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A B S T R A C T   

The advent of the technology to isolate or generate human pluripotent stem cells provided the potential to 
develop a wide range of human models that could enhance understanding of mechanisms underlying human 
development and disease. These systems are now beginning to mature and provide the basis for the development 
of in vitro assays suitable to understand the biological processes involved in the multi-organ systems of the 
human body, and will improve strategies for diagnosis, prevention, therapies and precision medicine. Induced 
pluripotent stem cell lines are prone to phenotypic and genotypic changes and donor/clone dependent vari-
ability, which means that it is important to identify the most appropriate characterization markers and quality 
control measures when sourcing new cell lines and assessing differentiated cell and tissue culture preparations 
for experimental work. This paper considers those core quality control measures for human pluripotent stem cell 
lines and evaluates the state of play in the development of key functional markers for their differentiated cell 
derivatives to promote assurance of reproducibility of scientific data derived from pluripotent stem cell-based 
systems.   

1. Introduction and background 

The discovery of the ability to culture human pluripotent stem cells 
(hPSCs) in vitro [1] raised the exciting possibility to utilize their capa-
bility to generate all of the three germ layers required to build the 

human body (Fig. 1). Furthermore, the development of reprogramming 
technology to generate human induced PSC (hiPSC) lines from somatic 
cells from any candidate donor [2], has made it possible to generate a 
diverse range of genotype-bespoke tissue cultures for cutting-edge, basic 
and applied biomedical research, safety and efficacy studies, or to design 
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novel in vitro diagnostic assays and eventually precision therapeutic 
solutions [3–6]. 

Furthermore, the capacity to generate such in vitro models from 
bespoke patients with genetic disorders and syndromes is now showing 
promise to deliver valuable models of disease conditions, including 
cardiac disease [7], neurodevelopmental disorders [8,9] and diabetes 
[10,11]. 

The generation, characterization and use of many different human 
stem cell lines from many different donors has shown that variation 
between cell lines and even clones from the same donor [12,13], can 
confound interpretation of outcomes in disease modeling assays and 
potentially pose a risk in the use of the cells in cell therapies. Further-
more, individual stem cell lines show phenotypic variations from one 
culture preparation to another and may also change due to the 
appearance of genetic variants [14]. Such variations may be introduced 
by the culture conditions and indicate that careful control of culture 
quality is essential for reliable experimental work. It also indicates the 
need for good method practices, including careful documentation of 
specific human stem cell line features [15] as captured in Good In Vitro 
Method Practices (GIVMP) for the development of in vitro methods [16]. 
Acceptance criteria for hPSC use in therapy and as experimental models, 
which also include assessment of microbial contamination and cell 
authenticity, have also been specifically considered for hPSCs [17,18]. 

It is also important to carefully select markers and functional assays 
for each specific human stem cell-derived cell type and use phenotypic 
and/or genotypic characterization methods, which together will pro-
mote the development of in vitro cell- or tissue-based test systems that 
are fit for their specific purpose. Such selection must also include 
practical considerations such as the complexity, speed and cost of the 
respective analytical tools used. 

Whilst the generic challenges such as microbial contamination, ge-
netic variation, as well as stability, identity and cross-contamination of 
cell lines are well-described, there are special challenges for stem cell 

and tissue-based systems [18,19]. These challenges include lengthy 
differentiation protocols and differentiation into mixed cell types, which 
can still complicate the achievement of reproducible models with 
workable acceptance criteria and tolerances. 

Here we have outlined the key techniques for the characterization 
and quality control (QC) of undifferentiated hPSC cell lines and 
reviewed the range of methods that may be applied to some represen-
tative differentiated hPSC derivatives. We also consider the technology 
readiness level of each differentiation method and its biomarkers for 
application in toxicology. Furthermore, we discuss critical issues to 
consider, in order to promote assurance of reproducibility of scientific 
data derived from hPSC-based systems. 

2. Selection of hPSC lines, maintenance and quality criteria 

It is now feasible to avoid the time and expense of deriving hiPSCs de 
novo by sourcing cells from the increasing number of professional hPSC 
resource centers [20]. When hPSC lines are not derived by the local 
laboratory, it is vital that cells are procured from trusted biobanking 
sources and are quality controlled prior to supply, rather than obtained 
from laboratories which do not perform such testing on released cell 
lines. 

Below key parameters involved in hPSC quality control are discussed 
followed by a summary of minimal testing recommended for hPSC 
banks. For more detailed information and discussion on the techniques 
described in the following sections the reader is guided to a number of 
expert reviews on cell banking, quality control and characterization of 
hPSC lines including the International Stem Cell Banking Initiative [21], 
Andrews et al. [17], Oshea et al. [22] and Sullivan et al [23]. 

2.1. Cell line authentication 

Historically, important authentication technologies, such as 

Fig. 1. Early development of human embryonic stem cells and formation of stem cell endodermal, mesodermal and ectodermal germ layers. Created in BioR 
ender.com. 
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karyotyping, isoenzyme analysis, immunotyping and human leukocyte 
antigen typing, have not proven to have sufficient resolving (discrimi-
nating) power to enable unambiguous authentication of human cells to 
the individual donor-genotype level. The unintentional switching of 
lines or cross-contamination, is a significant threat to the quality of 
research work and currently the most commonly used technique is short 
tandem repeat (STR) analysis. This uses PCR to identify differences in 
STR alleles that are variable between cell lines from different individual 
donors. 

2.2. Phenotypic characterization 

2.2.1. Stem cell biomarkers 
Pluripotent stem cells consistently express a common set of markers 

[24] that are typically characterized with fluorochrome-conjugated 
antibodies recognizing surface or intracellular stem cell-associated 
biomarkers (e.g., Oct4, Nanog, SSEA4, SSEA3, Tra 1–60 and Tra 
1–81), using either immuno-histochemistry or flow cytometry. Flow 
cytometry is a sensitive methodology for the analysis of stem cell pop-
ulations and their differentiated derivatives as a whole, whilst 
immuno-histochemistry permits detailed identification and location of 
markers on specific cells. 

