Universiteit

4 Leiden
The Netherlands

Reasoning about object-oriented programs: from classes to interfaces
Bian, J.

Citation
Bian, J. (2024, May 21). Reasoning about object-oriented programs: from classes to
interfaces. Retrieved from https://hdl.handle.net/1887/3754248

Version: Publisher's Version

Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3754248

License:

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3754248

Chapter 6

Logical history-based reasoning: an
advanced case study

We discuss integrating abstract data types in the KeY theorem prover by a new
approach to model data types using Isabelle/HOL as an interactive back-end and
represent Isabelle theorems as user-defined taclets in KeY. As a case study of the
logical history-based (LHB) approach, we reason about Java’s Collection interface
using histories, and we prove the correctness of several clients that operate on mul-
tiple objects, thereby significantly improving the state-of-the-art of history-based
reasoning.

This chapter is based on the following publications and artifacts:

e Bian, J., Hiep, H. A., de Boer, F. S., de Gouw, S. (2023). Integrating ADTs in KeY and
their application to history-based reasoning about collection. Formal Methods in System
Design, 1-27.

e Bian, J., Hiep, H. A., de Boer, F. S., de Gouw, S. (2021). Integrating ADTs in KeY
and their application to history-based reasoning. In Formal Methods: 24th International
Symposium, FM 2021, Virtual Event, November 20-26, 2021, Proceedings 24 (pp. 255-272).
Springer International Publishing.

e Bian, J., Hiep, H. A. (2021). Integrating ADTs in KeY and their Application to History-
based Reasoning: Video Material. figshare. Collection.
https://doi.org/10.6084 /m9.figshare.c.5413263.v1

e Bian, J., Hiep, H. A., de Boer, F. S., de Gouw, S. (2022). Integrating ADTs in KeY and
their Application to History-based Reasoning about Collection: Proof files.
https://doi.org/10.5281 /zenodo.7079126

73

6. LOGICAL HISTORY-BASED REASONING: AN ADVANCED CASE STUDY

6.1 Introduction

In this chapter, we present an advanced case study focused on the logical history-
based approach (LHB approach). The main core of the LHB approach is to model
histories logically as a user-defined abstract data type. Given that KeY has lim-
ited support for user-defined abstract data types (ADTs), we introduce a general
workflow which integrates the domain-specific theorem prover KeY and the general-
purpose theorem prover Isabelle/ HOL [59] for the specification of ADTs.

More generally, in our set-up, we distinguish domain-specific theorem provers, in
our case KeY, from general-purpose theorem provers, in our case Isabelle/HOL.
The domain-specific theorem prover acts as a verification condition generator: KeY
has domain-specific knowledge of the programming language (Java) and program
specification language (JML) in question. The theorems of a domain-specific the-
orem prover are correct pairs of programs and specifications and thus can be seen
as giving axiomatic semantics to programs and specifications. A general-purpose
theorem prover, in contrast, is oblivious to the intricate details of programs and
their specifications in question: e.g. it is not needed to formalize the semantics
of Java nor JML in our general-purpose theorem prover Isabelle/HOL. Our set-up
thus differs from other approaches, such as in the Bali [59, 60] and LOOP [61] [62]
projects, that embed the semantics of the programming language and specification
language within the general-purpose theorem prover.

The idea presented in this paper of integrating Isabelle/HOL and KeY arises out of
the need for user-defined data types usable within specifications. Other tools, such
as Dafny [63] and Why3 [64], support user-defined data types in the specification
language, contrary to JML as it is implemented by KeY. However, the former tools
are not suitable for verifying Java programs: for that, as far as the authors know,
only KeY is suitable due to its modeling of the many programming features of the
Java language present in real-world programs.

We apply our workflow to the Java Collection interface, study a number of example
client use cases of the interface, and compare our new approach with the previous
approach described in [53]. Although the EHB approach works in principle, with
our new approach we can practically give a specification of the addA11l method and
verify the correctness properties of its clients. Going further, we are now able to
reason about advanced, realistic use cases involving multiple instances of the same
interface: we also have verified a complex client program that destructively compares
two collections.

6.2 Intergrating Abstract Data Types in KeY

Abstract data types were introduced in 1974 by Barbara Liskov and Stephen Zilles
[65] to ease the programming task: instead of directly programming with concrete
data representations, programmers would use a suitable abstraction that instead
exposes an interface, thereby hiding the implementation details of a data type. In
most programming languages, such interfaces only fix the signature of an abstract
data type (e.g. Java’s interface or Haskell’s typeclass). Further research has led

74

6.2 Intergrating Abstract Data Types in KeY

to many approaches for specifying abstract data types, e.g. ranging from simple
equational specifications to axiomatizations in predicate logic. See for an extensive
treatment of the subject in the textbook [66].

In the context of our work, we need to distinguish the two levels in which abstract
data types can appear: at the programming level, and at the specification level. In
fact, Java supports abstract data types by means of its interfaces, and for example,
the Java Collection Framework provides many abstractions to ease the programming
task. The specification language JML does support reasoning about the instances of
such interfaces, but does not allow user-defined abstract data types on the specifica-
tion level only. The reason is that JML is designed to be “easier for programmers to
learn and less intimidating than languages that use special-purpose mathematical
notations” [67]. There are extensions of JML to support user-defined types on the
specification level, e.g. model classes [68], but KeY does not implement them.

However, KeY does extend JML in an important way: several built-in abstract
data types at the specification level are provided [23, Section 2.4.1|. There is the
abstract data type of sequences that consists of finite sequences of arbitrary ele-
ments. Further, KeY provides the abstract data type of integers that comprises the
mathematical integers (and not the integers modulo finite storage, as used in the
Java language) to interpret JML’s \bigint. Elements of these abstract types are
not accessible by Java programs and are not stored on the heap. It is possible to
reason about elements of such abstract data types since the KeY theorem prover
allows the definition of their theories implemented by inference rules for deducing
true statements involving these elements.

When introducing user-defined abstract data types, KeY does allow the specifica-
tion of abstract data types by adding new sorts, function symbols, and inference
rules. These new sorts and function symbols can be used in JML by a KeY-specific
extension. A drawback is that KeY provides no guarantee that the resultant theory
is consistent. Thus, a small error in a user-defined abstract data type specifica-
tion could lead to unsound proofs. In contrast, Isabelle/HOL (Isabelle instantiated
with Church’s type theory) includes a definitional package for data types [36] that
provides a mechanism for defining so-called algebraic data types, which are freely
generated inductive data types: the user provides some signature consisting of con-
structors and their parameters, and the system automatically derives characteristic
theorems, such as a recursion principle and an induction principle. Under the hood,
each algebraic data type definition is associated with a Bounded Natural Functor
(BNF) that admits an initial algebra [37], but for our purposes, we simply trust that
the system maintains consistency.

The overall approach of integrating ADTs in KeY can be summarized by a workflow
diagram, see Figure 6.1}

What is common between Isabelle/HOL and KeY are the abstract data types. From
KeY, the underlying definition of the algebraic data type is not visible, nor are the
Java-specific types visible in Isabelle/HOL. This allows us to make use of the best
of both worlds: Isabelle/HOL is used as a general-purpose theorem prover, while
KeY is used as a domain-specific theorem prover for showing the correctness of Java

5

6. LOGICAL HISTORY-BASED REASONING: AN ADVANCED CASE STUDY

Isabelle theorem prover JML KeY theorem prover
1 datatype 2 translate as function method contract load in
symbols and using it in — problem file taclet key file
function JML specification :
function taclets
symbol
lemmas
4] 3 unsolved proof obligations |

proven lemmas are translated to taclets

Figure 6.1: The workflow of integrating ADTs in KeY.

programs. Essentially, we will be following three steps for defining the abstract data
type between the two provers:

1. We define algebraic data types and functions in Isabelle/HOL to logically
model domain-specific knowledge of the Java program that we want to verify.

