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Chapter 8

Conclusion

Throughout the main body of the thesis, we implemented a series of studies on ex-
ploring ways to apply formal methods systematically for the verification of complex
object-oriented libraries such as the Java Collection Framework. We start with spec-
ifying and verifying methods in the java.util.LinkedList class, but we encounter
challenges with methods that take an interface type as a parameter. To address this,
we proposed to use histories as method calls and returns to completely determine the
concrete state of any implementation and thus can be seen as a way to reason about
the interface. The executable history-based (EHB) approach, designed to facili-
tate history-based reasoning and creating reusable specifications for Java programs,
embeds histories and attributes directly as Java objects. This approach could be
seamlessly integrated in the KeY theorem prover and avoids the need to change the
KeY system itself. However, the EHB approach still has its limitations, particularly
when it comes to reasoning about the heap and properties of user-defined attributes,
which can require a lot of work due to alias analysis and dynamic footprints. To
mitigate this, we introduce the logical history-based (LHB) approach, which models
histories as an external abstract data type with functions. This opened up new
possibilities for modeling complex behavior in object-oriented programs. Building
on the LHB approach, we have developed a history-based refinement theory for
reasoning about hierarchy in object-oriented programs. To systematically conclude
the thesis, in this final chapter, we first summarize the contributions we have made
to addressing the key challenges of formal verification in object-oriented libraries,
as formulated in the introductory chapter. Finally, we provide a list of possible
directions for future work.

8.1 Summary of contributions

Ensuring that software libraries operate without errors and function as intended has
always been a central concern in the field of computer science. This is especially
critical given that these libraries serve as the foundation for countless applications
and are used by billions of devices worldwide. Formal verification offers a rigorous,
mathematically sound way to confirm the accuracy of the software, grounded on
clearly defined behavior criteria expressed in formal logic. While formal verification
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8. CONCLUSION

provides robust assurance of software’s correctness, unlike testing, it often demands
considerable time and resources to define specifications and develop proofs. This
thesis has extended the application of the KeY theorem prover to achieve systematic
verification of object-oriented libraries of the popular programming language Java.
This work may interest non-specialists, as it shows what features of a specification
and verification system we need in order to reason about real-world programs. It is
also beneficial for beginning users of KeY and Isabelle/HOL, as we introduce and
informally explain several key concepts in Chapter 2. We also provide the artifacts
and video materials for each chapter to help in reproducing the proofs underlying
the results. These materials also help the expert user and the developer of KeY as
a ‘benchmark’ for specification and (automatic) verification techniques. Below, we
give a short summary of the contribution for each chapter.

In Chapter 3, we outline the methodology for analyzing an existing Java program to
gain a deeper understanding of its behavior. It emphasizes the importance of precise
specifications, using the JML for clarity. To validate the program’s behavior against
these specifications, the chapter advocates for a formal approach supported by the
KeY tool, which uniquely allows for comprehensive reasoning on Java programs.
This tutorial emphasizes the critical importance of ensuring program correctness in
software libraries, particularly in Java’s standard library, due to their widespread
use and potential for systemic impact.

In Chapter 4, we explore the reasoning about the correctness of Java interfaces, with
a particular application to Java’s Collection interface. We introduce the concept
of a history as a sequence of method calls and returns as a general methodology for
specifying interfaces and verifying clients and implementations of interfaces. This
helps us to develop a novel “proving to interface” methodology.

As a proof-of-concept, using the KeY theorem prover, in Chapter 5, the so-called
EHB approach has been applied to the core methods of Java’s Collection interface.
The EHB approach is to embed histories and attributes in the KeY theorem prover
by encoding them as Java objects on the heap, thereby avoiding the need to change
the KeY system itself. We show our approach is sufficient for reasoning about
interfaces from the client’s perspective, as well as about classes that implement
interfaces. However, the EHB approach uses pure methods that rely on the heap,
giving rise to additional proof obligations every time these pure methods are used
in JML specifications. Moreover, reasoning about the properties of user-defined
functions is complex. For instance, the proofs about multiset attribute modeled as
a pure method take 72 minutes of work.

We then proposed the LHB approach. The LHB approach encodes histories as built-
in ADTs with special proof rules, to avoid modeling histories as Java objects. We
discuss integrating ADTs in the KeY theorem prover by a new approach to model
data types using Isabelle/HOL as an interactive back-end and representing Isabelle
theorems as user-defined taclets in KeY. In Chapter 6, we detail on how we designed
our specification of the Collection interface, and describe in more detail the steps
needed to verify several complex example clients. In this chapter, we have seen
an application of our technique to the case of history-based reasoning. The main
contribution of this chapter is to provide a technique for integrating ADTs, defined
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in the general-purpose theorem prover Isabelle/HOL, in the domain-specific theorem
prover KeY. We describe how data types, functions, and lemmas can be imported
into KeY from Isabelle/HOL. Our LHB approach is not only useful for reasoning
about the Java Collection Framework, but it is a general method that can also be
applied to other libraries and their interfaces. We foresee that our technique can be
extended to other common data types, such as trees and graphs, which provides a
fruitful direction for future work.

The work using the LHB approach has opened up the possibility of defining many
more functions on histories, thus furthering the ability to model complex object be-
havior: this we demonstrated by verifying complex and realistic client code that uses
collections. The binary method takes more than 100 minutes to verify: it is hard to
imagine that it can be done with the EHB approach. Moreover, we significantly sim-
plified reasoning about the properties of user-defined functions themselves. We can
fully automate verification in Isabelle/HOL with user-defined attributes modeled as
a function. Further, while KeY is tailored for proving properties of concrete Java pro-
grams, Isabelle/HOL has more powerful facilities for general theorem proving. Our
approach allows leveraging Isabelle/HOL to guarantee, for example, meta-properties
such as the consistency of axioms about user-defined ADT functions. Using KeY
alone, was problematic or even impossible.