2.2.2. Pluripotency 
Whilst surface and nuclear biomarkers are valuable to confirm hPSC 

culture identity, they are not sufficient to confirm the pluripotent nature 
of these cells which requires a pluripotency assay. Recognizing that 
undifferentiated cells have retained pluripotency is crucial for scientif-
ically robust stem cell research. In early hPSC studies, pluripotency was 
assessed by teratoma assays in which immunologically compromised 
mice are injected either subcutaneously or under the kidney capsule to 
allow the stem cells to differentiate. Whilst this is a powerful research 
tool it has proved problematic for application in routine quality control 
(QC) [17] is clearly unacceptable from a 3Rs perspective (i.e. to replace, 
reduce and refine the use of animals in experimentation), and for some 

time alternative in vitro assays have been available [25]. Commonly 
used in vitro assays include embryoid body (EB) formation, directed 
differentiation of monolayer cultures and molecular analysis of early 
stage differentiating cells or even undifferentiated cells to reveal stem 
cell features [26]. These assays aim to demonstrate that hPSCs are 
capable of producing cell types representative of all three embryonic 
germ layers (endodermal, mesodermal and ectodermal, see Fig. 1). 

2.3. Microbial contamination 

The most frequent causes of contamination in cell cultures are bac-
teria, mycoplasma, yeast and fungi. It is a standard part of current good 
practice in stem cell banks to carry out routine microbiological controls 
of the stem cell lines [17,21] and to work with appropriate controlled 
environments and procedures to reduce the probability of contamina-
tion in stem cell cultures. Inoculation of cell culture samples into 
traditional culture media or testing samples using 16 s RNA PCR can be 
used to detect bacteria and fungi; however, specialist growth methods 
and/or staining techniques are needed in order to identify mycoplasma 
contamination. Contamination of hPSCs with serious viral pathogens 
appears to be very rare in the experience of stem cell banks. However, it 
is considered an important safety precaution (for lab worker safety) to 
test the donors and/or the derived hPSC lines for viruses such as hepa-
titis C, hepatitis B, human immunodeficiency virus, Epstein-Barr virus 
and other viruses (including SARS-Cov-2), taking into consideration the 
historical risks to which donors or cells have been exposed [17]. 

2.4. Genetic state and stability 

It is well established that stem cell cultures can suffer from the 
appearance of variants with a range of types of genetic change, from 
point mutations to chromosomal amplification, deletion, inversion and 
translocation [24]. Genetic status and stability can be assessed by a 
range of techniques including karyology, comparative genomic hy-
bridization, shallow or deep DNA sequencing and array-based single 

Table 1 
Generic minimum QC tests with examples of helpful methodologies and acceptance criteria.  

Characteristic Type of analysis Exemplar analytical method/s Acceptance criteria 

Pluripotent stem cell 
features 

Stem Cell/ undifferentiated status/ 
self-renewal markers 
(e.g., Oct4, SSEA4, SSEA3, Tra 1–60 
and Tra 1–81)  

1. Flow cytometry  
2. PCR 

Predominant in stem cell population (e.g., 80–85% % 
of cells) 

Pluripotency method  1. Embryoid body formation and antibody and or PCR 
positive for germ layer markers  

2. Directed differentiation method  
3. Teratoma assay 

Evidence of ability to form all three germ layers 

Viability Growth and replication capability  1. Membrane dye exclusion (e.g. trypan blue)  
2. Cell attachment and colony growth  

1. Majority of cells are viable e.g. > 70% of cells  
2. Optimal near confluent culture (50–70%) within 

5–7 days 
Cell line authenticity Short Tandem Repeat profile Multiplex PCR for a number of variable number 

tandem repeat loci 
Profile matches that of original donor cells or early 
passage hPSCs 

Genetic integrity Chromosome analysis Giemsa banding karyology, qPCR-based genetic 
screening 

Matches original donor (typically 46 chromosomes) 
Detection of most common karyotypic abnormalities 
reported in hPSCs 

Reprogramming vectors in hiPSCs qPCR Vector expression not detected 
Non-integrating reprogramming 
methods (e.g., SeV) 

qPCR to assess SeV RNA clearance SeV RNA not detected 

Microbiological status Mycoplasma  1. qPCR  
2. Mycoplasma broth and agar sub-culture  

1. Test sample negative with a positive limit of 
detection control  

2. No turbidity or colonies observed at prescribed time 
point (typical maximum of 21 days) 

Viral pathogens qPCR for a range of serious or prevalent human 
pathogenic viruses  

1. Test sample negative with a positive limit of 
detection control 

Bacteria and fungi  1. Microbiological broth and agar subculture  
2. 16s RNA qPCRa  

1. No broth turbidity or agar colonies observed at 
prescribed time point.  

2. No fungal/bacterial RNA detected  

a methods for detection of multiple microbial species using common 16sRNA targets in qPCR are under development and will hopefully provide valuable QC tests in 
the future. 
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Table 2 
hPSC-derived endodermal cells/tissues.  

Cell type Key morphological, biochemical and functional 
parameters (or endpointsa) to characterize the 
model 

Technology readiness level (i.e., Low, Medium or High)b References for exemplary protocols for model and measured endpoints 

Gastric The foregut, from which the stomach derives, is 
marked by the expression of Sox2, whereas the 
midgut and hindgut express Cdx2  

Low [82] 

Contains ‘chief’ cells, mucus neck cells, parietal 
cells, mucus pit cells 

[83] 

Pancreatic islet-like 
cells 

High % of PDX1 and NKX6.1 positive cells High (currently undergoing clinical trials) [42–88] 
High % of insulin expression 
`Single hormone (e.g. insulin, glucagon, 
somatostatin) positive 
Glucose-responsive, insulin-secreting 

Intestinal CDX2+ cells Medium [89–91] 
Contains intestinal mesenchyme and epithelium 
(enterocytes, goblet cells, Paneth cells, tuft cells, 
enteroendocrine cells) 
Crypt-villus architecture 
Posterior HOX genes 
Becomes more adult-like after transplantation 

Liver (Hepatocytes) Stable and long-term expression of mature hepatic 
markers (CYP3A4, ALB); significantly decreased 
expression of immature markers (AFP), HTS- 
LiverTox-verified,  

Medium/High [93] 

Direct comparison with primary hepatocytes, 
elevated levels of albumin secretion and urea 
synthesis,  

Medium [94] 

sustained metabolism of Terfenadine and 
production of Fexofenadine over long term culture  

iPSC-hepatocytes have shown 65% sensitivity and 
100% specificity in the long-term drug toxicity 
assessment; high levels of albumin secretion, urea 
synthesis and CYP3A4 activity  

Medium [95] 

Elevated expression levels of HNF4a, ALB, TTR, 
robust CYP (1A2, 2B6, 3A4) induction, lobular 
organization  

Medium [96,97] 

Long term expression of ALB, CYP3A4, RBP4 and 
decreased AFP levels  

Low [98] 

Increased expression of ALB, HNF4a, CYP3A4, 
CYP2C19, CYP2D6, ASGPR1; albumin secretion in 
vitro and in vivo  

Low [99] 

Expression of adult isoform of HNF4a, expression of 
ALB, LXR, UGTA1, FAH, no expression of AFP; high 
levels of urea secretion 

Low [100] 

Liver 
(Cholangiocytes) 

Mature biliary markers Medium [101,102] 
Appearance of cystic and ductal structures 
Bile acids transfer, responses to secretin, 
somatostatin 

[104] 

(continued on next page) 
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nucleotide polymorphisms (SNPs). Karyology and array SNP are prob-
ably the most common techniques used in stem cell banks, but PCR for 
detection of common chromosomal changes is also becoming more 
frequently used. 

