
Reasoning about object-oriented programs: from classes to interfaces
Bian, J.

Citation
Bian, J. (2024, May 21). Reasoning about object-oriented programs: from classes to
interfaces. Retrieved from https://hdl.handle.net/1887/3754248
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3754248
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3754248


Propositions

pertaining to the thesis

Reasoning about object-oriented programs: from classes to interfaces

by Jinting Bian

1. The main bottleneck in the verification process is not the verification itself,
but the formulation of specifications. [Chapter 3]

2. The history-based reasoning approach provides a way to show the satisfiabil-
ity of specifications by a witness implementation of the interface, making it
possible to reason about the state-hidden interface. [Chapter 4]

3. The selection of abstractions of history in a concrete program requires careful
consideration. [Chapter 5 & 6]

4. It is necessary to verify the correctness of the subtype relation in the design
stage, especially in the case of complex systems. [Chapter 7]

5. Although the cost upfront for ensuring program correctness is expensive and
the benefits come late (even after time to market), it is still worthy.

6. The correctness of the theorem prover used in a formal verification requires
careful attention.

7. Testing can reveal the presence of faults in software, while formal verification
aims to prove the absence of failures; both of them are indispensable and
irreplaceable.

8. The rapid pace of technological change and the demand for new features pose a
significant challenge to the adaptability and effectiveness of formal verification
in system development.

9. Intelligent dialogue systems can help in the development of formal methods, yet
the techniques and expertise required for formal methods cannot be replaced
by artificial intelligence.

10. Open-source projects benefit from community contributions for faster bug
identification and resolution, but this doesn’t mean they are bug-free.


