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ARTICLE OPEN

Circulating metabolites modulated by diet are associated with
depression
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Pirro G. Hysi 10, Siamak MahmoudianDehkordi11, Almut Heinken12,13, Annemarie I. Luik 1, Karl-Heinz Ladwig 5,14,
Gabi Kastenmüller15,16, Cristina Menni 10, Johannes Hertel12,17, M. Arfan Ikram 1, Renée de Mutsert8, Karsten Suhre 18,
Christian Gieger 4,5,16, Konstantin Strauch19,20, Henry Völzke21, Thomas Meitinger22,23, Massimo Mangino 10, Antonia Flaquer19,20,
Melanie Waldenberger4,5,24, Annette Peters 4,5,24,25, Ines Thiele 12,26,27, Rima Kaddurah-Daouk11,28,29, Boadie W. Dunlop 30,
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Metabolome reflects the interplay of genome and exposome at molecular level and thus can provide deep insights into the
pathogenesis of a complex disease like major depression. To identify metabolites associated with depression we performed a
metabolome-wide association analysis in 13,596 participants from five European population-based cohorts characterized for
depression, and circulating metabolites using ultra high-performance liquid chromatography/tandem accurate mass spectrometry
(UHPLC/MS/MS) based Metabolon platform. We tested 806 metabolites covering a wide range of biochemical processes including
those involved in lipid, amino-acid, energy, carbohydrate, xenobiotic and vitamin metabolism for their association with depression.
In a conservative model adjusting for life style factors and cardiovascular and antidepressant medication use we identified 8
metabolites, including 6 novel, significantly associated with depression. In individuals with depression, increased levels of
retinol (vitamin A), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) (lecithin) and mannitol/sorbitol and lower levels of hippurate, 4-
hydroxycoumarin, 2-aminooctanoate (alpha-aminocaprylic acid), 10-undecenoate (11:1n1) (undecylenic acid), 1-linoleoyl-GPA (18:2)
(lysophosphatidic acid; LPA 18:2) are observed. These metabolites are either directly food derived or are products of host and gut
microbial metabolism of food-derived products. Our Mendelian randomization analysis suggests that low hippurate levels may be
in the causal pathway leading towards depression. Our findings highlight putative actionable targets for depression prevention that
are easily modifiable through diet interventions.
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INTRODUCTION
Depression is one of the most common psychiatric disorders with
an average lifetime prevalence of 11–15% [1]. A sharp increase in
the prevalence of depression worldwide (33.7%; confidence interval
27.5–40.6) has been observed during the recent COVID-19
pandemic [2]. However, as the molecular mechanisms underlying
depression remain elusive, the current treatment options for
depression remain ineffective [3, 4]. The heritability of depression
is estimated to be around 40% [5]. Several small effect (odds ratio
<1.05) non-coding genetic variants have been identified to be
associated with depression [6] but their contribution to the
pathogenesis of depression remains unclear. There is also a range
of environmental risk factors for morbidity including low education,
diet and smoking [7]. There is increasing evidence that diet
influences mood [8] by modulating the gut microbiome [9]. High
consumption of fresh fruits, vegetables, whole grain, fish, and foods
rich in antioxidants has been linked to improved gut health [9] and
decreased risk of depression, while consumption of red and/or
processed meat, refined grains, sweets and high-fat products is
associated with increased risk of depression [10]. Large meta-
analysis of clinical trials suggests that dietary interventions
significantly reduce depressive symptoms, particularly in women
[11] and the risk of several cardio-vascular diseases [12–14] that
cluster strongly with depression [15].
Metabolome captures the downstream effects of genes, lifestyle

factors such as diet, pathology and medication use and hence
provides a useful tool to uncover biological mechanisms underlying
complex diseases [16–18]. A novel hypothesis why circulating
metabolites may be involved in depression is that thesemetabolites
are involved in the gut-brain axis, i.e., the bi-directional signaling
between the gut, its microbiome and the brain [19, 20]. Our study of
5283 patients with depression and 10,145 controls from nine Dutch
cohorts [21] using a proton Nuclear Magnetic Resonance (NMR)
metabolomics platform identified 21 cardiometabolic metabolites
including apolipoproteins, very-low-density and high-density lipo-
protein cholesterol (VLDLs and HDLs), di- and triglycerides, fatty
acids, acetate, glycoprotein acetyls, tyrosine, and isoleucine [21].
Using the same metabolomics platform in the UK Biobank
(n > 63,000), we confirmed most of these findings including the
shift in the VLDL and HDL sub-fractions observed in depressed
individuals in addition to finding disruption in the tricarboxylic acid
(TCA) cycle - low citrate and high pyruvate levels in depressed
individuals [22]. We further showed that the host gut microbiome
partly explains the shift in VLDLs and HDLs observed in depressed
individuals and that increase in VLDLs and changes in fatty acids are
more likely to be a consequence of the disease [22]. These large-
scale metabolomics studies are a major leap forward in under-
standing the pathogenesis in addition to identifying potential
biomarkers and therapeutic targets for the disease. However, the
NMR-based Nightingale platform is limited in the number of
compounds measured and themetabolic pathways they cover, thus
limiting the discovery of more diverse pathways. On the other hand,
studies that have used larger mass spectrometry based metabolic
platforms are small and have often resulted in false positive
associations and inconsistent findings due to confounding
bias resulting from the unaccounted for differences in lifestyle
factors and medication use between cases and controls [23]. Some
consensus is building that depression is associated with increased
levels of glutamate, lactate, alanine, isobutyrate and sorbitol and
with decreased levels of kynurenine, gamma aminobutyric acid
(GABA), phenylalanine, tyrosine, creatinine, hypoxanthine, leucine,
tryptophan, N-methylnicotinamide, β-aminoisobutyric acid, hippu-
rate, amino-ethanol and malonate [23]. Again, whether these
are causal associations or merely a consequence of the disease is
not clear.
In the current study, using an untargeted mass spectrometry-

based metabolomics (Metabolon) that measures over 800
compounds in a large sample (n= 13,596), we aim to 1) identify

robust potential metabolic biomarkers of depression by minimiz-
ing confounding bias; 2) Elucidate causal relationships to identify
possible therapeutic targets; 3) Study the association of major
dietary sources of the metabolites with depression, 4) Study the
impact of different types of antidepressant therapy on the
(potentially causal) associated metabolites, and finally 5) identify
the gut microbiota involved in the metabolism of the identified
metabolites (Fig. 1).

