
Reasoning about object-oriented programs: from classes to interfaces
Bian, J.

Citation
Bian, J. (2024, May 21). Reasoning about object-oriented programs: from classes to
interfaces. Retrieved from https://hdl.handle.net/1887/3754248

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3754248

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3754248

Chapter 5

Executable history-based reasoning:
a case study

As a case study for the executable history-based reasoning approach, we describe
a practical specification and verification effort of part of the Collection interface
using KeY. To model the history as an ordinary Java class, we introduce a new spec-
ification method (in the KeY theorem prover) using histories, that record method
invocations including their parameters and return value, on an interface. We provide
source and video material of the verification effort to make the construction of the
proofs fully reproducible.

This chapter is based on the following publications:

• Hiep, H. A., Bian, J., de Boer, F. S., de Gouw, S. (2020). History-based specification and
verification of Java collections in KeY. In Integrated Formal Methods: 16th International
Conference, IFM 2020, Lugano, Switzerland, November 16–20, 2020, Proceedings 16 (pp.
199-217). Springer International Publishing.

• Bian, J., Hiep, H. A. (2020). History-based Specification and Verification of Java Collec-
tions in KeY: Video Material. figshare. Collection.
https://doi.org/10.6084/m9.figshare.c.5015645.v3

• Hiep, H. A., Bian, J., de Boer, F. S., de Gouw, S. (2020). History-based Specification and
Verification of Java Collections in KeY: Proof Files. Zenodo.
https://doi.org/10.5281/zenodo.3903204

59

5. EXECUTABLE HISTORY-BASED REASONING: A CASE STUDY

5.1 Introduction
In this chapter, we demonstrate the feasibility of the executable history-based (EHB)
approach by specifying part of the Java Collection Framework with promising re-
sults. The EHB approach allows us to embed histories and attributes in the KeY
theorem prover [23] by encoding them as Java objects, thereby avoiding the need
to change the KeY system itself. Interface specifications can then be written in
the state-based specification language JML [24] by referring to histories and their
attributes to describe the intended behavior of implementations. A detailed expla-
nation of this methodology is described in Section 5.2. Further, a distinguishing
feature of histories is that they support a history-based reference implementation
for each interface which is defined in a systematic manner. This allows an impor-
tant application of our methodology: the verification of the satisfiability of interface
specifications themselves. This is done for part of the Collection interface in Sec-
tion 5.3.

Our methodology is based on a symbolic representation of history. We encode
histories as Java objects to avoid modifying the KeY system and thus avoid the
risk of introducing an inconsistency. Such representation allows the expression of
relations between different method calls and their parameters and return values, by
implementing abstractions over histories, called attributes, as Java methods. These
abstractions are specified using JML.

5.2 History-based specification in KeY
The main motivation of the EHB approach is derived from the fact that the KeY
theorem prover uses the JML as the specification language and that both JML
and the KeY system do not have built-in support for specification of interfaces
using histories. Instead of extending JML and KeY, we introduce Java encodings of
histories that can be used for the specification of the Collection interface, which
as such can also be used by other tools [3].

Remark 1. JML supports model fields which are used to define an abstract state and
its representation in terms of the concrete state given (by the fields) in a concrete
class. For clients, only the interface type Collection is known rather than a concrete
class, and thus a represents clause cannot be defined. Ghost variables cannot be used
either, since ghost variables are updated by adding set statements in method bodies
and interfaces do not have method bodies. What remains are model methods, which
we use as our specification technique.

5.2.1 The History class for Collection

In principle, our histories are a simple inductive data type of a sequence of events.
Inductive data types are convenient for defining attributes by induction. However,
no direct support for inductive definitions is given in either Java or KeY. Thus,
we encode histories by defining a concrete History class in Java itself, specifically
for Collection. The externally observable behavior of any implementation of the
Collection interface is then represented by an instance of the History class, and

60

5.2 History-based specification in KeY

specific attributes (e.g., patterns) of this behavior are specified by pure methods
(which do not affect the global state of the given program under analysis). Every
instance represents a particular history value.

