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Background: The role of the vulvar microbiome in the development of (pre)
malignant vulvar disease is scarcely investigated. The aim of this exploratory 
study was to analyze vulvar microbiome composition in lichen sclerosus (LS) and 
vulvar high-grade squamous intraepithelial lesions (HSIL) compared to healthy 
controls.

Methods: Women with vulvar lichen sclerosus (n  =  10), HSIL (n  =  5) and healthy 
controls (n  =  10) were included. Swabs were collected from the vulva, vagina 
and anal region for microbiome characterization by metagenomic shotgun 
sequencing. Both lesional and non-lesional sites were examined. Biophysical 
assessments included trans-epidermal water loss for evaluation of the vulvar skin 
barrier function and vulvar and vaginal pH measurements.

Results: Healthy vulvar skin resembled vaginal, anal and skin-like microbiome 
composition, including the genera Prevotella, Lactobacillus, Gardnerella, 
Staphylococcus, Cutibacterium, and Corynebacterium. Significant differences 
were observed in diversity between vulvar skin of healthy controls and LS patients. 
Compared to the healthy vulvar skin, vulvar microbiome composition of both 
LS and vulvar HSIL patients was characterized by significantly higher proportions 
of, respectively, Papillomaviridae (p  =  0.045) and Alphapapillomavirus (p  =  0.002). 
In contrast, the Prevotella genus (p  =  0.031) and Bacteroidales orders (p  =  0.038) 
were significantly less abundant in LS, as was the Actinobacteria class (p  =  0.040) 
in vulvar HSIL. While bacteria and viruses were most abundant, fungal and archaeal 
taxa were scarcely observed. Trans-epidermal water loss was higher in vulvar HSIL 
compared to healthy vulvar skin (p  =  0.043).

Conclusion: This study is the first to examine the vulvar microbiome through 
metagenomic shotgun sequencing in LS and HSIL patients. Diseased vulvar skin 
presents a distinct signature compared to healthy vulvar skin with respect to 
bacterial and viral fractions of the microbiome. Key findings include the presence 
of papillomaviruses in LS as well as in vulvar HSIL, although LS is generally 
considered an HPV-independent risk factor for vulvar dysplasia. This exploratory 
study provides clues to the etiology of vulvar premalignancies and may act as 
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a steppingstone for expanding the knowledge on potential drivers of disease 
progression.

KEYWORDS

vulvar microbiome, vaginal microbiome, lichen sclerosus, vulvar HSIL, HPV, vulvar 
cancer

Introduction

Vulvar squamous cell carcinoma (VSCC) occurs in 1–2 per 
100,000 women and has an increasing incidence with age (Hacker 
et al., 2012). VSCC is preceded by human papillomavirus (HPV)-
related or HPV-independent precursor lesions (van de 
Nieuwenhof et  al., 2009; de Sanjosé et  al., 2013; Nitecki and 
Feltmate, 2018). Predominantly HPV type 16 and 18 can cause 
vulvar high-grade squamous intraepithelial lesions (HSIL), a 
premalignant condition responsible for approximately 20% of 
VSCC (de Sanjosé et al., 2013). These high-risk HPV (hrHPV) 
types are also notorious drivers of cervical dysplasia and 
carcinoma (Cubie, 2013). Vulvar lichen sclerosus (LS) is a chronic 
inflammatory condition that may promote development of 
differentiated vulvar intraepithelial neoplasia (dVIN), a 
premalignancy preceding the remaining 80% of all VSCC (Thuijs 
et al., 2021; Voss et al., 2021). dVIN has low disease incidence and 
poses a diagnostic challenge for both clinicians and pathologists. 
The central symptom in LS is pruritus, while scarring and 
anatomical changes of the labia minora and clitoral phimosis 
occur in severe cases. The etiology of LS remains debated, with 
indications of a genetic or autoimmune root cause (van de 
Nieuwenhof et  al., 2009; Thuijs et  al., 2021). A considerable 
amount of taboo is associated with vulvar disease, resulting in 
delays in clinical recognition and treatment, adding to substantial 
physical, sexual and psychological morbidity (Lockhart et  al., 
2013; Grimm et al., 2016; Pérez-López and Vieira-Baptista, 2017; 
Mullen et al., 2019).

Changes in microbiome composition have been associated 
with several disease conditions, including cancer (Feng et al., 2015; 
Byrd et al., 2018). The research field started off with recognition of 
single malignancy-driving micro-organisms (such as HPV for 
cervical cancer) and has expanded to include association of 
microbiome composition patterns to cancer development (Picardo 
et  al., 2019). In vaginal diseases, higher grades of HPV-driven 
cervical dysplasia are correlated with a non-Lactobacillus 
dominated vaginal microbiome composition (Mitra et al., 2015; 
Piyathilake et  al., 2016; Norenhag et  al., 2020). Moreover, the 
presence of Sneathia spp. and Mycoplasma spp. has been correlated 
to co-infection with hrHPV types (Lee et al., 2013; Mitra et al., 
2015; Audirac-Chalifour et  al., 2016; Adebamowo et  al., 2017; 
Klein et  al., 2018; Łaniewski et  al., 2019). These findings can 
expand our understanding of cervical diseases and serve as 
biomarkers and potential targets for drug development to treat 
cervical (pre)malignant disease.