The sustained expression of reprogramming vectors following gen-
eration of an iPSC can affect the capacity of a cell line to differentiate 
and thus, it is important to test hiPSCs to ensure such expression does not 
persist. This is known to be a feature of a small proportion of hiPSCs 
generated by non-integrating Sendai virus vectors [25]. Detection of 
retention of reprogramming vectors can be performed by 
antibody-based detection or qPCR. 

Epigenetic changes are important for normal stem cell functionality, 
given that during cell differentiation, methylation silences pluripotency 
genes and demethylation activates expression of certain genes for 
differentiated cell types. A range of other epigenetic-related changes 
including histone modification, can also influence the epigenetic land-
scape of stem cell genomes and their differentiated derivatives. In the 
future, analysis of such changes may provide valuable quality control 
tools. 

Minimum scientific selection criteria for taking up stem cells for 
specific applications include the verification of expression of key stem-
ness markers, demonstration of pluripotent capacity (e.g., teratoma 
assay, embryoid body formation, directed differentiation), microbial 
contamination data (including mycoplasma testing data) and negative 
viral safety testing data (of the cell line or human donor). 

Questions relating to each of these features should be directed to any 
cell line suppliers, and sourcing cell lines from well qualified profes-
sional sources with a track record in operating best practice, is highly 
recommended [26]. It is also important to remember that there are 
important non-scientific factors that will influence the ability to use cell 
lines, including confirmation of ethical provenance of donor tissue and 
its use for derivation of cell lines as well as ensuring absence of any 
donor constraints on use of the cells. In addition, it is also vital to ensure 
that the cell user is not restricted by conditions of any materials transfer 
agreement. Such information should be discussed with the provider of 
the cell line. 

Suppliers and user laboratories should be operating a biobanking 
process which meets best practice for hPSCs. Whilst the core process for 
biobanking is broadly the same for all applications, there will be 
different specific criteria for cells to be used for research purposes only 
[27] compared to those used for developing cell-based medicines [17, 
18]. A core quality control testing regime for hPSC banks is outlined in  
Table 1. More detailed evaluation criteria for different applications can 
be found in [17,30,31] and a detailed description of development of 
acceptance criteria used can be found in [18]. 

Certain quality control criteria should also be checked periodically in 
the user laboratory for each subsequent cell bank (frozen batch) of cells 
and for extended passage cells. Priorities in such quality control should 
include testing for mycoplasma, cell identity and genetic stability [16, 
18]. Of the various methods available to test genetic stability, probably 
the most commonly used for hPSC banking are Giemsa banding kary-
ology, array single nucleotide polymorphisms and qPCR for the most 
frequent chromosomal variants found in the cultures. These different 
methods are known to have different benefits and disadvantages and are 
not necessarily equally efficient at detecting certain kinds of genetic 
change [22]. Selection of a single method will often involve a compro-
mise between local requirements for sensitivity, specificity, speed, cost 
and availability of suitable equipment. 

3. Criteria for hPSC-derived test systems 

When working with hPSC-based models it is paramount to assess the 
quality of the starting culture. In particular, verification of cell viability 
by e.g., Alamar Blue assay [32], trypan blue exclusion [33] and cell 
counting before cryopreservation and after thawing of cryopreserved 
hPSCs should always be performed to ensure consistent seeding of viable Ta
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Table 3 
hPSC-derived mesodermal cells/tissues.  

Cell type Key morphological, 
biochemical and 
functional parameters 
(or endpointsa) to 
characterize the model 

Technology 
readiness level b 

(i.e., Low, 
Medium or 
High) 

References for 
exemplary 
protocols for 
model and 
measured 
endpoints 

Cardiac cells With maturation, the 
shape of the cardiac 
myocytes changes from 
round to elongated/ 
anisotropic and the 
sarcomeric structure 
becomes well-organized 
and shows increased 
sarcomeric length. 

Medium [106] 
[48] 

Some proteins in the 
sarcomere structure 
undergo an isoform 
switch, also observed in 
human iPSC–derived 
cardiac myocytes, e.g. 
TNNI1 is expressed in 
human embryonic 
cardiac myocytes, but 
TNNI3 (slow skeletal 
troponin T) is expressed 
in adult hearts. 

[107] 
[108] 
[109] 

Similarly, isoform 
switching of myosin 
heavy chain (MHC) 
occurs during 
development. 

[110] 

In humans, β-MHC is the 
predominant isoform in 
ventricular 
myocardium, and 
human PSC–derived 
cardiac myocytes show 
increased expression of 
β-MHC and decreased 
expression of α-MHC 
during maturation. 
Electrophysiological 
properties change 
during cardiac myocyte 
maturation: the resting 
membrane potential in 
adult cardiac myocytes 
in heart tissue is ≈− 90 
mV but in human 
PSC–derived cardiac 
myocytes it is less 
negative, probably 
because of the lower 
expression of the IK1 ion 
channel. 

[111] 

Calcium handling and 
excitation–contraction 
coupling are important 
determinants of the 
contractile properties of 
cardiac myocytes. 

