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Abstract: Here, we describe the synthesis of a novel type of rare-earth-doped nanoparticles (NPs)
for multimodal imaging, by combining the rare-earth elements Ce, Gd and Nd in a crystalline host
lattice consisting of CaF2 (CaF2: Ce, Gd, Nd). CaF2: Ce, Gd, Nd NPs are small (15–20 nm), of
uniform shape and size distribution, and show good biocompatibility and low immunogenicity
in vitro. In addition, CaF2: Ce, Gd, Nd NPs possess excellent optical properties. CaF2: Ce, Gd, Nd
NPs produce downconversion emissions in the second near-infrared window (NIR-II, 1000–1700 nm)
under 808 nm excitation, with a strong emission peak at 1056 nm. Excitation in the first near- infrared
window (NIR-I, 700–900 nm) has the advantage of deeper tissue penetration power and reduced
autofluorescence, compared to visible light. Thus, CaF2: Ce, Gd, Nd NPs are ideally suited for in vivo
fluorescence imaging. In addition, the presence of Gd3+ makes the NPs intrinsically monitorable
by magnetic resonance imaging (MRI). Moreover, next to fluorescence and MR imaging, our results
show that CaF2: Ce, Gd, Nd NPs can be used as imaging probes for photoacoustic imaging (PAI)
in vitro. Therefore, due to their biocompatibility and suitability as multimodal imaging probes, CaF2:
Ce, Gd, Nd NPs exhibit great potential as a traceable imaging agent in biomedical applications.

Keywords: multimodal imaging; NIR-II; PAI; MRI; rare-earth-doped nanoparticles

1. Introduction

Imaging holds a crucial role in the diagnosis of a variety of diseases such as cancer.
Early-stage disease diagnosis is important to maximize treatment effects, and to personalize
treatments based on the patient’s individual variability and medical profile. Molecular
imaging techniques provide comprehensive anatomical, physiological and functional in-
formation on disease detection and the monitoring of treatment responses. The most
commonly used diagnostic imaging methods during the past few decades in the medical
field include MRI, X-ray computed tomography (CT) [1], positron emission tomography
(PET) [2,3], single-photon emission computed tomography (SPECT) [4], optical fluores-
cent light imaging (FLI) and photoacoustic imaging (PAI) [5]. Due to differences in their
detection methods, spatiotemporal resolution, sensitivity and probe types, the diagnostic
information obtained is divergent. Both PET and SPECT use γ rays to detect the in vivo
distribution of radioactive tracers to obtain information on biological functions. They have
the disadvantages of low spatial resolution, radiation risks and high costs [6–10]. Optical
imaging uses visible light and near-infrared probes with different spectral characteristics
for molecular and cellular detection but faces several limitations, such as photobleaching,
low tissue penetration power, low spatial resolution and autofluorescence [11–15]. While
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CT, MRI and PAI can provide structural information, CT detection relies on contrast agents
(such as iodine or barium) to obtain images through the different absorption of X-rays
by biological tissues, which has the disadvantage of radiation risk and limited soft-tissue
resolution [16,17]. MRI, a non-invasive imaging technology uses radio waves (magnetic
field), but it has low sensitivity, high cost and scanning and image processing are time-
consuming [18–20]. PAI uses high-frequency sound waves (>20 kHz) to generate acoustic
energy to detect the difference in echo between chromophores or microbubbles and sur-
rounding tissues in real time. However, due to the limited resolution and sensitivity, the
data reproducibility is low, and it cannot provide accurate results [8,21–23]. In summary, to
predict and treat diseases more comprehensively and accurately, it is imperative to develop
a simple and efficient multifunctional nanomaterial that can integrate multiple imaging
modes for detection.

Lanthanides display attractive photophysical properties, such as large anti-Stokes
shift, narrow band and multiple emission and long-life luminescence due to their unique
4fn structure and are widely used in the development of optical probes [24–27]. Nd3+-
doped nanoprobes are downconversion NPs (DCNPs) ranging from NIR-I to NIR-II. They
can emit at 890, 1060 and 1340 nm under 808 nm excitation and therefore can be used
for near-infrared two-zone imaging [28,29]. Of note, due to the Stokes shift fluorescence
mechanism of Nd3+, Nd3+-doped NPs have a larger quantum yield than upconversion NPs
(UCNPs), and the absorption cross-section of Nd3+ at 808 nm is larger than the absorption
cross-section of Yb3+ at 980 nm, which leads to little absorption by water molecules at 808
nm when using Nd3+-doped nanoprobes. Therefore, compared to Yb3+- doped UCNPs, the
overheating effect of biological tissues can be more effectively avoided in bioimaging [30].
Because of the many advantages of Nd3+, Nd3+-doped NPs are undoubtedly an optical
imaging probe with great potential that can be used for biosensing, biological process
monitoring and imaging-guided therapy [31].

Another key to obtaining high-quality Nd3+-doped nanomaterials is to choose a suit-
able host matrix material. CaF2 is a center-symmetric fluorite crystal with low phonon
energy and a wide band gap (E g = 12.1 eV). It is optically transparent in the wavelength
range from ultraviolet to visible light and near infrared, so it is widely used in various types
of optical equipment [32–37]. In addition, its unique fluorite structure can be easily doped
with lanthanides. Under the condition of not destroying the main configuration, the pres-
ence of lanthanides causes internal valence changes and diversified charge compensation,
resulting in a lattice structure with rich symmetry. These changes give the lanthanide-
doped CaF2 crystals strong optical activity in the visible and near-infrared regions [38,39].
Thus, CaF2 can be used as an optical matrix material for Nd3+-doped nanomaterials.