In contrast to the vaginal microbiome, the vulvar microbiome 
and its role in the development of (pre)malignant vulvar disease is 
scarcely investigated and current knowledge is inconclusive (Pagan 

et  al., 2021). The bacterial genera and species described on the 
healthy vulva include the genera Lactobacillus, Corynebacterium, 
Staphylococcus, and Prevotella, suggesting transfer from vaginal, 
cutaneous and intestinal origin. Current literature lacks longitudinal, 
case–controlled studies and elucidation of microbiome components 
other than bacteria, such as viruses, fungi and archaea. Therefore, the 
aim of this study was to describe and compare the vulvar microbiome 
composition by metagenomic shotgun sequencing in patients with 
lichen sclerosus and vulvar HSIL compared to healthy controls. 
Biophysical properties of the vulvar skin were additionally explored 
as the microbiome composition can influence the skin barrier 
function (Harris-Tryon and Grice, 2022).

Methods

Trial design and subjects

This study was part of an observational clinical trial to identify 
biomarkers for premalignant vulvar disease to increase the 
understanding of the etiology of VSCC (Huisman et al., 2023). The 
trial was conducted at the Centre of Human Drug Research in Leiden 
(the Netherlands) from February 2021 to October 2021. The 
Declaration of Helsinki was the guiding principle for trial execution 
and the study was approved by the medical ethics committee 
“Medisch-Ethische Toetsingscommissie Leiden Den Haag Delft” prior 
to initiation. Written informed consent from all participants was 
obtained prior to any study-related procedure.

Criteria for inclusion were women aged between 25 and 95 years 
with BMI <30 kg/m2. Patients with vulvar HSIL were required to have 
≥1 demarcated lesion(s) ≥15 mm in diameter with confirmed 
histologic diagnosis. Patients with lichen sclerosus were considered 
eligible in case of a clinical and/or histological diagnosis of 
LS. Exclusion criteria were significant concomitant diseases, 
pregnancy, immunodeficiency, sexually transmitted disease, AIDS or 
hepatitis. Furthermore, individuals with other dermatological 
conditions in the genital area were excluded.

Lifestyle restrictions were incorporated to standardize vulvar 
conditions for microbiome sampling. A ≥ 28-day wash-out applied for 
systemic immunomodulatory medication and antibiotic use (topical 
or systemic). Wash-out for topical medication on the vulvar area was 
≥14 days. Participants were instructed to refrain from sexual 
intercourse, vigorous exercise, applying vulvar products and shaving, 
waxing or other depilatory treatments at least 24 h before every visit. 
Additionally, they were instructed not to wash the vulvar area from 
midnight onwards on every visit.

In total, 10 healthy volunteers, 5 patients with HSIL and 10 
patients with LS were enrolled in this observational study. Anal, 
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vaginal and vulvar samples were obtained at a single time point for 
vulvar HSIL and LS patients, as well as healthy volunteers.

Microbiome characterization

Sample collection
The vulvar microbiome was characterized in LS and HSIL 

patients as well as in the healthy volunteers. Microbiome samples 
were obtained using a 1 mL DNA/RNA Shield™ Collection Tube 
with Swab (Zymo Research, Freiburg, Germany). The pre-wetted 
swab with saline was rubbed along the vulvar skin for 30 s while 
slowly rotating the swab. Sampling locations on the vulva (i.e., 
labia minora, labia majora or perineum) depended on the location 
of the vulvar lesions (Supplementary Table S1). Healthy-appearing 
vulvar skin contralateral to the HSIL lesion was selected as 
non-lesional HSIL reference site where possible. Of note for LS, the 
non-hirsute vulvar skin should be considered affected, even if the 
skin appears healthy. Therefore, non-lesional LS sites were selected 
on the distal side of the labia majora toward the groin. Reference 
samples of the vaginal microbiome were obtained by introducing 
a dry swab mid-vaginally and once rotating 360 degrees along the 
vaginal wall, without touching the vulvar area upon introduction 
or removal. Another reference sample of the anal microbiome was 
obtained by rubbing a dry swab along the anus five times. Samples 
were stored in DNA/RNA shield at −80°C until DNA extraction 
was performed.