Figure 5.1: A number of history objects. The left-most represents the history of a
collection in which add is called three times followed by a remove. Intuitively, this
history captures the behavior of a set (the addition of an object already contained
returns false).

The History class implements a singly-linked list data structure: a history consists
of a head Event and a tail History. The class Event has sub-classes, one for
each method of the Collection interface. Moreover, there are sub-classes for each
method of the Iterator interface that additionally track the iterator instance sub-
objects. These events are also part of the history of a Collection. See Figure 5.1
and Listing 5.1.

public class History {
Event Head;
/∗@ nullable @∗/ History Tail;
/∗@ ghost int length; @∗/
// (attributes and their method contracts...)
// (factory methods... e.g.)
/∗@ pure ∗/ static History addEvent(/∗@ nullable ∗/ History h,

/∗@ nullable ∗/ Object o, boolean ret) {
return new History(new AddEvent(o, ret), h);

}
}

Listing 5.1: The History class structure. Later on, the specification of the addEvent
factory method is given in Listing 5.8.

Each sub-class of the Event class comprises the corresponding method’s arguments
and return value as data. For the Collection interface we have the events: AddEvent,
RemoveEvent, ContainsEvent, IteratorEvent. AddEvent has an Object field arg
for the method argument, and a Boolean field ret for the return value, that cor-
responds to the method declaration of boolean add(Object). RemoveEvent and
ContainsEvent are similar. IteratorEvent has an Object field ret for the return
value, for Iterator iterator(), which is seen as a creation event for the iterator
sub-object.

For the Iterator interface we have the following events: IteratorHasNextEvent,

61

5. EXECUTABLE HISTORY-BASED REASONING: A CASE STUDY

IteratorNextEvent, IteratorRemoveEvent. IteratorHasNextEvent has a field
inst for the sub-object instance of Iterator, and a Boolean field ret for the re-
turn value, that corresponds to the method declaration of boolean hasNext().
IteratorNextEvent has an instance field and an Object field ret, corresponding
to the method declaration Object next(). IteratorRemoveEvent only has an in-
stance field, since void remove() returns nothing.

As part of the History class, we define footprint() as a JML model method. The
footprint of a history is a particular set of heap locations; if those locations are not
modified then the value of attributes of the history remains unchanged. In our case,
the footprint is the set of fields of events and the singly-linked history list, but we
do not include in our footprint the fields of the objects that are elements of the
collection, since those never influence any attribute value of a history (we never cast
elements of a collection to a specific sub-class to access its fields).

We treat the history as an immutable data type1: once an object is created, its
fields are never modified. History updates are encoded by the creation of a new
history, with an additional new event as the head, pointing to the old history as the
tail. Immutability allows us to lift any computed attribute of a history in some heap
over heap modifications that do not affect the footprint of the given history. This
turns out to be crucial in verifying that an implementation is correct with respect to
interface method contracts, where we update a history to reflect that an incoming
method call was performed. Such a contract expresses a particular relation between
the history’s attributes in the heap before and after object creation and history
update: the value of an attribute of the old history in the heap before remains the
same in the heap after these heap modifications.

5.2.2 Attributes of History

It is valuable to describe a specification technique first, that we commonly use, to
specify that a particular Java method is a function of the heap and its arguments.
A JML specification of a Java method is interpreted as a relation, that is, the return
value of the method is not necessarily unique, e.g. see Listing 5.2.

/∗@ ensures \result == 1 || \result == 2; @∗/
/∗@ strictly_pure @∗/ static int nondeterministic(int x);

Listing 5.2: A non-deterministic method: its result is not a fixed value.

In KeY, every pure method has an observer symbol that denotes the outcome of the
method call. This is also known as a query method: it typically is used to retrieve
the value of encapsulated fields or compute some value without changing the heap.
To enforce that the result of a method call is unique, we ensure that the result of
the method is the same as its observer symbol, e.g. see Listing 5.3.

/∗@ ensures \result == deterministic(x); @∗/
/∗@ strictly_pure @∗/ static int deterministic(int x);

Listing 5.3: A deterministic method: its result is a fixed value.

1By immutable, we mean an object for which its fields after construction are never modified,
and its reference type fields point only to immutable objects.

