
Reasoning about object-oriented programs: from classes to interfaces
Bian, J.

Citation
Bian, J. (2024, May 21). Reasoning about object-oriented programs: from classes to
interfaces. Retrieved from https://hdl.handle.net/1887/3754248
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3754248
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3754248


English summary

Software plays a crucial role in our interaction with the real world and is also em-
bedded within some of the most critical systems. Ensuring that software is free
of bugs and works as intended presents a significant challenge in software develop-
ment. Object-oriented programming is a programming paradigm widely used in the
development of many software systems. Applying formal specifications to verify the
correctness of object-oriented programs can be very beneficial, as even a minor error
within widely used programs can lead to significant issues, such as system outages
and failures. This thesis demonstrates the use of formal methods for systematically
verifying state-of-art, real object-oriented programs.

In Chapter 3, we focus on the formal verification of object-oriented classes. We
discuss the specification and verification of a corrected version of the linked list
implementation from the Java Collection framework, which originally contained an
overflow bug. Our formal specification aimed at two goals: to establish the absence
of the overflow bug, and to capture the essential behavior of the methods with
respect to the structural properties of the linked list. We successfully demonstrated,
using the KeY theorem prover, that the fixed version of the core methods of the
linked list implementation in Java is formally correct.

The work on verifying linked list successfully verified most methods but excluded
some method implementations that contain an interface type as a parameter. Inter-
faces abstract away from state and other internal implementation details, facilitating
modular program development. However, tool-supported programming logics and
specification languages are predominantly state-based, which as such cannot be di-
rectly used for interfaces. In Chapter 4, we introduce a novel specification method
using histories, recording method calls and returns, on an interface. The abstrac-
tions over histories, called attributes, are used to describe all possible behaviors of
objects regardless of its implementation. Interface specifications can then be writ-
ten in the state-based specification language JML by referring to histories and its
attributes to describe the intended behavior of implementations.

To demonstrate the feasibility of the history-based reasoning approach, we have
specified part of the core methods of Java’s Collection interfaces in Chapter 5, using
the executable history-based approach (the EHB approach). This approach uses an
encoding of histories as Java objects on the heap. That encoding, however, made
use of pure methods in its specification. While the methodology works in principle,
in practice, for advanced use, the pure methods were a source of large overhead and
complexity in the proof effort.

131



8. ENGLISH SUMMARY

To enhance the history-based approach, Chapter 6 discusses integrating abstract
data types (ADTs) in the KeY theorem prover by a new approach to model data
types using Isabelle/HOL as an interactive back-end, and represent Isabelle theorems
as user-defined taclets in KeY. We model histories as elements of an ADT, separate
from the sorts used by Java in the EHB approach (Chapter 5). Histories then can
not be touched by Java programs under verification themselves. We refer to this
as the logical history-based approach (the LHB approach). We showed how ADTs
externally defined in Isabelle/HOL can be used in JML specifications and KeY proofs
for Java programs. As a more advanced case study, we provide a specification of
the addAll method and verify the correctness properties of its clients. Furthermore,
we reasoned about advanced, realistic use cases involving multiple instances of the
same interface.

Chapter 7 focuses on the use of hierarchy in object-oriented programs. Hierarchy
naturally follows from behavioral subtyping, in which the subtypes must not only
match the method signatures defined by their supertypes but also adhere to the
intended behaviors. We develop a general history-based refinement theory that
used to verify the subtype relation. We associate each interface and class with a
history that represents the sequence of method calls performed on the object since
its creation. The subtype relation is described in terms of projection relation, which
means the relationship between subtypes and supertypes hinges on the projection
between histories, with each type having its own history. Through the use of a
running example, we demonstrate the practical applicability of our approach.

Programming to interfaces is one of the core principles in object-oriented program-
ming and is central to most of the standard libraries, which provide a hierarchy
of interfaces and classes that represent object containers. We proposed techniques
that are capable of specifying and verifying class, interface, and hierarchy structure.
Taking the Java collection framework as a case study, we show the usefulness of our
techniques. Thus, this thesis provides important novel contributions, insights, and
findings for the research community and future applications in the field of software
verification.

132


