f : N → A inductively by f(0) = a0, where

A, h, ρ[x := a0] |=FSL ∀y((x ↪→ −) ∧ y ↪̸→ x))

for some valuation ρ (i.e. a0 is some ‘minimal’ element of h), and f(n+ 1) = a′,
where h(f(n)) = a′. The latter is defined on f(n) because of tot(↪→), since
A, h |=FSL ∀x∃y(x ↪→ y) means that the domain of h equals D. Note that the
encoding is not necessarily unique: there could be multiple ‘minimal’ elements.

Next, let ind we denote the formula

(zero ∧ (∀x, y. (x ↪→ y) → (y ↪→ −))) → ∀x(x ↪→ −)

which expresses that the domain of the heap and the structure coincide, if there
is some unreachable value in the domain of the heap and every reachable value is
also in the domain of the heap. The formula ♦(nat ∧□ind) then characterizes the
class of countably infinite structures.

Proposition 2.3.10. A |=FSL ♦(nat ∧□ind) if and only if the domain of A is
countably infinite.

Proof. Let A |=FSL ♦(nat ∧□ind). From Corollary 2.3.3, there exists a heap h′

such that A, h′ |=FSL nat ∧□ind . From the definition of nat , as explained above, it
follows that h′ contains a copy of the natural numbers. From Proposition 2.3.7 and
that �ind is satisfied, it follows that the sub-heap h′′ of h′ satisfies ind . Now choose
a particular sub-heap h′′0 of h′ which contains precisely the copy of the natural
numbers, and nothing else. Thus h′′0 satisfies zero ∧ ∀x, y((x ↪→ y) → (y ↪→ −)),
and so we obtain that A, h′′0 |=FSL ∀x(x ↪→ −), that is, the domain of h′′0 (which is
N) equals the domain of A.

Conversely, let A be countably infinite. For any enumeration of the domain of
A, we can construct a corresponding heap h which encodes this enumeration and
thus satisfies A, h |=FSL nat ∧□ind .

2.4. EMBEDDINGS 47

Corollary 2.3.11. A |=FSL ¬fin ∧■(nat → ¬□ind) if and only if the domain of
A is uncountably infinite.

Thus, we are able to distinguish whether a structure is countably infinite or not.
Consequently, full separation logic cannot satisfy the Löwenheim-Skolem theorem.

2.4 Embeddings

In the previous sections we defined the standard semantics and full semantics for
separation logic. But what is the precise relation between the validity |=FSL ϕ
and |=SSL ϕ for formulas ϕ of separation logic? It seems possible to embed the
valid sentences of standard separation logic in full separation logic, if there is a
formula finh that expresses the finiteness of the domain of the (current) heap in
full separation logic. Consider the following translation T (ϕ) defined by induction
on the separation logic formula ϕ:

• T (⊥) = ⊥,

• T (x
.
= y) = (x

.
= y),

• T (x ↪→ y) = (x ↪→ y),

• T (C(x1, . . . , xn)) = C(x1, . . . , xn),

• T (ϕ→ ψ) = T (ϕ) → T (ψ),

• T (∀xϕ) = ∀x(T (ϕ)),

• T (ϕ ∗ ψ) = T (ϕ) ∗ T (ψ),

• T (ϕ −∗ ψ) = (finh ∧ T (ϕ)) −∗ T (ψ).

Proposition 2.4.1. A, h, ρ |=SSL ϕ if and only if A, h, ρ |=FSL finh ∧ T (ϕ).

Proof. Note that h necessarily is a finite heap. A finite heap can only be split into
finite subheaps. In the translation of separating implication we ensure that in the
full semantics we only quantify over finite heaps.

Recall that we have already seen a sufficient condition for finiteness of the
domain of the heap, the conjunction of Equations (2.1) and (2.2). However, that
condition only works at the top-level and makes use of an additional predicate
symbol added to the signature that can only be given an interpretation a priori,
and not depending on the current interpretation of the heap as modified by the
separating connectives. However, we still lack a necessary condition and thus have
the following open problem:

Problem 2.1. Is there a sentence in separation logic finh such that A, h |=FSL finh
if and only if dom(h) is finite?

48 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

Next, we then turn our attention to the relation between separation logic and
classical logic. Firstly, we embed a subset of separation logic, called separation
logic light, into first-order logic. We argue that the resulting embedding preserves
semantics, but does not give us a compact semantic consequence relation. Secondly,
we show that it is possible to translate a formula of separation logic into a formula
of second-order logic that preserves its semantics.

