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Chapter 4

History-based reasoning about
interfaces

Programming to interfaces is one of the core principles in object-oriented program-
ming. However, current practical static analysis tools, including model checkers
and theorem provers such as KeY, are primarily state-based. Since interfaces do
not expose a state or concrete representation, a major question is how to support
interfaces.

In this chapter, we discuss reasoning about the correctness of Java interfaces us-
ing histories, with a particular application to Java’s Collection interface. Histories,
defined as sequences of method calls and returns, offer a novel approach to speci-
fying state-hiding interfaces. We outline the challenges of proving client code cor-
rect with respect to arbitrary implementations with histories. To specify interface
method contract using histories, we present two approaches: the executable history-
based approach, which models histories as an ordinary Java class, and the logical
history-based approach, which models histories as an external abstract data type
with functions.

This chapter is based on the following publications:

• Bian, J., Hiep, H. A., de Boer, F. S., de Gouw, S. (2023). Integrating ADTs in KeY and
their application to history-based reasoning about collection. Formal Methods in System
Design, 1-27.

• Hiep, H. A., Bian, J., de Boer, F. S., de Gouw, S. (2020). History-based specification and
verification of Java collections in KeY. In Integrated Formal Methods: 16th International
Conference, IFM 2020, Lugano, Switzerland, November 16–20, 2020, Proceedings 16 (pp.
199-217). Springer International Publishing.
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4. HISTORY-BASED REASONING ABOUT INTERFACES

4.1 Introduction

The importance and potential of formal software verification as a means of rigorously
validating state-of-the-art, real software and improving it, is convincingly illustrated
by its application to LinkedList implementation within the Java Collection Frame-
work. In the previous chapter, we focused on the specification and verification of
the add and remove methods. A fixed version of the core methods of the linked list
implementation in Java has also been formally proven correct using KeY [5].

However, some of the methods of the linked list implementation contain an in-
terface type as a parameter and were out of the scope of the work in [5]. For
example, we could take the retainAll method. Verification of LinkedList’s imple-
mentation of retainAll requires the verification of the inherited retainAll method
from AbstractCollection. The implementation in AbstractCollection (see List-
ing 4.1) shows a difficult method to verify: the method body implements an interface
method, acts as a client of the supplied Collection instance by calling contains,
but it also acts as a client of the this instance by calling iterator. Moreover,
as AbstractCollection is an abstract class and does not provide a concrete im-
plementation of the interface, implementing iterator is left to a subclass such as
LinkedList. Thus arises the need for an approach to specify interfaces that allows
us to verify its (abstract) implementations and its clients.

public boolean retainAll(Collection c) {
boolean modified = false;
Iterator it = iterator();
while (it.hasNext()) {

if ( ! c.contains(it.next())) {
it.remove();
modified = true;

}
}
return modified;

}

Listing 4.1: A difficult method to verify: retainAll in AbstractCollection.

More generally, libraries form the basis of the “programming to interfaces” discipline,
which is one of the most important principles in software engineering. Interfaces
abstract from state and other internal implementation details, and aid modular pro-
gram development. However, tool-supported programming logic and specification
languages are predominantly state-based which as such cannot be directly used for
interfaces. For example, JML is inherently state-based. JML mainly provides sup-
port for the specification of classes in terms of their fields, including so-called model
fields that represent certain aspects of the data structure underlying the implemen-
tation.

The main contribution of this chapter is to show the feasibility of an approach that
overcomes state-based limitations, by integrating history-based reasoning with ex-
isting specification and verification methods. The approach detailed in [12] comes
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4.2 Background

closest to our desired goal: it supports data and integrates with JML. The specifica-
tion language is based on attribute grammars. Call or return events are represented
as grammar terminals with attributes that store e.g. the actual parameters. To
specify properties of sequences of such events, the user first introduces attributes of
non-terminals (where each grammar production is annotated with code that com-
putes the value of the attribute) and then uses assertions over this attribute to
specify properties. The original program is instrumented with calls to update the
history at the beginning and end of a method. The new values of the attributes are
determined by parsing the new history in the grammar.