DNA extraction
DNA of vulvar, vaginal and anal swabs was extracted with the 

Quick-DNA Fecal/Soil Microbe Miniprep kit (Zymo Research; 
D6010). During DNA extraction, positive controls (D6300 
ZymoBIOMICS Microbial Community standard, Zymo Research, 
United States) and negative controls (empty tubes) were included. In 
short, 600 μL BashingBead Buffer was added to the swabs and 
processed with Precellys 24 Homogenizer (Bertin Technologies) at 
5,500 rpm for three rounds of 60 s each. Subsequently, samples were 
centrifuged (10,00 RCF; 1 min), 800 μL supernatant was transferred 
to a Zymo-Spin III-F Filter and centrifuged again (8,000 RCF; 1 min). 
Next, 1,200 μL Genomic Lysis Buffer was added to the filtrate. Of the 
resulting mixture, 800 μL was transferred to a Zymo-Spin IIC 
Column and centrifuged (10,000 RCF; 1 min). After discarding the 
flowthrough, 200 μL of DNA Pre-Wash Buffer was added to the 
Zymo-Spin IIC Column and centrifuged (10,000 RCF; 1 min). Five 
hundred microliter g-DNA Wash Buffer was added to the Zymo-Spin 
IIC Column and centrifuged (10,000 RCF; 1 min) after which 50 μL 
DNA Elution Buffer was added and centrifuged (10,000 RCF; 30 s). 
The eluted DNA was transferred over the same column and 
centrifuged (10,000 RCF; 30 s). Lastly, the eluted DNA was transferred 
to a prepared Zymo-Spin III-HRC Filter and centrifuged (16,000 
RCF; 3 min). The resulting DNA was quantified with a Qubit 4 
fluorometer (Invitrogen). In total, 89 out 90 clinical samples yielded 
measurable concentrations of DNA.

Metagenomic shotgun sequencing
DNA and additional positive sequencing controls were analyzed 

using metagenomic shotgun sequencing by GenomeScan (Leiden, 
the Netherlands). Upon sample entry, quality of samples was 

assessed by the Fragment Analyzer (Advanced Analytical 
Technologies) according to GenomeScan’s protocol. Given their low 
biomass, 73/97 (75%) samples passed entry quality control of >30 pg/
mL (of which 15/25 (60%) anal, 25/25 (100%) vaginal, 29/39 (74%) 
vulvar samples, 0/4 (0%) negative controls and 4/4 (100%) positive 
controls), yet all samples passed library preparation quality control 
and were included for metagenomic shotgun sequencing.

Sequencing libraries were prepared using Illumina’s DNA 
PCR-Free Prep kit and checked on quality with the Fragment 
Analyzer. Libraries were sequenced with the Illumina NovaSeq6000 
platform to a target depth of 3.3 million reads per sample.

Biophysical assessments

Trans-epidermal water loss
Measurement of the trans-epidermal water loss (TEWL) 

determines the skin barrier function in a non-invasive manner 
(AquaFlux AF200 System, Biox, London, United  Kingdom). The 
measurements were performed under standard environmental 
conditions and patients were acclimatized with removed clothing for 
≥15 min before initiation of the measurements. All TEWL 
measurement conditions were constant during the study, with mean 
probe temperatures of 24.3°C and average humidity of 39.2%. A 
measurement was considered valid at the settling of the flux curves at 
a final steady level, as described previously (Niemeyer-van der Kolk 
et al., 2022).

Vulvar and vaginal pH analysis
Vulvar skin pH was determined using an electronic pH probe 

(Skin-pH-Meter PH905, Courage and Khazaka, Cologne, Germany). 
The average of three consecutive readings was recorded. The vaginal 
pH was measured by collecting vaginal fluid using a sterile Puritan 
swab rotated once mid-vaginally and subsequently applied to color-
coded pH paper (Macherey-Nagel, pH 4.0–7.0), as described 
previously (Donders et al., 2007).

Bioinformatic processing

Metagenomics pre-processing
Raw data were pre-processed with an in-house workflow.1 In 

short, the workflow removes the host genome reads and subsequently 
performs quality trimming of the reads. First, the host genome was 
removed using bowtie2 (version 2.4.2) by mapping reads to the human 
reference genome (Langmead and Salzberg, 2012). The parameters 
passed in bowtie2 included “--very-sensitive-local” and reference 
genome “GRCh38.p7.”2 Unmapped, paired reads were filtered from 
the output using samtools (version 1.11) (Li et al., 2009). Subsequent 
filtered reads were processed with fastp (version 0.20.1) performing 
quality trimming, adapter removal and low-complexity filtering (Chen 
et  al., 2018). Fastp parameters included trim “--cut-right, −-cut_
window_size 4 --cut_mean_quality 20”; minlen “-l 50”; adapter 

1 https://git.lumc.nl/snooij/metagenomics-preprocessing

2 https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.33/
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“--detected_adapter_for_pe”; complexity “-y.” The mean total reads 
before processing, after filtering for human reads and after quality 
trimming were calculated per study group and sample type 
(Supplementary Table S2).

Microbial community profiling
Pre-processed reads were analyzed using MetaPhlAn (version 

3.0.14) to profile the composition of the microbial communities and 
to predict read counts (Beghini et al., 2021). To profile the composition 
of the microbial communities, “--add_viruses” and “--unknown_
estimation” were added besides default parameters. The outputs were 
merged with “merge_metaphlan_tables.py.” For the predicted read 
counts, parameters “-t rel_ab_w_read_stats,” “--add_viruses” and 
“--unknown_estimation” were included besides default parameters. 
Outputs were merged with an adapted version of the merge utility 
script. The pre-processed sequences mapped to 855 taxa (661 Bacteria, 
152 Viruses, 33 Eukaryota and 9 Archaea).