62

5.2 History-based specification in KeY

To avoid tying ourselves to a particular history representation, the linked list of
events in the history itself is not exposed and cannot be used in specifications.
Rather, the history is accessed exclusively through “observer symbols” that map the
history to a value. Such observer symbols we call attributes. Attributes are defined as
strictly pure methods since their computation cannot affect the heap. Strictly pure
methods are also easier to work with than non-strict or non-pure methods, especially
when these methods are used in specifications of the Collection interface: these
methods evaluate in one heap without modifying it.

The advantage of the use of KeY is that pure methods that appear in specifications
as observer symbols can be translated into a modal JavaDL expression, and this
allows, more generally, reasoning about pure methods [58]. The rule in the proof
system, that replaces observer symbols associated with pure method by a modal
expression that expresses the result of a separate symbolic execution of calling the
method, is called query evaluation [23, Section 11.4].

Attributes are defined inductively over the history. To prove their termination we
also introduce a ghost field length that represents the length of the history. A ghost
field logically assigns to each object a value used for the purpose of verification but
is not present at run-time. In each call on the tail of the history, its length decreases,
and the length is always positive, thus realizing a so-called decreasing term.

Attributes are functions of the history. The functionality of an attribute amounts to
showing dependence (only on the footprint of a history), determinism (uniqueness
of result), and termination. To verify that an attribute is deterministic involves two
steps: we first symbolically execute the method body until we obtain a proof obli-
gation in which we have to show that the post-condition holds. The post-condition
consequently contains, as an observer symbol, the same method applied to the same
formal parameters: we use query evaluation to perform another symbolic execution
of the same method. We need to prove that their outcomes are identical, to verify
that the method is deterministic. Not every method can be proven to be determin-
istic: e.g. if a method body contains a call to a method that cannot be unfolded
and that has an unspecified result, then the two symbolic executions (first directly,
and secondly through an evaluated query of the observer symbol) need not pick the
same result in each method call.

Contents of a Collection: The multiset attribute of a Collection represents
its content and is defined inductively over the structure of the history: the events
corresponding to a successful add and remove call of the Collection interface in-
crease and decrease the multiplicity of their argument. Note that removing an
element never brings it down to a negative multiplicity. Moreover, remove of the
Iterator interface also decreases the multiplicity; but no longer an argument is
supplied because the removed element is the return value of the previous next call
of the corresponding iterator sub-object. Thus, we define an attribute for each iter-
ator that denotes the object returned by the last next call. Calling remove on an
iterator without a preceding next call is not allowed, so neither is calling remove
consecutively multiple times.

63

5. EXECUTABLE HISTORY-BASED REASONING: A CASE STUDY

/∗@ normal_behavior
@ requires h != null && \invariant_for(h);
@ ensures \result == History.Multiset(h,o) && \result >= 0;
@ measured_by h.length;
@ accessible h.footprint(); // dependency contract
@∗/

/∗@ strictly_pure ∗/ static int Multiset(
/∗@ nullable ∗/ History h, /∗@ nullable ∗/ Object o) {

if (h == null) return 0;
else {

int c = History.Multiset(h.Tail, o);
if (h.Head instanceof AddEvent &&

((AddEvent) h.Head).arg == o &&
((AddEvent) h.Head).ret == true) { // important

return c+ 1;
} else ...
return c;

}
}

Listing 5.4: Part of Multiset method of the History class, with one JML contract.

Listing 5.4 shows part of the implementation of the Multiset attribute that is com-
puted by the Multiset static method. It is worthwhile to observe that AddEvent is
counted only when its result is true. This makes it possible to compute the Multiset
attribute based on the history: if the return value is omitted, one cannot be certain
whether an add has affected the contents. With this design, further refinements can
be made into lists and sets.

Iterating over a Collection: Once an iterator is obtained from a collection,
the elements of the collection can be retrieved one by one. If the Collection
is subsequently modified, the iterator becomes invalidated. An exception to this
rule is if the iterator instance itself directly modifies the collection, i.e. with its
own Iterator.remove() method (instead of Collection.remove(Object)): call-
ing that method invalidates all other iterators. We have added an attribute Valid
that is true exactly for valid iterators (definition omitted).