Since the radius of Nd3+ is not much different from that of Ca2+, trivalent Nd ions
replace the crystal sites of divalent Ca ions when they are doped into the CaF2 lattice,
requiring more F− for charge compensation, but they do not cause obvious crystal changes.
However, when the Nd3+ doping concentration reaches a certain limit, Nd3+ aggregates
and some energy cross-relaxation occurs, which triggers the cluster effect and reduces the
luminous efficiency of the nanomaterials [40,41]. In order to overcome this phenomenon,
the introduction of optically inactive ions (such as Lu3+, Gd3+, Y3+, Yb3+) can effectively
destroy the formation of Nd-Nd clusters, thereby improving the quantum efficiency of the
material [42–45]. Notably, the special properties of certain optically inactive ions also offer
the possibility of constructing multimodal probes; however, most current multimodal imag-
ing probes are dual-mode probes, and NIR-II-based imaging systems combining more than
two modes are still rarely reported, but our previous study demonstrates that triple-mode
imaging probes hold great promise for obtaining complementary information. Therefore,
we focus on the field of rare-earth triple-mode imaging probes for more exploration [46].
Wang et al. showed that the luminous efficiency of CaF2: Nd co-doped Ce3+ was 10.4 times
higher than that of CaF2: Nd [47]. On the other hand, the seven unpaired electrons of
Gd(III) can increase the proton relaxation rate, making Gd3+ a common contrast agent in
MR bioimaging [48,49]. Therefore, we choose Ce3+, Gd3+ and Nd3+ co-doping CaF2 as the
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material in our strategy to construct an imaging mode combining NIR-II imaging with
complementary MRI and PAI.

In this study, we used a hydrothermal method to synthesize a citric acid-terminated
nanomaterial with CaF2 as the matrix, co-doped with the three lanthanide elements—Ce,
Gd and Nd. The resulting CaF2: Ce, Gd, Nd NPs had a small particle size, were stable
in the presence of serum and showed excellent luminous intensity at 1056 nm. In vitro
cell culture experiments demonstrated that CaF2: Ce, Gd, Nd NPs did not induce cellular
cytotoxicity and were readily taken up by human breast cancer cells. In addition, the NPs
showed low immunogenicity when cultured with antigen-presenting cells, and thus the
NPs can be used as a potential imaging probe in vivo. Importantly, CaF2: Ce, Gd, Nd NPs
are multimodal and can be detected by NIR-II/PA/MR imaging and therefore provide
significant advantages in disease diagnosis. In summary, CaF2: Ce, Gd, Nd NPs represent
a novel optical material that can be widely used in the field of medical imaging.

2. Materials and Methods
2.1. Materials

The following chemicals were acquired from Sigma-Aldrich (St. Louis, MO, USA):
neodymium (III) chloride hexahydrate (NdCl3·6H2O, 99.9%), calcium chloride dihydrate
(CaCl2·2H2O, 99.5%), cerium (III) chloride heptahydrate (CeCl3·7H2O, 99.9%), potassium
citrate tribasic monohydrate (HOC(COOK)(CH2COOK)2·H2O, ≥99.0%), gadolinium (III)
chloride hexahydrate (GdCl3·6H2O, 99.9%), ammonium fluoride (NH4F, ≥98.0%). Bi-
olegend (San Diego, CA, USA) supplied the anti-CD40-APC. Thermo Fisher Scientific
(Waltham, MA, USA) provided fetal calf serum (FCS), 4′,6-Diamidino-2-Phenylindole
(DAPI), dulbecco’s Modified Eagle’s Medium (DMEM) and CD86-FITC. Promega
(Madison, WI, USA) offered cell titer 96 AQueous MTS Reagent Powder. PeproTech
(Cranbury, NJ, USA) supplied lipopolysaccharide (LPS). Bioline (London, UK) delivered
agarose. Abcam (Cambridge, UK) supplied the phalloidin- iFluor 488 Reagent. All of water
used in the experiments was ultrapure deionized water.

2.2. Synthesis of the CaF2: Ce, Gd, Nd NPs

As previously described [50], we synthesized CaF2: Ce, Gd, Nd NPs by a simple hy-
drothermal method. Briefly, a total of 3.75 mmol of CaCl2·2H2O, CeCl3·7H2O, GdCl3·6H2O
and NdCl3·6H2O (Ca0.98−2xCexGdxNd0.02F2.02+2x, x = 0.15) were dissolved in 7 mL water
and stirred for 10 minutes (min) until fully dissolved. Then, potassium citrate solution was
added dropwise to the solution and stirred for 30 min. After that, NH4F solution was added,
and the solution was stirred evenly. The final solution was transferred to a 50 mL Teflon
bottle (Baoshishan, China) held in a stainless-steel autoclave, put in an oven (Heraeus,
Germany) and maintained at 180 ◦C for 10 hours (h). Finally, the obtained sample was
centrifuged at 2.4× g for 20 min and washed three times with water followed by ethanol
(99%). The samples were dried in a freeze-dryer (Martin Christ, Osterode, Germany).

