
Reasoning about object-oriented programs: from classes to interfaces
Bian, J.

Citation
Bian, J. (2024, May 21). Reasoning about object-oriented programs: from classes to
interfaces. Retrieved from https://hdl.handle.net/1887/3754248

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3754248

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3754248

Chapter 7

History-based reasoning about
behavioral subtyping

Behavioral subtyping [28], a concept predicated on the behavior of objects, is a key
principle in object-oriented programming. This principle ensures that a subtype
should seamlessly substitute its supertype without affecting the desirable properties
or expected behavior of a program. The importance of this concept is particularly
evident in the development of type hierarchies and type systems of programming
languages that enable polymorphism and inheritance.

In this chapter, we introduce a new history-based proof-theory for reasoning about
behavioral subtyping in class and interface hierarchies. Our approach is based on a
semantic definition of types in terms of sets of sequences of method calls and returns,
so-called histories. Behavioral subtyping is then naturally defined semantically as a
set-theoretic subset relation between sets of histories, modulo a projection relation
that captures the syntactic subtype relation. The main contribution is a Hoare-style
proof theory for the specification and verification of the behavioral subtyping relation
in terms of histories, abstracting from the underlying implementation. Through the
use of a banking example we show the practical applicability of our approach.

This chapter is based on the following publication and artifact:

• Bian, J., Hiep, H.A., de Boer, F.S. History-based Reasoning about Behavioral Subtyping.
(Submitted for publication.)

• Bian, J., Hiep, H. A., de Boer, F. S. (2024). History-Based Reasoning about Behavioral
Subtyping: Proof files.
https://doi.org/10.5281/zenodo.10998227

101

7. HISTORY-BASED REASONING ABOUT BEHAVIORAL SUBTYPING

7.1 Introduction

The programming to interfaces discipline is one of the most important principles
in software engineering. This methodology allows the developer of client code to
abstract away from internal implementation details, such as object state, thereby
aiding modular program development. Type hierarchies support this principle in
object-oriented design by allowing the declaration of new subtypes that inherit prop-
erties and behaviors from their supertypes, while also providing the flexibility to add
or override specific features as needed. The concept of behavioral subtyping (which
refers to subtyping based on behavior, in contrast to nominal subtyping and struc-
tural subtyping [77]) ensures that in clients one should be able to replace the use of a
supertype by a subtype without causing unexpected behavior [27, 78]. This concept
is employed in object-oriented programming to ensure software maintainability and
robustness.

Histories, as defined in our previous work [53], are sequences of method calls per-
formed on the object. We define the semantics of a type as a set of histories, thus
abstracting from the underlying state/implementation. This allows to define the
behavioral subtype relation semantically as subset relation between sets of histories,
modulo a projection relation between histories that corresponds with the syntactic
definition of the subtype relation. For the specification and verification of the be-
havioral subtype relation we introduce method contracts using Hoare triples that
involve suitable user-defined abstractions over histories, called attributes. We dis-
cuss behavioral subtyping in three settings: class-class inheritance, class-interface
inheritance, as well as interface-interface inheritance.

There has been numerous research on behavioral subtyping [79, 80, 81, 82], starting
from the seminal work by Liskov and Wing [28], who point out that a subtype must
adhere to the behavioral contracts of its supertype. To define the subtype relation,
they introduced an abstraction function that maps the state of each subtype to a
state of its corresponding supertype. The soundness of the substitution principle
follows from two conditions: the precondition of the supertype implies the precondi-
tion of the subtype, and the postcondition of the subtype implies the postcondition
of the supertype. The pre/postconditions of the subtype speak of the state of the
subtype, whereas the pre/postconditions of the supertype speak of a different state:
so the abstraction function takes a state of the subtype and maps it to a state of
the supertype in such a way that these conditions hold. Is worth mentioning that
in Liskov and Wing’s work, they introduce a notion of history constraint, which is
different from our notion of a history. Their history refers to temporal properties of
objects, which are used to declare a relationship between pre-states and post-states
preserved by any method of a type [83]. Leavens and Weih [84, 85, 86] present
a technique for the modular reasoning about object-oriented programs, called su-
pertype abstraction, which allows adding behavioral subtypes without reverification.
However, their method is based on the assumption that each specified subtype re-
lation constitutes a behavioral subtype. Demonstrating such behavioral subtyping
requires again the use of an abstraction function. Although there have been several
logics for the reasoning about object-oriented programs including a notion of behav-
ioral subtyping, such as [87, 88, 89], they are all based on the abstraction function.

102

7.2 Methodology

In the field of refinement calculus [90, 91, 92], which focuses on the stepwise trans-
formation of an abstract specification into an executable implementation, one also
uses the abstraction functions. These functions help in mapping implementation to
specification, ensuring that each refinement step is correct.