For each iterator, there is another multiset attribute, Visit (definition omitted),
that tracks the multiplicities of the objects already visited. Intuitively, this visited
attribute is used to specify the next method of an iterator. Namely, next returns an
element that has not yet been visited. Calling Iterator.next increases the Visit
multiplicity of the returned object by one and leaves all other element multiplicities
the same. Intuitively, the iterator increases the size of its Visit multiset attribute
during traversal, until it completely covers the whole collection, represented by the
Multiset attribute: then the iterator terminates.

Although these two attributes are useful in defining an implementation of an iterator,
they are less useful in showing the client-side correctness of code that uses an iterator.

64

5.2 History-based specification in KeY

To show the termination of a client that iterates over a collection, we introduce two
derived attributes: CollectionSize and IteratorSize. One can think of the collection’s
size as a sum of the multiplicities of all elements, and similar for an iterator size of
its visited multiset.

5.2.3 The Collection interface
public interface Collection {

/∗@ model_behavior
@ requires true;
@ model nullable History history();
@∗/

// (interface methods and their method contracts ...)
}

Listing 5.5: The history() model method of the Collection interface.

The Collection interface has an associated history that is retrieved by an abstract
model method called history(). This model method is used in the contracts for the
interface methods, to specify what relation must hold of the attribute values of the
history in the heap before and after executing the interface method.

As a typical example, we show the specification of the add method in terms of the
Multiset attribute of the new history (after the call) and the old history (prior to the
call). The specification of add closely corresponds to the informal Javadoc specifi-
cation written above it. Similar contracts are given for the remove, contains, and
iterator methods. In each contract, we implicitly assume a single event is added to
the history corresponding to a method call on the interface. The assignable clause
is important, as it rules out implementations from modifying its past history: this
ensures that the attributes of the old history object in the heap before executing the
method have the same value in the heap after the method finished execution.

/∗∗ Ensures that this collection contains the specified element (optional
∗ operation). Returns true if this collection changed as a result of the call.
∗ Returns false if this collection does not permit duplicates and already
∗ contains the specified element. ... ∗∗/

/∗@ public normal_behavior
@ ensures history() != null ;
@ ensures History.Multiset(history(),o) ==

History.Multiset(\old(history()), o) + (\result ? 1 : 0);
@ ensures History.Multiset(history(),o) > 0;
@ ensures (\forall Object o1; o1 != o; History.Multiset(history(),o1) ==

History.Multiset(\old(history()), o1));
@ assignable \set_minus(\everything, (history() == null) ? \empty :

history().footprint());
@∗/

boolean add(/∗@ nullable ∗/ Object o);

Listing 5.6: The use of Multiset in the specification of add in the Collection inter-
face.

65

5. EXECUTABLE HISTORY-BASED REASONING: A CASE STUDY

It is important to note that the value of \result is unspecified. The intended meaning
of the result is that it is true if the collection is modified. There are at least two
implementations: that of a set, and that of a list. For a set, the result is false if the
multiplicity prior to the call is positive, for a list the result is always true. Thus
it is not possible to specify the result any further in the Collection interface that
is compatible with both Set and List sub-interfaces. In particular, consider the
following refinements [23, Section 7.4.5] of add:

• The Set interface also specifies that \result is true if and only if the multiset
attribute before execution of the method is zero, i.e.
ensures History.Multiset(\old(history()), o) == 0 ⇐⇒ \result == true;

• The List interface also specifies that \result is true unconditionally, i.e.
ensures \result == true;

As in another approach [11], one could use a static field that encodes a closed enu-
meration of the possible implementations, e.g. set or list, and specify \result directly.
Such a closed world perspective does not leave room for other implementations. In
our approach, we can obtain refinements of interfaces that inherit from Collection,
while keeping the interface open to other possible implementations, such as Google
Guava’s Multiset or Apache Commons’ MultiSet.

5.2.4 History-based refinement

Given an interface specification, we can extract a history-based implementation, that
is used to verify there exists a correct implementation of the interface specification.
The latter establishes that the interface specification itself is satisfiable. Since one
could write inconsistent interface specifications for which there does not exist a
correct implementation, this step is crucial.