The synthesis of CaF2: Nd NPs, CaF2: Ce, Nd NPs, CaF2: Ce, Gd NPs was similar to
that of CaF2: Ce, Gd, Nd NPs. The doped concentration of Nd3+ was maintained at 0.02,
and Ce3+ and Gd3+ were maintained at 0.15.

2.3. Characterization

X-ray diffraction (XRD) analysis of the CaF2: Ce, Gd, Nd NPs was performed by a
Panalytical X’pert PRO (Malvern Panalytical, Malvern, UK) operating at a tube voltage of
40 kV and a tube current of 40 mA. The diffraction patterns were acquired using Cu Kα

radiation (λ = 1.5405 Å) at a scanning rate of 6.0◦/min in the 2θ range of 10◦ ≤ 2θ ≤ 70◦.
The hydrodynamic size and Zeta potential were obtained from CaF2: Ce, Gd, Nd NPs

solution (1 mg/mL) using a Malvern ZetaSizer 2000 (Malvern, UK). The analysis software
applications were Zetasizer Software (Version 7.13) and GraphPad Prism 8.

IRSpirit FTIR spectrophotometer (Shimadzu, Kyoto, Japan) was used to measure
the Fourier transform infrared (FTIR) spectra of CaF2: Ce, Gd, Nd NPs powder. The
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spectra were captured in the IRSpirit-TOAPC0027956 mode with a wavenumber range of
600–4000 cm−1 and a resolution of 4 cm−1. IR Pilot and Origin 8.5 were used for analysis.

The size and morphology of CaF2: Ce, Gd, Nd NPs were examined using a Tecnai
12 Twin transmission electron microscope (TEM) (FEI Company, Hillsboro, OR, USA)
outfitted with a OneView Camera Model 1095 (Gatan, Pleasanton, CA, USA) under 120 kV
voltage. TEM samples were prepared by pipetting CaF2: Ce, Gd, Nd NPs aqueous solution
(1 mg/mL) onto the surface of the copper grid.

CaF2: Ce, Gd, Nd NPs were mounted on scanning electron microscopy (SEM) speci-
men stubs. Then, an Apreo S LoVac SEM (Thermo Scientific, Waltham, MA, USA) equipped
with an UltraDry energy-dispersive X-ray spectroscopy (EDS) detector (Thermo Scientific,
Waltham, MA, USA) was utilized to analyze the sample. The measurement conditions
were: 1500×magnification with 30 kV and 51 nA.

A Quantum Design Versalab physical property measurement system with VSM option
(Quantum Design, San Diego, CA, USA) was employed to quantify the vibrating-sample
magnetometry (VSM) of CaF2: Ce, Gd, Nd NPs (4.51 mg).

The emission spectra of CaF2:Ce, Gd, Nd NPs powder was recorded using Fluorolog®-
3 with FluoEssenceTM (Horiba, Kyoto, Japan) equipped with a diode laser as the excitation
light source, and the emission spectra of CaF2: Nd NPs (powder) and CaF2: Ce, Nd NPs
(powder) were recorded using an Edinburgh FLS920 fluorescence spectrometer (Edinburgh
Instruments, Edinburgh, UK) with an 808 nm NIR diode laser (300 mW). The absorption
spectra of CaF2: Ce, Gd, Nd NPs (10 mg/mL) and CaF2: Ce, Gd NPs (10 mg/mL) were
obtained by SpectraMax® iD3 Multi-Mode Microplate Reader (Molecular Devices, San Jose,
CA, USA). Analysis tool was SoftMax Pro® 7 Software.

2.4. Stability of CaF2:Ce, Gd, Nd NPs

To assess the stability of CaF2: Ce, Gd, Nd NPs in physiologically relevant buffers,
we dissolved CaF2: Ce, Gd, Nd NPs at a concentration of 0.2 mg/mL in 50% FCS solution.
The samples were kept in a shaker at 37 ◦C, and we used a Malvern ZetaSizer 2000
(Malvern, UK) to measure the size and zeta potential at 0 h, 1 d, 2 d, 3 d, 4 d, 5 d, 6 d and
7 d. Data analysis used Zetasizer Software (Version 7.13) and GraphPad Prism 8.

2.5. Hemolysis of CaF2: Ce, Gd, Nd NPs

Briefly, a total of 100 µL of fresh blood was collected from the tail vein of BALB/c
mice using a vacuum blood collection tube. Ca2+/Mg2+-free PBS was used to dilute the
blood 50 times. To extract red blood cells, the blood dilutions were centrifuged at 0.9× g
for 15 min at 4 ◦C. The supernatant was removed, and two groups were chosen randomly
as negative and positive controls. The negative control group was resuspended with
500 µL of saline, whereas the positive control group was resuspended with 500 µL of
1% Triton X-100 (v/v). For the experimental group, blood cells were resuspended with
CaF2: Ce, Gd, Nd NPs isotonic saline at five different concentrations (1, 0.5, 0.25, 0.125,
0.0625 mg/mL). The samples were then incubated at 37 ◦C for 4 h before being centrifuged
at 0.9× g and 4 ◦C for 15 min to obtain the supernatant. The absorbance values were
measured at 540 nm by an enzyme marker SpectraMax (Molecular Devices, San Jose, CA,
USA). The concentration of cytosolic hemoglobin in each sample was assessed according to
the hemoglobin concentration standard curve.