In the previous section, we have seen there is no sound, complete, finitary
proof system for full separation logic, even when we restrict to formulas without
separating implication. Was the problem of non-compactness caused by the fact
that, in the modality □ϕ, that is defined as ¬(⊤ ∗ ¬ϕ), we use negation outside of
separating conjunction? We now study a restricted set of separation logic formulas,
in which we restrict the occurrences of the separating conjunction. Are we able
to show compactness whenever we disallow using separating conjunction under
negation?

Recall that in a pure formula of separation logic we do not have any occurrences
of points-to, separating conjunction, or separating implication. We now consider
semi-pure formulas: in a semi-pure formulas there are no occurrences of separating
conjunction or separating implication, but we are allowed to use points-to. We
then define a restricted set of formulas of separation logic, called the formulas of
separating logic light (SLL), as follows:

• a semi-pure formula of separation logic is a formula of separation logic light,

• (ϕ ∗ ψ) is a formula of separation logic light given that ϕ and ψ are formulas
of separation logic light.

We thus restrict the use of separating conjunction to the ‘top level’ of the formula.
For the purposes of our exposition, we use only the classical connectives of con-
junction, disjunction and negation: in this case, implication (ϕ→ ψ) is interpreted
as material implication (¬ϕ ∨ ψ). Note that the use of negation in a semi-pure
formula can be pushed to the leaves of the formula, by the classical equivalences:

• ¬(∀xϕ) reduces to ∃x(¬ϕ),

• ¬(∃xϕ) reduces to ∀x(¬ϕ),

• ¬(ϕ ∧ ψ) reduces to (¬ϕ) ∨ (¬ψ),

• ¬(ϕ ∨ ψ) reduces to (¬ϕ) ∧ (¬ψ).

In fact, any semi-pure formula can first be normalized into prenex normal form,
and then the negation in the quantifier-free part can be pushed to the leaves. Such
formulas of separation logic light are said to be in normal form.

We now consider whether satisfiability of separation logic light formulas is
compact, that is, whether a theory of separation logic light is satisfiable if and only
if that theory is finitely satisfiable.

Proposition 2.4.2. Given a set Γ of separation logic light formulas. There exists
a structure A and heap h such that A, h |=FSL Γ, if and only if, for every finite
subset Γ0 ⊆ Γ there exists a structure A and heap h such that A, h |=FSL Γ0.

2.4. EMBEDDINGS 49

Proof. We introduce the following first-order translation ϕ@R of separation logic
light formulas in normal form, where R is a binary relation symbol of the signature
(so necessarily different from ↪→):

• (x
.
= y)@R = (x

.
= y),

• (x ↪→ y)@R = R(x, y),

• C(x1, . . . , xn)@R = C(x1, . . . , xn),

• (¬ϕ)@R = ¬(ϕ@R),

• (ϕ ∧ ψ)@R = ϕ@R ∧ ψ@R and (ϕ ∨ ψ)@R = ϕ@R ∨ ψ@R,

• (∀xϕ)@R = ∀x(ϕ@R) and (∃xϕ)@R = ∃x(ϕ@R),

• (ϕ ∗ ψ)@R = R ≡ R1 ⊎R2 ∧ ϕ@R1 ∧ ψ@R2,

where by R ≡ R1 ⊎R2 we denote the formula

∀x, y. (R(x, y) ↔ R1(x, y) ∨R2(x, y)) ∧ ¬(R1(x, y) ∧R2(x, y))

that expresses that R is the union of R1 and R1 and that R1 and R2 are disjoint.
The binary relation symbols R, R1 and R2 are ‘fresh’. It is sufficient to show that
ϕ is satisfiable (in full separation logic) if and only if fun(R) ∧ ϕ@R is satisfiable
(in classical logic). More precisely, A, h, ρ |=FSL ϕ for some A, h, ρ if and only
B, ρ′ |=CL fun(R) ∧ ϕ@R for some B, ρ′. Note that the interpretation of R is the
graph of the heap h.