Data analysis and availability
The resulting abundance tables were analyzed and visualized using 

R version 4.1.2 (Vienna, Austria) (Team R, 2014). For data analyses, 89 
clinical samples were available (LS, n = 39; HSIL, n = 20; Healthy, 
n = 30). Shannon diversity and Chao1 richness were computed on 
rarefied data with the phyloseq package (version 1.38.0) at species level 
(McMurdie and Holmes, 2013). The stat_compare_means from the 
ggpubr package (version 0.4.0) was used to compute overall significant 
differences with a Kruskal-Wallis test and to compare means between 
swab sites with the Wilcoxon Rank Sum Test (Kassambara, 2023). The 
abundance table was transformed to compositional data with the 
microbiome package (version 1.16.0). Subsequently, the mean relative 
abundance of the 10 most abundant genera was visualized with ggplot2 
(version 3.3.6) for the bacterial and viral kingdoms on non-lesional and 
lesional skin of each study group (Lahti and Shetty, 2017; Wickham, 
2023). For Linear discriminant analysis Effect Size (LEfSe), an object 
was created with the phyloseq2lefse function from the 
phyloseqCompanion package (version 1.1.) (Stagaman, 2023). 
Subsequent LEfSe analyses were performed until species level with 
default parameters (except LDA score > 4.0) on the Huttenhower lab 
Galaxy server to assess differences in relative abundance between 
lesional skin of LS patients and healthy vulvar skin, as well as lesional 
skin of vulvar HSIL patients and healthy vulvar skin (Segata et al., 
2011). Aitchison distance was calculated for the Principal Coordinate 
Analyses (PCoA). On genus level data of the bacterial and viral 
kingdoms, Centered Log Ratio (CLR) transformation was performed 
using the transform function of the microbiome package. The distance 
function of the phyloseq package was used to generate a distance matrix 
with Euclidean distance. The betadisper function from the vegan 
package (version 2.6-4) was used to assess differences in variation 
between swab sites, while adonis2 was used to assess differences in 
centroids of the swab sites and study groups with constrained 
permutations for each patient.3 Alluvial plots were generated by 
calculating the mean relative abundance of the 10 most abundant 
bacterial and viral genera in each swab site for LS and vulvar 

3 https://cran.r-project.org/web/packages/vegan/index.htmlhttps://cran.r-

project.org/web/packages/vegan/index.html

HSIL. Since each swab site amounted to a total relative abundance of 
100%, mean relative abundances for each swab site were normalized by 
dividing the relative abundances by the number of swab sites included. 
Alluvial plots were visualized using ggplot2 and ggalluvial (version 
0.12.3) (Brunson, 2020).

Quality control
Positive and negative controls were included during DNA extraction, 

and additional positive controls were included during sequencing. 
Positive and negative DNA extraction controls were compared for mean 
total reads. Mean total reads of the positive controls (4,742,574) were 
significantly higher (Wilcoxon Rank Sum Test, p = 0.03) compared to the 
mean total reads of the negative controls (12,565). Although having 
significantly lower number of reads, the negative controls contained skin-
derived bacterium Cutibacterium acnes.

Additionally, the taxonomic species composition of the positive 
controls was compared to each other and to the theoretical mock 
community composition. All species of the mock community could 
be identified in the positive controls, except Bacillus subtilis. Instead, 
Bacillus intestinalis was identified, which has previously been reported 
as expected misclassification of Bacillus subtilis using the MetaPhlAn 
taxonomy database (Wright et al., 2023). The bacterial species are 
present in equal ratio’s, indicating overrepresentation (>15% increase) 
of Lactobacillus fermentum and underrepresentation (>15% decrease) 
of Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus 
aureus, Listeria monocytogenes, Saccharomyces cerevisiae and 
Cryptococcus neoformans (Supplementary Figure S1).

Data availability statement
All pre-processed metagenomics data have been deposited in the 

European Nucleotide Archive under accession number PRJEB61325.

Results

Cohort characteristics

In total, 25 women were included in the study. Baseline characteristics 
were comparable between groups (Table 1). Menopausal status and age 
were equally distributed. Most (24/25) participants were of Caucasian 
descent, with one healthy volunteer of mixed Caucasian and Latin 
American descent. All LS and vulvar HSIL patients had previously 
undergone one or multiple treatments for their vulvar condition, while 
healthy volunteers were naïve to any treatments of the vulvar skin.

Vulvar microbial skin diversity is decreased 
in LS compared to healthy skin

Diversity and richness of the bacterial and viral fraction were 
used to assess differences in microbial ecology between vulvar skin 
of healthy controls and of LS and HSIL patients. Healthy vulvar skin 
had a higher mean diversity compared to the lesional and non-lesional 
skin of LS patients (p = 0.029 and p = 0.001, respectively), while other 
comparisons to healthy skin were not significant (Figure  1). 
Interestingly, within the patient groups, lesional vulvar skin showed 
a non-significant rise in mean diversity and richness compared to 
non-lesional skin.
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The bacterial fraction on diseased vulvar 
skin differs from healthy vulvar skin

To further assess differences in the microbial ecology of healthy 
vulvar skin and vulvar skin of LS and vulvar HSIL patients, taxonomic 
profiles of the bacterial and viral fraction were generated (Figure 2 and 
Supplementary Figures S2, S3). The bacterial and viral fraction are 
considered separately below.