Kidney I Renal 
proximal 
tubular cells 

Morphology: cobble 
stone cells  

Low to medium [112] 

Markers (1) proximal 
tubular: LRP2 (aka 
megalin) and PTH1R 
(parathyroid hormone 1 
receptor) (2) epithelial: 
TJP3 (aka ZO3) or 
OCLN (occludin) to 
indicate polarization of 
the monolayer  

Table 3 (continued ) 

Cell type Key morphological, 
biochemical and 
functional parameters 
(or endpointsa) to 
characterize the model 

Technology 
readiness level b 

(i.e., Low, 
Medium or 
High) 

References for 
exemplary 
protocols for 
model and 
measured 
endpoints 

Functional endpoints: 
(1) cAMP increase in 
response to parathyroid 
hormone (2) albumin 
uptake by megalin 
facilitated endocytosis 
(3) ABCB1 (aka Pgp) 
efflux via calcein-AM 
assay 
Note: polarization is 
very critical for 
proximal tubule; 
staining of these 
markers needs to be 
expressed at the tight 
junction (rather than 
cytoplasmic or nuclear) 

Kidney II 
Renal 
podocytes 

Morphology: large 
cells with typical foot- 
processes  

Low to medium [113,114] 

Markers: SYNPO 
(synaptopodin) NPHS1 
(aka nephrin), NPHS2 
(aka podocin) and WT1 
(Wilms tumour 1)  

[115,120]   

Functional endpoints: 
Uptake of albumin 

Kidney III 
Renal 
organoids 

Morphology: organoid 
tubule with multiple 
renal cell types  

Low to medium [117] 

Markers: Podocytes: 
NPHS1, SYNPO, WT1, 
PODXL; Proximal 
tubule: Lotus 
tetragonolobus lectin 
(LTL), LRP2, CUBN, 
HNF4A; loop of Henle: 
UMOD; collecting duct 
(AQP2); endothelial 
cells (PECAM1, SOX17)  

[121,122] 

Blood Red blood cells Low 
(Generating 
mature RBCs 
from hiPSCs is 
still an 
inefficient 
process) 

[123,124] 

Immune cells Dendritic cells Medium [125] 
Expression of CD141, 
TLR3, and chemokine 
receptor XCR1 
Protrusions and veils of 
cytoplasm 
Macrophages Medium [126] 
Lipopolysaccharide 
(LPS) co-receptor CD14 
and the pan-leukocyte 
marker CD45 
T cells Medium [127] 
CD45RO expression 
Production of IFN-γ, 
TNF, and IL-2 upon the 
stimulation 
Anti-tumor activity 
Natural Killer (NK) 
cells 

High [128] 

CD3-CD56+ cells, low 
affinity Fcγ receptor 

(NB iPSC- 
derived NK cells 

[129] 

(continued on next page) 
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cells and reliable maintenance of stock cultures. 
Moreover, evaluation of cell proliferation and growth rate (e.g., 

nucleic acid content with propidium iodide, 7-aminoactinomycin-D (7- 
AAD), Hoechst 33258, Ki67+ cell percentage, incorporation of bromo-
deoxyuridine (BrdU) or 5-ethynyl-2’-deoxiuridine (EdU)) should be 
carried out to enable determination of the likelihood of genetic change, 
cell culture phenotypic drift, ageing and cell senescence that may all 
occur as a consequence of extended passaging. It is also important to 
evaluate the possible impact of viral and/or mycoplasma infections, or 
issues with cross-contamination, which may all be responsible for 
inherent variation in the cultured cells (e.g., decrease of growth rate 
and/or cell metabolism assays) [34]. 

Appropriate characterization of the phenotypic identity of hPSC 
derivatives is important especially when working with heterogeneous/ 
mixed cell cultures. This entails knowing cell differentiation capacity 
over time and the expected final proportions of different cell sub-
populations, which should be verified by (quantitative) analysis of 
specific cell population markers (at gene and/or protein level) and by 
assessing cell functionality whenever appropriate (e.g., by analysis of 
spontaneous electrical activity of neuronal cell cultures, spontaneous 

Table 3 (continued ) 

Cell type Key morphological, 
biochemical and 
functional parameters 
(or endpointsa) to 
characterize the model 

Technology 
readiness level b 

(i.e., Low, 
Medium or 
High) 

References for 
exemplary 
protocols for 
model and 
measured 
endpoints 

CD16 to mediate ADCC, 
can generally be 
classified into two 
major subsets: 
CD56brightCD16+ and 
CD56dimCD16+. 

have progressed 
into clinical 
trials. 
Experience with 
key marker 
detection and 
assay validation, 
has meant that 
this process can 
be quickly 
progressed. New 
results for two 
early-stage 
studies have 
reported testing 
two different 
types of 
experimental 
lymphoma 
treatments that 
utilize natural 
killer cells. Eight 
of 11 lymphoma 
patients who 
received one NK 
cell therapy, 
FT516, have 
shown evidence 
of a response, as 
have 10 of 14 
given another 
known as FT596. 
No serious 
neurological side 
effects were 
reported, and 
only two Grade 1 
or Grade 2 cases 
of the immune- 
related adverse 
events typically 
associated with 
other forms of 
engineered cell 
therapy were 
observed. The 
respective 
clinical trials 
numbers are 
NCT04630769, 
NCT04363346, 
NCT04245722, 
and 
NCT04555811) 

The CD56dimCD16+

subset of NK cells is 
predominantly found in 
the blood and is highly 
cytotoxic, while the 
CD56brightCD16- subset 
is the main subtype 
found in the lymph 
nodes and has only 
weak cytotoxic 
potential. 

[130,131] 

NK cell activation is 
regulated by a balance 
of signals received by 
the multitude of 
membrane bound 
activating and 
inhibiting receptors. 
The inhibitory signals 
such as KIR and NKG2A 
can detect MHC 
molecules from the 
MHC class I recognizing 
receptors to decrease 
NK cell activity. NK 
cytotoxicity can be 
induced through 
sufficient stimulation of 
activating receptors, 
including the stress 
ligand receptor NKG2D, 
and natural cytotoxic 
receptors (NCR) NKp30, 
NKp44, and NKp46. 