METHODS
We first perform a metabolome-wide association analysis of depression in
13,596 individuals from five European cohorts, characterized for metabo-
lomics using mass-spectrometry-based Metabolon platform analysing 806
metabolites that cover a wide range of metabolic pathways (Fig. 1). We
build a conservative model adjusting for most known confounders
including lifestyle factors and medication use as suggested by MacDonald
et al. [23]. Next, we use Mendelian Randomization to infer causal
associations using the NIHR BioResource (NBR) and publicly available
summary statistics of the largest genome-wide association study (GWAS)
of depression [6]. We then identify the major food sources of the
metabolites using previous literature and study the association of these
food sources with depression in the UK Biobank study (N < 500,000). For
metabolites that show potentially causal relationship with depression, we
study the impact of antidepressant therapy in the Predictors of Remission
in Depression to Individual and Combined Treatments (PReDICT) study.
Finally, we integrate our findings with those of the Virtual Metabolic
Human (VMH) and Assembly of Gut Organisms through Reconstruction
and Analysis (AGORA2) databases to identify gut microbiota involved in
the metabolism of the identified metabolites (Fig. 1).

Study populations
Metabolites association analysis. The association analysis of metabolite levels
with depression was performed in 13,596 participants separately recruited in
five different cohort studies (Table 1). The following cohort studies were
included: the Rotterdam Study, the Study of Health in Pomerania (SHIP-
TREND), the Cooperative Health Research in the Region of Augsburg (KORA)
study, the European Prospective Investigation into Cancer (EPIC)-Norfolk
Study, and the Netherlands Epidemiology of Obesity (NEO) study. Detailed
information on these cohorts is provided in the Supplementary Materials. All
participants provided written informed consent, studies were approved by
their local ethics committees and conformed to the principles of the
declaration of Helsinki. Patients or the public were not involved in the design,
or conduct, or reporting, or dissemination plans of our research.

Inference of causal relationships using Mendelian Randomization (MR). To
select instruments/proxies for metabolites for MR we used the results of
the GWAS performed using the NBR. NBR – Rare Disease Study is a multi-
center whole-exome and whole-genome sequencing study including up to
13,600 patients (http://bioresource.nihr.ac.uk/rare-diseases/rare-diseases/).
The NBR–Rare Diseases study was approved by the East of England
Cambridge South national research ethics committee (REC) under
reference number: 13/EE/0325. The inclusion and exclusion criteria, as
well as other steps of quality control, adjustment and transformations
followed the same analytical steps as described before [24].

Identification and association of major dietary sources of the depression-
associated metabolites. Major dietary sources of the depression-associated
metabolites were identified through literature search. Association of
depression with the dietary sources of the depression-associated metabolites
was performed in the UK Biobank study. UK Biobank is a prospective cohort
study including ~500,000 participants aged 40–69 years at baseline recruited
between 2006 and 2010. The aim of the study is to investigate the effects of
genetic and environmental factors on the risk of common multifactorial
diseases. Participants have provided a detailed information on lifestyle,
medical history and nutritional habits; basic variables such weight, height,
blood pressure etc. were measured; and blood and urine samples were taken.
Detailed information about the cohort is provided in the Supplementary
Materials. The current study is a part of the UKB project 54520.

Impact of anti-depressant therapy on depression-associated (causal) meta-
bolites. The effects of various depression treatments including cognitive
behavioral therapy (CBT) and antidepressants SSRI (escitalopram) and SNRI
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(duloxetine) on the depression-associated metabolites were studied in the
PReDICT study. The design of PReDICT study has been published
previously [25]. Details on the study and the metabolomics assessments
are provided in the Supplementary Materials.

Depression assessment
In the Rotterdam Study, depressive symptoms were assessed with the
20-item version of the Centre for Epidemiologic Studies Depression (CES-
D) scale (Supplementary Table 1), a self-report measure of depressive
symptoms experienced during the prior week [26]. The total score
ranges from 0 to 60, where a higher score indicates more depressive
symptoms. In the SHIP-trend and KORA cohorts, depressive symptoms
were assessed with the Patient Health Questionnaire 9 (PHQ-9) [27],
where each of the nine DSM-IV criteria for depression are scored from 0
to 3. The total score ranges from 0 to 27 where higher score indicates a
greater depression severity. In KORA a brief interview version of PHQ-9
called Patient Health Questionnaire Depression (PHQ-D) module was
used to measure depression [27, 28]. In the EPIC-Norfolk study
depression was assessed using the following question: “Has the doctor
ever told you that you have any of the following: depression requiring
treatment?” with answers “yes” or “no”. In the NEO cohort, depressive
symptoms were assessed using the Inventory Depressive Symptomatol-
ogy Self Report questionnaire (IDS-SR30) [29], which assesses specific
depressive symptoms (via a 4-level response system) during the last
week and their severity. The total score ranges from 0 to 84, with higher
scores indicating higher severity. Thus, in all cohorts except EPIC-Norfolk,
depression in participants was measured on a quantitative scale and
used as such in the analysis.