The hemolysis ratio was calculated using the hemolysis (HL%) equation follows:

H (hemolysis ratio, %) = (OD sample − OD negative)/(OD positive − OD negative) × 100

2.6. MTS Cytotoxicity Assay of CaF2: Ce, Gd, Nd NPs

The toxicity of CaF2: Ce, Gd, Nd NPs to cells was assessed by MTS assay using two
different cell lines. Briefly, 4T1 cells (1× 104) were seeded in 96 wells and incubated for 24 h
at 37 ◦C. The cells were then treated for 24, 48 and 72 h with varied concentrations of CaF2:
Ce, Gd, Nd NPs (0–2000 µg/mL). Meanwhile, a 96-well plate was inoculated with 1 × 105
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peripheral blood mononuclear cells (PBMCs)/well, kept in a 37 ◦C incubator and then
incubated with various CaF2: Ce, Gd, Nd NPs concentrations (0–125 µg/mL) for 24 h, 48 h
and 72 h. Afterwards, the medium was removed and 100 µL of fresh medium and 20 µL
of MTS reagent were added to each well as directed by the manufacturer’s instructions.
The cells were then cultured for 1.5 h at 37 ◦C in an incubator. The absorbance (OD) was
measured using Microplate reader (Molecular Devices, San Jose, CA, USA) at 490 nm. The
ratio to the untreated control group was used to assess cell viability. Data are presented as
mean ± SD.

2.7. Uptake of CaF2: Ce, Gd, Nd NPs

Qualitative uptake of CaF2: Ce, Gd, Nd NPs in 4T1 cells was determined by confocal
microscopy. 4T1 cells were seeded at 2 × 104/well on 13 mm3 circular coverslips in 24-well
plates. After 24 h, 4T1 cells were co-incubated with 250 µg/mL of CaF2: Ce, Gd, Nd NPs
medium at 37 ◦C for 1, 4, 24 and 48 h. Cells treated with medium without NPs served as
a control group. At the end of the incubation time, the cells were washed 5 times with
PBS to remove the unabsorbed NPs. At room temperature, the cells were fixed with 4%
paraformaldehyde for 15 min, washed twice with PBS, treated with 0.1% Triton PBS for
10 min and washed 3 times with PBS. Finally, cell nuclei were labeled with DAPI for 5 min.
After washing with PBS, coverslips were sealed on slides with fluorCare sealer. The slides
were imaged using a SP8 LIGHTNING Confocal Microscope (Leica Biosystems Nussloch
GmbH, Germany) and analyzed by LAS X (Leica Application Suite X) software.

2.8. In Vitro Dendritic Cell (DC) Activation Study

In order to evaluate the effect of CaF2: Ce, Gd, Nd NPs on immune cells, we used flow
cytometry to assess the expression of DC maturation/activation markers. Briefly, murine
D1 DCs and 125 µg/mL CaF2: Ce, Gd, Nd NPs were co-cultured in a 96-well plate for 24 h
in a 37 ◦C incubator. PBS/EDTA (Sigma-Aldrich, St. Louis, MO, USA) was used to detach
the cells, which were then washed with FACS buffer and stained with anti-CD40-APC
(Biolegend, San Diego, CA, USA) and anti-CD86-FITC (eBioscience, San Diego, CA, USA)
antibodies. The cells were washed and resuspended in 100 µL FACS buffer after 30 min.
A LSR-II cytometer (BD Biosciences, Franklin Lakes, NJ, USA) was used to measure the
samples, and FlowJo (version 10) was utilized to analyze the data.

2.9. Multimodal Imaging Properties of CaF2: Ce, Gd, Nd NPs
2.9.1. NIR-II imaging

We employed an in vivo NIR-II optical imaging system (Kaer Labs, Nantes, France) to
evaluate the NIR-II imaging capabilities of our NPs. CaF2: Ce, Gd, Nd NPs were suspended
in ddH2O at 2 mg/mL, while the InGaAs camera was chilled to −20 ◦C at mid-gain setup.
We obtained photos at various wavelengths using an 808 nm laser excitation at 50 mW/cm2.
Images were recorded with the KIS NIR-II system.

2.9.2. Photoacoustic Imaging

The PA and B-mode ultrasound images were acquired using Vevo LAZR-X (FUJIFILM
VisualSonics, Toronto, ON, Canada), and a MX550D transducer was utilized. CaF2: Ce, Gd,
Nd NP solution was injected into an 0.5% agarose gel. The experiment was carried out
with the center transmit of 40 MHz and the axial resolution of 40 µm. Vevo LAB 5.5.0 was
used to analyze the data.

2.9.3. MRI Studies

MRI studies were carried out using a 7T Bruker BioSpec (Ettlingen, Germany), and
ParaVision 360 (Version 2.0. pl.1) software was used to analyze attenuation images. CaF2:
Ce, Gd, Nd NPs were dissolved in 1% agarose solution, and the concentrations were
0 mg/mL, 1 mg/mL, 2 mg/mL, 3 mg/mL, 4 mg/mL and 5 mg/mL. The microwave oven
was used to heat the solutions and create the gel sample. T1 relaxation was assessed using