2. We take the signature of our data types and functions from Isabelle/HOL and
add corresponding sorts and function symbols in KeY, using a type mapping
for common types. Then we write specifications of the Java program in JML
that makes use of the new sorts and function symbols by using a KeY-specific
extension of JML.

3. We use the KeY system to perform symbolic execution of the Java program.
This leads to proof obligations in which the imported symbols are uninter-
preted, meaning that one is limited in reasoning about them in KeY. Some-
times, contracts in JML specify sufficient detail such that the proof obligations
can already be closed in KeY. Other times, specific properties of the imported
symbols are needed. At this stage, properties can be formulated that capture
our expectations, and after formulating these properties in Isabelle/HOL we
can prove them also in Isabelle/HOL. If we succeed in proving a lemma, that
lemma is added to KeY by representing it as an inference rule called a taclet.

The last step will usually be repeated many times until we finish the overall proof
because typically one can not find all required lemmas at once.

Below we give more detail on each of these main steps.

Step 1. Formalizing ADTs in Isabelle/HOL. One defines data types and
functions in Isabelle/HOL in the usual manner: using the datatype command to
define a data type and the fun command to define functions. There are a number

of caveats when working in Isabelle/HOL, to ensure a smooth transfer of the theory
to KeY:

e For data types that contain Java objects, we have to work around the limitation
that Java types are not available in Isabelle/HOL. We can instead introduce
a polymorphic type parameter. Below we show how in our translation back
to KeY, we put back the original types by instantiating the polymorphic type
parameters by Java types which are available in KeY.

76

6.2 Intergrating Abstract Data Types in KeY

e Isabelle/HOL allows higher-order definitions, whereas the dynamic logic of
KeY is first-order. Thus, for function symbols that we wish to import in KeY,

we limit ourselves to first-order type signatures, therefore we only allow a
subset of Isabelle/HOL to be imported in KeY.

As a simple example, we declare a new parameterized data type (in Isabelle type
parameters, such as «, are written prefixed to the parameterized type):

datatype a option = None | Some(«)

This data type allows us to model partially defined functions: an element of o option
represents either ‘nothing’” or an element of the given type a. The definition intro-
duces the constructors None : a option and Some : a = « option. We can define
functions recursively over the structure of a user-defined data type. The latter is
illustrated in Section [6.3l

Step 2. Using ADTs in JML specifications. The dynamic logic underlying
KeY is multi-sorted. To declare new data types and functions, we may introduce
sorts and function symbols. The behavior of these function symbols is encoded as
proof rules, which we formulate using an extensible formalism called taclets |69, [70].
Taclets in KeY are stored in plain-text files alongside the Java program sources that
comprise the following blocks:

e We declare sorts corresponding to our data types in a block named \sorts.
KeY has no parameterized sorts. So, we instantiate each type (where the
type parameters are replaced by corresponding sorts provided by KeY) and
introduce a sort with a suitable name for each type instantiation.

e We declare the signatures of each function in a block named \functions.
A function signature consists of its arity and the sorts corresponding to its
parameters. We erase polymorphic type parameters, by replacing them with
their instantiated sorts. Also, we ensure that Isabelle/HOL’s built-in types
are mapped to the corresponding KeY built-in types, e.g. for int and bool.

e We add axioms to specify properties of functions in a block named \axioms.

Listing shows how to represent the above data type a option. We have instan-
tiated the type parameter o with the java.lang.0Object sort.

\sorts { option; }
\functions { option Some(java.lang.Object); option None; ... }
\axioms { ... }

Listing 6.1: Declaring sorts and function symbols for new ADTs in KeY.

The new function symbols can then be used in JML specifications (such as method
contracts and class invariants) by prefixing their name with \d1_. For example, the
function symbol None can be referred to in a JML contract by writing it as \d1_None.
Axioms are not (yet) needed to use our function symbols in JML specifications.
Therefore, in step two of our workflow, we do not specify any axioms. We describe
adding axioms in more detail in step three below.

7

6. LOGICAL HISTORY-BASED REASONING: AN ADVANCED CASE STUDY

Step 3. Using the imported ADTs during verification. We now focus on
using the new ADTs in proofs of Java programs with KeY. When one starts proving
that a Java program satisfies its JML specification and that specification contains
function symbols as above (prefixed with \d1_), KeY treats these as uninterpreted
symbols (with unknown behavior, other than their signature). In other words: with-
out adding any axioms, only facts about general predicates and functions that are
universally valid can be used in KeY proofs. Typically this is insufficient to complete
the proof: one needs specific properties that follow from the underlying definition

in Isabelle/HOL.

There are two ways of “importing” such properties in KeY. The first way is to specify
expected properties in JML contracts (e.g. preconditions, postconditions, invariants)
where the data type is used: this defers the moment in which the expected properties
are actually proved, e.g. if used in the contracts for interface methods. The second
way is to “import” such properties about the behavior of user-defined functions into
KeY by defining inference rules in the axioms block. These rules allow the inference
of properties that KeY can not derive from any other inference rules. By combining
these two ways, the human-proof engineer has some flexibility when the proofs of
specific properties are done.

We leverage Isabelle/HOL to prove the soundness and consistency of the imported
axioms. In essence, this provides a way to use Isabelle/HOL as an interactive back-
end to KeY. Our workflow supports a lazy approach that minimizes the amount
of work: we only add axioms about functions when they are necessary, i.e., when
we are stuck in a proof situation that requires more knowledge of the function
behavior.

Let us consider a simple concrete example that illustrates the above concepts. Sup-
pose we have a proof obligation in KeY in which Some(o) = None appears as an
assumption (it occurs as an antecedent of an open goal, and to discharge this proof
obligation it is sufficient to show this assumption leads to a contradiction). We need
to show that if there is some object o, then Some (o) # None. KeY can not proceed
in proving this goal without any axioms because Some and None are uninterpreted
symbols in KeY. We thus formulate in Isabelle/HOL, abstracting from the particular
sorts as they appear in KeY, the following lemma

lemma option distinct :: Some(o) # None

which we easily verified (in Isabelle) using a characteristic theorem of « option.

\axioms {
option distinct {
\schemaVar \term java.lang.Object ol;
\find(Some(ol) = None)
\replacewith(false)
I
}

Listing 6.2: Adding a taclet to KeY that expresses the distinctness of constructors.

78

6.3 History-based specification

Our next objective is to import this lemma to KeY to make it available during
the proving process. We do this by formulating the lemma as a taclet in the block
axioms, as can be seen in Listing

This taclet states that the name of the inference rule is option_distinct. The
keyword find states to which expression or formula the rule can be applied (on
either side of the sequent). The placeholder symbols, called schema variables, are
used to stand for, in this case, the argument of the Some function. The placeholders
are instantiated when the inference rule is applied in a concrete proof. The keyword
replacewith states that the expression or formula in the find clause to which the
rules is applied, is replaced after application by a new expression or formula (which
in this case is the formula false) in the resulting sequent. One may also express
side conditions on other formulas that need to be present in the sequent with the
clause assumes (as shown in Listing later on).

Another example shown below expresses the injectivity of the function Some. This
lemma can also be verified using the characteristic theorems of the data type.

lemma Some __injective :: Some(a) = Some(b) <> a =1b

We can express this injectivity rule by using the find clause with the expression
Some(ol) = Some(02), and use ol = 02 as the replacewith clause. A taclet that
uses find and replacewith on formulas corresponds to a logical equivalence in
Isabelle/HOL, since the formula can appear either as an antecedent or a succedent
in a sequent in KeY. A full exposition of the taclet language is out of the scope of
this thesis, we instead refer to the KeY book [23].