The main bacterial genera identified in non-lesional and 
lesional skin of LS and vulvar HSIL patients were similar as 

observed in healthy vulvar skin (Figure 2A). These bacterial genera 
included Prevotella, Lactobacillus, Staphylococcus, and Gardnerella.

LEfSe analyses were used to identify differentially abundant taxa 
between healthy vulvar skin and skin lesions in LS and vulvar 
HSIL. Regarding the bacterial fraction, lesional vulvar skin of LS 
patients was characterized by a depletion by taxa from the Prevotella 
genus and Bacteroidales order compared to healthy skin 
(Figures 3A,C,D). Meanwhile, lesional skin of HSIL patients showed 
an increase in the Fusobacteria phylum and depletion in the 
Actinobacteria class (Figures 4A,C,D).

TABLE 1 Baseline characteristics.

Characteristics
Healthy control

(N  =  10)

Vulvar high grade 
squamous intraepithelial 

lesion (N  =  5)

Lichen sclerosus  
(N  =  10)

Age in years—mean (range) 46.5 (25–73) 46.6 (32–66) 50.3 (25–72)

Pre-menopausal 5 3 5

Post-menopausal 5 2 5

Body mass index (BMI) in kg/m2—mean (range) 22.8 (19.6–27.6) 26.6 (21.6–30.0) 25.7 (18–30)

Ethnicity—N (%)

White 9 (90%) 5 (100%) 10 (100%)

Other 1 (10%)* 0 (0%) 0 (0%)

Smoking—N (%)

No 9 (90%) 1 (20%) 8 (80%)

Yes 1 (10%) 4 (80%) 2 (20%)

Disease duration in years—median (range) N/A 8 (7–25) 5.5 (1–12)

Vulvar squamous cell carcinoma in medical history 0 0 1 (10%)

Fitzpatrick skin type—N (%)

I 1 (10%) 1 (20%) 3 (30%)

II 4 (40%) 1 (20%) 4 (40%)

III 5 (50%) 3 (60%) 3 (30%)

HPV genotype biopsy—N (%)

HPV16 0 4 (80%) 0

HPV53 0 1 (20%)** 1 (10%)

Negative 10 (100%) 1 (20%) 9 (90%)

Previous vulvar treatments—N (%)

None 10 (100%) 0 0

Yes, 1 previous treatment 0 1 (20%) 7 (70%)

Yes, 2 previous treatments 0 1 (20%) 3 (30%)

Yes, 3 previous treatments 0 1 (20%) 0

Yes, 4 previous treatments 0 1 (20%) 0

Yes, 5 previous treatments 1 (20%)

Topical treatment 0 5*** 9****

Surgical 0 5 2*****

Coagulation 0 1 0

Laser 0 3 0

HPV vaccination (Gardasil) 0 2 0

Estriol/estradiol (vaginal) 0 0 2

*Mixed Latin American and Caucasian descent; **One HSIL patient was both HPV 16 and 53 positive; ***5x imiquimod, 1x 5-FU; ****2x triamcinolonacetonide, 8x dermovate; 
*****Surgical treatment encompassed vulvectomy and introitus plasty.
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Papillomaviridae are abundant both in LS 
and HSIL

For the viruses, various taxa were identified on the vulva of 6/10 
healthy women, although predicted read counts were relatively low 
compared to the bacterial reads (565 ± 892 viral reads vs. 
987,765 ± 1,140,330 bacterial reads) (Supplementary Figure S4). 
Viruses were more often identified in LS and vulvar HSIL patients 
(non-lesional LS: 9/9; lesional LS: 8/10; non-lesional HSIL: 4/5; 

lesional HSIL: 5/5; healthy controls: 6/10). The non-lesional and 
lesional skin in LS and HSIL patients mainly comprised viruses within 
the Papillomaviridae family, while these were present but not 
dominant in healthy vulvar skin (Figure 2B). Although viruses were 
prevalent, the abundance of the total viral fraction on diseased skin 
was not significantly increased compared to healthy vulvar skin 
(p = 0.15, Wilcoxon Rank Sum Test).

LEfSe results for the viral fraction showed that 
Papillomaviridae and Alphapapillomaviruses were significantly 

FIGURE 1

Diversity and richness of the vulvar skin microbiome. (A) Diversity measured by the Shannon index. (B) Richness measured by the Chao1 index. LS, 
lichen sclerosus; vHSIL, vulvar high-grade squamous intraepithelial lesions; NL, non-lesional (healthy appearing) vulvar skin; L, lesional vulvar skin. Only 
significant p-values are displayed.