Pharmaceutics 2022, 14, 2796 6 of 18

a saturation recovery sequence and the parameters were as follows: repetition times (TR)
array = 18, 35, 70, 125, 250, 500, 1050, 2250, 4500, 9000 ms; echo time (TE) = 6 ms; matrix size
(MTX) = 64 × 64; field of view (FoV) = 30 × 30 mm2; slice thick-ness (SL) = 2 mm. T2 relax-
ation was measured using a multi spin echo sequence and the parameters were as follows:
TR = 2200 ms; TE = 6.5 ms; echo spacing = 25 echoes; MTX = 64 × 64; FoV = 30 × 30 mm2

and SL = 2 mm. To investigate the MRI characteristics of NPs under biological conditions,
we fixed C57BL/6J mouse cadavers after subcutaneously injecting 100 µL of CaF2: Ce, Gd,
Nd NPs (10 mg/mL) and took MR images before and after the injection. The measurement
conditions were gradient echo sequence with TR/TE = 10/2.8 ms, FoV = 40 × 40 mm2,
matrix = 256 × 256. The MRI data were acquired using ParaVision 360 (Version 2.0. pl.1,
Bruker, Germany) software. Standard mono-exponential functions were used to calculate
relaxation times.

2.10. Statistical Analysis

The statistical tests performed by GraphPad Prism software 8 (GraphPad Software, San
Diego, CA, USA). Statistical differences were considered significant at * p < 0.05, ** p < 0.01,
*** p < 0.001 and **** p < 0.0001.

3. Results and Discussion

To explore whether our strategy of synthesizing a multimodal citric acid-terminated
nanomaterial with CaF2 as the matrix, co-doped with the three lanthanide elements—Ce,
Gd and Nd—was feasible, we adapted a previously published hydrothermal method
to obtain Yb3+/Tm3+-doped MF2 (M = Ca, Sr) colloids to synthesize CaF2: Ce, Gd, Nd.
Briefly, Ca2+, Ce3+, Gd3+, Nd3+ were dissolved in water. Next, solutions of potassium
citrate tribasic monohydrate and NH4F were added in turn to obtain the final solution.
The resulting solution was heated in an oven (Heraeus, Germany) at 180 ◦C for 10 h to
synthesize NPs. The obtained sample was centrifuged, washed and freeze-dried (Scheme 1).
The physicochemical properties of the synthesized NPs were carefully characterized.
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First, to confirm that the main matrix of the synthesized NPs consisted of CaF2, we
performed an XRD analysis (Figure 1a). Through XRD pattern analysis, it can be seen that
the main diffraction peaks of CaF2: Ce, Gd, Nd powder correspond to the CaF2 crystal
standard card, and the addition of Ce3+, Gd3+, Nd3+ did not change the CaF2 cubic phase
structure but only resulted in a slight shift of diffraction peaks (Figure 1a). This is because
the trivalent lanthanide ions replaced Ca2+, which resulted in Ca vacancies and exhibited
lattice defects. Moreover, due to the differences in ionic radius and valence, the excess
of positive charge needed more F− to compensate, which changed the bond length and
reduced the symmetry of the crystal [51]. In addition, a small peak appeared at about 30◦,
which has been demonstrated to correspond to the doping of rare-earth elements [52,53].
This also confirmed the successful doping of Ce3+, Gd3+, Nd3+ into the CaF2 crystal.
DLS data showed that the NPs had a relatively stable particle size of 29.53 ± 0.16 nm in
water. Zeta potential measurement showed that the NPs had a negative surface charge of
−16.6 ± 0.75 mV. This is because sodium citrate was used as a complexing agent during
NPs synthesis, and as a result, the NPs surface harbors carboxyl groups. The carboxyl
group of citrate is negatively charged in water, and the electrostatic repulsion is the reason
why CaF2: Ce, Gd, Nd NPs are stable in solution. To examine the stability and shelf-life
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of CaF2: Ce, Gd, Nd NPs, we repeated the DLS measurement after storing the NPs for
4 months at room temperature (Figure 1b). There was no significant change in the particle
size and zeta potential of the NPs, suggesting that CaF2: Ce, Gd, Nd NPs show excellent
shelf-life stability. CaF2: Ce, Gd, Nd NPs have two main absorption peaks at 1392 and
1572 cm−1, which correspond to the sodium citrate bands (Figure 1c). On the other hand,
the absorption peaks, indicating that the carboxyl groups were conjugated to the metal ion
on the surface of the NPs. Therefore, FTIR effectively proved the presence of citrate anions
on the surface of the CaF2: Ce, Gd, Nd NPs [54]. In order to study the morphology of CaF2:
Ce, Gd, Nd NPs more accurately, we performed a TEM analysis (Figure 1d). The TEM
results showed that the NPs have a uniform and stable morphology, about 12 nm, which
met our expectations. The discrepancy between the DLS and TEM results on particle size is
due to the fact that the DLS measures the hydrodynamic diameter, while the TEM measures
the hard boundary [55]. Additionally, to further investigate the elemental composition of
the CaF2: Ce, Gd, Nd NPs, we performed EDS on powdered NPs. In Figure 1e, we can
see that the strongest peak corresponds to Ca, the smaller peaks to F, Ce and Gd and the
weakest peak to Nd. We did not detect any impurity peaks. This result is consistent with
the proportion of doped elements in our synthesis process. In addition, mapping results
revealed signals for all these elements, and the distribution is homogeneous (Figure 1f).
In summary, these results prove that the rare-earth ions (Ce3+, Gd3+, Nd3+) have been
successfully doped into CaF2.