6.3 History-based specification

As a particular case study of working with abstract data types in KeY, we will em-
ploy ADTs to support history-based reasoning [53]. In this section, we will motivate
our approach, and give specifications of the Collection interface in terms of histo-
ries. In Section[6.4] we will illustrate the use of these specification in the verification
of the correctness of clients of the Collection interface.

1sting 6.3 shows some of the main methods of the Collection interface. We want
to give a specification of these methods, which formalizes the informal Javadoc
documentation [71], by means of preconditions and postconditions using JML. As
already pointed out in the introduction, such a JML specification is intrinsically
state-based, describing properties of instance variables. But interfaces abstract from
any information about instance variables because these expose details about the
underlying implementation.

Existing approaches model the general properties of a collection using model fields
in JML [10, 11]. However, there are two main methodological problems with using
model fields: first, adding model fields to an interface is ad hoc, e.g., they capture
specific properties, and, second, model fields denote locations on the heap and thus
require (dynamic) frame conditions (see e.g. [54]) for each method of the interface.
From a client perspective, however, what is only observable about any implementa-

79

6. LOGICAL HISTORY-BASED REASONING: AN ADVANCED CASE STUDY

tion of the Collection interface is the sequence of calls and returns of the methods
of the Collection interface. This sequence of events is also called the history of
the instance of the interface. Therefore in our approach, the methods of a collection
are formally specified by mathematical relations between user-defined abstractions
of such sequences. Histories thus can be viewed to constitute the canonical abstract
state space of an interface |22 53]: by modeling the interface using its history, we
no longer need ad hoc abstractions at the level of the interface. Further, since his-
tories are modeled using ADTs of which elements are not stored on the heap, we
do not have to specify frame conditions when reasoning about general properties of
histories.

All implementations of the Collection interface have certain constraints on se-
quences of method calls and returns in common, which characterize valid behavior.
These constraints are formalized as pre- and postcondition specifications of the inter-
face methods. In fact, the signature of the methods of the Collection interface has
been designed to allow for the expression of such constraints, e.g., the Boolean value
returned by the add method, according to the informal documentation, expresses
whether the specified element has been added:

boolean add(Object o)

Ensures that this collection contains the specified element. Returns true
if this collection changed as a result of the call. Returns false if this
collection does not permit duplicates and already contains the specified
element. ... [A] collection always contains the specified element after
this call returns [normally]|. [7T]

Whether the element is actually added to the Collection is thus, in some cases,
left to the underlying implementation to decide. However, we can still infer from
a sequence of calls of add and remove and their corresponding returns what is the
content of the Collection, abstracting from the underlying implementation.

The Java Collection Framework has a behavioral subtype hierarchy [28]. Here,
Collection is the topmost type, that has two subtypes List and Set. These two
subtypes are incompatible: no set can be considered a list. As we shall see in the
next subsection, it is quite surprising that we can make use of multisets to formally
capture the content of a collection, since in algebraically specified data types multiset
is a subtype of list and a supertype of set.

public interface Collection { public interface Iterator {

boolean add(Object o);
boolean addAll(Collection c);
boolean remove(Object o);
boolean contains(Object o);
boolean isEmpty/();

Iterator iterator();

boolean hasNext();
Object next();
void remove();

Listing 6.3: The Collection interface.

80

Listing 6.4: The Iterator inter-
face.

6.3 History-based specification

To formalize in Isabelle/HOL sequences of calls and returns of the methods of the
Collection interface, we introduce for each method definition a corresponding con-
structor in the following parameterized data type:

datatype («a, 3,7) event = Add(a,bool) | AddAll(vy, « elemlist) |
Remove(a, bool) | Iterator(B) | IteratorNext (B, «) | IteratorRemove () | ...

The type parameters «, 3 and v correspond to (type abstractions of) the Java types
Object, Iterator, and Collection, respectively. In general, events specify both
the actual parameters and the return value (the last argument of the event) of a
call of the specified method. For simplicity, we focus here only on the essential
methods of the collection interface, but without much difficulty, all other methods
can be added too. For technical convenience, only normal returns from method calls
are considered events. The limitation of this is that some programs rely on thrown
exceptions, and may exhibit different method behavior based on past method calls
that throw exceptions. With extra work, this restriction can be lifted by also consid-
ering additional events corresponding to method calls that do not return normally,
e.g. by recording the exception that is thrown instead of the return value.

Note that in our definition above, one event is special: namely, the one that corre-
sponds with calls to the addA11l method, which, roughly, adds all the elements of
the argument collection [71]:

boolean addAll(Collection c)

Adds all of the elements in the specified collection to this collection. The
behavior of this operation is undefined if the specified collection is modi-
fied while the operation is in progress. (This implies that the behavior of
this call is undefined if the specified collection is this collection, and this
collection is nonempty.) The parameter c is the collection containing
elements to be added to this collection. Returns true if this collection
changed as a result of the call.

The problem here is that the Boolean return value only indicates that the underly-
ing collection has been modified. This information does not suffice to infer from a
sequence of events the contents of the underlying collection: the informal specifica-
tion that in this case all elements have been added is ambiguous in that it does not
take into account the possible underlying implementation of the receiving collection,
e.g., what happens if you want to add all elements of a list with duplicates to a set?
In our formalization, the addA1l event returns a selection that is consistent with
the type of the receiving collection. This selection is represented by the a elemlist
type which denotes lists of pairs of elements of type o and a Boolean value. Intu-
itively, instances of this type represent the contents of the argument filtered by the
receiving collection, where each Boolean is a status flag whether the paired element
is considered to be included or not.

Note that this return type is a refinement of the Boolean returned by the addAll
method, which returns true if and only if the element list contains a pair (o, true),
for some object 0. The requirement that the first component of the pairs in such a
list corresponds to the content of the added collection will be stated in the contract

81

6. LOGICAL HISTORY-BASED REASONING: AN ADVANCED CASE STUDY

of the addA11 method (see the next section). The « elemlist data type is defined as
follows:
datatype « elemlist = Nil | Cons(c, bool, a elemlist).

It introduces a polymorphic type, a constant Nil : « elemlist and a 3-ary function
symbol Cons : a x bool x a elemlist = « elemlist. The use of the names Nil and
Cons is standard for sequences.

An iterator provides a view of the elements that the collection contains. Iterators
are obtained by calling the iterator method of the Collection interface. This
method returns an object of a so-called inner class (which implements the Iterator
interface) of the surrounding collection. Objects of inner classes have access to the
internal state of the surrounding class. Iterator objects exploit this property to
access the elements of the collection. It is possible to obtain multiple iterators,
each with their own local view on a collection. Thus, we model iterators as sub-
objects of their owning collection: method calls to sub-objects are registered in the
history of the associated owning object. The methods of the iterator interface are
represented by corresponding events, e.g., IteratorNext(3, a) and IteratorRemove([3)
represent the Iterator#next () and Iterator#tremove () methods of the iterator 3,
respectively. As a sequence of events, the history of a collection, as defined below,
thus includes the calls and returns of the methods of its iterators.

Finally, we introduce the type history as a recursive datatype:
datatype («, ,7) history = Empty | Event((a, B,7) event, (c, B,7) history)

As above, the type parameters a, § and v correspond to (type abstractions of) the
Java types Object, Iterator and Collection. Here the data type history uses the
constructors Empty and Event: either the history is empty, or it consists of an event
at its head and another history as its tail. To add a new event to an old history, the
new event will become the head in front and the old history will be its tail.