In contrast to the above related work the history-based reasoning approach in this
paper avoids formulating ad hoc abstraction functions between different state-based
implementations. Instead it is based on a general semantic definition of the be-
havioral sub-type relation as a subset relation between sets of histories modulo a
projection relation. Further, our proof method is based on the use of suitable user-
defined history abstractions which allows for a modular verification of the proof
obligations. Finally, our approach is applicable to both interfaces and classes, and
allows reasoning about behavioral subtyping in settings that are typically absent in
most related studies [84, 93, 94, 95].

The paper is intentionally written to introduce and motivate a new idea rather
than to work out all the formal details. We discuss the methodology of history-
based behavioral subtyping in Sect. 7.2. Our specification methods are presented
in the context of history and attributes. In Sect. 7.3, we use a banking example
to illustrate our approach. We provide only informal proofs for three particular
subtype relations: interface-interface, interface-class, and class-class. The part of
this example is proven using the KeY theorem prover [23] and Isabelle/HOL [33].
The verification workflow is based on our previous work [96].

7.2 Methodology

In object-oriented programming, a method signature consists of a list of parameter
types and a return type. An interface contains a set of method signatures. A class
consists of a set of field declarations and a set of method declarations.

The type hierarchy for classes and interfaces in languages with a nominal type system
can be declared as below:

interface I [extends I1, I2, . . . , In]

class C ′ [extends C] [implements I1, I2, . . . , In]

An interface can extend zero or more interfaces, which is known as interface inheri-
tance. When one interface extends another, it inherits all of the methods defined in
its super interfaces, but it can also add new methods of its own. A class can inherit
from multiple interfaces, by providing implementations for all methods defined in
the interfaces. However, a class can only inherit from a single class. This is due to
the fact that class inheritance is typically used for defining the (memory) structure
of a class. Allowing multiple inheritance of classes can potentially lead to conflicts
among class invariants [97] and ambiguity, as exemplified by the so-called diamond
problem [98].

The basic behavioral notion of subtyping discussed in [28] is shown as in Fig. 7.1.
A Hoare triple specification, denoted as {p}m {q}, consists of a method m, a pre-

103

7. HISTORY-BASED REASONING ABOUT BEHAVIORAL SUBTYPING

condition p that describes the object state before the method is executed, and a
postcondition q that describes the expected object state after the method is exe-
cuted. In Fig. 7.1, we have {p}m {q} on top and {p′}m {q′} below, which represent
the supertype and subtype specification of m, respectively, where m is a method
inherited by the subtype from the supertype.

Figure 7.1: The behav-
ioral notion of subtyping.

From the perspective of a client, we ensure before a
method call that the precondition of the supertype
holds, so that after dynamic dispatch where we jump
to the implementation of the subtype, we also need
that the precondition of the corresponding method in
the subtype holds. After the execution of the subtype
method finishes, it reaches the postcondition of the sub-
type’s method. This postcondition should also imply

the postcondition of the method in the supertype, since the client assumes that
the postcondition of the supertype holds after the method returns. Moreover, if
both types are classes then the invariant of the supertype must be preserved in the
subtype.

However, typically the precondition and postcondition, given in some specification
language, are intrinsically state-based and as such are not directly suitable for the
specification of a state-hiding interface. In history-based reasoning, we introduce
the concept of a history that can be seen as the most general abstraction of the
state space of an interface. There are two approaches: the executable history-
based (EHB) approach [53], and the logical history-based (LHB) approach [96]. In
the former approach, histories become part of the run-time environment and are
encoded as objects. In the latter approach, histories do not exist at run-time and
are only introduced as bookkeeping devices for reasoning, similar to ghost variables.
We proceed with the latter approach. In the LHB approach, histories are modeled
as elements of an abstract data type (ADT). This means histories are immutable
and inaccessible: no program can modify or even inspect a history value.

A history is a sequence of events. Every method is represented by a corresponding
event type, that records the types of the parameters and the type of the return
value. For technical convenience, we only regard normal returns from method calls
as events. For each class and interface, we introduce a history type by defining it as
an inductive data type of sequences of events.

Following the information hiding principle, we assume an object encapsulates its
own state. Consequently, each object can enforce invariants over its own fields and
its state can be completely determined by the sequence of method calls invoked on
the object. Attributes are user-defined abstractions of histories that are in general
defined inductively over the history. These attributes are used in method specifica-
tions to specify the intended behavior of implementations, and by using attributes
the method specifications do not depend on the (hidden) state of an object.

The overall approach in history-based reasoning can be summarized by the following
diagram, see Fig. 7.2. We will now provide more details on each of the components
in Fig. 7.2.

104

7.2 Methodology

Figure 7.2: History-based reasoning about behavioral subtyping. In R(h, g), h rep-
resents the history of the supertype and g represents the history of the subtype. In
Um(h, g), h represents the history in the post-state, g represents the history in the
pre-state and m is the corresponding method.