In order to evaluate the optical properties of the NPs, we first measured the absorption
spectra of the CaF2: Ce, Gd, Nd NPs and CaF2: Ce, Gd NPs in aqueous solution at a
concentration of 10 mg/mL (Figure 2a). Compared to CaF2: Ce, Gd NPs, the CaF2: Ce,
Gd, Nd NPs showed absorption peaks at 576 nm,734 nm and 795 nm, corresponding to
the 4G5/2+2G7/2, 4F7/2+4S3/2, and 4F5/2+2H9/2 absorption peaks of Nd3+ [45,56]. Then,
to demonstrate that the doping of Ce increased the luminescence intensity of the NPs,
we first tested the luminescence intensity of CaF2: Nd and CaF2: Ce, Nd under 808 nm
laser excitation (300 mW) (Figure 2b). The experimental results demonstrated that the
doping of Ce significantly increased the luminescence intensity of the NPs, and this result
was consistent with the results of Wang et al. [47] Next, we measured the luminescence
intensity of the NP sample under increasing laser powers at an excitation wavelength of
808 nm (Figure 2c). The NPs showed a strong signal in the near-infrared region, with two
main emission peaks at 1056 nm and 1340 nm, corresponding to the 4F3/2 → 4I11/2 and
4F3/2 → 4I13/2 electronic transitions of Nd3+, respectively [57–59]. The strongest emission
peak was observed at 1056 nm, when the laser power reached 7.7 mW, and an intensity of
about 5×104, which proves its unique NIR-II efficiency (Figure 2d). On the other hand, since
Nd3+ is the main emission center of the NPs, under 808nm laser excitation, CaF2: Ce, Gd,
Nd NPs can effectively reduce the biological tissue damage during the application process,
especially the overheating effect caused by the laser. Moreover, the Nd3+ emission spectra
were located in the second near-infrared window (1000–1400 nm), resulting in a deeper
penetration depth and smaller autofluorescence effect of the NPs [52]. Based on the above
generated data, an NIR-II system was employed to evaluate the NIR-II imaging properties
of CaF2: Ce, Gd, Nd NPs (Figure 2e). Under 808 nm laser excitation, CaF2: Ce, Gd, Nd NPs
showed near-infrared emission at 1064 nm. This result is consistent with the 4F3/2 → 4I11/2
energy transition of Nd3+, which proves that the main emission center is Nd3+. Thus, our
data confirms that CaF2: Ce, Gd, Nd NPs are suitable NIR-II imaging probes.

Good colloidal stability is one of the prerequisites for judging whether NPs can be
used in biological applications. In order to determine whether CaF2: Ce, Gd, Nd NPs
have good colloidal stability, the NPs were redispersed in NaCl containing 50% FCS, and
then the particles were measured repeatedly (three times) using a Malvern ZetaSizer 2000
(Malvern, UK) at different time periods to determine the particle size. The results showed
that there was no significant change in the size and zeta potential of the NPs in 50% FCS
(Figure 3a,b). This demonstrates that the NPs exhibit a relatively stable state when 50%
FCS was added to NaCl.
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 Figure 1. Morphology of CaF2: Ce, Gd, Nd NPs. (a) XRD images of CaF2: Ce, Gd, Nd NPs and CaF2;
(b) DLS image of CaF2: Ce, Gd, Nd NPs at 0 d and 120 d; (c) FTIR image of CaF2: Ce, Gd, Nd NPs;
(d) TEM images of CaF2: Ce, Gd, Nd NPs, where the inset shows the size distribution of CaF2: Ce,
Gd, Nd NPs; (e) EDS spectrum of CaF2: Ce, Gd, Nd NPs; (f) mapping images of CaF2: Ce, Gd, Nd NPs.
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Figure 2. Optical properties of CaF2: Ce, Gd, Nd NPs. (a) The absorption spectra of CaF2: Ce, Gd,
Nd NPs solution and CaF2: Ce, Gd NPs (10 mg/mL) measured with SpectraMax® iD3 Multi-Mode
Microplate Reader; (b) emission spectra of CaF2: Nd NPs and CaF2: Ce, Nd NPs (powder) measured
with Edinburgh FLS920 fluorescence spectrometer with an 808 nm NIR diode laser (300 mW), where
the inset shows a zoomed-in spectra of CaF2: Nd NPs; (c) emission spectra of CaF2: Ce, Gd, Nd
NPs under 808 nm laser excitation; (d) the emission intensities of CaF2: Ce, Gd, Nd-NPs at different
laser powers (excited by an 808 nm laser); (e) NIR-II images of CaF2: Ce, Gd, Nd NPs (2 mg/mL) at
different wavelengths (excited by an 808 nm laser, 50 mW/cm2).
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To evaluate the NPs’ biocompatibility with blood components, the effect of CaF2: Ce,
Gd, Nd NPs on red blood cell (RBC) hemolysis was studied. To this end, murine peripheral
blood cells were incubated at 37 ◦C for 4 h with different concentrations of CaF2: Ce, Gd,
Nd NPs, and the hemolysis rate of the NPs was calculated by comparing the absorbance
(λ = 540 nm) of the samples with the positive (1% Triton X-100) and negative (saline)
controls [60] (Figure 3c,d). At the highest concentration (1 mg/mL), the hemolysis rate was
calculated to be 0.08%, which is negligible. Thus, our results show that CaF2: Ce, Gd, Nd
NPs have excellent blood compatibility and can be used for intravenous in vivo imaging.