The formal semantic justification of our approach is provided by the fully abstract
semantics for Java introduced in [22]. This semantic framework precisely isolates
the essential elements of a Java class method that are visible during external use.
Such essential elements are captured as histories of method calls and returns. These
histories not only serve as a full representation of an implementation’s concrete state
but also define a universal abstract state for any given interface. Our methodology
is based on a symbolic representation of histories. Such representation allows the
expression of relations between different method calls and their parameters and
return values, by implementing abstractions over histories, called attributes. These
abstractions are specified using JML.

The background of our approach is given in Sect. 4.2. An important use case, which
leads us to formal requirements on interface specifications, is to reason about the
correctness of clients, viz. programs that use instances of an interface by calling
methods on it. In Sect. 4.3 we analyze concrete examples that motivate the design
choices that lead us to the core of our approach: we associate to each instance of an
interface a history that represents the sequence of method calls performed on the
object since its creation. For each method call, the parameters and return value are
recorded symbolically in the history. This crucially allows us to define abstractions
over histories, called attributes, used to describe all possible behaviors of objects
regardless of their implementation. Our methodology for embedding histories and
attributes into the KeY theorem prover is described in Sect. 7.3.1. We explore two
approaches: either encoding histories and attributes as Java objects or encoding
them as abstract data types. We discuss these two approaches and compare their
respective strengths and weaknesses across several aspects in the last section.

4.2 Background

At the lowest level of abstraction, a history is a sequence of events. So the question
arises: what events does it contain, and how are the events related to a given pro-
gram? To concretize this, we first note that in our setting we focus on histories for
single-threaded object-oriented programs and classes and interfaces of Java libraries
in particular. For such programs, there are two main kinds of histories: (a) a single
global history for the entire program, and (b) a local history per object. The first
kind, a global history, does not result in a modular specification and verification ap-
proach: such a history is specific to a particular program and thus cannot be reused
in other programs, since as soon as other objects or classes are added this affects the
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4. HISTORY-BASED REASONING ABOUT INTERFACES

global history. A global history is therefore not suitable for specifying and verifying
Java libraries, since libraries are reused in many different client programs. Hence, in
our setting, we tend towards using a local history for each object separately.1

Following the concept of information hiding, we assume that an object encapsulates
its own state, i.e. other objects cannot directly access its fields, but only indirectly
by calling methods. This is not a severe limitation: one can introduce getter and
setter methods rather than reading and writing a field directly. But this assumption
is crucial to enable any kind of (sound) reasoning about objects: if objects do not
encapsulate their own state, any other object that has a reference to it can simply
modify the values of the fields directly in a malicious fashion where the new internal
state breaks the class invariant of the object without the object being able to prevent
(or even being aware of) this. Roughly speaking, a class invariant is a property
that all objects of the class must satisfy before and after every method call. Class
invariants typically express the consistency properties of the object. For example,
an instance of ArrayList has a size field that is supposed to represent the number
of items in the list. A simple class invariant is size ≥ 0. If the ArrayList does not
encapsulate the size field, the following can happen:

ArrayList ℓ = new ArrayList();
ℓ.size = −1; // size becomes negative!

Without encapsulation, the list cannot enforce its own class invariant that its size is
non-negative! This causes many issues. For example, the list exposes an add method
which executes elementData[size++] = e; so calling add on the above list causes
a crash because it accesses an array at −1, a negative index!

Assuming encapsulation, each object has full control over its own internal state, it
can enforce invariants over its own fields and its state can be completely determined
by the sequence of method calls invoked on the object. How an object realizes the
intended behavior of each method may differ per implementation: to a client of
the object, the internal method body is of no concern, including any calls to other
objects that may be done in the method body. We name the calls that an object
invokes on other objects inside a method outgoing calls (their direction is out of the
object, into another object), and we name the calls made to the object on methods
it exposes incoming calls. The above discussion makes clear that the semantics
of an object-oriented program can be described purely in terms of its behavior on
incoming method calls. Indeed, formally, this is confirmed by Jeffrey and Rathke’s
work [22] which presents a fully abstract semantics for Java based on traces.