FIGURE 2

Mean relative abundance on genus level of (A) the bacterial fraction and (B) the viral fraction of the microbiome in healthy controls, LS patients and 
HSIL patients. For each study group, the taxonomic profiles of non-lesional and lesional vulvar skin are displayed. No viral taxa were detected in some 
individuals (Supplementary Figure S1), therefore the bars do not accumulate to 100% in these summary graphs. LS, lichen sclerosus; vHSIL, vulvar high-
grade squamous intraepithelial lesions; NL, non-lesional (healthy appearing) vulvar skin; L, lesional vulvar skin.
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more abundant in vulvar lesional skin of LS and vulvar HSIL 
patients compared to healthy controls, respectively (Figures 3A,B, 
4A,B). More specifically, various mucosal and cutaneous HPV 
types were identified in LS and vulvar HSIL 
(Supplementary Table S3). While non-lesional and lesional vulvar 
skin of HSIL patients mainly contained Alphapapillomaviruses 7 
and 9 species (corresponding to clinical hrHPV types 18/45 and 
16/31/33, respectively), the HPV profile of LS was more diverse 
(Cubie, 2013). Alphapapillomaviruses 3, 6 and 13 were detected 
in both non-lesional and lesional vulvar LS skin. Clinically, these 
species correspond to several high- and low-risk HPV types, but 
not HPV type 16 or 18.

Prevotella spp. are shared between vulvar 
lesional skin, the vagina and anus in lichen 
sclerosus and vulvar high-grade squamous 
intraepithelial lesions

To further investigate the variation in the microbiome 
between (non-lesional and lesional) vulvar skin, vagina and anus, 
a Principal Coordinates Analysis was performed. The 
non-lesional and lesional vulvar skin showed overlap with the 
anus, suggesting the microbiome in vulvar skin is similar to the 
anal environment (Figure 5). However, PERMANOVA indicated 
the variation between sampling sites was significantly different 

FIGURE 3

Differentially abundant features in lesional vulvar skin of lichen sclerosus patients compared to healthy controls. (A) LEfSe analysis histogram of LDA 
scores (log10) showing overrepresented taxa (pink) and underrepresented taxa (green) in lesional vulvar skin of lichen sclerosus patients. Taxa with LDA 
scores above 4.0 were selected and unclassified taxa were excluded for viewing purposes. Bold taxa were differential abundant features classified to 
the lowest taxonomic level and used for (B–D). (B–D) Distribution of differential abundant features in individual samples per skin site with (B) showing 
overrepresented family Papillomaviridae, (C) the underrepresented genus Prevotella and (D) the underrepresented order Bacteroidales in lesional vulvar 
skin of lichen sclerosus patients. LS, lichen sclerosus; NL, non-lesional (healthy appearing) vulvar skin; L, lesional vulvar skin.
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(p = 0.001). Yet, the non-homogenous dispersion among the swab 
sites may have affected these PERMANOVA results.

To further assess horizontal transfer of the vaginal and anal 
environment to (lesional) vulvar skin and vice versa, the 
distribution and flow of genera was visualized (Figure 6). In both 
LS and HSIL patients, the Lactobacillus and Gardnerella genera 
were predominantly detected in the vagina and in lower  
relative abundances on the non-lesional and lesional skin and 
anus. Additionally, genera including Campylobacter,  
Corynebacterium, Finegoldia and Gardnerella were shared 
between the anus and non-lesional and lesional vulvar skin in LS 
and HSIL. Moreover, Alphapapillomavirus spp. were identified on 
all skin sites in vulvar HSIL patients. Interestingly, in LS patients 
Prevotella spp. was scarcely present on non-lesional vulvar skin 

while being detected on lesional vulvar, anal and vaginal 
skin sites.

Eukaryota and Archaea are rarely detected 
on vulvar skin

Compared to bacterial and viral taxa, Eukaryota and Archaea 
were rarely identified and in low abundance 
(Supplementary Table S4). The most observed fungus was 
Mallassezia globosa, which was detected in low relative abundance 
(up to 2%) on vulvar sites of 3/10 LS patients and 1/10 healthy 
volunteers while being absent in the vaginal or anal milieu. 
Methanobrevibacter smithii was the most frequently found Archaea, 

FIGURE 4

Differentially abundant features in lesional skin of vulvar HSIL patients compared to healthy controls. (A) LEfSe analysis histogram of LDA scores (log10) 
showing overrepresented taxa (red) and underrepresented taxa (green) in lesional vulvar skin of vulvar HSIL patients. Taxa with LDA scores above 4.0 
were selected and unclassified taxa were excluded for viewing purposes. Bold taxa were differential abundant features classified to the lowest 
taxonomic level and used for (B–D). (B–D) Distribution of differential abundant features in individual samples per skin site with (B) showing the 
overrepresented genus Alphapapillomavirus, (C) showing the overrepresented phylum Fusobacteria and (D) showing the underrepresented class 
Actinobacteria in lesional vulvar skin of vulvar HSIL patients. vHSIL, vulvar high-grade squamous intraepithelial lesions; NL, non-lesional (healthy 
appearing) vulvar skin; L, lesional vulvar skin.
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albeit in low relative abundance (up to 1%), in anal samples of 7 
participants across groups.