6.3.1 History abstractions

Abstractions of a history are used to map the history to a particular value. Instead of
dealing with a specific history representation, we use abstractions to reason about
histories. Since clients of an interface are oblivious to the implementation of the
interface, clients cannot know the exact events that comprise a history, only the value
of our abstractions. In this sense, we could consider two histories observationally
equivalent whenever the value of all our abstractions is the same. Since the contracts
are specified in JML, and the verification of clients is based on those contracts, client
verification can be done within KeY by leaving histories uninterpreted, thus at the
level of KeY one cannot know the internal structure of the history. From this point
of view, it is fair to say that we use abstract data types on the specification level in
JML, and use algebraic data types in Isabelle/HOL with a fixed representation to
realize the abstract type.

The abstraction multiset can be recursively defined to compute the multiplicity of
an object given a particular history. Intuitively it represents the ‘contents’ of a

82

6.3 History-based specification

collection at a particular instant.

fun multiset : (o, B,7y) history X a = int
multiset(Empty,) = 0
multiset(Event(Add(y,b), h),x) = multiset(h,z) + (x =y A b7 1:0)
multiset(Event(AddAll(y, zs), h), x) = multiset(h,) + multisetEl(zs,)
multiset(Event(Remove(y, b), h),x) = multiset(h,x) — (x =y Ab71:0)
multiset(Event(IteratorRemove(i), h), x) =

multiset(h,) — (last(h,i) = Some(z) 7 1:0)

multiset(Event(e, h),) = multiset(h, x)

and e is any event not specified above leave the multiset unchanged.

The function multisetEl is defined as follows: given an element list and an element,
it computes the multiplicity of pairings of that element with true, intuitively rep-
resenting the ‘contents’ of a filtered sequence.

fun multisetEl : o elemlist X o = int
multisetEl(Nil, z) = 0
multisetEl(Cons((y,b),t), x) = multisetEl(t,z) + (x =y Ab?1:0)

Similarly, occurs is defined as follows: given an element list, it computes the mul-
tiplicity of elements occurring on the left in each pair that is in the element list,
regardless of the Boolean status flag.

A call to the iterator () method should return a new iterator sub-object. We use
the abstraction iterators to collect all previously returned iterators and store them
in a set. If we are to ensure that a new iterator is returned then the newly created
iterator must not be in this set.

The Iterator#remove () method does not carry any arguments from which we can
infer what element of the collection is to be removed: this element is only retrieved
by searching the past history. Each iterator sub-object can be associated with an
element that it has returned by a previous call to its next () method (if it exists).
To that end, we define the partial function last below:

fun last : (o, 5,7) history x B = « option
last(Empty, 1) = None
last(Event(IteratorNext(j,z), h),i) = (i = j 7 Some(z) : last(h, 1))
last(Event(e, h),i) = (modify(e) ? None : last(h,1))

where in the final clause e is any event different from IteratorNext.

We use the a option type to model this as a partial function, because not all iterators
have a last element (e.g., a newly created iterator). We cannot use null, since a
collection could contain such objects and that reference is not available in our Isabelle
theory. We also define the modify abstraction recursively: it is true for those and
only those events that represent a modification of the collection (e.g. successfully

83

6. LOGICAL HISTORY-BASED REASONING: AN ADVANCED CASE STUDY

adding or removing elements).

The abstraction wisited tracks the multiplicities of the elements already seen. In-
tuitively, a call on method Iterator#next() will increase the wvisited multiplicity
of the returned object by one and leave all other element multiplicities the same.
We also define size that takes a history and gives the number of elements contained
by the collection, iteratorSize of a history and an iterator which computes the total
number of elements already seen by the iterator, and the attribute objects that col-
lects all elements that occur in the history in a set. The abstraction hasNext models
the outcome of the Iterator#hasNext () method. That method returns true if and
only if the iterator has a next element. If the iterator has not yet seen all elements
that are contained in its owner, it must have a next element that can be retrieved by
a call to Iterator#next (). We define hasNezt to be true if and only if iteratorSize
is less than size.

What happens when using an iterator if the collection it was obtained from is mod-
ified after the creation of the iterator? A ConcurrentModificationException is
thrown in practice. To ensure that the iterator methods are only called when the
backing collection is not modified in the meantime, we introduce the notion of va-
lidity of an iterator as below. If the backing collection is modified, all iterators
associated with that collection will be invalidated.

We introduce the following abstraction:

fun islteratorValid : («, 5,v) history x § = bool
islteratorValid(Empty, 1) < false
islteratorValid(Event(Iterator(y), h),1) <

(y =1 7 true : islteratorValid(h, 1))

islteratorValid(Event(IteratorNext(y, x), h), 1) <>

((y =i — hasNext(h,y)) A

(visited(h,y, x) < multiset(h, x)) A islteratorValid(h, 1))

islteratorValid(Event(IteratorRemove(y), h), 1) <

((y =1) A (Jw. last(h,y) = Some(w) A

(0 < visited(h,y,w))) A islteratorValid(h, 1))

islteratorValid(Event(e, h), i) = (-modify(e) A islteratorValid(h,1))

where in the last clause, again e is any event not specified above: for those events we
first check if the collection was modified then we leave islteratorValid the same as
for its tail. Note that calling the Iterator#remove () method invalidates all other
iterators, but leaves the iterator on which that method was called valid.

Finally, the abstraction s Valid is a global invariant of the Collection interface and
is used only in Isabelle/HOL. We say a history is valid if all the conditions on the
history as specified by the method contracts are satisfied (see next section). The
sort of histories that are imported in KeY comprises only the valid histories, i.e.
the subtype of histories for which this global invariant holds. Validity of histories is
defined recursively over the history data type as follows (but we only focus on the

84

6.3 History-based specification

definition of validity for the most important events, for the full definition we refer
the reader to the artifact [72]):

fun isValid : (o, B,7) history = bool

isValid(Empty) < true

isValid(Event(Add(y,b), h)) <> (multiset(h,y) = 0 — b) A isValid(h)

isValid(Bvent(AddAll(zs,b),h)) <>

(Vy. multiset(h,y) = 0 — multisetEl(zs,y) > 0) A

(b <> Jy. multisetEl(xs,y) > 0) A isValid(h)

isValid(Event(Remove(y,b), h)) <> (b <> multiset(h,y) > 0) A isValid(h)

isValid(Event(Iterator(x), h)) <> x ¢ iterators(h) A isValid(h)

isValid(Event(IteratorNext(x,y), h)) <> © € iterators(h) A
islteratorValid(Event(IteratorNext(x,y), h)) A isValid(h)

is Valid(Event(IteratorRemove(x), h)) <> x € iterators(h) N
islteratorValid(Event(IteratorRemove(x), h)) A isValid(h)

Intuitively, the clauses of the isValid predicate capture the following conditions
which are based on the Javadoc descriptions:

Add: If one adds an element to the receiver, it must return true if it was not
yet contained before.

AddAll: All elements of the argument that are not contained in the receiver
should be added, and the return value must be true whenever one such add
succeeds.

Remove: An element is removed (the return value must be true) if and only
if it was contained.

Iterator: The returned iterator sub-object is an object that is not returned by
a previous call to Collection#titerator ().

IteratorNext: The method is only called on sub-objects returned before by
a previous call to Collection#iterator(), and the iterator should remain
valid. By definition of islteratorValid, we also know that it implies the at-
tribute islteratorValid(h), i.e. that the iterator must be valid before the
method Iterator#next () is called.

IteratorRemowve: Similar to above.