Consequently, compactness of first-order logic implies compactness of separation
logic light. Let Γ be an infinite set of formulas of SLL and construct a corresponding
set Γ′ = {fun(R) ∧ ϕ@R | ϕ ∈ Γ} for some fixed binary relation symbol R. Note
that Γ′ may require the introduction of a countably infinite number of fresh binary
relation symbols. This is however no problem because first-order logic allows for
the addition of a countably infinite set of relation symbols to the signature without
affecting satisfiability. Now, given that every finite subset of Γ is satisfiable, so
is every finite subset of Γ′. By the compactness of first-order logic, we then have
that Γ′ is also satisfiable. From the structure witnessing satisfiability of Γ′ we can
show the satisfiability of Γ in full separation logic. Conversely, assume that Γ is
satisfiable in full separation logic, then we can use the same structure as witness
for the satisfiability of every finite subset of Γ.

A similar result can be obtained for standard separation logic.
Although we are able to show compactness of the satisfiability relation, we have

not yet reached the conclusion that the semantics can be useful for an adequate
proof theory. This is because compactness of the satisfiability relation does not
imply that the semantic consequence relation is compact. Non-compactness of
the consequence relation for separation logic light follows directly from the above
argument involving well-founded relations.

50 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

Lemma 2.4.3. Given a set Γ of separation logic light formulas, and a formula
ϕ of separation logic light. There is a counter-example to the claim: Γ |=FSL ϕ
implies there exists a finite subset Γ0 ⊆ Γ such that Γ0 |=FSL ϕ.

Proof. Let Γ denote the set of separation logic light formulas

{(cn+1 ↪→ cn) | n ≥ 0}

where c0, c1, . . . are individual constant symbols (these can be again encoded). It
follows that

Γ |=FSL ⊤ ∗ (¬emp ∧ ∀x((x ↪→ −) → ∃y(y ↪→ x))),

where also the latter is a separation logic light formula. The formula expresses that
there exists some non-empty sub-heap, in which every location in the domain is
reachable. Clearly, this is the case if we have a cycle in the heap. However, this is
also the case when we have an infinite chain in the heap. But, importantly, there
does not exist a finite subset Γ0 of Γ such that

Γ0 |=FSL ⊤ ∗ (¬emp ∧ ∀x((x ↪→ −) → ∃y(y ↪→ x))).

As soon as we restrict ourselves to a finite subset Γ0 of Γ, we know we only have
to interpret finitely many values for ci. In that case, we no longer necessarily have
a non-empty subheap in which every location in the domain is reachable.

This failure of compactness of the semantic consequence relation is important
for the design of a finitary proof system (see also Theorem A.4.3): it is not possible
to have a sound and complete, finitary proof system for FSL even when we restrict
to the formulas of separation logic light.

We now turn to the relation between separation logic and second-order classical
logic. In particular, we focus on dyadic second-order logic, where we restrict second-
order quantification to variables of arity 2. It is possible to embed separation
logic in dyadic second-order logic, meaning that second-order logic is at least as
expressive as separation logic.

Given a first-order signature Σ. We define the following translation of formulas of
separation logic into formulas of second-order logic. The translation is parameterized
by a higher-order variable of arity 2, which intuitively takes the place of the points-
to construct. This translation makes obvious how separating conjunction and
separating implication can be read as particular second-order quantifications.

Definition 2.4.4. Let R,R1, R2, R
′, R′′ be variables of arity 2. The function

[−](R) translates formulas of separation logic to formulas of dyadic second-order
logic, and is defined inductively as follows:

• [⊥](R) = ⊥,

• [x
.
= y](R) = (x

.
= y),

• [x ↪→ y](R) = R(x, y),

2.5. RELATIONAL SEPARATION LOGIC 51

• [C(x1, . . . , xn)](R) = C(x1, . . . , xn),

• [ϕ→ ψ](R) = [ϕ](R) → [ψ](R),

• [∀xϕ](R) = ∀x([ϕ](R)),

• [ϕ ∗ ψ](R) = ∃R1∃R2(R ≡ R1 ⊎R2 ∧ [ϕ](R1) ∧ [ψ](R2)),

• [ϕ −∗ ψ](R) = ∀R′′∀R′(fun(R′′) ∧R′′ ≡ R′ ⊎R→ [ϕ](R′) → [ψ](R′′)),

where R ≡ R1 ⊎R2 denotes the formula

∀x, y. (R(x, y) ↔ R1(x, y) ∨R2(x, y)) ∧ ¬(R1(x, y) ∧R2(x, y))

where R1 and R2 are variables of arity 2.