In the UKB study, we used the derived lifetime probable major
depressive disorder measure as described in Smith et al. [30]. We further
defined current depressive symptoms by summing the responses to four
questions related to mood in the past two weeks. These include, (1) Over
the past two weeks, how often have you felt down, depressed or
hopeless?, (2) Over the past two weeks, how often have you had little
interest or pleasure in doing things?, (3) Over the past two weeks, how
often have you felt tense, fidgety or restless? and (4) Over the past two
weeks, how often have you felt tired or had little energy? Answers could be
given on a four-point scale ranging from 0 to 3 (0= not at all, 1= several
days, 2=more than half of the days and 3= nearly every day). The total
score ranged from 0 to 12 where higher score indicating more severe
depression.
In the PReDICT study, participants were treatment-naive adults defined

as having never previously received a minimally adequate course of
treatment with an antidepressant medication or evidence-based psy-
chotherapy for a mood disorder, aged 18 to 65 years with moderate-to-
severe, non-psychotic MDD depression as assessed by the Structured
Clinical Interview for DSM-IV [31] and a psychiatrist’s evaluation, and if they
scored ≥18 on the HRSD17. Eligible patients were randomized equally to
one of three 12-week treatment arms: (1) cognitive behavior therapy (CBT,
16 sessions); (2) duloxetine (30–60mg/d); or (3) escitalopram (10–20mg/d).

Metabolomics measurements
In all studies, the metabolome was quantified using the Metabolon
platform (Metabolon Inc., Durham, USA) (Supplementary Table 1). Different
versions of the platform have been used and details on the platforms are
included in the Supplementary Materials. In each study, metabolites with

EPIC-Norfolk B2
n=4639

N(Metabolites)=666

Mendelian
Randomization

NIHR BioResource
(n=8809)

GWAS of MDD
(n=500,199)

Identification of
microbial sources of
metabolites using
AGORA database

EPIC-Norfolk B3
n=5163

N(Metabolites)=734

SHIP-Trend
n=965

N(Metabolites)=264

Rotterdam Study
n=484

N(Metabolites)=850

KORA
n=1746

N(Metabolites)=276

NEO
n=599

N(Metabolites)=1069

Meta Analysis
n=13,596

Identification of food
sources of

metabolites using
literature

Significant
metabolites

Study the effect of
antidepressant

therapy (CBT, SSRI,
SNRI) on metabolite

in the
PReDICT study

Combining summary statistics
from all cohorts using sample size
weighted (p-value based) meta-

analysis

Association of food
sources of

metabolites with
depression in the

UK Biobank
n=500,000

Fig. 1 Flowchart of the study.

A. van der Spek et al.

3876

Molecular Psychiatry (2023) 28:3874 – 3887



≥40% missing values were removed prior to the analysis and for the
remaining metabolites, missing metabolite values were replaced with half
of the detection limit for that particular metabolite [32]. Subsequently, a
natural logarithm transformation was applied to all metabolites and
metabolites were scaled to standard deviation units.
In the PReDICT study, metabolites were quantified using targeted

metabolomics platforms including ultra-performance liquid chromatogra-
phy triple quadrupole mass spectrometry (UPLC-TQMS) (Waters XEVO TQ-
S, Milford, USA) and gas chromatography time-of-flight mass spectrometry
(GC-TOFMS) (Leco Corporation, St Joseph, USA). Metabolites with >20%
missing values were excluded. Then, metabolites were log-transformed,
imputed and scaled to mean zero and variance 1. Details are provided in
the Supplementary Materials.
Non-targeted metabolite detection and quantification was conducted by

the metabolomics provider Metabolon, Inc. (Durham, USA) on fasting plasma
samples of 10,654 participants from the UK Bioresource. The metabolomic
dataset measured by Metabolon included 1069 compounds of known
structural identity belonging to the following broad categories - amino-acids,
peptides, carbohydrates, energy intermediates, lipids, nucleotides, cofactors
and vitamins, and xenobiotics. Metabolites data were day-median normal-
ized, and inverse normalized, as the metabolite concentrations were not
normally distributed. Metabolites with more than 20% missing values were
excluded leaving 722 metabolites of known chemical identity for analysis.

Genotyping
For the GWAS of metabolites, genotyping in the UK bioresource was
carried out with a high-density array data (Affymetrix UK Biobank Axiom®
Array). Genotypes were subsequently imputed using information from the
Human Reference Consortium imputation panel (version r1.1, 2016) [33].
Only individuals of full European ancestry (N= 8809) were included in the
analyzes in the discovery cohort.

Statistical analyzes
Metabolites association analysis. Linear regression analyzes were used to
test the association between the levels of each metabolite (dependent
variable) and depression. Three different models were tested, where the
first model (model 1) was adjusted for age and sex only, the second model
(model 2) was additionally adjusted for antidepressant medication usage,
and the third model was an extension of the second model (model 3) with
additional adjustment for lipid-lowering medication (yes/no), antihyper-
tensive medication (yes/no), antidiabetic medication (yes/no), BMI (kg/m2),
and current smoking (yes/no). The summary statistics from all cohorts were
combined in a sample size-weighted meta-analysis using METAL software
[34]. Sample size weighted meta-analysis was used since the depression
measurement scales were different among cohorts. Only metabolites that
were present in two or more studies were included. To investigate the
robustness of our findings, a sensitivity analysis was performed by
including only cohorts that assessed metabolites with the most recent
version of the Metabolon platform (HD4).

Association analysis of major depressive disorder with dietary sources of the
depression-associated metabolites in the UK Biobank. Food proxies for the

depression-associated metabolites were identified through the literature.
We used logistic regression analysis to test the association between major
depressive disorder and dietary sources of metabolites. Age, sex, body
mass index (BMI), socio-economic status and principal components (PCs)
were used as covariates in the analysis. For the association of current
depressive symptoms, we used linear regression analysis. Since vitamin A is
fat-soluble and can cross the blood-brain barrier, we performed additional
association with white matter hyperintensity (WMH) volume – a measure
of brain damage and also associated with MDD -- assessed 4–8 years after
the baseline assessment. Linear regression analysis was used with the
WMH volume as the dependent variable, vitamin supplements (vitamin A,
and vitamin D as a negative control) as the independent variable, and age,
sex, BMI, head size and principal components as covariates. All analyzes
were performed in R.