7.2.1 History-based refinement theory

To establish that the behavioral subtype relation holds between two types, we define
a set of proof obligations between the preconditions and postconditions of methods
inherited by a subtype. For a modular verification of these proof obligations we
introduce a methodology that consists of two parts: verification of the refinement
relation and, separately, verification of the proof obligations generated from method
specifications, assuming the refinement relation. The method specifications refer to
the attributes of the associated history, and abstract from the inductive definition of
the history and its attributes. The refinement relation on the other hand captures
logically the relationship between attributes of different histories, namely the histo-
ries of the supertype and the subtype. The axioms of the refinement relation itself,
as a logical theory, should be established as logical consequences of the inductive
definitions of the attributes and the projection relation.

This assumption can be justified as follows. When a method from a subtype that
inherits from a supertype in the hierarchy is called, updates are made to both the his-
tories of supertype and subtype. However, for methods only present in the subtype,
updates are made only to the history of the subtype, while that of the supertype
remains unchanged. This design choice is intentional to avoid the potential issues
that may occur if the subtype is cast to the supertype. More general approaches,
where the history of a subtype can be simulated by a history of the supertype, are
out of scope in this paper. For any given histories h and g, where h is a projection
of g, the user-defined refinement relation R(h, g) describes a logical relation between
the attributes of h and g, abstracting from their inductive definitions. Note that
attributes in general may have different meanings when interpreted by the history
of a supertype or by the history of a subtype.

105

7. HISTORY-BASED REASONING ABOUT BEHAVIORAL SUBTYPING

The proof obligations, also called verification conditions, for interface-interface re-
finement, interface-class refinement and class-class refinement are shown below. For
a supertype, h represents the history of the supertype, p represents the precondi-
tion and q represents the postcondition. For a subtype, g represents the history
of the subtype, p′ represents the precondition and q′ represents the postcondition.
For classes, I and I ′ denote the superclass and the subclass invariant, respectively.
Class invariants in general describe a (logical) relation between the fields of a class
and the attributes of the assoctated class. In proving the verification conditions
for the pre- and postconditions of the inherited methods, the refinement relation
is assumed. It should be noted that, by using the logical consequence relation ⊢,
the history variables h and g are implicitly universally quantified (on both sides
of ⊢). The refinement relation itself involves a separate proof obligation which is
formulated by

h = proj (g) → R(h, g)

That is, the logical relation between the attributes of the histories of the super-
type and the subtype should follow from the projection relation and their inductive
definitions.

Verification Condition IIR (Interface-Interface Refinement).

R(h, g) ⊢ (p→ p′)

R(h, g) ⊢ (q′ → q)

Verification Condition ICR (Interface-Class Refinement).

R(h, g) ⊢ (p ∧ Inv′ → p′)

R(h, g) ⊢ (q′ ∧ Inv′ → q)

Verification Condition CCR (Class-Class Refinement).

R(h, g) ⊢ (Inv′ → Inv)

R(h, g) ⊢ (p ∧ Inv′ → p′)

R(h, g) ⊢ (q′ ∧ Inv′ → q)

7.2.2 Verifying method call and method implementation

In the usual manner, method calls are verified in terms of the corresponding method
specification (as determined by the static type of the callee expression). This involves
the usual substitution of the formal parameter by the actual parameter. More
specifically, a method specification {p}m(ū) {q} can be instantiated to a method call
x = y.m(ē) by substituting this with the calling object y and the method parameters
ū with the actual arguments ē in the preconditions and postconditions.

To validate the postcondition of a method body, which specifies the corresponding
update of the associated history, we assume in the following method implementation
rule a logical update relation Um(h, h

′) between the attributes of the updated history
h and the ‘old’ history h′.

Rule 1 (Method implementation Rule). Given the method definition {p}m {q}, the

106

7.3 Case study

body S of m, and the class invariant I, we have the rule

{p ∧ I}S {r} Um(h, h
′) ⊢ r → (q ∧ I)

{p}m {q}

This rule thus allows to abstract from the inductive definitions of the history at-
tributes in the validation of the method body. The logical update relation Um(h, h

′)
between the attributes of the updated history h and the ‘old’ history h′, then can
be established separately as a logical consequence of h = Cons(m(x̄, result), h′)
which directly describes the relation between the updated history and the old one
in terms of their sequence structure. Here x̄ are the actual parameters and result is
the return value. The result variable here may either be null (indicating no return
value) or contain a return value.

7.3 Case study

In this section, we introduce a banking example to illustrate the methodology dis-
cussed in Section 2. This example features a type hierarchy, which allows us to
demonstrate our ideas effectively. It also presents some interesting challenges that
occur in real-world programs, such as how to enforce protocol at the interface level
where we have no access to the underlying state. We also consider some real-world
scenarios, like how to extend functionality in existing programs. We implement the
case study by defining the ADTs in Isabelle/HOL, and used ADTs in specification
and KeY proof for Java programs. The artifact accompanying this paper [99] in-
cludes the full Isabelle theory of banking example and the proof files for the example
discussed later.