Note that, in second-order logic, we have the following properties:

• fun(R) ∧R ≡ R1 ⊎R2 → fun(R1) ∧ fun(R2),

• fun(R) ∧ fun(R′′) ∧R′′ ≡ R′ ⊎R→ fun(R′),

hence we need not explicitly mention that all quantified variables are functional.

Proposition 2.4.5. Given structure A = (A, I) and formula ϕ of separation logic.
We have that A |=FSL ϕ if and only if A |=CL ∀R(fun(R) → [ϕ](R)).

Proof. By unfolding the semantics of separation logic, and induction on the struc-
ture of the formula ϕ, where the parameter R represents the current heap in the
semantics of separation logic.

2.5 Relational separation logic
We now ask ourselves the question: is separation logic also at least as expressive as
dyadic second-order logic? Although this question is still open for full separation
logic at the point of this writing, we can formulate a sufficient condition for having
that separation logic is at least as expressive as dyadic second-order logic. That
condition is the expressivity of the binding operator which captures the current
interpretation of the heap in a second-order variable. However, before we are able
to introduce the binding operator, we need to discuss two differences between
separation logic and dyadic second-order logic.

The first difference between separation logic and dyadic second-order logic
is that in our presentation, separation logic speaks about heaps as being partial
functions whereas in dyadic second-order logic the second-order variables denote
binary relations. We could thus generalize the semantics of separation logic, and
remove the restriction to partial functions at the semantic level; instead consider a
separation logic of binary relations called relational separation logic. In relational
separation logic, we treat the primitive points-to (x ↪→ y) as a binary relation that
is not necessarily functional, in contrast to the semantics of separation logic as
presented in the previous chapter.

52 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

Let A be a set (say, the domain of a structure). A relation R is a subset of the
Cartesian product A×A, that is, R ⊆ A×A. This is in contrast to heaps, which
are partial functions from A to A. Every heap can be seen as a relation, where
we take the graph of the partial function. We introduce the following notions on
relations. The domain of a relation dom(R) is the set {a | (a, a′) ∈ R for some a′}.
By R ⊥ R′ we denote that the domains of the relations R and R′ are disjoint. A
relation R is functional if for every element a ∈ dom(R) there is a unique a′ such
that (a, a′) ∈ R. If R and R′ are functional, R∩R′ = ∅ if and only if R ⊥ R′.

Similar to our previous discussion regarding the semantics of standard and
full separation logic, we can introduce the following relational separation logic
semantics:

• WRSL is weak relational separation logic where second-order quantification
of the separating connectives ranges over all finite binary relations,

• FRSL is full relational separation logic where second-order quantification of
the separating connectives ranges over all binary relations.

We can now give the definitions of weak relational separation logic, WRSL,
and full relational separation logic, FRSL. Only the definition for FRSL is shown
in full below, that of WRSL is easily obtained by restricting to finite relations.

Definition 2.5.1 (Satisfaction relation). Given a structure A = (A, I), a valuation
ρ of A, a finite binary relation R ⊆ A×A, and a separation logic formula ϕ. The
satisfaction relation A,R, ρ |=WRSL ϕ is defined inductively on ϕ:

• . . .

• A,R, ρ |=WRSL ϕ ∗ ψ iff A,R1, ρ |=WRSL ϕ and A,R2, ρ |=WRSL ψ for some
finite R1,R2 ⊆ A×A such that R = R1 ∪R2 and R1 ⊥ R2,

• A,R, ρ |=WRSL ϕ −∗ ψ iff A,R′, ρ |=WRSL ϕ implies A,R∪R′, ρ |=WRSL ψ
for every finite R′ ⊆ A×A such that R ⊥ R′.

Definition 2.5.2 (Satisfaction relation). Given a structure A = (A, I), a valuation
ρ of A, a binary relation R ⊆ A × A, and a separation logic formula ϕ. The
satisfaction relation A,R, ρ |=FRSL ϕ is defined inductively on the structure of ϕ:

• A,R, ρ |=FRSL ⊥ never holds,

• A,R, ρ |=FRSL (x
.
= y) iff ρ(x) = ρ(y),

• A,R, ρ |=FRSL (x ↪→ y) iff (ρ(x), ρ(y)) ∈ R,

• A,R, ρ |=FRSL C(x1, . . . , xn) iff (ρ(x1), . . . , ρ(xn)) ∈ CI ,

• A,R, ρ |=FRSL ϕ→ ψ iff A,R, ρ |=FRSL ϕ implies A,R, ρ |=FRSL ψ,

• A,R, ρ |=FRSL ∀xϕ iff A,R, ρ[x := a] |=FRSL ϕ for every a ∈ A,

2.5. RELATIONAL SEPARATION LOGIC 53

• A,R, ρ |=FRSL ϕ ∗ ψ iff A,R1, ρ |=FRSL ϕ and A,R2, ρ |=FRSL ψ for some
R1,R2 ⊆ A×A such that R = R1 ∪R2 and R1 ⊥ R2,