Metabolites, their food sources and inflammation. Metabolites that were
found to be associated with depression were tested for association with
C-Reactive protein (CRP) as a measure of inflammation in EPIC-Norfolk,
NEO and SHIP-Trend cohorts. CRP was natural log transformed and used as
an outcome in a linear regression model adjusted for age and sex, and
metabolite level as the independent variable. Further, food sources of
metabolites were associated with baseline CRP levels in the UK Biobank
cohort in a linear regression analysis adjusted for age, sex, BMI, socio-
economic status and PCs.

Metabolite GWAS for Mendelian Randomization (MR) analysis. To test for
association between metabolite levels and genotypes, we built linear
regression models where the outcome was defined as the transformed
level of each metabolite, predicted by the allele dosage at each
polymorphic (MAF > 0.01) genotyped or imputed genetic variant. In
addition, analyzes were adjusted for age, sex and BMI. All analyzes were
conducted using the PLINK software (https://www.cog-genomics.org/plink/
2.0/).

Mendelian Randomization (MR) analysis. To understand the relationship
between the identified metabolites and major depression we performed
bidirectional two-sample MR analysis. For major depression we used the
independent genome-wide significant single nucleotide polymorphisms
(SNPs) reported by Howard et al. [6] as instrumental variables. Summary
statistics for these IVs were extracted from Howard et al. The summary
statistics for the metabolites were extracted from the GWAS performed in UK
Bioresource. Of the identified metabolites in this study (model 3), GWAS
results were available for six metabolites including 2-aminooctanoate, 10-
undecenoate (11:1n1), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1), hippurate,
mannitol/sorbitol and retinol (Supplementary Table 2). The instrumental
variables for these six metabolites and their summary statistics were
extracted from the same GWAS. Because of scarcity in GWAS-grade
significance for SNPs associated with these metabolites, we used
independent SNPs that showed the strongest association with a p-
value < 10−06 as instruments (Supplementary Table 3). The summary
statistics for depression for these instrumental variables were extracted
from the publicly available dataset (2019 PGC UKB Depression Genome-
wide; https://www.med.unc.edu/pgc/download-results/mdd/). For the

Table 1. Descriptive statistics of the study populations.

Rotterdam Study SHIP-trend KORA EPIC-Norfolk B2 EPIC-Norfolk B3 NEO

N 484 965 1746 4639 5163 599

Ncases/Ncontrols - - - 638/4001 685/4478 -

Mean age (years) (SD) 73.1 (6.3) 50.1 (13.6) 61 (8.8) 59.9 (8.8) 59.6 (8.9) 55.8 (6.0)

Age range (years) 62–96 20–81 32–77 40–78 40–78 45–66

Females (%) 52.5 56.0 51.4 52.4 52.8 52.6

Mean BMI (kg/m2) (SD) 26.8 (3.7) 27.4 (4.6) 28.2 (4.8) 26.2 (3.7) 26.2 (3.8) 25.9 (4.0)

Smoking (%) 12.6 22.0 14.5 11.4 10.9 11.9

Medication

Antidepressants (%) 3.7 4.0 5.6 4.5 3.8 5.3

Lipid-lowering medication (%) 10.5 7.8 16.7 1.4 1.5 7.7

Antihypertensives (%) 0.6 28.2 37.9 19.5 17.0 19.7

Antidiabetics (%) 5.4 0 7.5 1.9 2.0 2.7
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analysis we used the ‘mr_allmethods’ option of the R (https://cran.r-
project.org/) library “MendelianRandomization” [35] that reports the results
from the median method (simple, weighted and penalized), Inverse variance
weighted and Egger methods (penalized, robust and penalized & robust).

Effect of antidepressant therapy onmetabolites in PReDICT study. To examine
the strength and significance of metabolite concentration changes within
each of the three treatment arms, i.e., (1) CBT (16 sessions); (2) duloxetine
(30–60mg/d); or (3) escitalopram (10–20mg/d), linear mixed effect models
(with random intercept) with metabolite levels (in log scale) as the
dependent variable, were fitted while correcting for age, sex, BMI, and
baseline HRSD17. Then, the R package “emmeans” was used to compute the
least squared means of the contrasts of interest (week 12 vs. baseline) and
their corresponding p-values.
To detect whether metabolites levels were associated with clinical

outcomes, linear regression analyzes corrected for age, sex and treatment
arm were performed. Dependent variables (Baseline HRSD17, Week 12
HRSD17, and 12 weeks change in HRSD17) were regressed on either of
following independent variables: 1) baseline metabolite, 2) week 12
metabolite, 3) 2 weeks change in metabolites and 4) 12 weeks change in
metabolites.

Linking metabolites to human and/or gut metabolism. To assess whether
the identified metabolites are products of human metabolism, gut
microbial metabolism, or both, we integrated our findings with those of
the VMH and Assembly of Gut Organisms through Reconstruction and
Analysis (AGORA2) databases. Additional information is provided in the
Supplementary Materials.

RESULTS
This study includes 13,596 participants from five independent
cohorts including the Rotterdam Study (RS), the Study of Health in
Pomerania (SHIP-TREND), the Cooperative Health Research in the
Region of Augsburg (KORA) study, the European Prospective
Investigation into Cancer (EPIC)-Norfolk Study, and the Nether-
lands Epidemiology of Obesity (NEO) study. A detailed description
of the study participants is provided in Table 1. Depression was
measured on a quantitative scale in all cohorts except the EPIC-
Norfolk study, where the participants reported depression on a
yes/no scale. The mean age ranged from 50.1 years in SHIP-Trend
to 73.1 years in the Rotterdam Study. The percentage of female
participants (51–56%) and mean body mass index (BMI; between
26–28 kg/m2) were comparable between studies. There were
differences in the percentage of smokers between the cohorts,
ranging from 11% in EPIC-Norfolk and to 22% in SHIP-Trend.
When testing for an association with depression adjusting for age