In Chapter 7, we introduce a new history-based proof-theory that allows us to
formally verify that inherited methods are correct with respect to refinements of
overridden methods. Benefiting from the LHB approach, we formulate behavioral
subtyping rules that can be employed to axiomatize various kinds of refinements in
terms of a projection relation: from interface to interface, interface to class, and
class to class. To bring these concepts to real code, we describe a simple running
example that captures the key hierarchy structure and some interesting challenges
in object-oriented programs, e.g. specifying interface protocols. Through this ex-
ample, we demonstrate the practical applicability of our history-based refinement
approach.

8.2 Future work
The research presented in this thesis achieved some interesting results and opened
up several potential research directions that we leave for future work. In this section,
we briefly discuss future directions related to our main topic.

In Chapter 3 and Chapter 4, we discuss the specification and verification of part of
the classes and interfaces provided by the Java Collection framework. To achieve
the ultimate goal of complete formal verification of Java’s Collection Framework still
requires a lot of effort. For example, with our novel approach, one can continue our
specification and verification work on LinkedList, which we introduced in Chapter
3, to include methods like retainAll and removeAll that have not yet been verified.
Furthermore, the verification of other classes in the Java collection framework, such
as ArryList, remains open. While Chapter 4 focuses on the Collection interface,
there are several other interfaces, such as, Map, List, Set and ListIterator, that
warrant attention in future work.
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In Chapter 6, we introduced a technique for integrating ADTs into the KeY the-
orem prover. We outline how data types, functions, and lemmas can be imported
into domain-specific theorem prover KeY from the general-purpose theorem prove
Isabelle/HOL. It is noteworthy that the translation from Isabelle/HOL to KeY is
implemented manually. Our approach leverages that Isabelle/HOL guarantees the
consistency of introducing user-defined ADTs and functions. We manually translate
these ADTs and functions as axioms into KeY using taclet rules, and ensure that
these rules can be accepted and used by KeY. This process requires the verifier to
be very familiar with KeY, Isablle/HOL, JML, taclet rules, etc. From the practical
perspective, an automatic tool that imports Isabelle/HOL theories into KeY based
on our work could be implemented. This would further reduce manual intervention
and enable full automation of the verification process.

In Chapter 7, we proposed a history-based refinement theory to verify the hi-
erarchy structure in widely used object-oriented programs. For instance, within
the Java Collection Framework, the Collection interface serves as a foundational
component within the framework, representing a group of objects and providing
a blueprint for various concrete implementations, including List, Set, and Queue.
The more complex hierarchy structure in the Collection interface can be found in
the class Linkedlist that inherits from AbstractSequqntialList which inherits
from AbstractList and then inherits from AbstractCollection and implements
the List interface. Benefiting from our history-based refinement theory, we can
follow the hierarchy structure to systematically analyze and validate the behavioral
subtyping relations between each class and interface. Besides, the refinement theory
between Iterator and ListIterator is also an interesting direction, as an iterator
requires a notion of ownership since its behavior depends on the history of other
objects. It remains future work to apply this theory to verifying real software. Such
an effort could be used to demonstrate how formal methods improve the reliability
and accuracy of popular object-oriented libraries.

From a long-term perspective, it is worthwhile to consider future work related to veri-
fied code revisions and proof reuse. In Chapter 3, we discussed fixing the LinkedList
class by explicitly bounding its maximum size to Integer.MAX_VALUE elements, but
other solutions are possible. Rather than using integers indices for elements, one
could change to an index of type long or BigInteger. Such a code revision is how-
ever incompatible with the general Collection and List interfaces (whose method
signatures mandate the use of integer indices), thereby breaking all existing client
code that uses LinkedList. Clearly, this is not an option in a widely used language
like Java or any language that aims to be backward compatible. It raises the chal-
lenge: can we find code revisions that are compatible with existing interfaces and
their clients? We can take this challenge even further: can we use our workflow to
find such compatible code revisions, and are they also amenable to formal verifica-
tion? For code reuse, many case studies in mechanic verification [1, 23, 73] indicate
that the main bottleneck today is not verification, but specification. For example,
the LinkedList case study comprised approximately 18-21 person months in total.
But once the specifications were in place, after many iterations of the workflow,
producing the actual final proofs took only 1-2 weeks!
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Specifications typically need to be developed incrementally during the proof effort,
but there is little support for such an incremental approach in KeY: minor speci-
fication changes, like adding a conjunct to a class invariant, often require to redo
nearly the whole proof, causing an explosion in the amount of effort needed. This
vulnerability to change arises partly from proof rules that have a very fine granu-
larity: proof rule applications explicitly refer to the indices of the (sub) formulas
the rule is applied, resulting in fragile specifications. In the current version of KeY,
proofs consist of actual rule applications (rather than higher-level macro/strategy
applications), and proof rule applications explicitly refer to the indices of the (sub)
formulas the rule is applied to. This results in a fragile proof format, where small
changes to the specifications or source code (such as code refactoring) break the
proof. Moreover, the rule set used may change in different versions of KeY, limiting
backward compatibility for proofs made in a different KeY version. To improve the
reusability of proofs, one can develop a versioning system for proof rules that use
very fine-grained proof representations. The automatic generation of high-level proof
scripts by monitoring the interactions between the proof engineer and the prover is
also future work. Dealing with modifications of the underlying proof system of the
theorem prover while supporting resuming existing, possibly partial proofs (through
the versioning system and proof gaps) is also an interesting future direction.
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