To determine whether the NPs induce cellular toxicity, the effect of CaF2: Ce, Gd,
Nd NPs on the viability of 4T1 cells was measured by MTS assay (Figure 4). 4T1 is
a highly tumorigenic and aggressive breast cancer cell line which grows and spreads
metastatically, similar to human breast cancer, and is used as a typical cell model for
cancer studies. 4T1 cells were cultured in the presence of different concentrations of
CaF2: Ce, Gd, Nd NPs for 24 h, 48 h and 72 h. At 24 h, CaF2: Ce, Gd, Nd NPs below
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1000 µg/mL had no significant effect on the viability of 4T1 cells (p > 0.05). Cell viability
was significantly higher at a concentration of 2000 µg/mL (** p < 0.01). Values higher than
100% indicate that the NPs may have a positive effect on cell proliferation [61]. Secondly,
CaF2: Ce, Gd, Nd NPs contain citric acid groups on the surface, which may participate
in the intracellular tricarboxylic acid cycle reaction, resulting in increased cell activity. At
48 h, cell viability was significantly reduced by 15% when the concentration of CaF2: Ce,
Gd, Nd NPs was 1000 µg/mL compared to the control (* p<0.05). At 72 h, the doses of 500
and 250 µg/mL CaF2: Ce, Gd, Nd NPs showed a significant inhibitory trend on 4T1 cells
(*** p < 0.001, **** p < 0.0001). There was no difference between the cell survival rates when
the concentration was < 125 µg/mL compared to the control group (p > 0.05). As cancer
cell lines show biological differences compared to normal, healthy cells, we also tested the
effect of CaF2: Ce, Gd, Nd NPs (0–125 µg/mL) on the viability of human peripheral blood
mononuclear cells (PBMCs). As shown in Figure S1, there was no significant cytotoxic effect
of the NPs on cell activity at 24 h and 48 h after NP incubation compared to the control group.
Thus, CaF2: Ce, Gd, Nd NPs show great promise for biological applications, but further
studies are needed to determine the optimal concentration and potential cytotoxic effects.
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Figure 4. Cell viability. 4T1 cells were treated with CaF2: Ce, Gd, Nd NPs at varying concentrations
(0–2000 µg/mL) for 24 h, 48 h and 72 h. Data represent the mean values ± SD from three indepen-
dent experiments. Statistical significance was calculated using two-way ANOVA, by comparing
experimental groups to control group (* p< 0.05, ** p< 0.01, *** p < 0.001 and **** p < 0.0001).

We further investigated the uptake potential of CaF2: Ce, Gd, Nd NPs by murine breast
cancer cells. As demonstrated in Figure 2a, optical characteristics of CaF2: Ce, Gd, Nd
NPs overlap with the excitation and emission spectra of commonly employed dyes in flow
cytometry and microscopy applications, such as Alexa Fluor 568. Thus, we reasoned that
our NPs might be inherently monitorable by confocal microscopy. In order to determine the
NP uptake rate and intracellular localization of NPs in 4T1 cells, we performed a confocal
analysis (Figure 5). To this end, 4T1 cells were incubated with 250 µg/mL CaF2: Ce, Gd,
Nd NPs (red) at 37 ◦C for 1 h, 4 h, 24 h and 48 h, followed by co-labeling with DAPI (blue)
to stain the nucleus and phalloidin (green) to stain the actin cytoskeleton. Visual inspection
confirmed that CaF2: Ce, Gd, Nd NPs could be effectively visualized as distinct dots by
confocal microscopy. After 1 h co-incubation, few NPs were found attached to the cell
membrane. With increasing incubation time, more red fluorescent dots were found in the
cytoplasm, indicating that more NPs entered the cells (Figure 5). Based on the above results,
we conclude that CaF2: Ce, Gd, Nd NPs were effectively taken up by 4T1 cancer cells.
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Figure 5. Uptake of CaF2: Ce, Gd, Nd NPs by 4T1 cells. Representative confocal microscopy images
showing the uptake of CaF2: Ce, Gd, Nd NPs after 1 h, 4 h, 24 h and 48 h of incubation at 37 ◦C. Cell
nuclei (blue), actin cytoskeleton (green), CaF2: Ce, Gd, Nd NPs (red). Scale bar = 20 µm.

Next, we determined whether CaF2: Ce, Gd, Nd NPs, without further modification,
can activate the immune system, which could cause adverse side effects in vivo. Previous
studies have shown that when immature dendritic cells (DCs) encounter various activation
stimuli, they will mature and increase the expression of costimulatory markers on their
surface [62–64]. Therefore, we cultured murine immature D1DCs in the presence of CaF2:
Ce, Gd, Nd NPs for 24 h and assessed the expression of the DC costimulatory receptors
CD86 and CD40 by flow cytometry. As positive control for DC maturation, we included
D1 cells that were treated with LPS. After duplicate exclusion, the expression of CD86
and CD40 was analyzed on single D1 cells (Figure 6a). In the non-treated control group,
8% of the cells were double positive for CD86 and CD40 (Figure 6a), and the expression
increased to 84% when the cells were treated with LPS (Figure 6b). When D1 cells were
treated with a high concentration of CaF2: Ce, Gd, Nd NPs (125 µg/mL), 7% of the cells
co-expressed CD86 and CD40 (Figure 6c), similar to the levels in the controls group, and in a
negative controls group, where Au NPs were added that are known to be non-immunogenic
(Figure 6d). In summary, these data indicate that CaF2: Ce, Gd, Nd NPs are inert and do
not induce immune activation.
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Figure 6. In vitro D1DC activation of CaF2: Ce, Gd, Nd NPs measured with FACS flow cytometry.
D1DCs were incubated with samples for 24 h. (a) Gating strategy of D1DCs; (b) LPS (1 µg/mL)
incubate with D1DCs as the positive control; (c) CaF2: Ce, Gd, Nd NPs (125 µg/mL) incubate with
D1DCs; (d) Au NPs (125 µg/mL) incubate with D1DCs as the negative control.