and sex, 53 (41 novel) metabolites were significantly associated with
depression after adjusting for multiple testing (false discovery rate
(FDR) < 0.05; Table 2 & Fig. 2). These include nine metabolites in the
amino acid metabolism pathway including five previously asso-
ciated with depression (leucine, kynurenate, citrulline, glutamate
and serotonin) [23, 36, 37]. In addition, significant association was
found for six carbohydrates (one novel), six cofactors and vitamins,
all of which were novel, 26 lipids (25 novel), and six xenobiotics (five
novel) (Table 2).
When adjusting for antidepressant use (model 2), 12

metabolites remained significantly associated (FDR < 0.05) with
depression (Table 2, Fig. 2), suggesting that most associations
observed with depression were confounded by antidepressant
medication use. Of the amino acids, only citrulline remained
significantly associated with depression after adjustment for
antidepressant medication (Table 2, Fig. 2). Other metabolites
that remained significantly associated with depression in the
extended model included four xenobiotics (4-hydroxycoumarin,
hippurate, 3-phenylpropionate (hydrocinnamate) and cinna-
moylglycine), four lipids (2-aminooctanoate, 10-undecenoate
(11:1n1), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) and 1-
linoleoyl-GPA (18:2)), and three cofactors and vitamins (retinol
(vitamin A), bilirubin (Z,Z), bilirubin (E,Z or Z,E)). Among these,

higher levels of 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) and
retinol (vitamin A) were associated with an increased risk of
depression, while the others were associated with a decreased
risk (Fig. 2).
We subsequently build a more conservative model, further

adjusting for other medication use, including lipid-lowering medica-
tion, antihypertensive medication, antidiabetic medication, BMI and
current smoking (model 3). Seven out of the 12metabolites remained
significantly associated with depression (Table 2). These included
retinol (vitamin A), hippurate, 4-hydroxycoumarin (coumarol),
2-aminooctanoate (alpha-aminocaprylic acid), 10-undecenoate
(11:1n1) (undecylenic acid), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/
16:1) (Lecithin), and 1-linoleoyl-GPA (18:2) (lysophosphatidic acid).
Additionally, mannitol/sorbitol appeared statistically significant in
model 3. Complete results of the meta-analysis are available in
Supplementary Table 4.
There was no significant evidence for effect modification by sex

(Supplementary Table 5) and the directionality of effects tended to
be consistent in men and women. Effect sizes appeared to be
stronger in women. Results were consistent across various
versions of the Metabolon platform and depression assessing
instruments and a sensitivity meta-analysis, which only included
results from cohorts that had assessed metabolites on the most
recent (HD4) platform, showed that they remained essentially
unchanged (Supplementary Table 6).

Association of depression with dietary sources of metabolites
in the UK Biobank
For hippurate, fresh fruits and vegetables were identified as the
primary source [38]. For 4-hydroxycoumarin vitamin K antagonists
were identified as the primary source [39, 40]. For vitamin A/retinol
UK Biobank had both vitamin supplement intake and retinol intake
from food available. Egg yolk was identified as the primary source of
lecithin [41], legumes a proxy for lysophosphatidic acid [42] and
artificial sweeteners were identified as the primary source of
mannitol/sorbitol [43]. We were unable to identify food proxies for
undecylenic acid and alpha-aminocaprylic acid. In a cross-sectional
analysis in the UK Biobank, we found a significant positive
association of vitamin A intake from supplements with both
measures of depression including current depressive symptoms
(beta= 0.23, p-value= 1.25 × 10−25) and lifetime MDD (OR= 1.40,
p-value= 9.72 × 10−18). However, vitamin D supplement intake
(negative control) was also significantly positively associated with
both measures of depression (Table 3), suggesting that depressed
individuals take more vitamin supplements than non-depressed
individuals do. Since both vitamin A and vitamin D are fat-soluble
and can cross the blood-brain barrier, we performed additional
association with the depression-associated brain pathology, i.e.,
white matter hyperintensity (WMH) volume. Only vitamin A
supplement intake was found to be associated with higher volume
of WMH (beta= 490.49, p-value= 0.04, Supplementary Table 7),
suggesting a possible role of vitamin A in brain damage. To address
the issue of reverse causality we observed in case of supplement
use, we additionally tested the association of depression with retinol
intake estimated from the food consumed in the previous 24 h.
Significant positive association of estimated retinol intake was
observed with both measures of depression (current depressive
symptoms, p-value= 1.26 × 10−08; lifetime MDD, p-value= 1.4 ×
10−03). However, the effect estimates were small (Table 3), which
may in part be explained by the imprecision of food consumption
questionnaires. The primary sources of hippurate, i.e., fresh fruits
(β=−0.058, P-value= 3.29 × 10−191) and vegetables (β=−0.029,
P-value= 2.11 × 10−82) intake was significantly reduced in indivi-
duals experiencing depressive symptoms at the time of assessment.
Further fresh fruits intake was also significantly reduced in
individuals who had MDD (β=−0.035, P-value= 1.42 × 10−19).
Artificial sweetener – source of mannitol/sorbitol – intake was
significantly increased in individuals experiencing symptoms of
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depression (β= 0.165, P-value= 2.8 × 10−21) and those with MDD
(β= 0.193, P-value= 3.65 × 10−16). Intake of legumes (source of
lysophosphatidic acid) was inversely associated with current
depressive symptoms (β=−0.063, P-value= 0.03) and positively
associated with lifetime MDD (β= 0.108, P-value= 0.008). More-
over, consumption of eggs – a source of lecithin -- was increased
both in individuals experiencing symptoms of depression at the
time of assessment (β= 0.05, P-value= 0.001) and lifetime MDD
(β= 0.05, P-value= 0.018). Use of vitamin K antagonists, a proxy for
4-hydroxycoumarin, was positively associated with current depres-
sive symptoms (beta= 0.43, p-value= 1.04 × 10−46) but not with
lifetime MDD (Table 3).