The state of the history-based implementation BasicCollection consists of a single
concrete history field this.h. Compare this to the model method of the interface,
which only exists conceptually. By encoding the history as a Java object, we can
also directly work with the history at run-time instead of only symbolically. The
concrete history field points to the most recent history, and we can use it to com-
pute attributes. The implementation of a method simply adds for each call a new
corresponding event to the history, where the return value is computed depending
on the (attributes of the) old history and method arguments. The contract of each
method is inherited from the interface.

public boolean add(/∗@ nullable ∗/ Object o) {
boolean ret = true;
this.h = History.addEvent(this.h, o, ret);
return ret;

}

Listing 5.7: One of the possible implementations of add in BasicCollection.

See Listing 5.7 for an implementation of add, that inherits the contract in List-
ing 5.6. Note that due to underspecification of \result there are several possible

66

5.3 History-based verification of Collection

implementations, not a unique one. For our purposes of showing that the interface
specification is satisfiable, it suffices to prove that at least one correct implementation
exists.

For each method of the interface we have specified, we also have a static factory
method in the history class which creates a new history object that consists of
the previous history as tail, and the event corresponding to the method call of the
interface as head. We verify that for each such factory method, the relation between
the attributes of the old and the resulting history holds. It is not possible to directly
use the constructor of History to create a new history, because some methods have
the same signature (such as Collection’s add, remove, contains). So we introduce
an indirection: the constructor for History takes an event and another history as
tail, but does not have a method contract. For each event we add to the history
we define a static factory method, for which we will later prove that the relevant
relations between the values of the attributes of the old and new history hold.

/∗@ normal_behavior
@ requires h != null ==> \invariant_for(h);
@ ensures \result != null && \invariant_for(\result);
@ ensures History.Multiset(\result,o) ==

History.Multiset(h,o) + (ret ? 1 : 0);
@ ensures (\forall Object o1; o1 != o;

History.Multiset(\result,o1) == History.Multiset(h,o1));
@ ensures \result.Tail == \old(h); ∗/

/∗@ pure ∗/ static History addEvent(
/∗@ nullable ∗/ History h, /∗@ nullable ∗/ Object o, boolean ret);

Listing 5.8: The contract for the factory method for AddEvent in class History.

For example, the event corresponding to Collection’s add method is added to
a history in Listing 5.8 (see also Listing 5.1). We have proven that the Multiset
attribute remains unchanged for all elements, except for the argument o if the return
value is true (see Listing 5.4). This property is reflected in the factory method
contract. Similarly, we have a factory method for other events, e.g. corresponding
to Collection’s remove.

5.3 History-based verification of Collection

This section describes the verification work that we performed to show the feasibility
of our approach. We use KeY version 2.7-1681 with the default settings. For the
purpose of this chapter, we have recorded est. 2.5 hours of video1 showing how
to produce some of our proofs using KeY. A repository of all our produced proof
files is available on Zenodo2 and includes the KeY version we used. The proof files
include:

• Contracts for the Event class hierarchy, corresponding to methods of the inter-
faces Collection and Iterator. These can be verified almost without human

1https://doi.org/10.6084/m9.figshare.c.5015645
2https://doi.org/10.5281/zenodo.3903203

67

https://doi.org/10.6084/m9.figshare.c.5015645
https://doi.org/10.5281/zenodo.3903203

5. EXECUTABLE HISTORY-BASED REASONING: A CASE STUDY

intervention.

• Contracts specifying properties of history attributes (Multiset , CollectionSize,
IteratorSize, Last , LastValid) and history factory methods corresponding to
the events. The implementation of Multiset and factory methods not related
to iterators have been verified. The verification of these contracts requires
significant human intervention.

• Contracts for the history-based implementation of the interfaces Collection
and Iterator. We have verified the contracts for the add, remove and contains
events. Importantly, the verification of these methods required the majority
of the application of dependency contracts. Also, the verification of these
contracts requires significant human intervention.

• Contracts for four example client-side programs. Also, the verification of these
contracts requires significant intervention.