6.3.2 Method contracts of Collection

We are now able to formulate method contracts of the methods of the interface,
making use of histories and abstractions. Every instance of the Collection interface
has an associated history, which we specify by using a model method in JML, as
shown in Listing (6.5} The model method has as a return type the sort corresponding
to the histories we defined earlier in Isabelle/HOL. We also specify the owner of an

85

0 3 O Ul i~ W N+

— = =
W N~ OO

6. LOGICAL HISTORY-BASED REASONING: AN ADVANCED CASE STUDY

iterator using a model method, see Listing [6.6] This allows us to refer to the history
of the owning collection in the specification of methods of the iterator.

public interface Collection { public interface Iterator {

/*@ model_ behavior /*@ model_ behavior
@ requires true; @ requires true;
@ model history history(); @ model Collection owner();
@x/ @x/

} }
Listing 6.5: The history() model Listing 6.6: The owner() model
method in JML. method in JML.

The history() model method here returns an element of an abstract data type:
these elements are independent of the heap, meaning that heap modifications do
not affect the value returned by the model method before the heap modifications
took place, thus eliminating the need to apply dependency contracts for lifting ab-
stractions of the history to updated heaps as was required in the EHB approach
[53].

As a guiding principle, our contracts are specified in terms of the history abstrac-
tions only. This principle ensures that interfaces are specified up to observational
equivalence, thus leaving more room on the side of an implementor of an interface
to make choices on how to implement a method. For example, the add method can
be implemented in terms of calling the addA11 method of the same implementation
supplied with a singleton collection wrapping the argument. Another example would
be implementing the addA11l method by iterating over the supplied collection and
for each object calling the add method of the same implementation.

Method contract of the add() method.

We have specified this method in terms of the multiset of the new history (after
the method call) and the old history (prior to the method call, referred to in the
postcondition with \old).

/** Ensures that this collection contains the specified element
* (optional operation).
*x Returns true if this collection changed as a result of the call.
*x Returns false if this collection does not permit duplicates and
* already contains the specified element. *x/
/* @ public normal_ behavior
@ ensures |dl_multiset(history(),0) ==
| dl_multiset(\old(history()), o) + ((\result == true) 2 1 : 0);
@ ensures (| forall Object 01; o1 != o; |dl_multiset(history(),01) ==
\dl_multiset(\old(history()), o1));
@ ensures |dl_multiset(history(),0) > 0;
@ ensures |result == false ==>
(| forall Iterator it; it.owner() == this;

86

14
15
16
17
18
19

6.3 History-based specification

\dl_islteratorValid(\old(history()), it) ==>
\dl_islteratorValid(history(), it));
@ ensures (| forall Iterator it;
|old(it.owner()) == this; it.owner() == this);
@x/
boolean add(Object o);

Listing 6.7: The specification of the add() method.

In Listing 7, lines 1-5 show the informal Javadoc of the add method [7I]. The
JML specification (lines 7-17) covers all information present in the Javadoc. More
explanation about the specification is given below:

e On lines 7-8 This clause ensures that the collection contains the specified
element after the add method call (as described in the informal Javadoc).
If the collection changed as a result of the call, the result is true and the
multiset will be incremented accordingly. Otherwise, the multiset will remain
unchanged. Note that the value of \result is underspecified, leaving room
for multiple implementations of the collection interface. Indeed, the difference
between the refinements List and Set of the Collection interface makes
a distinction between the behavior of add(Object): lists always allow the
addition of new elements, whereas sets only add unique elements. So, for the
List interface, the \result is unconditionally true. For the Set interface,
the \result is true if and only if the multiplicity of the object to add is zero
before execution of the add method.

e On lines 9-10: For each object different from the object to be added, the mul-
tiplicity does not change. The Javadoc does not explicitly cover this. However,
this makes more precise how the collection may change by the call: no other
objects may be added, other than the one in the parameter.

e On line 11: The call to the add method guarantees that the multiplicity of
the object to add is positive. This formalizes the informal Javadoc property
that the collection will contain the specified element after returning.

The last two postconditions in the contract of add are not related to the Javadoc
description, but rather specify two properties related to our formalization of itera-
tors as sub-objects. On lines 12-15, the specification is a direct translation of the
islteratorValid definition in Isabelle/HOL. If the collection remains unchanged, all
iterators related to the collection are still valid, otherwise, the iterators will be in-
validated due to the successful adding of elements to the collection. On lines 16-17,
it specified that a call to the add method does not affect ownership of iterators of
the collection.

Method contract of the addA11() method.

Consider modeling the addA11() method: how can we represent an invocation of
this method in a history? We can not simply record the argument instance, since
that instance may be modified over time. Could we instead take a snapshot of its
history, and embed that in the event corresponding to addA11? No, it turns out that

87

0 ~J O O i W N

I I I I R S e e e e e e
= W N = OO0 Ttk WD = OO

6. LOGICAL HISTORY-BASED REASONING: AN ADVANCED CASE STUDY

such
that

a nested history snapshot leads to difficulty in defining the multiset function
represents the contents of a collection: the receiver of the addAll method,

being a concrete implementation, is underspecified at the level of Collection. A
snapshot of the history of the argument merely allows us to retrieve the contents
of the argument at that time, but not how the receiving collection deals with those
individual elements.

Listing [6.§ shows the interface specification of the addA1l method. Lines 1-7 show
the informal Javadoc of the addA11 method. Lines 8-23 show the postconditions of
the addA11 method.

/** Adds all of the elements in the specified collection to this

*

*
*
*
*
*
*

collection (optional operation).
The behavior of this operation is undefined if the specified
collection is modified while the operation is in progress.
This implies that the behavior of this call is undefined if the
specified collection is this collection, and this collection is
nonempty. #x/
@ ensures (\exists elemlist el;
(\forall Object o;
\dl_occurs(el,0) == \dl_multiset(c.history(),0) &&
\dl multiset(history(),0) ==
\dl _multiset(\old(history()),0) + \dl_multisetEl(el,0)));
@ ensures (\forall Object o;
\dl multiset(c.history(),0) == \dl multiset(\old(c.history()),0));
@ ensures (\forall Object o;
\dl_multiset(c.history(),0) > 0 ==>\dl _multiset(history(),0) > 0);
@ ensures \result == false ==>
(\forall Iterator it; it.owner() == this;
\dl _islteratorValid(\old(history()), it) ===
\dl _islteratorValid(history(), it));
@ ensures (\forall Iterator it;
\old(it.owner()) == this; it.owner() == this);
Q@Qx/

boolean addAll(Collection c);

Listing 6.8: The use of multiset and elemlist in the specification of addAll.

On lines 8~12: The ensures clause shows how the multiplicities of elements of
the argument collection are related to that of the receiving collection. Here,
\dl_multiset(c.history(),o0) and \dl_multiset(history(),o), defined
above, denote the multiplicity of an element o in the argument and receiving
collection, respectively. The list el associates a status flag with each occur-
rence of an element of the argument collection. This flag indicates whether the
recewwing collection’s implementation actually does add the supplied element
(e.g., a Set filters out duplicate objects but a List does not). Consequently,
the multiplicity of the elements of the receiving collection is updated by how
many times the object is actually added, denoted by \d1l_multisetEl(el,o)
(also defined above). The existential quantification of this list allows both

88

O© 00 1 O UL Wi

6.3 History-based specification

for abstraction from the particular enumeration order of the argument col-
lection and the implementation of the receiving collection as specified by the
association of the Boolean values.

e On lines 13—-14: The multiplicity of the elements of the argument collection
will not change due to this method call. The Javadoc does not explicitly state
this, but this property is needed to reason about unchanged contents of the
supplied argument collection.

e On lines 15-16: If there are some objects in the argument collection that are
not yet added to this collection, then the multiplicity of those objects must
be positive after the method returns. This formalizes the informal Javadoc
that all of the elements in the specified collection need to be added to this
collection.

The postconditions on lines 17-20 and lines 21-22 have the same meaning as the
last two postconditions of the add method. On lines 17-20, the specification is a
direct translation of the islteratorValid definition in Isabelle/HOL. If the collection
remains unchanged, all iterators related to the collection are still valid, otherwise,
the iterators will be invalidated due to the successful adding of elements to the
collection. On lines 21-22, it specified that a call to the add method does not affect
ownership of iterators of the collection.