Metabolites, their food sources and inflammation. Consistent with
the association of depression, levels of hippurate (β=−0.09,
P-value= 0), alpha-aminocaprylic acid (β=−0.08, P-value= 2.5 ×
10−12), lysophosphatidic acid (β=−0.15, P-value= 0) and
4-hydroxycoumarin (β=−0.09, P-value= 3.3 × 10−16) were all
significantly associated with reduced levels of CRP (Supplemen-
tary Table 8). Retinol levels were associated with reduced levels of
CRP (β=−0.07, P-value= 3.3 × 10−10). Further food sources of
hippurate, retinol, lysophosphatidic acid, mannitol/sorbitol and
lecithin including fresh fruits (β=−0.04, P-value= 0), vegetables
(β=−0.02, P-value= 1.2 × 10−199), retinol intake from food
(β= 6.0 × 10−05, P-value= 6.7 × 10−04), eggs (β= 0.04, P-value=
7.9 × 10−07) and artificial sweetener use (β= 0.02, P-value=

0.012) were all significantly associated with CRP and consistent
with the findings of depression (Supplementary Table 9).

Mendelian randomization analysis
Testing the hypothesis that major depression results in changes
of circulating metabolites in the Mendelian randomization
analysis (MR), nominally significant results were obtained for
2-aminooctanoate and 10-undecenoate (11:1n1), under the MR-
Egger method and weighted median method, respectively.
However, these findings did not remain significant after
adjustment for multiple testing (Supplementary Table 10). MR
models in which we tested the hypothesis that levels of
circulating metabolites increase the risk of depression provided
significant evidence for a causal relation between hippurate and
the risk of depression, both in the MR-Egger robust and
penalized-robust methods (Supplementary Table 11). The effect
estimate was consistent with the inverse relationship observed
between hippurate and major depression in this study. However,
a significant intercept was also observed suggesting pleiotropy.
To exclude a pleiotropic effect, we studied the effect of
intervention on the metabolite in the PReDICT trial.

Effect of antidepressant therapy on hippurate
To further evaluate the impact of antidepressant therapy including
cognitive behavioral therapy (CBT), duloxetine – a serotonin-
norepinephrine reuptake inhibitor (SNRI) and escitalopram – a
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selective serotonin reuptake inhibitor (SSRI) on hippurate we
consulted the PReDICT study. The PReDICT study allows us to test
the effect of antidepressant therapy on the metabolite levels in
circulation by measuring the metabolite levels before and after
the antidepressant therapy. In PReDICT, we found that levels of
hippurate in the circulation increased significantly from baseline
to week 12 only after treatment with escitalopram (estimated
week 12 vs. baseline difference= 0.45, 95% confidence interval
(CI; 0.16,0.74), p-value= 0.002; Supplementary Fig. 1), but not in
the cognitive behavior therapy (CBT) and duloxetine treatment
arms (CBT: estimated difference=−0.02, 95% CI (−0.39,0.33) and
p-value= 0.87; duloxetine: estimated difference= 0.13, 95% CI
(−0.17,0.44) and p-value= 0.38). In this study, we could not show
a relation between hippurate and depression as the study
recruited patients only and lacked healthy controls. In patients
receiving pharmacotherapy (escitalopram and duloxetine arms),
the association of baseline depression as measured by the 17-item
Hamilton Rating Scale for Depression (HRSD17) and baseline
hippurate was not statistically significant (beta= 0.04, 95% CI
(−0.03,0.11), p-value= 0.27). Further, no significant association
was observed between depression in week 12 as measured by the
HRSD17 and week 12 hippurate (beta= 0.09, p-value= 0.45) and
12 weeks change in HRSD17 and 12 weeks change in hippurate
(beta= 0.02, 95% CI (−0.65, 1.57), p-value= 0.85).

Linking the human circulating metabolome to gut
microbiome metabolism
Of the 53 metabolites identified in this study in model 1, 28
metabolites could be matched to a unique VMH metabolite ID. For
each metabolite, the presence or absence in the global human
reconstruction, Recon3D [44], and a resource of 7206 reconstruc-
tions of human gut microbes, AGORA2 (https://www.biorxiv.org/
content/10.1101/2020.11.09.375451v1) was retrieved. In total, 12
metabolites were present in both the human and gut microbial
metabolic networks, three were only present in gut microbes, and
13 were only present in human (Supplementary Table 12). To
further investigate potential links between the microbiome and
metabolites associated with depression, the potential of the 7206
AGORA2 strains to consume or secrete the 15 microbial
metabolites identified in this study was computed. Since
hippurate is synthesized in the liver and renal cortex from the
microbial metabolite benzoate [45], the uptake and secretion
potential for benzoate was also predicted for the 7206 strains.
A wide range of genera and species were involved in the uptake

of mannitol (Supplementary Table 13, Supplementary Fig. 2).
Mannitol is largely secreted by several species of the genus
Bacteroides followed by Lactobacillus, among others (Supplemen-
tary Table 13). Both genera have previously been found to be
associated with depression [46]. In total, 3616 AGORA2 strains
mainly of the Gammaproteobacteria and Bacilli classes (Supple-
mentary Table 14, Supplementary Fig. 2) synthesized benzoate as
a product of benzamide (VMH reaction ID: BZAMAH). Interestingly,
benzamides are a class of antipsychotic medication.