Yang et al. have shown that rare-earth-doped particles can be employed as PAI
agents [65]. Furthermore, since PAI is an imaging method that combines light excitation
and ultrasound technology, the multiple absorption peaks of rare-earth NPs provide an
opportunity as a PAI contrast agent. In order to determine whether CaF2: Ce, Gd, Nd
NPs are suitable for ultrasound imaging, we placed the NPs into an agarose phantom,
mimicking biological tissue, for imaging by PA (Figure 7). In this gel phantom, the NPs
showed PA signals at 808 nm wavelength, which was stronger than in the control agarose
without NPs, but slightly dimmer than in the ICG group, a dye that is well suited for PAI.
When the NPs were irradiated by the laser, part of the light energy was absorbed and
converted into heat energy, which caused thermoelastic expansion and generated the PA
signal. It effectively proves that CaF2: Ce, Gd, Nd NPs have the ability to serve as NIR-II
and PA probes.
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Since Gd3+ chelating material is a common “positive” clinical MRI contrast agent,
we inferred that CaF2: Ce, Gd, Nd NPs might be suitable as imaging probes for MRI.
The magnetic properties of CaF2: Ce, Gd, Nd NPs were first verified using VSM. At
room temperature (300 K) and an applied magnetic field of 1.5 T, we noticed that the
NPs enhance their magnetic properties as the magnetic field increases, showing a typical
paramagnetic behavior consistent with the magnetic characteristics of Gd ions (Figure 8a).
The diamagnetic contribution was calculated to be 0.0032 Am2/kg [66,67]. In order to
prove the hypothesis that CaF2: Ce, Gd, Nd NPs can be used as an MRI probe, we mixed
CaF2: Ce, Gd, Nd NPs with agarose gel and performed an MRI measurement. Figure 8b
shows that as the concentration of NPs increased, the T2-weighted MR image became
darker; in this concentration range the visually observable contrast in T1-weighted MR
images was much smaller. We investigated the MRI properties of the NPs by testing the
longitudinal magnetization recovery and the transverse magnetization decay (Figure 8c).
We plotted the R1 (1/T1) and R2 (1/T2) relaxation rates, the r1 and r2 relaxivity values
were calculated (r1 = 0.05 mM Gd−1·s−1, r2 = 5.3 mM Gd−1·s−1). Notably, the NPs may
tend to aggregate in the gel, which may account for the non-linear behaviour; therefore
the relaxivities should be interpreted with some caution (Figure 8d). Nevertheless, r2/r1
was much greater than 10, therefore, the CaF2: Ce, Gd, Nd NPs could be considered as a T2
contrast agent [68]. To better investigate the potential biological applications of NPs, we
injected NPs subcutaneously into mouse cadavers and found a clear signal at the injection
site (Figure 8e). These results indicate that CaF2: Ce, Gd, Nd NPs can be used as MRI
contrast agents.
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Gd, Nd NPs; (b) in vitro T1-weighted and T2-weighted MR images of CaF2: Ce, Gd, Nd NPs at
different concentrations in water containing 1% agarose gel; (c) MRI signal intensity of CaF2: Ce,
Gd, Nd NPs with increasing repetition time and echo time at different concentrations; (d) in vitro T1

relaxation rates and T2 relaxation rates of various Gd concentrations for CaF2: Ce, Gd, Nd NPs; (e) ex
vivo MRI images of a mouse cadaver before and after subcutaneous injection of CaF2: Ce, Gd, Nd
NPs (10 mg/mL).
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4. Conclusions

In summary, we doped Ce3+, Gd3+ and Nd3+ into CaF2 crystals through a simple
hydrothermal process, resulting in the synthesis of CaF2: Ce, Gd, Nd NPs suitable for
multimodal imaging. The synthesized NPs were highly pure, and showed low toxicity,
good biocompatibility and no immunogenicity. CaF2: Ce, Gd, Nd NPs themselves exhib-
ited dual modes because Ce3+ and Nd3+ dopants contribute to NIR-II and PAI, and the
presence of Gd3+ shows a high-contrast T2 effect for MRI. As such it acts similarly to a
super-paramagnetic agent, similar to results obtained for Gd2O3-mesoporous silica/gold
nanoshells [68]. Therefore, CaF2: Ce, Gd, Nd NPs may be an informative NIR-II/PA/MR
multimodal probe for clinical diagnosis. This research also laid the foundation for the use
of CaF2: Ce, Gd, Nd NPs for biological imaging of cells and deep tissues.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pharmaceutics14122796/s1, Figure S1: Cell viability. PBMCs were treated
with CaF2: Ce, Gd, Nd NPs at varying concentrations (0–125 µg/mL) on PBMCs for 24 h and 48 h.
Data represent the mean values ± SD from three independent experiments. Statistical significance
was calculated using two-way ANOVA, by comparing experimental groups to control group.
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