The barrier function of lesional vulvar skin 
in vulvar HSIL is impaired

The barrier function of the vulvar skin was assessed with TEWL. A 
significantly higher TEWL flux was observed between lesional vulvar 
HSIL [mean (SD) 79.2 g/m2/h (±44.9)] and healthy controls [mean 
(SD) 42.2 g/m2/h (±27.8); p = 0.043] (Figure  7). No significant 
differences in TEWL flux were observed between lesional LS [mean 
(SD) 57.5 g/m2/h (±36.8)] and HV, p = 0.309, nor between the 
non-lesional and the lesional sites of HSIL, p = 0.810. The lesional site 
of LS patients had a significant higher flux compared to the 
non-lesional LS site, p = 0.006.

The mean vulvar pH of lesional LS and HSIL was 5.72 (SD 0.45) 
and 6.21 (SD 0.8), respectively, with no significant changes over time 
(Supplementary Figure S5). Non-lesional vulvar skin and vaginal pH 
of patients and healthy volunteers did not display group differences or 
changes over time (data not shown). Menopausal status was the 
stratifying factor for observed differences in pH in the LS and healthy 
control group.

Discussion

This exploratory study shows that the vulvar skin of patients with 
LS and HSIL—both non-lesional and lesional—differs from healthy 
vulvar skin, which was most prominent for the viral fraction. Notably, 
papillomaviruses were characteristic for LS, despite being considered 
an HPV-independent condition. In the bacterial fraction, Prevotella 
spp. were less abundant in LS than healthy vulvar skin, but shared 
between vulvar skin, vaginal and anal sites, indicating potential 
horizontal transfer between sites. This study is the first to compare the 

vulvar microbiome composition of LS and HSIL to healthy controls 
using metagenomic sequencing techniques. The distinct bacteria and 
viruses found in both LS and vulvar HSIL warrant further investigation 
and may aid in future identification of driving factors or biomarkers 
for vulvar (pre)malignant diseases.

The bacterial fraction of vulvar LS skin shared many taxa with 
healthy vulvar skin, mainly comprising Lactobacillus, Prevotella, and 
Gardnerella genera, which were also previously identified in LS and 
vulvodynia (Pagan et al., 2021). Specifically in vulvar LS, depletion of 
Lactobacillus and gain of Prevotella species has previously been 
described in juvenile LS (Chattopadhyay et al., 2021). The opposite 
was observed in this study, where taxa from the Prevotella genus were 
reduced in LS compared to healthy vulvar skin. Meanwhile within the 
LS group, Prevotella spp. were shared between anal, vaginal and 
lesional LS skin sites, but almost absent on non-lesional vulvar skin. 
Thus, the exact role of Prevotella in LS remains inconclusive 
(Chattopadhyay et al., 2021; Liu et al., 2022). Relative abundance of 
Staphylococcus spp. seemed higher in non-lesional vulvar skin, which 
likely reflects the more skin-like sampling location toward the groin. 
Based on differential abundance analysis, a significant 
overrepresentation of papillomaviruses and an underrepresentation 
of taxa from the Prevotella genus and the Bacteriodales order were 
characteristic for LS compared to healthy controls. Interestingly, LS is 
generally considered a HPV-independent precursor of VSCC, 
although concurrent HPV-infections have been previously reported 
(Van Der Avoort et al., 2006; Aidé et al., 2010; Hald and Blaakaer, 
2018). Co-occurrence of LS and papillomaviruses may be coincidental, 
given the high prevalence (~10%) of both high- and low-risk genital 
HPV infections in the general female population (Hald and Blaakaer, 
2018; Kombe Kombe et al., 2020). Alternatively, our results may point 
toward an etiological role of HPV in LS, in which a subclinical 
HPV-infection could hypothetically induce LS in genetically and/or 
immunologically predisposed women. Such infection could occur 
through disruption of the skin barrier and local immune environment, 
known as the Koebner phenomenon (Tasker and Wojnarowska, 2013). 
This could apply for both high- and low-risk HPV types as observed 
in LS patients of our cohort. However, no significant increase of 
TEWL—i.e., decrease in skin barrier function—in LS skin was 
observed compared to healthy controls. Another explanation for the 
observed co-occurrence of HPV in LS could be that skin damage or 
immunosuppression from corticosteroid treatment in pre-existing LS 
facilitates colonization with papillomaviruses. These observations in 
LS lead to the hypothesis that women who eventually develop VSCC 
may display immunological variations resulting in less effective 
viral clearance.