DISCUSSION
In this study, we identified novel associations with depression for six
metabolites, including retinol (vitamin A), 4-hydroxycoumarin, 2-
aminooctanoate, 10-undecenoate (11:1n1), 1-palmitoyl-2-palmito-
leoyl-GPC (16:0/16:1), 1-linoleoyl-GPA (18:2) and confirmed the
association of hippurate and mannitol/sorbitol. We found that the
relation of hippurate and depression may be causal and that
hippurate levels can be modified by a specific antidepressant,
escitalopram. Further, consistent with the association of the
metabolites with depression, the consumption of dietary sources
of hippurate and 1-linoleoyl-GPA (18:2) including fresh fruits,
vegetables and legumes was significantly reduced in individuals
with higher depressive symptoms, and associated with significantlyTa
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decreased levels of CRP. In addition, the consumption of dietary
sources of retinol, mannitol/sorbitol and 1-palmitoyl-2-palmitoleoyl-
GPC (16:0/16:1) including retinol score estimated from diet, artificial
sweeteners and eggs was significantly increased in individuals with
higher depressive symptoms and associated with increased blood
levels of CRP.
One of the most interesting findings of this study is the

identification of the association of higher levels of retinol (active
form of vitamin A) with depression. There have been several case
reports of individuals with vitamin A intoxication with no previous
history of depression, who developed symptoms of depression
and even psychosis when overdosed with vitamin A [47, 48].
Depressive symptoms resolved upon discontinuation of vitamin A,
implying that depression may be a side effect of vitamin A intake
[47]. Animal models have suggested elevated monoamine oxidase
enzyme activity and depression-related behavior upon vitamin A
supplementation [49, 50]. Our study is the first to link higher levels
of retinol in blood with depression in the general population.
Retinol and its derivatives known as retinoids are lipid soluble and
can cross the blood-brain barrier. Vitamin A is required for brain
development and functioning [51, 52]. However, excess of vitamin
A is neurotoxic and may result in brain shrinkage [52]. Brain areas
high in retinoic acid signaling and receptors overlap with areas of
relevance to stress and depression [53]. Further, vitamin A is
known to increase the synthesis of triglyceride-rich very low-
density lipoproteins (VLDLs) and apolipoproteins in the serum
[54, 55], which we found associated with depression in our
previous study [21]. Since food is the primary source of vitamin A,
an important question to answer is whether vitamin A intake is
associated to depression. In the UK Biobank, we found significant
increase in dietary retinol intake in individuals with depression.
Thus, our findings ask for intervention studies that evaluate
prospectively the effect of vitamin A reduction in depressed
patients.
Two of the most strongly associated metabolites with depres-

sion were xenobiotics, hippurate and 4-hydroxycoumarin. In line
with the findings of our study, decreased urine and plasma levels
of hippurate have consistently been associated with unipolar and
bipolar depression in several studies and it has been suggested as
a biomarker for depressive disorders [23]. Our MR analysis
suggests that low hippurate levels in circulation are a part of
the causal pathway leading to depression. However, as the MR
could not exclude a pleiotropic effect, our findings yield a
hypothesis that requires further evaluation in a clinical trial. While
we could not show an association between hippurate and
depression in the PReDICT study, as the study lacked healthy
controls, hippurate levels were higher 12 weeks after initiation of
SSRI therapy (escitalopram) but not for SNRI or CBT, raising the
question whether blood levels of hippurate can be used in clinical
trials for compliance and efficacy of SSRIs specifically. Hippurate is
derived from benzoate and polyphenols and is reported to be a
metabolomic marker of gut microbiome diversity [38], fruits and
vegetables intake [56], diet quality [57] and metabolic health [58].
In line with the decreased levels of hippurate in depressed
individuals found in our metabolome-wide association analysis,
we found significantly decreased fresh fruit intake among
individuals with depression in the UKB, which is consistent with
the findings of the previous studies that high consumption of
fruits, vegetables, nuts, and legumes is associated with a reduced
risk of depression [8, 59]. Further, both hippurate and its food
sources including fresh fruits and vegetables were associated with
significantly reduced inflammation in our study, which is in line
with the findings of the previous clinical trials [60]. We
hypothesize that this reduction is mediated through hippurate,
which requires evaluation in future studies.
The metabolite 4-hydroxycoumarin is a fungal derivative of

coumarin. Coumarins are found naturally in plants and spices [61]
and coumarin is converted into 4-hydroxycoumarin by fungi [39].

4-hydroxycoumarin is then converted into dicoumarol in the
presence of formaldehyde [39]. Dicoumarol is an anticoagulant
(warfarin) that inhibits the synthesis of vitamin K, also called
vitamin K antagonist, and is commonly used to treat thromboem-
bolic diseases [40]. In the UKB, we found significant positive
association of anticoagulant use (vitamin K antagonists) with
major depression. A history of depression is a risk factor for
thromboembolism [62–64]. Antidepressants are also known to
interact with warfarin [65] and are also associated with increased
risk of thromboembolism [66]. Taking all findings together,
we hypothesize that depression/antidepressant use depletes
4-hydroxycoumarin in circulation leading to thromboembolism.
Vitamin K has been shown to act in the nervous system as it is
involved in sphingolipid synthesis [67]. Sphingolipids are present
in high concentrations in cell membranes of neuronal and glial
cells [68]. Sphingolipids are essential for important cellular events,
including proliferation, differentiation, senescence, cell-cell inter-
actions, and transformation [69] and they have been linked to
aging, Alzheimer’s disease, and Parkinson’s disease [70–72].
Further, sphingolipids were found to play a crucial role in the
development of depression- and anxiety-related behaviors in mice
[73, 74] and depression is seen often in patients with sphingolipid
storage diseases [75–79]. Treatment with escitalopram /citalopram
is also associated with changes in sphingolipids [80]. In our study,
we did not find an association of depression with circulating
sphingolipids present on the Metabolon platform. However, we
cannot exclude that 4-hydroxycoumarin in the blood affects
sphingolipid metabolism in the brain specifically.
Other metabolites that were found to be significant in our study