Method contract of the Iterator#tremove() method.

Next, we consider the following use case: iterating over the elements of a collec-
tion. The question arises: what happens when using an iterator when the collec-
tion it was obtained from is modified after its creation? In practice, an exception
named ConcurrentModificationException is thrown. To ensure that the iterator
methods are only called when the backing collection is not modified in the mean-
time, we introduce the notion of the validity of an iterator. As already discussed
above, we record the events of the iterators in the history of the owning collection,
alongside other events that signal whether that collection is modified, so that in-
deed we can define a recursive function that determines whether an iterator is still
valid. Another complex feature of the iterator is that it provides a parameterless
Iterator#remove () method, producing no return value. Its intended semantics is
to delete from the backing collection the element that was returned by a previous
call to Iterator#tnext (), and invalidate all other iterators.

The specification of this method is illustrated in Listing [6.9]

/*% Removes from the underlying collection the last element returned by
* this iterator (optional operation).
x This method can be called only once per call to next().
*x The behavior of an iterator is unspecified if the underlying
* collection is modified while the iteration is in progress in any way
* other than by calling this method. xx/
Jx @ ...
@ requires |dl_last(owner().history(),this) != \dl_None;
@ ensures (|exists Object o;

89

10
11
12
13
14
15
16
17
18
19

6. LOGICAL HISTORY-BASED REASONING: AN ADVANCED CASE STUDY

|dl_last(|old(owner().history()),this) == |dl_Some(o);
| dl_multiset(owner().history(),0) ==
| dl_multiset(|old(owner().history()),0) — 1);

@ ensures (|exists Object o;
|dl_last(|old(owner().history()),this) == |dl_Some(o);
(|forall Object o1; o1 = o;

| dl_multiset(owner().history(),01) ==
| dl_multiset(| old(owner().history()),01)));
Q@x/

void remove();

Listing 6.9: Part of the specification of the remove method on Iterator.

e On line 8 Here we use the last property to capture the return value of a
previous call to Iterator#next (). This formalizes the informal Javadoc that
the remove () method can be called only once per call to next(): after the
remove method returns, the last property gives back None as can be seen from
the definition in the previous section. Thus calling remove () twice after one
call to next () is not allowed.

e On lines 9-12: The object that was last returned by next () is removed from
the owning collection.

e On lines 13-17: This postcondition is not explicitly covered by the informal
Javadoc, but this specifies that no other object may be removed, other than
the object that was returned by the previous call to next.

For the full Isabelle/HOL theory and method contracts of our case study, we refer
the reader to the artifact accompanying this paper [72]. This artifact includes the
translation of the theory to a signature that can be loaded in KeY (version 2.8.0) so
that its function symbols are available in the JML specifications we formulated for
Collection and Iterator. It also includes the taclets we imported from Isabelle,
which we used to close the proof obligations generated by KeY.

6.4 History-based client-side verification

In this section, we will describe several case studies that we perform to show the
feasibility and usability of our history-based reasoning approach supported by ADTs.
Section provides an example that we have verified with both the EHB approach
[53] and the LHB approach described in this paper. This case supports our claim that
the LHB approach yields a significant improvement in the total proof effort when
compared to the EHB approach. As such, we are now able to verify more complex
examples: the examples in Section demonstrate reasoning about iterators,
and, advancing further, we will verify binary methods in Section [6.4.3] Finally,
proof statistics for all case studies are in Section [6.4.4]

We focus in this paper on the verification of client-side programs. Clients of an
interface are, in principle, oblivious to the implementation of the interface. Hence,

90

6.4 History-based client-side verification

every property that we verify of a client of an interface should hold for any correct
implementation of that interface.

6.4.1 Significant improvement in proof effort

Using ADTs instead of encoding histories as Java objects results in significantly
lower effort in defining functions for use in contracts and giving correctness proofs.
This can be best seen by revisiting an example of our EHB work [53] and comparing
it to the proof effort required in the LHB approach using ADTs.

/%@ ...
@ ensures (| forall Object o1; |dl_multiset(x.history(),01) ==
\dl_multiset(\|old(z.history()),01)); @/
public static void add_remove(Collection x, Object y) {
if (x.add(y)) x.remove(y);
}

Listing 6.10: Adding an object and if successful removing it again, leaves the contents
of a Collection the same.

The client code and its contract are given in Listing[6.10], which has the same contract
as in previous work, except we now use the imported functions we have defined in
Isabelle instead of using pure methods and their dependency contracts.

In both the previous and current work, we specify the behavior of the client by
ensuring that the ‘contents’ of the collection remain unmodified: we do so in terms of
the multiset of the old history and the new history (after the add_remove method).
During verification, we make use of the contracts of methods add(0Object) and
remove(Object). These contracts specify their method behavior also in terms of
the old and new history, relative to each call. Let h be the old history (before the
call) and A’ be the new history (after the call). Let y be the argument, the remove
method contract specifies that multiset(h',y) = multiset(h,y)— 1 if the return value
was true, and multiset(h',y) = multiset(h,y) otherwise. Further, it ensures the
return value is true if multiset(h,y) > 0. Also, multiset(h',x) = multiset(h, x)
holds for any object z # y. In similar terms, a contract is given for add that
specifies that the multiplicity of the argument is increased by one, in the case that
true is returned, and that regardless of the return value the multiplicity of the
argument is positive after add.

We need to show that the multiplicity of the object y after the add method and the
remove method is the same as before executing both methods. At this point, we can
see a clear difference in the verification effort required between the two approaches.
In the EHB approach, multiplicities are computed by a pure Java method Multiset
that operates on an encoding of the history that lives on the heap. Since Java
methods may diverge or use non-deterministic features, we need to show that the
pure method behaves as a function: it terminates and is deterministic. Moreover,
since we deal with the effects of the heap, we also need to show that the computation
of this pure method is not affected by calls of add or remove, which requires the use
of an accessibility clause of the multiset method.

91

6. LOGICAL HISTORY-BASED REASONING: AN ADVANCED CASE STUDY

To make this explicit, Listing shows a concrete example of a proof obligation
from KeY that arose in the EHB approach.

History.Multiset(h,y)@heap2 + 1 = History.Multiset(h,y)@heapl,
History.Multiset (h,y)@heapl = History.Multiset(h,y)@heap + 1,

——>
History.Multiset (h,y)@heap2 = History.Multiset(h@heap,y)@heap2

Listing 6.11: Simplified proof obligation with histories as Java objects showing eval-
uation of the multiset function as a pure (Java) method in various heaps.

Informally, the proof obligation states that we must establish that the multiplicity
of y after adding and removing object y (resulting in the heap named heap2) is
equal to the multiplicity of y before both methods were executed (in the heap
named heap). So we have to perform proof steps relating the result/behavior of the
multiset method in different heaps. In practice, heap terms may grow very large
(i.e. in a different, previous case study [73] we encountered heap terms that were
several pages long) which further complicates reasoning.

By contrast, in the LHB approach of this paper, we model multiset as a function
without any dependency on the heap, and so we do not have to perform proof steps
to relate the behavior of multiset in different heaps (the interpretation of multiset is
fixed and does not change if the heap is modified). While the arguments of multiset
may still depend on the heap (such as the history associated with an interface that
lives on the heap), when we evaluate the argument to a particular value (such as
an element of the history ADT) the behavior of the multiset function when given
such values do not depend on the heap[l] Moreover, by defining the function in
Isabelle/HOL, we make use of its facilities to show that the function is well-defined
(terminating and deterministic). These properties are verified fully automatically
in Isabelle: contrary to the proofs of the same properties given in KeY in the EHB
approach. Thus, the LHB approach significantly reduces the total verification effort
required.