In the banking example, we have two interfaces: the Saving interface and the
Payment interface.

interface Saving {
void deposit(int i);
int getbalance();

}

Listing 7.1: The Saving interface.

interface Payment extends Saving {
boolean query(int i);
void withdraw();

}

Listing 7.2: The Payment interface.

The Saving interface, as shown in Listing 7.1, specifies methods for depositing an
integer amount into the account and for retrieving the current balance. The Payment
interface (Listing 7.2) defines two methods: the query method and the withdraw
method. The query method is used to check whether there are sufficient funds in
the account before each withdrawal.

The method signatures of the interface are designed to allow for the expression of
the intended protocol, similar to how interfaces in Java Collection Framework are
explained in informal Javadoc documentation [71]. The protocol for the Payment
interface stipulates that the withdraw method can only be invoked when the return
value of the query is true. This protocol is designed to protect the interface from

107

7. HISTORY-BASED REASONING ABOUT BEHAVIORAL SUBTYPING

executing invalid withdrawal operations that could potentially lead to errors in the
system (e.g. increasing the balance by calling withdraw multiple times).

We have three classes for our example, the Account class, the Credit class and the
Debit class. The Account class (Listing 7.3) implements the methods defined in the
Saving interface.

class Account implements Saving {
int balance; // field
void deposit(int i) { balance=balance + i; }
int getbalance() { return balance; } }

Listing 7.3: The Account class.

The Credit class (Listing 7.4) permits withdrawals even if the balance is insufficient,
similar to a real-world credit card. The query method, which is designed to check
whether there are sufficient funds in the account before each withdraw method: in
the case of the credit card, the caller always receives an affirmative response.

class Credit implements Payment {
int request = −1; int balance; // fields
void deposit(int i) { balance=balance + i; }
int getbalance() { return balance; } }
boolean query(int i) { request = i; return true; }
void withdraw() { balance = balance − request; request = −1; }}

Listing 7.4: The Credit class.

In contrast, the Debit class (Listing 7.5) allows withdrawals only if the account
has sufficient funds. This condition is determined by the return value of the query
method. Specifically, it is true if and only if the balance is greater than or equal the
argument.

class Debit extends Account implements Payment {
int request = −1; // field
boolean query(int i) {

if (balance ≥ i) { request = i; return true; } else return false; }
void withdraw() { balance = balance − request; request = −1; }}

Listing 7.5: The Debit class.

The hierarchical structure for our running example is depicted in Fig. 7.3.

7.3.1 History-based reasoning

In this subsection, we illustrate how we formalize ADTs for banking examples. We
define data types and functions to logically model domain-specific knowledge of the
Java program that we want to verify. Although these definitions cannot directly
reference Java types, they can instead be defined using polymorphic type parame-
ters. One defines data types and recursive functions using the datatype and fun
commands.

108

7.3 Case study

Figure 7.3: The type hierarchy of our running example.

The data types events contain the method name, the actual parameter values, and
the output value (which is the final argument of the event) of a method call. The
events are designed to be generic and do not contain information about the caller.
This design choice makes events useful for a general history-based theory that is
related to the caller. With regard to methods, there are methods like deposit that
take an integer as a parameter but have no return value, whereas the getbalance
method takes no input parameters but returns an integer. To distinguish between
the input type and output type, we use a unit type void to represent the absence
of a meaningful value. As discussed above, each subtype includes the events that
are inherited from its supertype. For example, the definitions of the events for the
interfaces in our running example are as follows:

datatype saveEvent = deposit(int,void) | balance(void, int)

datatype payEvent = deposit(int,void) | balance(void, int) |
query(int,bool) | withdraw(void,void)

The concept of history is formally defined as an inductive data type of a sequence of
events. Rather than employing temporal logic or formalizing history as an indexed
set of events, we find that inductive data types offer a more convenient approach for
defining attributes by induction and are easier to integrate with theorem provers in
general. Thus, we introduce the history as a parameterized inductive datatype:

datatype history(α) = Empty | Cons(α, history(α))

The type parameter α corresponds to the type of event occurring in the history,
such as saveEvent and payEvent . For example, we can instantiate the parameter
by the datatype saveEvent to obtain the histories for the Saving interface, which
is represented as history(saveEvent). The history data type uses the constructors
Empty and Cons , indicating that the history is either empty or composed of an event
as its head and another history as its tail. When a new event is added, the new

109

7. HISTORY-BASED REASONING ABOUT BEHAVIORAL SUBTYPING

event, along with its argument and return type, becomes the head of the history,
while the old history turns to become the tail. It is worth mentioning that a history
is generated in reverse order, which means that the last generated event appears at
the start of the sequence.