• A,R, ρ |=FRSL ϕ −∗ ψ iff A,R′, ρ |=FRSL ϕ implies A,R∪R′, ρ |=FRSL ψ for
every R′ ⊆ A×A such that R ⊥ R′.

Note that in the semantics of the separating connectives we require disjointedness
of the domains of the relations, not the disjointedness of the relations themselves.
This design choice is discussed in more detail later. In the definition of WRSL,
it is not strictly necessary to require that R1 and R2 are finite, since this follows
from the fact that their union must be finite too.

We can embed (functional) separation logic in relational separation logic as
follows (we here only sketch the main ideas, and leave out the technical details).
Let ϕ be a formula of separation logic. We then define the translation T (ϕ) by
induction on the separation logic formula ϕ:

• T (⊥) = ⊥,

• T (x
.
= y) = (x

.
= y),

• T (x ↪→ y) = (x ↪→ y),

• T (C(x1, . . . , xn)) = C(x1, . . . , xn),

• T (ϕ→ ψ) = T (ϕ) → T (ψ),

• T (∀xϕ) = ∀x(T (ϕ)),

• T (ϕ ∗ ψ) = T (ϕ) ∗ T (ψ),

• T (ϕ −∗ ψ) = (fun(↪→) ∧ T (ϕ)) −∗ T (ψ).

We have that this translation preserves the semantics of full separation logic:

A, h, ρ |=FSL ϕ if and only if A, h, ρ |=FSL T (ϕ)

because fun(↪→) already holds with respect to an interpretation based on heaps.

Proposition 2.5.3.

A, h, ρ |=FSL ϕ if and only if A,Graph(h), ρ |=FRSL T (ϕ).

Conversely, if we also want to embed relational separation logic in (functional)
separation logic, we need to encode binary relations in heaps by the introduction of
multiple sorts and a binary relation representing elementhood : one sort corresponds
to the elements, and another sort corresponds to non-empty sets of elements, and
the binary relation is interpreted to represent the elements of non-empty sets
of elements. In relational separation logic a location can be related to zero or
more values. In our two-sorted separation logic we restrict locations to the sort of
elements and values to the sort of non-empty sets of elements: then a heap either
leaves a location not allocated or it is allocated and is assigned to a set consisting

54 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

of one or more elements. The translation T ′ maps every connective in an identical
manner, but only needs to reinterpret the points-to primitive:

T ′(x ↪→ y) = ∃S((x ↪→ S) ∧ (y ∈ S))

where S is of the non-empty set sort, and (y ∈ S) indicates that value y is a
member of the set S.

To make it possible to embed relational separation logic in separation logic in
this straightforward manner forms the technical motivation for the disjointedness of
the domains of relations in the semantics of the separating connectives of relational
separation logic. Note that it is also possible to embed one-sorted separation logic
into this two-sorted separation logic, where a heap that maps a location to a single
value is represented by mapping that same location to the singleton set consisting
of the sole value.

The second difference between separation logic and second-order logic is, intu-
itively, the local perspective of separation logic, which is determined by the ‘current’
heap. Separation logic has a restricted form of quantification over heaps by the
modalities introduced earlier:

• ■ϕ holds in a heap h if ϕ holds in every heap regardless of h,

• ♦ϕ holds in a heap h if ϕ holds in some heap regardless of h.

In dyadic second-order logic one can also quantify over binary variables (variables
of arity 2), but multiple different such variables can be in scope. In contrast, in the
semantics of separation logic we consider formulas with respect to a single heap.

To illustrate how subtle this difference is, we extend the syntax of separation
logic with the binding operator (↓Rϕ) which binds the binary second-order variable
R in the evaluation of ϕ to the current interpretation of the points-to relation.
The binding operator acts in a similar way as a quantifier: R is bound in ϕ in the
formula (↓Rϕ). For this extension, we need to extend the language of separation
logic, in the sense that it is allowed to apply binary variables to individual variables
to form primitive formulas, as in second-order logic. Note that this extension of
the language still lacks quantification over second-order variables. Further, we need
to adapt the semantics of relational separation logic, which we call FRSL↓, since
now valuations include assignments of relations to binary second-order variables.