NCT04630769 
(https://clinical 
trials.gov/ct2/sh 
ow/NCT04630 
769?term=NCT0 
4630769&dr 
aw=2&rank=1) 

Critical parameters 
include: 

` NCT04363346 
(https://clinical 
trials.gov/ct2/sh 
ow/NCT043633 
46?term=NC 
T04363346&dr 
aw=2&rank=1) 

- Cytotoxicity against 
K562 cells at an 8:1 E:T 
ratio ≥ 50%  

NCT04245722 
(https://clinical 
trials.gov/ct2/sh 
ow/NCT04245 
722?term=NC 
T04245722&dr 
aw=2&rank=1) 

- Flow cytometry for 
CD3-CD56+CD45+

`NCT04555811 
(https://clinical 
trials.gov/ct2/sh  

Table 3 (continued ) 

Cell type Key morphological, 
biochemical and 
functional parameters 
(or endpointsa) to 
characterize the model 

Technology 
readiness level b 

(i.e., Low, 
Medium or 
High) 

References for 
exemplary 
protocols for 
model and 
measured 
endpoints 

ow/NCT04555 
811?term=NC 
T04555811&dr 
aw=2&rank=1) 

Connective 
tissue 
(fibroblasts) 

Markers for 
fibroblasts 

Medium [132,133] 

Vimentin (VIM), 
ALCAM, HSP47, 
Platelet-derived growth 
factor-beta (PDGFRB) 
Functional assays (in 
vitro) 
Scratch assay, Collagen 
contraction assay 

Cartilage and 
bone 

Gene expression on 
Days 7-21 

Medium [134] 

Chondroprogenitor 
lineage   
Sry-type HMG box, 
SOX9, and type II 
collagen 
Fully differentiated 
chondrocytes 
Col2b, aggrecan, 
Runx2, type X collagen 
Morphology: 
Cellular outgrowths and 
cartilaginous nodules 
on Days 14-21 
Bone specific markers: 
Alkaline phosphatase 
(ALP) activity 
Collagen type I gene 
expression 

‘low’: available protocol(s) is(are) reliable but still at an early stage of devel-
opment (i.e., lacking well developed key parameters and/or method) 
‘medium’: available protocol(s) is(are) reliable and reproducible but mainly 
suitable for research; 
‘high’: available protocol(s) is(are) reliable and reproducible and potentially 
suitable for industry or regulatory use. 

a An ‘endpoint’ is any feature or parameter to analyse to characterize the 
cellular model. 

b Column ‘Technology readiness level’ describes the degree of development of 
currently available cell culture protocols. 
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Table 4 
hPSC-derived ectodermal and reproductive cells/tissues.  

Cell type Key morphological, 
biochemical and 
functional parameters 
(or endpoints) 

Technology 
readiness level 
(i.e., Low, 
Medium or 
High) 

References for 
exemplary 
protocols for 
model and 
measured 
endpoints 

Neural stem cells 
(NSCs) 

Expression of NSC 
markers (protein and 
gene expression) (e.g., 
nestin, Sox1, Sox2, Pax6, 
etc.) 

Medium/High [134–136] 

Glutamatergic 
neurons 

Expression of 
glutamatergic neuron 
markers (protein and 
gene expression) (e.g., 
VGLUT1, VGLUT2, 
GluR1, TBR1, TBR2, 
CTIP2, SATB2, GRIA 
(glutamate receptor, 
ionotropic, AMPA), 
GRIK (glutamate 
receptor, ionotropic, 
kainite), GRIN 
(glutamate receptor, 
ionotropic, NMDA), etc.)  

Medium/High [137–139] 

Electrophysiology, spike 
and burst patterns  

Medium  [140,141] 

Neurotransmitter release Low [142] 
GABAergic 

neurons 
Expression of GABAergic 
neuron markers (protein 
and gene expression) (e. 
g., GABA, GAD1/2, 
GAD67, vGAT 
(SLC32A1), etc.)  

Medium [138,143] 

Electrophysiology, spike 
and burst patterns  

Medium [144–146] 

Neurotransmitter release Low [140,141,147] 
Dopaminergic 

neurons 
Expression of 
dopaminergic neuron 
markers (protein and 
gene expression) (e.g., 
TH, NR4A1, NR4A2, 
NR4A3, DAT, etc.)  

Medium [146,148,149] 

Electrophysiology, spike 
and burst patterns  

Low  [150,151] 

Neurotransmitter release 
(e.g., induced by KCl 
stimulation) 

Low [152,153] 

Cholinergic 
neurons 

Expression of 
cholinergic neuron 
markers (protein and 
gene expression) (e.g., 
ChAT, p75NTR, FOXG1, 
ISL1, LHX8, NKX2.1, 
ACHE, SLC5A7 (CHT1), 
NGFR, NTRK1 (TRKA), 
SLC18A3 (VACHT), etc.) 

Low [154–156] 

Electrophysiology, spike 
and burst patterns  

Low [154,155] 

Neurotransmitter release Low [155] 
Astrocytes Expression of classic 

astrocytic markers (e.g., 
Glial fibrillary acidic 
protein (GFAP), S100 
calcium-binding protein 
β (S100β), N-Myc 
downstream-regulated 
gene 2 (NDRG2), 

High [157–159]  

Table 4 (continued ) 

Cell type Key morphological, 
biochemical and 
functional parameters 
(or endpoints) 

Technology 
readiness level 
(i.e., Low, 
Medium or 
High) 

References for 
exemplary 
protocols for 
model and 
measured 
endpoints 

Aldh1L1, GLAST and 
GLT1)  

Detection of calcium 
transients  

Low [159,160] 

Astrocytes activation 
(cytokines releases and 
morphological changes)  

Medium [161,162] 

L-glutamate or D- 
aspartate uptake 

Medium [12–166] 

Oligodendrocytes Expression of 
oligodendrocyte markers 
(protein and gene 
expression) (e.g., OLIG1, 
NG2, O4, O1, GalC, 
CNPase, etc.)  

High [167–169] 

Expression of myelin 
markers (protein, gene 
expression) (e.g., PLP1, 
MBP, MOG)  

Medium [167,170,171] 

`Image analysis 
quantification of myelin  

Low [56,170,171] 

Compact myelin sheet 
studies (electron 
microscopy) 

Low [172,173] 

Microglia/Brain 
macrophages 

Expression of microglia 
markers (gene 
expression and protein) 
(e.g., P2Y12, TMEM)  

Medium/Low [174–177] 

Flow cytometry 
assessment of CD11b 
and CD45 (microglia) 

Medium/Low [176,178] 

Expression of markers 
for brain macrophages 
(Iba1, Cx3cr1, Trem2, 
CD68)  

Medium/Low  [177–179] 

Phagocytosis assay  Medium/Low  [178,180] 

Microglia activation 
(cytokines releases and 
morphological changes) 

Medium/Low [181,182] 

Reproductive cells/tissues 
Spermatid Round morphology, 

haploid nuclei, polarized 
acrosin expression 

Low/medium [183] 

Sertoli cells Extended and epithelial 
morphology; 
cytoplasmic 
cytoskeleton staining of 
KRT18, nuclear staining 
of SOX9; 
immunosuppression 
capability 

Medium/high [184] 

Ovarian follicles Cumulus-oocyte- 
complex morphology; 
positive staining of zona 
pellucida (ZP2) proteins 
and oocyte-specific 
proteins (NOBOX) 

Medium [185] 

‘low’: available protocol(s) is(are) reliable but still at an early stage of devel-
opment (i.e., lacking well developed key parameters and/or method). 
‘medium’: available protocol(s) is(are) reliable and reproducible but mainly 
suitable for research; 
‘high’: available protocol(s) is(are) reliable and reproducible and potentially 
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beating rate of cardiomyocytes, metabolic capacity of hepatocytes, 
glucose-stimulated insulin secretion of pancreatic beta cells etc.; see  
Tables 2–4). Hence, key morphological, biochemical and functional 
parameters (or endpoints) should be selected and acceptance criteria 
defined to characterize final cell composition of differentiated cell cul-
tures, depending on the intended goals of the study (‘fit-for-purpose’ 
principle). 