include mannitol/sorbitol, of which increased levels were asso-
ciated with depression. Higher levels of sorbitol in plasma and
urine have previously been consistently reported in patients with
unipolar and bipolar depression and, like hippurate, it has been
suggested as a diagnostic biomarker of depression [23]. Mannitol/
sorbitol are sugar alcohols found in food such as fruits and berries
and often used in diet/sugar free foods as sweeteners [81].
Fructose reduced diets have been shown to improve gastro-
intestinal disorders, depression and mood disorders [82]. Our
AGORA2 analysis suggests that mannitol is mainly secreted by
several species of Bacteroides, Lactobacillus, Fructobacillus, Alistipes
and Bifidobacterium. Interestingly, all genera, except for Fructoba-
cillus have previously been associated with depression [46], asking
for further studies on the role of the microbiome, circulating levels
of mannitol and depression.
Finally, there were four lipids identified in our study (2-

aminooctanoate, 10-undecenoate (11:1n1), 1-palmitoyl-2-palmito-
leoyl-GPC (16:0/16:1) and 1-linoleoyl-GPA (18:2)) significantly
associated with depression. 1-Palmitoyl-2-palmitoleoyl-GPC (16:0/
16:1) also known as phosphatidylcholine (16:0/16:1) or lecithin is
commonly found in foods like egg yolk and soybean, and is a
precursor of choline. Lecithin is believed to cause depression by
increasing the production of acetylcholine in the brain [83]. When
fed to animals and humans, lecithin significantly increases the
levels of choline in blood and brain and of acetylcholine in brain
[84–86]. Our study is the first to show higher circulating levels of
lecithin in the depressed individuals from the general population.
The other three lipids 2-aminooctanoate, 10-undecenoate (11:1n1)
and 1-linoleoyl-GPA (18:2) were negatively associated with
depression. 2-Aminooctanoate (alpha-aminocaprylic acid) and
10-undecenoate (11:1n1) (undecylenic acid) are neutral hydro-
phobic molecules for which there is not much known in the
literature. Lower levels of 10-undecenoate (11:1n1) have been
found in individuals with non-alcoholic fatty liver disease [87].
1-linoleoyl-GPA (18:2) is a lysophosphatidic acid (LPA 18:2). LPA is
a bioactive membrane lipid that acts on at least six distinct G
protein‐coupled receptors (LPA1–6) and plays a role in pain
sensitivity and emotional regulation [88]. LPA knock out mice
exhibit anxiety-related behaviour [88, 89].
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We found that decreased plasma levels of serotonin, kynur-
enate, leucine and citrulline and higher levels of glutamate were
associated with depression. Lower plasma/serum levels of
serotonin, kynurenate, citrulline and leucine and higher levels of
glutamate have been reported in relationship to depression in
earlier studies [23, 36, 37, 90], which also appears consistent with
our findings of model 1. However, we and others have shown that
antidepressants affect plasma/serum levels of serotonin, gluta-
mate, leucine and kynurenine [91–94]. An important finding of our
study is that only citrulline remained significantly associated with
depression after adjusting for antidepressant medication use,
suggesting the other metabolites change as a results from the
medication. Lower levels of citrulline and its precursor arginine
were previously associated to depression in unmedicated
individuals [37, 95]. Interestingly, treatment with SSRIs significantly
increase the levels of plasma citrulline [80]. Further, levels of
plasma citrulline were found to be significantly increased two
hours post treatment with ketamine, suggesting a possible
mechanism of action of the rapid acting drug [96]. Citrulline is
an intermediate in the urea cycle and linked to nitric-oxide
synthesis [97]. It is absorbed by the gut and has useful therapeutic
effects against cardiovascular diseases [98]. In our study the
association of citrulline with depression lost its significance, albeit
not completely, after adjusting for cardiovascular medication use
and BMI.
Our study is the first large-scale effort combining metabolites

measured on assorted, untargeted metabolomics platforms
(Metabolon) studied in relationship to depression. In addition to
confirming several previously identified metabolites in smaller
studies, we successfully identified novel metabolites that are
associated with depression. Our findings are robust across
different versions of the Metabolon platform or the criteria
assessing presence of clinical or subclinical depression. A possible
limitation of our study is that we have meta-analyzed summary
statistics from multiple cohorts that are different in their baseline
characteristics including age. Depression in old age is considered
to have a different pathogenesis compared to depression in
younger individuals. Further, there are differences in metabolo-
mics platform versions and instruments that were used by
different cohorts to assess depression, all of which have a
negative impact on the statistical power of the study. Older
versions of the Metabolon platform reported significantly fewer
known metabolites compared to the more recent implementa-
tions. Another limitation of our study is the presence of residual
confounding. Despite adjusting for most known confounders
including medication use and the lifestyle factors smoking and
BMI, confounding may still be present and may influence the
results [99]. Further, our MR analysis was most likely under-
powered lacking strong instrumental variables for the associated
metabolites.
Analysing circulating levels of 806 metabolites from untargeted

metabolomics platforms in 13,596 individuals, we identified six
new associations of metabolites with depression including retinol
(vitamin A), 4-hydroxycoumarin and four lipids, 2-aminooctanoate,
10-undecenoate (11:1n1), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/
16:1) and 1-linoleoyl-GPA (18:2), while confirming known associa-
tions of hippurate and mannitol/sorbitol. We further show that
previously identified associations of depression with metabolites
belonging to the amino-acid pathways including serotonin,
kynurenate, leucine and glutamate are likely explained by
antidepressant medication. Our findings point to effective
preventive targets, as most of these metabolites are food derived
and thus can be altered in patients by modifying diet.

Data Sharing
The datasets generated during and/or analyzed during the current
study are not publicly available due to restrictions based on
privacy regulations and informed consent of the participants. All

summary statistics are provided in the Supplementary Material.
For individual cohort level data, respective Principal Investigators
can be contacted. For the Rotterdam Study data, requests should
be directed towards the management team of the Rotterdam
Study (secretariat.epi@erasmusmc.nl), which has a protocol for
approving data requests.
The EPIC-Norfolk data can be requested by bona fide

researchers for specified scientific purposes via the study website
(https://www.mrc-epid.cam.ac.uk/research/studies/epic-norfolk/).
Data will either be shared through an institutional data sharing
agreement or arrangements will be made for analyzes to be
conducted remotely without the need for data transfer.
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