We then give the following semantics to the binding operator:

• A,R, ρ |=FRSL↓ (↓Rϕ) if and only if A,R, ρ[R := R] |=FRSL↓ ϕ.

Consider, for example, that for formulas of the form (↓R(ϕ −∗ ψ)) in the place of
the subformulas ϕ and ψ we can still refer to the (outer) heap. Specifically, in the
place of ψ we can express the locations that are in the extended part of the heap:
(x ↪→ −) ∧ ¬∃yR(x, y) holds for those locations x in the domain of the heap with
which ϕ was evaluated, but were not allocated in the outer heap.

Alternatively, if we would translate this extended language to dyadic second
order logic (as in Definition 2.4.4), we would let the binding operator correspond
to bounded (second-order) quantification

[↓Rϕ](R′) = ∃R((R ≡ ↪→) ∧ [ϕ](R′)),

2.5. RELATIONAL SEPARATION LOGIC 55

where R and R′ are different variables, and (R ≡ ↪→) abbreviates the first-order
formula ∀x, y(R(x, y) ↔ (x ↪→ y)) that ensures the valuation of R coincides with
the current interpretation of the relation. Here we see why introducing relational
separation logic is useful, since in dyadic second-order logic binary variables range
over arbitrary relations. Note that, just like quantifiers, it is possible to perform
variable renaming of the bound variable R in case it clashes with the chosen variable
R′ used for translation, but we leave these technical details to the reader.

The expressive power of this binding operator lies in that it allows to ‘break
the spell’ of the local perspective since the bound second-order variable allows, in
the local context of the current interpretation of the points-to relation, to refer to
the ‘outer’ interpretations that have generated it (by the separating connectives).

This extension of separation logic consequently allows for a simple, compositional
translation of dyadic second-order logic. For notational convenience, let (∀Rϕ)
denote the (extended) separation logic formula ■(↓Rϕ). Now we have that

A,R, ρ |=FRSL↓ ∀Rϕ

if and only if
A,R, ρ[R := R′] |=FRSL↓ ϕ,

for every relation R′. To translate every dyadic second-order formula into a
corresponding formula of separation logic, we first translate it into separation logic
(extended with a binding operator). Let ϕ be a dyadic second-order formula (which
is assumed not to contain occurrences of the points-to relation of separation logic).
We then define T (ϕ) by induction on the structure of the dyadic second-order
formula ϕ:

• T (⊥) = ⊥,

• T (R(x1, x2)) = R(x1, x2),

• T (C(x1, . . . , xn)) = C(x1, . . . , xn),

• T (ϕ→ ψ) = T (ϕ) → T (ψ),

• T (∀x(ϕ)) = ∀xT (ϕ),

• T (∀R(ϕ)) = ∀R(T (ϕ)).

Note that in the last clause we use our abbreviation introduced above. It now
follows that A, ρ |=CL ϕ if and only if A,R, ρ |=FRSL↓ T (ϕ) for an arbitrary binary
relation R. Note that T (ϕ) does not depend on the interpretation of the points-to
relation. The resulting formula T (ϕ) is interpreted with respect to relational
separation logic, but that can again be embedded in full (functional) separation
logic by the introduction of the two sorts as mentioned above.

We end our analysis by stating two open problems:

Problem 2.2. Is the binding operator (↓Rϕ) definable by a standard formula of
separation logic in the semantics FRSL↓?

56 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

Problem 2.3. Are FRSL and FRSL↓ equally expressive?

If the answers to both questions are affirmative, then it is possible to express the
binding operator in FRSL too. We conjecture that this is not possible: in the first
problem we have in the extended language and semantics FRSL↓ additional second-
order variables, whereas in FRSL we only have first-order variables available. In
the second problem, the binder breaks the ‘local perspective’ of separation logic. It
may be possible, however, to express the binding operator relative to a sufficiently
rich structure that allows encoding heaps as objects in the domain of the underlying
structure, but the details remain to be worked out.

Bibliographic note
Remarkably, [35] presents a rather intricate encoding of (dyadic) weak second-
order logic into standard separation logic. Apparently this restriction to finite
heaps allows to break the local perspective. Our conjecture, however, is that full
separation logic is strictly less expressive than (dyadic) second-order logic.