The amount attribute, defined below, denotes the total amount of money in a given
account. Intuitively, it serves as a snapshot representation of the interface’s ‘con-
tents’ at a particular instant. In the Saving interface, amount is defined inductively
over the structure of the saving history, as shown below: a successful deposit in-
creases the amount of money according to the value of the provided argument. We
use null to represent a constant of type void.

fun amount : history(saveEvent) ⇒ int

amount(Empty) = 0

amount(Cons(deposit(i, null), h)) = amount(h) + i

amount(Cons(balance(null, i), h)) = amount(h)

Attributes of history are treated similarly as “fields” in a class. To be specific,
attributes defined by a supertype can be freely used and reinterpreted by its subtype.
In our case, we redefine the amount attribute based on the payment history, taking
the new methods query and withdraw into account.

fun amount : history(payEvent) ⇒ int

amount(Empty) = 0

amount(Cons(deposit(i, null), h)) = amount(h) + i

amount(Cons(balance(null, i), h)) = amount(h)

amount(Cons(query(i, b), h)) = amount(h)

amount(Cons(withdraw(null, null), h)) =

amount(h)− (ready(h) ? take(h) : 0)

We define attributes ready and take as follows: given a history, ready checks whether
the previous query event has returned true, and if so, take returns the parameter
of query method.

fun ready : history(payEvent) ⇒ boolean

ready(Empty) = false

ready(Cons(query(i, b), h)) = b

ready(Cons(withdraw(null, null), h)) = false

ready(Cons(e, h)) = ready(h)

fun take : history(payEvent) ⇒ int

take(Empty) = −1

take(Cons(query(i, b), h)) = (b ? i : −1)

take(Cons(withdraw(null, null), h)) = −1

take(Cons(e, h)) = take(h)

110

7.3 Case study

In the last clause, e is any event of payEvent not specified in the clauses above.

7.3.2 History-based specification

We now formulate method contracts of the methods of interface and class, making
use of histories and its attributes. By overloading field access notation, we can treat
the attributes of a history associated with this like how we would treat an unqualified
field. For example, when considering the amount defined in the Saving interface, we
can use syntactic sugar to simplify amount(h) which h is of type history(saveEvent)
to just amount within the Saving interface. For external objects, we can explicitly
indicate the object of which the corresponding history is taken in an attribute.
Listing 7.6 shows a concrete example: suppose we would add a default method
transfer to the Payment interface, that performs a withdrawal and immediately
transfers the amount to the given Saving instance, then the postcondition illustrates
that the amount of (the history of) this decreases, while the amount of (the history
of) the receiver increases. Moreover, this example illustrates why hiding the concrete
structure of a history from specifications is useful: while the default implementation
does not record transfer as an event in the history of Payment and instead records
the events which are used by the default implementation (in our case withdraw), non-
default implementations do record a transfer event, thus have a different structure
of the history.

// Transfer money from this Payment account to the given Saving account
{ready = true ∧ take = i}
default void transfer(int i, Saving s) { withdraw(); s.deposit(i); }
{(s ̸= this → amount = old(amount)−i ∧ s.amount = old(s.amount)+i) ∧
(s = this → amount = old(amount))}

Listing 7.6: An example to specify the object of a history explicitly.

To avoid introducing a logical freeze variable, which would capture the history as
it were in the pre-state, we use the notation old as a logical operation on terms
to denote the attribute value evaluated in the pre-state of the method call, where
old distributes over pure operations such as arithmetical functions. In the postcon-
dition, amount in our example refers to the amount after the method call, while
old(amount) represents the amount before the method call.

An interface specification includes the name of the interface being specified and the
method signatures that the interface provides along with their respective precondi-
tion and postcondition. Listing 7.7 illustrates the use of the history attribute in the
specification of the Saving interface.

Specification(Saving) =
({i ≥ 0} void deposit(int i) {amount = old(amount)+i},
{true} int getbalance() {amount = old(amount) ∧ result = amount})

Listing 7.7: The specification of the Saving interface in terms of attribute amount .

The special variable result in the postcondition captures the return value of a
method.

111

7. HISTORY-BASED REASONING ABOUT BEHAVIORAL SUBTYPING

The specification of the Payment interface in terms of the attribute amount is shown
in Listing 7.8.

Specification(Payment) =
({i ≥ 0} void deposit(int i) {amount = old(amount)+i},
{true} int getbalance() {amount = old(amount) ∧ result = amount},
{i ≥ 0} boolean query(int i) {amount = old(amount) ∧

result = ready ∧ (ready → take = i)},
{ready} void withdraw() {amount = old(amount−take) ∧ ¬ready)

Listing 7.8: The specification of the Payment interface in terms of attributes amount .

One should observe that the return value of the query method remains unspecified,
thereby leaving design decisions open for subtypes and implementors. The intended
meaning of the query method is to check whether money can be withdrawn from
the account. Two implementations can be considered: a credit account (see Listing
7.10) and a debit account (see Listing 7.11). It is not possible to further specify the
result in the Payment interface in a way that is compatible with both subtypes.