Like LS, the vulvar skin of HSIL shared bacterial genera with 
healthy vulvar skin. The lesional skin of vulvar HSIL was 
characterized by significant increases in relative abundance of the 
Fusobacteria phylum and Alphapapillomavirus genus, while the 
Actinobacteria class was significantly reduced compared to healthy 
controls. The presence of high-risk Alphapapillomaviruses 
corroborates with the HPV-driven etiology of vulvar HSIL. Although 
no data on vulvar skin sites in HSIL is available hitherto, cervical 
dysplasia closely relates to vulvar HSIL and has been studied 
extensively. In cervical dysplasia, Sneathia, Mycoplasma and 
Prevotella species have been associated with co-infection and 
persistence of hrHPV types (Lee et  al., 2013; Mitra et  al., 2015; 
Audirac-Chalifour et al., 2016; Adebamowo et al., 2017; Klein et al., 

FIGURE 5

Principal Coordinates Analysis (PCoA) of Aitchison distances between 
bacterial and viral communities associated to the swab sites 
including the vagina, non-lesional (NL) and lesional (L) vulva and 
anus. Betadisper p  =  0.000; PERMANOVA p  =  0.001 and r2  =  0.196.
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2018; Łaniewski et  al., 2019; Ritu et  al., 2019; So et  al., 2020). 
Prevotella has been designated as marker genus for cervical cancer, 
where it may influence HPV persistence through NOD-like receptor 
signaling (Wu et al., 2021). These findings indicate that functional 
processes, driven by the microbiome, potentially contribute to 
persistence or progression of cervical HPV-driven diseases. No 
significant overrepresentation of these taxa was identified in this 
study to vulvar HSIL. Furthermore, microbiome composition plays 
an integral role in the skin barrier, interacting with its other—
physical, immunological and chemical—components (Harris-Tryon 
and Grice, 2022). For example, TEWL can change upon topical 
application of Lactobacillus and Corynebacterium formulations 
leading to increased and reduced TEWL, respectively (2013; Park 
et al., 2014; Kim et al., 2021; Li et al., 2022). Our results show that 
TEWL was significantly increased in affected vulvar HSIL skin, 
indicating a disrupted skin barrier function (Akdeniz et al., 2018; 
Alexander et al., 2018). Whether these observed differences represent 
a disease-driven disturbance of skin barrier function or are due to 
variability in sampling location will require confirmation in an 
expanded population.

Besides bacteria and viruses, metagenomic sequencing allowed 
for the identification of Archaea and Eukaryota. Solely two Archaea 
were identified in low prevalence and abundance. To date, no Archaeal 
taxa are associated with pathogenesis and are generally considered 
commensals (Aminov, 2013; Wirth and Young, 2020). Eukaryotic (i.e., 
fungal) Mallasezia globosa was also identified, albeit in low relative 
abundance, on non-lesional vulvar sites of LS patients, but not in 
healthy controls or vulvar HSIL. Previously, Mallasezia globosa was the 
most identified fungal species on healthy labia majora (Bruning et al., 
2020). Candida taxa were detected once in this study, despite the 
reported C. albicans colonization rate of 20% in the general female 
population (Bradford and Ravel, 2017).

The main strengths of this study are the case–control trial 
design including patients and healthy controls with inter-
participant lesional and non-lesional control. Vaginal and anal 
samples allowed for intra-individual comparison and correlation of 
results with literature. Also, this study is the first to investigate 
microbiome composition in vulvar HSIL. Limitations of this 
exploratory study mostly pertain to the low sample size and 
sequencing depth. As such, future studies are needed to confirm the 

FIGURE 6

Alluvial plots showing distribution of genera over the different sampling sites in (A) lichen sclerosus and (B) vulvar high-grade squamous intraepithelial 
lesions (HSIL) patients.
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findings described herein. In addition, our study did not include 
longitudinal analyses, although we  assume that the vulvar and 
vaginal microbiome can be  particularly subject to temporal 
changes. Factors dictating microbiome composition fluctuations 
may include cycle-related changes, demographic background and 
lifestyle choices including sexual activity, hair removal practices 
and intimate hygiene routines (Ravel et al., 2011; Shiraishi et al., 
2011; Gajer et al., 2012; Hickey et al., 2015; Gupta et al., 2019; Song 
et al., 2020; Krog et al., 2022). Lastly, the absence of certain taxa or 
inability to identify a proportion of the sequences may be attributed 
to the low biomass samples as well as the non-amplification 
sequencing method.

The vulvar microbiome is a growing research field, with ongoing 
trials in LS (NCT05671263, NCT05147129), vulvar Paget’s disease 
(NCT03564483) and lichen planus (NCT05330572) (ClinicalTrials.
gov, 2023a,b,c,d). Future studies should strive to include a variety of 
vulvar diseases, such as dVIN and VSCC (HPV-positive or 
HPV-negative) to capture the full disease spectrum from healthy 
vulvar skin to VSCC. Linking microbiome findings to changes in the 
tumor microenvironment may be  further explored, as recently 
reported for VSCC (Rustetska et al., 2023). Novel treatments could 
be developed based on microbial targets, as previously attempted for 
bacterial vaginosis and genitourinary symptoms (Falagas et al., 2007; 
Armstrong et  al., 2022; Yoshikata et  al., 2022). Studies to new 
treatment modalities, such as the current clinical trial applying the 
topical JAK-inhibitor ruxolitinib in LS, could consider assessing the 
microbiome composition as exploratory biomarker (Rissmann et al., 
2020; Papp et al., 2022; ClinicalTrials.gov, 2023e). The vulvar research 
field to date has mainly identified presence of taxa without appraisal 
their involvement in biophysical or pathologic processes, which 
should be the focus for future studies to unravel.
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