More specifically, the proof statistics that show how to verify the Multiset pure
method is terminating and deterministic and satisfies its equational specification in
our EHB approach is shown in Table . This (partially manual) effort in KeY is
eliminated in the LHB approach since the proof can be done automatically using
Isabelle/HOL: these properties follow automatically from the function definition and
the characteristic theorems of the underlying data type definitions.

Furthermore, comparing the verification of the add_remove method in both ap-
proaches, it can be immediately seen that we no longer have to apply any dependency
contract in the LHB approach. The EHB approach was studied in the context of a
simpler definition for histories (without modeling the addA11 event), thus favoring
the LHB approach even more. Moreover, the proof obligations involving the function

IThis can be compared to the expression x + v in Java where z and y are fields: the value of
x and y depends on the heap but the meaning of the ‘+’ operation does not.

92

6.4 History-based client-side verification

symbol multiset can be resolved using the contracts of the methods add(0Object)
and remove (Object) only since these contracts specify that the multiplicity of the
argument is first increased by one and then decreased by one. Thus, this example
client can be verified without importing any lemma from Isabelle/ HOL.

Name |Nodes|Branches|I.step|Q.inst|Contract|Dep.|Inv.| Time
Multiset| 54,857 1,053 52 476 39 0| 0]72 min

Table 6.1: Proof statistics of verifying termination, determinacy, and equational
specification of the Multiset pure method in the EHB approach. The required effort
for a single pure method is large.

6.4.2 Reasoning about Iterator

In this subsection, we will illustrate the benefits of our LHB approach in the ver-
ification of client-side examples that work with iterators. We model iterators as
sub-objects so that their history is recorded by the associated owning collection. As
we discussed above, iterators require special treatment because their behavior relies
on the history of other objects, in our case the enclosing collection that owns the
iterator.

In the EHB approach [53], we did verify a client (shown in Listing of iterator
and showed its termination: but we did not verify the pure methods (termination,
determinism, equational specification) used in the specification that modeled the
behavior of iterators. The EHB approach was not practical in this respect, since
we need many abstractions: such as size, iteratorSize, isValid, islteratorValid and
its supporting functions last, hasNext, and wisited. The large number of abstrac-
tions needed to model the behavior of iterators shows a verification bottleneck we
encountered in the EHB approach: modeling these as pure methods and verifying
their properties takes roughly the same effort as required for multiset, per function!
In the LHB approach, we have defined these abstractions in Isabelle/HOL, and thus
eliminated the need to show termination, and determinism and that they satisfy
their equational specification within KeY.

public static void iter_only(Collection x) {
[terator it = x.iterator();
/*@ ...
@ decreasing |dl_ size(it.owner().history()) —
|dl_iteratorSize(it.owner().history(),it); @/
while (it.hasNext()) it.next();

Listing 6.12: Iterating over the collection. Why does it terminate?

The main term needed to show the termination of the client of iterator is given in
the decreasing clause in JML. For the decreasing term, it has to be shown that it
is strictly decreasing for each loop iteration and that it evaluates to a non-negative
value in any state satisfying the loop invariant [23]. Following our workflow in
Section [6.2] we are stuck in a proof situation of the verification conditions involving

93

6. LOGICAL HISTORY-BASED REASONING: AN ADVANCED CASE STUDY

the decreasing term, since the function behaviors of size and iteratorSize are not
defined in KeY. We thus formulate the lemma below:

lemma sizeCompare :: isValid(h) = islteratorValid(h,it) =
size(h) > iteratorSize(h, it)

According to the definition of iteratorSize, it only adds 1 when executing the next ()
method, but the definition of islteratorValid in Section indicates that this
method is only executed under the condition that size is larger than iteratorSize, so
this lemma can be proven in Isabelle/HOL. The next step we take is translating the
above lemma to a taclet named sizeCompare as shown in Listing [6.13] We can now
apply this taclet to close the verification condition showing that the loop invariant
implies that the decreasing term is not negative.

\axioms {
sizeCompare {
\schemaVar \term history h;
\schemaVar \term Iterator it;
\assumes(islteratorValid(h,it) = TRUE ==>)
\add(size(h) >= iteratorSize(h,it) ==>)

I

Listing 6.13: Adding a taclet to KeY that expresses the relationship between size
and iteratorSize.

Advancing further, we want to verify an example that modifies the backing collection
through an iterator. Consider the example in Listing that makes use of the
Iterator#remove () method. We iterate over a given collection and at each step we
remove the last returned element by the iterator from the backing collection. Thus,
after completing the iteration, when there are no next elements left, we expect to
be able to prove that the backing collection is now empty.

/x@ ..
@ ensures |dl_size(xz.history()) == 0; @/
public static void iter remove(Collection x) {
[terator it = x.iterator();
/*@ ...
@ loop invariant |dl_iteratorSize(it.owner().history(),it) == 0;
@ decreasing |dl_ size(it.owner().history()); @/
while (it.hasNext()) {
it.next();
it.remove();

Listing 6.14: Example 3: Iterating over the collection and removing all its elements.

This example also shows an important aspect of our LHB approach: being able to use
Isabelle/HOL to derive non-trivial properties of the functions we have defined. The

94

6.4 History-based client-side verification

crucial insight here is that, after we exit the loop, we know that hasNext () returned
false. Following the definition of hasNezt, we established in Isabelle/HOL the (non-
trivial) fact that a valid iterator has no next elements if and only if iteratorSize and
size are equal. Following our workflow, we have proven this fact and imported it
into KeY as a taclet, which is shown in Listing [6.15] Since it is a loop invariant
that the size of the iterator remains zero (each time we remove an element through
its iterator, it is not only removed from the backing collection but also from the
elements seen by the iterator), we can thus deduce that finally, the collection must
be empty.

HasNext size {

\schemaVar \term history h;

\schemaVar \term Iterator it;
\assumes(islteratorValid(h,it) = TRUE ==>)
\find(HasNext(h,it) = FALSE)
\replacewith(size(h) = iteratorSize(h,it))

¥

Listing 6.15: Taclet for showing the equality between size and iteratorSize.

6.4.3 Reasoning about binary methods

Binary methods are methods that act on two objects that are instances of the same
interface. The difficulty in reasoning about binary methods [52] lies in the fact
that one instance may, by its implementation of the interface method, interfere
with the other instance of the same interface. By using our history-based approach,
we can limit such interference by requiring that the history of the other instances
remains the same during the execution of a method on some receiving instance.
Consequently, properties of other collection’s histories remain invariant over the
execution of methods on the receiving instance.

As a client-side verification example, we have verified clients that operate on two
collections at the same time. This is interesting, since both collections can be
of a different implementation, and can potentially interfere with each other. The
technique we applied here is to specify what properties remain invariant of histories
of all other collections, e.g. that a call to a method of one collection does not change
the history of any other collection. Since histories are not part of the heap, that a
history remains invariant implies that all its (polymorphic) properties are invariant
too. However, if a history contains some reference to an object on the heap, it can
still be the case that the properties of such an object have changed.

In the example given in we make use of the addA11l method of the
collection, adding elements of one collection to another. Clearly, during the addA11l
call, the collections interfere: collection x could obtain an iterator of collection y
to add all elements of y to itself. So, in the specification of addA1l, we have no
history invariance of y. Instead, we specify what properties of y’s history remain
invariant: in this case, its multiset must remain invariant (assuming x and y are not
aliases). In our example, the program first performs such addAll and then iterates
over the collection y that was supplied as an argument. For each of the elements

95

6. LOGICAL HISTORY-BASED REASONING: AN ADVANCED CASE STUDY

in the argument collection y, we check whether x did indeed add that element, by
calling contains. We expect that after adding all elements, all elements must be
contained. Indeed, we were able to verify this property.