In addition to the type name and method specifications, a class specification may
also contain the class invariant. The class invariant is an essential component of
the class specification that should hold in the pre- and post-state of each method
execution [97]. The method specifications of a class are described in terms of both
fields and history attributes. The specification of the Account class is shown in
Listing 7.9.

Specification(Account) =
(balance = amount ∧ balance ≥ 0, // class invariant
{i ≥ 0} void deposit(int i) {balance = old(balance)+i},
{true} int getbalance() {balance = old(balance) ∧ result = balance})

Listing 7.9: The specification of the Account class.

The specification of the Credit class and the Debit class are present in Listing 7.10
and Listing 7.11, respectively.

Specification(Credit) =
(balance = amount ∧ request = take // class invariant
{i≥0} void deposit(int i) {balance = old(balance)+i},
{true} int getbalance() {balance = old(balance) ∧ result = balance},
{i≥0} boolean query(int i) {balance = old(balance) ∧

result = true ∧ request = i},
{request ̸= −1} void withdraw() {request = −1 ∧

balance = old(balance−request)})

Listing 7.10: The specification of the Credit class.

The value of result for the query method is explicitly specified in the classes Debit
and Credit that implement the interface. Specifically, for the Credit class, result
is unconditionally true. Conversely, for the Debit class, result is true when and

112

7.3 Case study

only when the balance ≥ i. Note that these two conditions are not compatible: no
debit object can be considered as a credit object.

Specification(Debit) =
(balance = amount ∧ request = take ∧ balance ≥ 0 ∧ balance ≥ request,
{i ≥ 0} void deposit(i) {balance = old(balance)+i},
{true} int getbalance() {balance = old(balance) ∧ result = balance},
{i≥0} boolean query(i) {balance = old(balance) ∧ request = i ∧

result=(balance≥i)},
{balance ≥ request ∧ request ̸= −1} void withdraw()

{request = −1 ∧ balance = old(balance−request)})

Listing 7.11: The specification of the Debit class.

The preconditions and postconditions effectively specify protocols for methods. For
instance, suppose that the withdraw method should only be invoked following a valid
query. In both the withdraw method in the Debit and Credit class, we impose a
precondition constraint request ̸= −1. When dealing with an interface method
where we have no access to the underlying state, such as in the Payment interface
(Listing 7.8), the protocol can describe using the attribute of history, specifically the
ready attribute in this case. This allows us to capture the return value of a previous
query, abstracting from the underlying implementation.

7.3.3 Behavioral subtyping

In this subsection, we discuss the refinement of interface-interface, interface-class,
and class-class in the context of the banking example. Let us start with interface-
interface refinement. The example we provide is the deposit method in the Saving
interface (Listing 7.7) and its subtype, the Payment interface (Listing 7.8). First, we
consider formulating the refinement relation. For user-defined refinement relation
R(h, g), h is of type history(saveEvent), and g is of type history(payEvent), we can
formulate R(h, g) according to the definition of amount for both the Saving and
Payment interfaces, as provided below: every time the withdraw is called within
the Payment interface and returns a true value, the amount attribute defined on the
Payment history will decrease. To reflect this behavior, we introduce a new attribute,
withdrawamount , to accumulate the total amount successfully withdrawn:

fun withdrawamount : history(payEvent) ⇒ int

withdrawamount(Empty) = 0

withdrawamount(Cons(withdraw(null, null), h)) =

withdrawamount(h) + (ready(h) ? take(h) : 0)

withdrawamount(Cons(e, h)) = withdrawamount(h)

again e is any payEvent not mentioned above.

Due to the introduction of the new attributes, we need to modify the method spec-
ification to capture the behavior of the interface. In this example, the method
within the Payment interface requires modification for the introduction of attribute
withdrawamount , as illustrated in Listing 7.12.

113

7. HISTORY-BASED REASONING ABOUT BEHAVIORAL SUBTYPING

Spec(Payment) =
({i≥0} void deposit(i) {amount=old(amount)+i ∧

withdrawamount=old(withdrawamount)}, ...)

Listing 7.12: The deposit method specification for the Payment interface. The
specifications for other methods within the Payment interface have also been revised.

We can then define the refinement relation as follows:
R(h, g)

def≡ amount(h) = amount(g) + withdrawamount(g)

For h : history(saveEvent) and g : history(payEvent), we can formulate R(h, g)
by unfolding the attribute definition of h and g.

Now we apply Liskov and Wing’s method rules to supertype and subtype in order to
generate the verification conditions for behavioral subtyping. We first consider the
implication between the preconditions of both types, where i serves as the actual
parameter of the deposit method. The proof seems straightforward: i ≥ 0 → i ≥ 0
is trivial. But what about postcondition amount = old(amount) + i → amount =
old(amount) + i? We cannot directly prove this due to the attribute amount of
the Saving history is different from the attribute amount of the Payment history, as
amount definition given in below. Even though attribute names may be identical,
their definitions are specific to and can differ between different histories.