4.3 Specification and verification challenges for the
Collection interface

In this section, we highlight several specification and verification challenges with
histories that occur in real-world programs. We guide our discussion with exam-
ples based on Collection, the central interface of the Java Collection Framework.

1A more sophisticated approach will be introduced for inner classes (see Section 4.3).
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4.3 Specification and verification challenges for the Collection interface

However, note that our approach, and methodology in general, can be applied to all
interfaces, as our discussion can be generalized from Collection.

A collection contains elements of type Object and can be manipulated independently
of its implementation details. Typical manipulations are adding and removing ele-
ments, and checking whether they contain an element. Sub-interfaces of Collection
may have refined behavior. In the case of interface List, each element is also associ-
ated with a unique position. In the case of interface Set, every element is contained
at most once. Further, collections are extensible: interfaces can also be implemented
by programs outside of the Java Collection Framework.

How do we specify and verify interface methods using histories?

We focus our discussion on the core methods add, remove, contains, and iterator
of the Collection interface. These four methods comprise the events of our history.
More precisely, we have at least the following events:

• add(o) = b,

• remove(o) = b,

• contains(o) = b,

• iterator() = i,

where o is an element, b is a Boolean return value indicating the success of the
method, and i is an object implementing Iterator. Abstracting from the imple-
mentations of these methods we can still compute the contents of a collection from
the history of its add and remove events; the other events do not change the con-
tents. This computation results in a representation of the contents of a collection
by a multiset of objects. For each object, its multiplicity then equals the number
of successful add events minus the number of successful remove events. Thus, the
content of a collection (represented by a multiset) is an attribute.

For example, for two separate elements o and o′,
add(o) = true, add(o′) = true, add(o′) = false, remove(o′) = true

is a history of some collection (where the left-most event happens first). The mul-
tiplicity of o in the multiset attribute of this history is 1 (there is one successful
add event), and the multiplicity of o′ is 0 (there is one successful add event and one
successful remove event).

The main idea is to associate each instance with its own history. Consequently, we
can use the multiset attribute in method contracts. For example, we can state that
the add method ensures that after returning true the multiplicity of its argument
is increased by one, that the contains method returns true when the argument
is contained (i.e. its multiplicity is positive), and that the remove method ensures
that the multiplicity of a contained object is decreased by one.

How can we specify and verify client-side properties of interfaces?

Consider the client program in Listing 4.2, where x is a Collection and y is an
Object. To specify the behavior of this program fragment, we could now use the
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4. HISTORY-BASED REASONING ABOUT INTERFACES

multiset attribute to express that the content of the Collection instance x is not
affected.

if (x.add(y)) x.remove(y);

Listing 4.2: Adding and removing an element does not affect contents.

Another example of this challenge is shown in Listing 4.3: can we prove the termi-
nation of a client? For an arbitrary collection, it is possible to obtain an object that
can traverse the collection: this is an instance of the Iterator interface containing
the core methods hasNext and next. To check whether the traversal is still ongoing,
we use hasNext. Subsequently, a call to next returns an object that is an element
of the backing collection and continues the traversal. Finally, if all objects of the
collection are traversed, hasNext returns false.

Iterator it = x.iterator();
while (it.hasNext()) it.next();

Listing 4.3: Iterating over the collection.

How do we deal with intertwined object behaviors?

Since an iterator by its very nature directly accesses the internal representation of
the collection it was obtained from,1 the behavior of the collection and its iterator(s)
are intertwined: to specify and reason about collections with iterators a notion of
ownership is needed. The behavior of the iterator itself depends on the collection
from which it was created.

How do we deal with non-local behavior in a modular fashion?

Consider the example in Listing 4.4, where the collection x is assumed non-empty.
We obtain an iterator and its call to next succeeds (because x is non-empty). Con-
sequently, we perform the calls as in Listing 4.2: this leaves the collection with the
same elements as before the calls to add and remove. However, the iterator may
become invalidated by a call that modifies the collection; then the iterator it is
no longer valid, and we should not call any methods on it—doing so throws an
exception.