Numerous studies have been published describing protocols to 
obtain well-characterized hPSC-derived ectodermal, mesodermal and 
endodermal cell types as well as reproductive cells and tissues suitable 
for different purposes and different contexts of use, both for biomedical 
research as well as toxicity testing. One common approach in this pro-
cess is to allow hPSCs to form embryoid bodies (EBs) in suspension using 
techniques such as ultra-low attachment culture dishes [33], Aggre-
Well™ plates [36]. EBs can then differentiate further to form more 
mature cells of all three lineages, ectoderm, mesoderm, and endoderm, 
and be directed by activating or repressing specific signaling pathways 
which closely mimics the gastrulation phase of development in an em-
bryo. It is also important to note that there is an ever-increasing number 
of protocols describing differentiation directly to the end cell type of 
interest, bypassing EB formation, including differentiation of hPSC 
directly to neurons, muscles, hepatocytes or pancreatic cells [37]. There 
are also protocols for differentiation of hPSCs to neuroprogenitor cells in 
monolayer by dual SMAD inhibition which bypass EB and neural rosette 
formation [3]. 

However, this large number of cell culture protocols significantly 
differ in their readiness level for industrial or therapeutic applications, 
showing variable degrees of development. In particular, some of the 
most common and relevant morphological, biochemical and functional 
endpoints can be used as acceptance criteria for the characterization of 
several hPSC derivatives, as shown in Tables 2–4. On the basis of expert 
judgment, the technology readiness level of cell culture protocols can be 
scored as:  

• ‘low’ when procedure(s) is(are) well-described and reliable, 
although still at an early stage of development (i.e., lacking well 
developed key assessment parameters and/or methods); 

• ‘medium’ when available protocol(s) is(are) reliable and reproduc-
ible but are still at the developmental stage in basic or applied 
research; or  

• ‘high’ when available protocol(s) is(are) reliable and demonstrated 
to be reproducible and could be potentially suitable for industry or 
regulatory use. 

It should be considered that technology in this field is rapidly 
evolving, with cell culture applications expanding across multidisci-
plinary fields. While the (non-exhaustive) list of parameters and asso-
ciated readiness level scores shown in Tables 2–4 is not exhaustive and is 
expected to evolve with time, it serves as a basis to identify possible 
knowledge gaps and prioritize actions for new protocol design and 
implementation efforts. 

4. Complexity of the applied model: 2D versus 3D 

In vitro models of developmental processes are frequently used to 
advance mechanistic understanding of cell differentiation, migration, 
growth, and final maturation (both morphological and functional), all of 
which are impacted by their biochemical and biomechanical microen-
vironment [39]. Deciphering the underlying mechanisms is vital to 
understand in vivo processes that result in formation and function of 

tissues and organs and how these processes might be altered under 
exposure to natural or industrial chemicals or drugs (toxicity testing). 

For over a century, two-dimensional (2D) cell cultures have been 
used as in vitro models to study cellular responses to stimulation by 
biophysical and biochemical cues, as well as for toxicity evaluation 
induced by exposure to a xenobiotic. 

Cells cultured in 2D cell systems typically grow on flat plastic sur-
faces, sometimes treated to increase adhesive properties to enhance cell 
attachment and spreading. Although 2D cell culture has been the most 
common format for most cell culture purposes including toxicity testing, 
it typically generates compromised systems lacking key components of 
tissue architecture, cellular interaction and density. This significantly 
limits the possibility to replicate in vivo functionality of a given tissue or 
organ. Thus, 2D systems might not always be truly representative of real 
tissue environments, and this can increase the cost and failure rate when 
either developing new drug discovery platforms in clinical trials, or 
when carrying out risk and hazard assessment of chemicals. 

Despite missing histoarchitecture and limited cell-to-cell interaction, 
2D cell cultures are still used for the majority of in vitro work because 
they are inexpensive, well established, can typically be adapted for high 
throughput purposes, are amenable to comparing new results with 
previous studies, and are typically easier to process for analysis. All the 
classical endpoints used for toxicity testing were historically developed 
to use with monolayer cell cultures and, thus, are very well established 
for 2D systems. For instance, toxicity testing for the heart using mono-
layer 2D cultures of hPSC-cardiomyocytes is widely accepted even for 
regulatory purposes [40]; however, this is not always the case for hazard 
identification/characterization or risk assessment for kidney, brain and 
other organs. 

Moreover, 2D cultures are widely used to gain understanding of 
underlying molecular mechanisms and signaling pathways where all 
parameters can be more readily controlled due to the simpler experi-
mental set-ups. Monolayer 2D cultures of hPSCs differentiated into 
various cell types are now increasingly used for clinical and toxicolog-
ical studies. For instance, hiPSC-derived pancreatic cells on platforms 
are being used to study gene-environment interactions that impact 
human β-cells and the survival of dopamine neurons [41]. hiPSC-derived 
neural progenitor cells, differentiated into neuronal or glial derivatives 
can be used for semi high-throughput toxicity testing where cellular 
readouts are evaluated including cell viability, immune-cytochemical 
quantitative expression of neuronal and glial markers or neuronal ac-
tivity using microelectrode arrays (MEA) [42–45]. High throughput 
testing programs such as ToxCast and Tox21 have also used mainly 
monolayer test systems (https://www.epa.gov/chemical-research 
/toxcast-data-generation-overview-toxcast-assays) (https://ncats.nih. 
gov/tox21/projects/assays). However, the strategic plans and de-
velopments in this program are moving now towards more complex 3 
dimensional (3D) organotypic cultures [46]. 

Much better biomimetic tissue models make 3D cell cultures more 
physiologically relevant than 2D cultures. 3D cultures also show a 
higher degree of structural complexity and retain a “steady state” (ho-
meostasis) for longer [47] and may benefit from more complex mixed 
cell culture methods [48]. 