The proof statistics are shown in Table 5.1. These statistics must be interpreted
with care: shorter proofs (in the number of nodes and interactive steps) may exist,
and the reported time depends largely on the user’s experience with the tool. The
reported time does not include the time to develop the specifications.

Nodes Branches I.step Q.inst O.Contract Dep. Inv. Time

171,543 3,771 1,499 965 79 263 1 388 min

Table 5.1: Summary of proof statistics. Nodes and branches are measures of proof
trees, I.step is the number of interactive proof steps, Q.inst is the number of quantifier
instantiation rules, O.Contract is the number of method contracts applied, Dep. is the
number of dependency contracts applied, Loop inv. is the number of loop invariants,
and Time is an estimated wall-clock duration for interactively producing the proof
tree.

We now describe several proofs, that also have been formally verified using KeY.
Note that the formal proof produced in KeY consists of many low-level proof steps,
of which the details are too cumbersome to consider here.

To verify clients of the interface, we use the interface method contracts. In particular,
the client code given in Listing 5.9 makes use of the contracts of add and remove,
to establish that the contents of the Collection parameter passed to the program
remains unchanged.

/∗@ ...
@ ensures (\forall Object o1; !\fresh(o1) ;

History.Multiset(x.history(),o1) == History.Multiset(\old(x.history()),o1));
@∗/

public static void add_remove(Collection x, Object y) {
if (x.add(y)) x.remove(y);

}

Listing 5.9: Adding an object and if successful removing it again, leaves the contents
of a Collection the same.

68

5.3 History-based verification of Collection

More technically, during the symbolic execution of a Java program fragment in KeY,
one can replace the execution of a method with its associated method contract. The
contract we have formulated for add and remove is sufficient in proving the client
code in Listing 5.9: the multiset remains unchanged. In the proof, the user has
to interactively replace occurrences of history attributes by their method contracts.
Method contracts for attributes can in turn be verified by unfolding the method
body, thereby inductively establishing their equational specifications. The specifi-
cation of the latter is not shown here but can be found in the source files.

During the verification, we faced another interesting challenge: dealing with object
creation is difficult. We have an alternative program to Listing 5.9 that adds to and
removes a newly created object, given in Listing 5.10. Part of the verification of this
alternative program (where the object is created by the program) takes 60 minutes,
and we fail to close some of the proof branches. In particular, we are unable to show
that the multiplicity of newly created objects is zero. Intuitively, we know that a
newly created object cannot be part of the past history, as the history only refers
to created objects, and a new object was not yet created before. The verification
of the program in Listing 5.9 is considerably shorter and takes 4 times less time to
prove. Except for our own inability, there seems to be no clear explanation for why
these programs have different difficulties.

public static void example(Collection x) {
Object y = new Object(); // Is x.Multiset(y) = 0 true?
if (x.add(y))

x.remove(y);
}

Listing 5.10: What is the multiplicity of a newly created element?

We needed to introduce a quite technical lemma to show that created objects, e.g.
History and Event objects in the history-based implementation of the add method,
have the same multiplicity as in the old history: since histories and events inherit
from Object, in principle these newly created objects could be elements of the
collection too. But our lemma shows that this cannot be the case, since these
objects are newly created and cannot thus be referred to from the old history (at
the time the old history was created, these objects did not yet exist). We could
refine the specification of the add method of Collection: objects created by the
implementation must have a zero multiplicity in the post-heap. To see why, consider
an implementation that creates a new object. New objects cannot occur in the old
history and not as method argument, since new objects are not yet created and all
objects referenced and arguments are already created. Hence, the multiplicity of the
new object in the old history must be zero, since the multiplicity of any object not
occurring in a history is zero. The multiplicity of the new object in the new history
must be zero because the new object is not equal to the argument. This argument
also applies to an implementation such as LinkedList, which creates internal Node
objects [5].