/%@ ...
@ ensures |result = true; @x/
public static boolean all contains(Collection x, Collection y) {
x.addAll(y); Iterator it = y.iterator();
/x@ ...
@ loop invariant (|forall Object ol;
| dl_multiset(y.history(),01) > 0 ==>
| dl_multiset(z.history(),01) > 0); @/
while(it.hasNext()) {
if (!x.contains(it.next())) { return false; }
}

return true;

Listing 6.16: Using the addA11l method and checking for inclusion.

The crucial property in this verification is shown as the loop invariant: all objects
that are contained in collection y are also contained in collection x. This can be
verified initially: the call to iterator does not change the multisets associated with
the histories of x and y, and after the addA11 method is called this inclusion is true.
But why? As already explained above, in the specification of addA11, we state the
existence of an element list: this is an enumeration of the contents of the argument
collection y but for each element also a Boolean flag that states whether x has
decided to add those elements. Since this flag depends on the actual implementation
of x, which is inaccessible to us, the contract of addAll existentially quantifies the
element list. Thus, from the postcondition of addA11, for any element that was not
yet contained in x, at least one of the pairs in the element list with that same element
must have a true flag associated. Following from the specification of addAll, we
can deduce that the loop invariant holds initially. From the loop invariant, we can
further deduce that the contains method never returns false, so the then-branch
returning false is unreachable. Termination of the iterator can be verified as in the
previous example. Hence, the overall program returns true.

The last example we give is the most complex and realistic one: it is a program that
compares two collections. The example involves the mutation of two collections. Two
collections are considered equivalent whenever they have the same multiplicities for
all elements. The example shown in Listing performs a destructive comparison:
the collections are modified in the process by removing elements. Thus, we have
formulated in the contract that this method returns true if and only if the two
collections were equivalent before calling the method. From this example, it is also
possible to build a non-destructive comparison method by first creating a copy of
the input collections, e.g. using IdentityHashMap (which, in recent work [74], has
its correctness verified).

96

6.4 History-based client-side verification

/*@ ...
@ requires x = y;
@ ensures |result == true <==> (|forall Object o1;

\dl_multiset(\|old(z.history()),01) ==
\dl_multiset(\old(y.history()),01)); @x/
public static boolean compare_two(Collection x, Collection y) {
[terator it = x.iterator();
/*@ ...
@ loop invariant |dl_isiteratorValid(it.owner().history(), it);
@ loop _invariant (| forall Object ol;
| dl_multiset(|old(x.history()),01) ==
| dl_multiset(|old(y.history()),01) <==>
| dl_multiset(x.history(),01) ==
| dl_multiset(y.history(),01)); @x/
while (it.hasNext()) {
if (ly.remove(it.next())) { return false; }
else { it.remove(); }

}

return y.isEmpty();

Listing 6.17: A realistic example of a binary method.

We assume the two collections are not aliases. The verification goes along the
following lines: it is a loop invariant that the two collections were equivalent at
the beginning of the method compare_two if and only if the two collections are
equivalent in the current state. The invariant is trivially valid at the start of the
method, and also at the start of the loop since the iterator does not change the
multisets of either collection: the call on x explicitly specifies that x’s multiset
values are preserved, but moreover specifies the invariance of properties of histories
of any other collection (so also that of y). The crucial point is that a call to a
method of one collection does not change the properties of other collections, such
as the value of its multiset. The same holds for iterators of other collections. We
specify that the history remains invariant for all other collections (and thus the
history of sub-objects too) and that the owners of all iterators are preserved, as
shown in Listing [6.18] These ensure clauses need to be additionally mentioned in
the collection’s method specifications!T]

/*@ ...
@ ensures (| forall Collection x; x I= this;
z.history() == \old(z.history()));
@ ensures (\forall Iterator it; |old(it.owner())== it.owner());
Q@+/

Listing 6.18: Additional specification clauses needed to prevent potential aliasing.

ISee, in the artifact, the LocalCollection and LocalIlterator interfaces.

97

6. LOGICAL HISTORY-BASED REASONING: AN ADVANCED CASE STUDY

For each element of x, we remove it from y (which does not affect the iteration
over x, since the removal of an element of y specifies that the history of any other
collection remains unaffected). If that fails, then there is an element in x which is
not contained in y, hence x and y are not equivalent, hence they were not equivalent
at the start of the program. If removal from y succeeded, we also remove the element
from x through its iterator: hence x and y are equivalent if and only if they were
equivalent at the start of the loop. At the end of the loop, we know x is empty (a
similar argument as seen in a previous example). If y is not empty then it has (and
had) more elements than x, otherwise both are empty and thus were also equivalent
at the start of the program.

6.4.4 Proof statistics

The proof statistics of all the use cases discussed in this article are given in
below. These proofs were constructed with KeY version 2.8.0. Some of the lemmas
proven in Isabelle/HOL can be done automatically, but the overall proof effort in
Isabelle/HOL takes about two hours. The time estimates must be interpreted with
caution: the reported time is based on the final version of all definitions and spec-
ifications and does not include the development of the theory in Isabelle/HOL or
specifications in JML, and the time estimates are highly dependent on the user’s
experience with the tool.

Name Nodes|Branches|I.step|Q.inst|Contract|Dep.|Inv.| Time
add remove' | 3,936 79 44 5 2 23] 0] 11 min
add _remove 1,514 15 12 7 2 0 0/ 1 min
iter _only' 8,549 58 53 0 40 12 1| 15 min
iter _only 6,549 18 0 9 3 0 1| 2 min
iter _remove | 10,353 24 20 0 4 0 1| 4 min
all contains | 23,900 94| 187 40 5) 0 2| 40 min
compare two| 44,481 199| 544 93 8 0 11100 min

Table 6.2: Summary of proof statistics. Nodes and Branches measure the size of
the proof tree, I.step counts the number of interactive steps performed by the user,
Q.inst is the number of quantifier instantiations, Contract is the number of contracts
applied, Dep. is the number of dependency contracts applied, Loop inv. is the
number of loop invariants applied, and Time is the estimated time of completing the
proof in the KeY theorem prover.

The rows marked T come from the EHB approach (encoding histories as Java objects
[53]). The non-marked rows, i.e. the LHB approach, are part of the accompanying
artifact [72]. Compared with the artifact [72] for our conference paper [75], we have
simplified the contracts to make them more readable. For example, instead of adding
invariant properties to all pre- and postconditions explicitly in the contracts, we now
specify them as interface invariants. This requires more effort during verification,
since previously verification conditions that could be automatically closed need to
be proven manually (due to the limitations of KeY in its strategy of automatically

98

6.5 Summary

unfolding partial invariants). We also provide video files (no sound!) that show a
recording of the interactive proof sessions [76].

6.5 Summary

In this chapter, we showed how ADTs externally defined in Isabelle/HOL can be used
in JML specifications and KeY proofs, and we applied this technique to specifying
and verifying an important part of the Java Collection Framework. Our technique
enables us to use Isabelle/HOL as an additional back-end for KeY, but also to enrich
the specification language. We successfully applied our approach to define an ADT
for histories of Java interfaces and specified core methods of the main interface of
the Java Collection Framework and verified several client programs that use it. Our
method is tailored to support programming to interfaces and is powerful enough to
deal with binary methods and sub-objects such as iterators. Sub-objects require
a notion of ownership as their behavior depends on the history of other objects,
e.g. the enclosing collection and other iterators over that collection. Moreover,
we specified the method Collection#addAll (Collection) and were able to verify
client code that makes use of that method, which solved a problem left open in our
previous work [5].

99