3D cell models present the advantage to model in vitro cell micro-
environment and cyto-architecture resulting in cell/tissue physiology 
similar to conditions in the human body [49]. For these reasons scien-
tific focus began to shift to 3D cell cultures more than 30 years ago, 
starting from the hanging drop method which [50,51] was adapted to in 
vitro differentiation of mouse embryonic stem cells [52]. This method 
allowed further improvements to a range of scientific studies including 
the study of embryology, reproductive/developmental toxicology, 
virology and genetics. However, in spite of this long history, 3D cultures 
only began to make rapid progress in the late 2000 s 

3D cell culture techniques such as spheroids and organoids are now 
intensively investigated, especially in stem cell research and a broader 
range of techniques are currently available to generate 3D test systems. 

suitable for industry or regulatory use. 
1) An ‘endpoint’ is any feature or parameter to analyse to characterize the 
cellular model 
2) Column ‘Technology readiness level’ describes the degree of development of 
currently available cell culture protocols. 
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These include the use of extracellular matrices, scaffolds, multi-layering 
techniques, cell aggregation by gravity, stirring or shaking approaches 
maintaining cells in ultra-low adherence vessels, microfluidics devices, 
or bioprinting. These systems have been widely reviewed [53–55] as has 
the use of 3D organotypic cultures for toxicity testing which was 
recently summarized by Matsui et al. (2021) [56]. An example of a 
recent success in this area is the method to generate 3D neurospheres 
from neural progenitor cells derived from hiPSCs or fetal primary neu-
rons. These are already used for developmental neurotoxicity testing, to 
assess cell proliferation, migration, differentiation, and other key neu-
rodevelopmental endpoints for regulatory purposes [18,19,57–62]. 

3D not only promotes the opportunity for better intracellular in-
teractions and survival but also a better functionality. For example, it is 
hard to develop a co-culture of neurons and oligodendrocytes with 
active myelination, but differentiation towards myelinating oligoden-
drocytes can easily be achieved using 3D neurospheres, compensating 
for the limitation of using 2D monolayer cultures [57]. These 3D neu-
rospheres enable robust differentiation towards both neuronal and glial 
cell populations, including myelination and formation of more mature 
neuronal network activity when compared to 2D monolayer culture [19, 
57,63]. 

Moreover, interactions between different types of cells in these 
complex systems can be facilitated using microfluidics and organ-on- 
chip (OoC) devices [62]. The first microfluidic microphysiological sys-
tems were developed more than 15 years ago and are nowadays 
generally considered suitable to mimic human 
patho-biology/physiology because they incorporate options for micro-
fluidic flow as in the case of blood vessels for example, thus providing 
alternative approaches to the use of laboratory animals in drug devel-
opment and in basic and applied research [65,66]. Microfluidics systems 
continuously provide nutrients and cells grow (proliferate, migrate and 
differentiate) under more physiological conditions. Such systems have 
also been used for understanding the mechanics of embryonic devel-
opment [67]. 

The widespread acceptance and use of such human relevant test 
systems could ultimately help reduce the reliance on the use of animal 
models, which have significant limitations in the accurate prediction of 
how drug treatments or exposure to natural or industrial chemicals and 
their mixtures will affect animal and human health [68]. 

However, there are some important issues and obstacles when 
working with 3D models which need consideration. As mentioned 
above, some types of readouts (e.g., morphological/structural, immu-
nological, functional) and high content imaging analysis at cellular level 
were originally developed for monolayer cultures and now need to be 
adapted for 3D, which can be difficult. 

It can also be challenging to distribute oxygen and other essential 
nutrients to all cells within the spheres/organoids. To avoid such diffi-
culties, the size of 3D culture organoids should be optimized and 
controlled using scaffold-free systems, such as “hanging drop tem-
plates,” “magnetic levitation,” “magnetic 3D bioprinting”, formation of 
microtissues/organoids, scaffold support (e.g. hydrogel as an extracel-
lular matrix) or vascularization [49]. 

It is important to note that many 3D culture platforms are still 
difficult to manipulate, require expertly-trained personnel to handle, are 
time-consuming, and are still not well standardized and have low 
reproducibility, thus, rendering them unsuitable for high throughput 
screening of drugs or chemicals. In addition, the use of hiPSC as a 
cellular source adds further challenges to achieve reproducibility and 
standardization, as discussed above. Standardization can help ensure 
proper characterization of 3D cultures and/or OoC devices, bench-
marking using suitable series of reference compounds and ease 
communication among different stakeholders, for instance by agreeing 
on terminology and reporting methods [69]. Recently, some initiatives 
have been undertaken to improve standardization of 3D cultures and 
OoC using different platforms by introducing key quality controls (bio-
logical and technological), with the aim to improve robustness and 

reproducibility of these promising new technologies. In particular, the 
European Commission Joint Research Centre and the European Stan-
dardization Organizations CEN and CENELEC in April 2021 organized a 
workshop titled "Putting Science into Standards", with the aim of identi-
fying the needs and priorities for developing standards for OoC tech-
nologies, spanning selection of materials, chip design, flow rates, etc. 
Notably, it was concluded that performance assessment, benchmarking, 
interoperability and qualification of OoC technologies for different 
contexts of use or applicability domains would benefit from standardi-
zation [70]. Standardization will ultimately contribute to the accelera-
tion of regulatory acceptance of these novel technological devices. The 
National Centre for the Advancement of Translational Science (NCATS) 
supported initiative toward microphysiological systems international 
society, calls to support global harmonization and standardization of 
such technologies. This should accelerate the development and move the 
3D cultures and OoC towards regulatory acceptance (https://grants.nih. 
gov/grants/guide/notice-files/NOT-TR-20-005.html). 

Clearly, the selection of a 2D versus a 3D model is likely to affect the 
results obtained. For example, 2D models are still more suitable to assess 
neuronal functionality by analysis of spontaneous electrical activity 
using traditional multielectrode array platform [63]. However, the fast 
development of new technologies, and increasing number of new bio-
engineered devices more suitable for electrophysiological recordings in 
3D [71–74] might change that. 