Instead, by de-sugaring and renaming the attribute, we explicitly get the amount of
h, which is of type history(saveEvent), and g, which is of type history(payEvent).
Since old distributes over pure operations, the designation of an attribute with the
keyword old means to take the attribute of the old history, that is, the history
prior to the method call. Thus, the expression old(amount(g)) is equivalent to
amount(old(g)). We now have to show the following verification condition:

amount(g) = amount(old(g)) + i
↓

amount(h) = amount(old(h)) + i
(VC1)

However, the condition (VC1) remains unproven because there is a lack knowledge
about the internal structure of the history and the definition of the attributes. To
solve this issue, we use the refinement relation which allows us to relate the his-
tories of supertype and subtype, and then we can further relate predicates about
the supertype to those about the subtype and vice versa. By assuming R(h, g), h
represents the history of the supertype and g represents the history of the subtype,
we can get the refinement relation for the history in the state where the method call
started for free, that is R(old(h), old(g)). We then can simply prove the VC1.

amount(g) = amount(old(g)) + i ∧
withdrawamount(g) = withdrawamount(old(g))
amount(h) = amount(g) + withdrawamount(g) ∧

amount(old(h)) = amount(old(g)) + withdrawamount(old(g))
↓

amount(h) = amount(old(h)) + i

114

7.3 Case study

The refinement for interface and class needs to take into account the class invariants.
The specific example of interface-class refinement involves the precondition of the
withdraw method of the Payment interface and its subclass, the Debit class. We
can derive the following from their specifications (Listing 7.8 and Listing 7.11) based
on the precondition rule:

ready(h) → (balance ≥ request ∧ request ̸= −1) (VC2)

In the attribute declaration ready(h), the type of variable h is history(payEvent).

In this case, the Debit class fully inherits from the Payment interface. Thus, the
refinement relation between them is as follows:

R(h, g)
def≡ ready(h) = ready(g) ∧ amount(h) = amount(g)

The parameter h is an instance of the datatype history(payEvent), while g is an
instance of the datatype history(debitEvent).

One can see that only the refinement relation is not sufficient to solve the VC2. The
class invariant of the Debit class contains balance = amount and request = take
which relates the attributes amount and take to the fields balance and request.
By assuming the refinement relation, alongside the class invariants shown in Listing
7.11, we can prove the VC2: according to the definition of the attribute, if ready
returns true, then take ̸= −1.

ready(h) ∧
balance = amount(g) ∧ request = take(g)

balance ≥ 0 ∧ balance ≥ request
ready(h) = ready(g) ∧ amount(h) = amount(g)

↓
balance ≥ request ∧ request ̸= −1

Now we turn to focus on class-class refinement. The relation between two classes
needs to consider the use of class invariants in both the superclass and the subclass.
If invariants can be employed in supertypes for reasoning, subtypes must also obey
these invariants. To be specific, the complete invariant of a subclass specification
is formed as a conjunction of both the invariant in the supertype and the unique
invariant specific to the subtype itself. The class invariant, which typically connects
the fields and attributes of history, can leverage refinement relation to prove the
verification conditions. To be specific, given a refinement relation between a subclass
and a superclass, if the class invariants for the subclass hold, it would logically follow
that the class invariants for the superclass also hold. In the banking example, an
invariant property of the Account class is that its balance is always greater or equal
to zero. The Credit class allows one to withdraw money even if the balance is
negative, so the Credit class cannot be a subclass of the Account class. Conversely,
the Debit class inherits invariants from the specification of the Account class and
also has its own invariants, as outlined in Listing 7.11.

We now delve deeper into the design problem of method placement within the type
hierarchy, in order to emphasize the importance of adherence to the behavioral

115

7. HISTORY-BASED REASONING ABOUT BEHAVIORAL SUBTYPING

subtyping rule. In most cases, developers have the flexibility to decide at what level
a method should be placed. For instance, the Payment interface introduces two new
methods: query and withdraw. One potential approach is to define the withdraw
method within the Payment interface and introduce the query method exclusively
as an addition to the Debit implementation. However, this approach clashes with
behavioral subtyping, which requires the implication ready → balance ≥ request∧
request ̸= −1 to hold, but ready cannot be given a sensible meaning at the level of
the Payment interface without the query method. Thus, in our running example, we
define the query method in the supertype. This allows the subclasses to implement
the method, thereby ensuring compliance with behavioral subtyping.

From a developers’ perspective, another important consideration is how to extend
the functionality of a program. For example, with the increasing need for security,
the system may require an additional step: entering the pin code to verify whether
the person withdrawing money is legitimate. Instead of modifying the existing
Payment interface, a new sub-interface, named Security, can be defined. This sub-
interface would include a new attribute, pin, designed to capture the entered pin
code. Thus, in the query method, the subtype need to add a new precondition to
verify the correctness of the pin code. Benefiting from our approach, we do not
need to reconstruct abstract functions for each state, but only formulate refinement
relations between the new type and its supertypes and subtypes to ensure behavioral
subtyping.