For the client in Listing 5.11, we make use of the contracts for iterator and the
methods of the Iterator interface. The iterator method returns a fresh Iterator

69

5. EXECUTABLE HISTORY-BASED REASONING: A CASE STUDY

sub-object that is valid upon creation, and its owner is set to be the collection. The
history of the owning collection is updated after each method call to an iterator sub-
object. Each iterator has as derived attribute IteratorSize, the size of the visited
multiset. It is a property of the IteratorSize attribute that it is not bigger than
CollectionSize, the size of the overall collection. To verify the termination of a client
using the iterator in Listing 5.11, we can specify a loop invariant that maintains the
validity and ownership of the iterator, and take as a decreasing term the value
of CollectionSize minus IteratorSize. Since each call to next causes the visited
multiset to become larger, this term decreases. Since an iterator cannot iterate
over more objects than the collection contains, this term is non-negative. We never
needed to verify that the equational specification for the involved attributes holds
and this can be done separately from verifying the client, thus allowing modular
verification.

public static void iter_only(Collection x) {
Iterator it = x.iterator();
/∗@ ...

@ decreasing History.CollectionSize(x.history()) −
History.IteratorSize(x.history(),it);
@∗/

while (true) {
if (!it.hasNext()) {break;}

it.next(); }
}

Listing 5.11: Iterating over the collection.

The other problem we encountered is program rules for dealing with while state-
ments with side-effectful guard expressions are difficult to work with. Since a
side-effectful guard expression may throw an exception and change the heap, the
assumption that the guard completes normally with a true result leads to some
post-expression heap. During the symbolic execution of the loop body, the guard
expression is also executed so the loop body is executed in the same heap. However,
this requires comparing two separate heaps, making it difficult to lift properties from
one heap to another if the guard is not deterministic. A workaround is to change
the program, where we take a side-effect free guard (such as true) and evaluate the
side-effectful expression within the loop body: if it is false, we break out of the loop.
This avoids working with two different heaps and relating them.

One of the complications of our history-based approach is reasoning about invariant
properties of (immutable) histories, caused by potential aliasing. This currently
cannot be automated by the KeY tool. We manually introduce a general but crucial
lemma, that addresses the issue, as illustrated by the following verification condition
that arises when verifying the reference implementation.

One specific verification condition is a conjunct of the method contract for the add
method of Collection, namely that in the post-condition, Multiset(history(), o)
== Multiset(\old(history()), o) + (\result ? 1 : 0) should hold. We verify that in
class BasicCollection the add method is correct with respect to this contract.

70

5.4 Summary

Within BasicCollection, the model method history() is defined by the field this.h,
which is updated during the method call with a newly created history using the
factory method History.addEvent. We can use the contract of the addEvent factory
method to establish the relation between the multiset value of the new and old
history (see Listing 5.8); this contract is in turn simply verified by unfolding the
method body of the multiset attribute and performing symbolic execution, which
computes the multiplicity recursively over the history and adds one to it precisely if
the returned value is true. Back in BasicCollection, after the update of the history
field this.h, we need to prove that the post-condition of the interface method holds
(see Listing 5.6); but we already have obtained that this property holds after the
static factory method add before this.h was updated.

∀ int n; (n ≥ 0 → ∀ History g;
(g.⟨inv⟩ ∧ g.⟨created⟩ = true ∧ g.history_length = n →

this.h ̸∈ g.footprint()))

The update of the history field, as a pointer to the History linked list, does not affect
this structure itself, i.e. the values of attributes are not affected by changing the
history field. This is an issue of aliasing, but we know that the updated pointer does
not affect the attribute values of any History linked list. This can not be proven
automatically: we need to interactively introduce a cut formula (shown above) so
that the history field does not occur in the footprint of the history object itself. The
formula can be proven by induction on the length of the history.

5.4 Summary
In this chapter, we show a new systematic method for history-based reasoning and
reusable specifications for Java programs that integrates seamlessly in the KeY the-
orem prover, without affecting the underlying proof system (this ensures our method
introduces no inconsistencies). Our approach includes support for reasoning about
interfaces from the client perspective, as well as about classes that implement in-
terfaces. To show the feasibility of our EHB approach, we specified part of the
Collection Framework with promising results. We showed how we can reason about
clients with these specifications, and showed the satisfiability of the specifications
by a witness implementation of the interface. We also showed how to handle in-
ner classes with a notion of ownership. This is essential for showing termination of
clients of the Iterator.

71