5. Test system validation 

The principles described in Good Cell Culture Practice (GCCP 2.0) 
[18] give guidance to scientists as to how to obtain and record, cell and 
tissue culture information mainly from in vitro methods using new ap-
proaches and methods with the most advanced research and innovation 
test systems, such as hiPSC-derived advanced cell culture models and 
microphysiological systems. As defined by the FDA, “a microphysiological 
system (MPS) uses microscale cell culture platform for in vitro modeling of 
functional features of a specific tissue or organ of human or animal origin by 
exposing cells to a microenvironment that mimics the physiological aspects 
important for their function or pathophysiological condition. MPS design may 
aim to provide and support cultured cells with physical (e.g., temperature, pH 
and oxygen)/biochemical/electrical/mechanical (e.g., flow or stretch)/-
structural/morphological conditions and recapitulate a set of specific prop-
erties that define a healthy or diseased organ or tissue function. MPS 
platforms may comprise mono-cultures, co-cultures of multiple cell types, 
maintenance of explants derived from tissues/organs, and/or inclusion of 
organoid cell formations. Organ-on-a-chip is a subset class of micro-
physiological systems and consists of a miniaturized physiological environ-
ment engineered to yield and/or analyze functional tissue units capable of 
modeling specified/targeted organ-level responses” (https://www.fda.gov/ 
science-research/about-science-research-fda/advancing-alternative-me 
thods-fda). 

The internationally recognized OECD guidance document on Good in 
Vitro Method Practice (GIVIMP) [16] is intended to support method 
developers and end-users working to establish new in vitro assays in 
academic, industry or government laboratories across all 38 OECD 
member countries and beyond. 

In toxicology, stem cell-based in vitro methods are designed to 
identify potentially harmful effects of chemicals used in a variety of 
contexts including consumer goods, industrial processes and plant pro-
tection products. They are fast becoming key tools for a new way of 
doing toxicology without resorting to animal testing. Test data derived 
from in vitro methods are increasingly being used in combination with 
other information within Integrated Approaches to Testing and Assess-
ment (IATA) to support safety decisions. However, consensus good 
practice is essential to ensure that in vitro data can be trusted by industry 
end-users and regulatory authorities for the protection of workers, 
consumers and the environment. Moreover, in vitro methods that un-
dergo validation often require improvements in their design and 
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implementation before they can be evaluated regarding their reliability 
and relevance for a particular regulatory purpose. It is strongly recom-
mended to take careful consideration of GIVIMP requirements during 
the development of in vitro methods as this will help improve the quality 
of submitted methods, accelerate their acceptability and ultimately 
enhance the efficiency of validation studies. 

The development of GIVIMP was coordinated by the European 
Commission Joint Research Centre within the context of a project of the 
OECD Test Guidelines Program. A large number of international experts, 
including members of a dedicated OECD expert group and the European 
Union Network of Validation Laboratories (EU-NETVAL), contributed to 
the state-of-the-art knowledge gathered within the guidance document. 
GIVIMP also benefitted from a number of written commenting rounds 
and two expert meetings before its final endorsement by the OECD’s 
working party for national coordinators of the test guidelines program in 
April 2018. 

Elements described in GIVIMP that are important for the description 
of in vitro methods using complex stem cell and tissue-based test systems 
and reporting of derived results are described in detail in the GIVIMP 
test system chapter. Any stem cell researcher or in vitro method devel-
oper is prompted to provide information about the actual stem cells used 
to arrive at the measurements, the detection method, the method used 
for dose selection, control and reference chemicals used, specific 
experimental conditions, data analysis, acceptance criteria applied, 
validity of the data and reporting of results. It is anticipated that vali-
dation bodies and regulatory agencies will expect adherence to GIVIMP 
to ensure that the proposed stem cell-based method is fit for validation 
and, ultimately, regulatory acceptance. Regulatory bodies, validation 
authorities, method developers, and industry toxicologists realize the 
need to increase confidence in the scientific validity of novel in vitro 
methods with stem cell-based test systems – especially those being 
proposed for regulatory application [75,76]. Also, data reviewers such 
as companies and regulatory agencies responsible for product registra-
tions, will have increased confidence in data generated in laboratories 
adhering to GIVIMP standards [77] when using stem cells. OECD issued 
also a specific OHT201 template (https://www.oecd.org/ehs/templa 
tes/harmonized-templates-intermediate-effects.htm) that can be 
completed in compliance with GCCP as part of GIVIMP when in vitro 
mechanistic New Approach Methodologies (NAMs) are reported. The 
template offers the possibility to declare that GIVIMP guidance was 
followed and that all elements important for the in vitro method are 
reported and/or documented (as listed in the template’s ‘helptext’). To 
verify that all aspects of the GIVIMP guidance are implemented 
including all relevant GCCP aspects [18] stem cell researchers, in vitro 
laboratories and routine testing facilities (e.g., national, EU and inter-
national experimental reference laboratory networks) may find it useful 
to consult the GIVIMP e-learning module from the European Commis-
sion https://etplas.eu/lessons/nuno-lesson/ or the GIVIMP Certification 
Program which provide guidance on implementation of the quality 
principles [78]. Good Laboratory Practice (GLP) [79] and Good Cell 
Culture Practice (GCCP) [18,80] are important topics to consider, but for 
regulatory submissions in the area of compound safety, GIVIMP serves 
as a comprehensive quality framework for the development or execution 
of in vitro methods. 

6. Conclusions and future considerations 

It is clear that the crucial stages at which the scientific reproduc-
ibility of hPSC-based model systems can be enhanced are the originally 
isolated or generated hPSCs, standardized cultures of undifferentiated 
cells and differentiated cultures representing in vitro assay substrates. In 
this paper we have outlined the key techniques for the characterization 
and QC of undifferentiated hPSC cell lines and reviewed the range of 
methods that may be applied to some representative differentiated hPSC 
derivatives and their technology readiness level for their application in 
toxicology. The importance of GCCP, its uptake and utility have been 

demonstrated in a recent publication by Tigges et al. [81], which pro-
vides recommendations for the implementation of GCCP in the quality 
control of hiPSCs used in academic research. Of course, there are new 
analytical developments that will continue to offer potential improve-
ments in functional readouts for hPSC-based systems and it is vital for 
researchers to keep abreast of these new technologies. In particular, it is 
highly likely that key areas where technology will develop rapidly will 
be the application of 3D-cultures, micro-physiological systems and 
hPSC-derived organoids. It is also likely that use of these systems will 
reveal new biomarkers and possibilities for enhanced functional assays. 
However, it is important to consider that with all these dynamic scien-
tific possibilities, it will be essential to keep the principles of GCCP and 
requirements of GIVMP in mind so that transition of new and exciting 
research methods into practical application in toxicology can be made 
effectively and efficiently. 
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