7.3.4 Example of method call and implementation

We exemplify the method call rule through a client-side example: the verification of
the mybalance method, as shown in Listing 7.13.

class ClientExample{
{true}
int mybalance(Saving s){
int i = s.getbalance(); return i;}
{result = s.amount ∧ s.amount = old(s.amount)}

{j≥0}
int myAccount(Debit d, int j){

d.deposit(j); int r = mybalance(a); return r;}
{result = d.amount ∧ d.amount = old(d.amount)+j}

}

Listing 7.13: Client code that illustrate the method call rule.

At the beginning of the method, its precondition is assumed. To verify the call
to getbalance method, we rely on the specification of the callee, in this case, the
Saving interface (with specifications provided in Listing 7.7). By substituting the
callee for the implicit receiver this in the specification, we can assume the postcon-
dition.

{true} result = this .mybalance(Saving s) {result = s.amount}

116

7.4 Summary

The technique for method call verification relies on the method specification, which
uses the attributes and fields to describe the expected behavior of the method. The
verification of clients based on those method specifications leaves histories unin-
terpreted, thereby eliminating the need to prove the correctness of the method’s
implementation each time the method is called. For myAccount method, the veri-
fication of the method call is independent of the implementation of the argument.
This means that only the specification given in the Account is accessible. We can
prove the postcondition of the myAccount method by referring to the history of the
Account class and its corresponding redefinition of the attribute amount .

A specific example of method implementation we can consider the deposit method
in the Account class, as shown in Listing 7.14.

class Account implements Saving {
balance ≥ 0 ∧ balance = amount , //invariant
{i≥0}
void deposit(i){balance=balance+i;}
{balance=old(balance)+i}

}

Listing 7.14: The deposit implementation in the Account class.

One verification condition involves reasoning about the class invariant balance =
amount should hold before and after the method deposit call. We verify the
deposit method is correct with respect to the contract. How can we show the
attribute amount also changed without knowing the internal structure of the his-
tory and the attribute definition? Within the implementing class, the history is
defined by the field this, which is updated during the method call with a newly
created history that involves the new event: the deposit event. Attributes are used
to map the history to a particular value, with the update of the history, the value
of the attribute also changed.

For the example in Listing 7.14, we can establish the update relation in terms of the
attributes as below. This can be verified by unfolding the amount definition.

amount(Cons(deposit(i, null), h′)) = amount(h′) + i

We provide a manual translation as amount = old(amount)+i, so it can be used in
the verification condition. One can prove the class invariant by showing that both
the class field and attribute increase accordingly.

7.4 Summary

Programming to interfaces, a key principle in object-oriented programming, is fun-
damental to numerous popular frameworks that offer hierarchies of interfaces and
classes. These interfaces abstract from state and implementation, enhancing modu-
larity and maintainability in software systems. Behavioral subtyping complements
the practice of programming to interfaces by ensuring that subtypes not only match

117

7. HISTORY-BASED REASONING ABOUT BEHAVIORAL SUBTYPING

the method signatures defined by their supertypes but also adhere to the intended
behaviors.

The main contribution of this chapter is to develop a general history-based refine-
ment approach for verifying behavioral subtyping, allowing consistent program spec-
ification at different abstraction levels. Our methodology enables us to reason about
interfaces, generating interfaces-based behavioral subtyping rules that are notably
absent in the majority of studies. We showed how our refinement approach can be
effectively employed to rationalize various kinds of refinements in terms of projection
relation: from interface to interface, interface to class and class to class.

As logical properties, attributes serve several purposes. They can map a single
history to a value, represent the relationship for different histories like the refinement
relation, and reflect different states of the same history like the update relation.
Moreover, we applied our approach to verifying method calls as well as classes that
implement interfaces. Our running example served as a practical guide, showcasing
the value of our approach in realistic scenarios.

Our history-based refinement theory is suitable for all three scenarios: method over-
riding, method inheritance, and methods explicitly defined within the subtype itself
[27]. When a method is inherited, the subclass simply inherits the same precondition
and postcondition as the method in its supertype. For method overriding, a subtype
that overrides its supertype’s method must adhere to the behavioral subtyping rule.
In the case of method overloading, the method in the subtype may have a different
signature compared to the methods of the same name in its supertype. We can
interpret this distinctive scenario as the subtype defining a new method, which is
independent of the supertype’s method.

This work simplifies the workflow by clearly distinguishing between the role of the
designer, who deals with attributes, and the role of the verifier, who handles ver-
ification conditions. Designers can not only define attributes but also provide the
grounding to confirm the realizability of the theory. The verifier’s assumptions are
based on refinement relation provided by the designer, which can used to prove the
verification conditions generated for behavioral subtyping.

118