Iterator it = x.iterator(); it.next();
if (x.add(y)) x.remove(y); // may invalidate iterator it

Listing 4.4: Invalidating an iterator by modifying the owning collection.

Invalidation of an iterator is the result of non-local behavior: the expected behavior
of the iterator depends on the methods called on its owning collection and also all
other iterators associated with the same collection. The latter is true since the
Iterator interface also has a remove method (to allow the in-place removal of an
element) which should invalidate all other iterators. Moreover, a successful method

1To iterate over the content of a collection, iterators are typically implemented as so-called
inner classes that have direct access to the fields of the enclosing object.
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call to add or remove (or any mutating method) on the collection invalidates all its
iterators.

We can resolve both phenomena by generalizing the above notion of a history, strictly
local to a single object, without introducing interference. We take the iterator to
be a ‘subobject’ of a collection: the methods invoked on the iterator are recorded
in the history of its owning collection. More precisely, we also have the following
events recorded in the history of Collection:

• hasNext(i) = b,

• next(i) = o,

• remove(i),

where b is a Boolean return value indicating the success of the method, and i is
an iterator object. Now, not only can we express what the content of a collection
is at the moment the iterator is created and its methods are called, but we can
also define the validity of an iterator as an attribute of the history of the owning
collection.

This does warrant a short discussion about the consistency of a history: not all
histories are consistent. By consistency, we mean there exists a client and a correct
implementation that can produce the history. To see why, consider the program
where an iterator invalidates some other iterator, in Listing 4.5.

static void example(Collection x) { // assume non−empty x
Iterator it = x.iterator();
Iterator jt = x.iterator();
it.next();
it.remove(); // invalidates jt
jt.next(); // should throw exception

}

Listing 4.5: Invalidating an iterator by another iterator.

Suppose the history for collection x is consistent and we record the method invo-
cations that return normally. The last next method on jt is not recorded in the
history. Thus, there are sequences of events that are never produced by any client,
because somewhere in the middle of those sequences an exception is thrown. A his-
tory is consistent if none of the methods associated with the recorded events throw
an exception.

How do we deal with client-side correctness with multiple objects imple-
menting the same interface?

Binary methods are methods that act on two objects that are instances of the same
interface. The difficulty in reasoning about binary methods [52] lies in the fact that
one instance may, by its implementation of the interface method, interfere with the
other instance of the same interface. For example, as shown in Listing 4.6, the
method Collection#addAll(Collection) is a binary method: both the receiving
object and the supplied argument are instances of the interface Collection.
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/∗∗ Adds all of the elements in the specified collection to this collection
∗ (optional operation).
∗ The behavior of this operation is undefined if the specified collection is
∗ modified while the operation is in progress.
∗ This implies that the behavior of this call is undefined if the specified
∗ collection is this collection, and this collection is nonempty. ∗∗/

boolean addAll(Collection c);

Listing 4.6: The Collection#addAll(Collection) method.

By using our history-based approach, we can limit such interference by requiring that
the history of the other instances remains the same during the execution of a method
on some receiving instance. Consequently, properties of other collection’s histories
remain invariant over the execution of methods on the receiving instance.

For client-side verification, verifying clients that operate on two collections concur-
rently is interesting. This is because each collection may have a distinct imple-
mentation, and there’s potential for mutual interference. Our applied strategy here
emphasizes the identification of properties that consistently remain invariant across
histories of all collections. For instance, invoking a method on one collection should
not alter the history of any other collection.

4.4 History-based reasoning approach

Reasoning about the correctness of interfaces involves two aspects: the client side
and the implementation side of an interface. A client of an interface is a program
fragment that uses instances of the interface by calling methods on it. An imple-
mentation of an interface is an instance of a class that implements the interface, by
providing a method body for each of the methods defined in the interface. Clients of
interfaces need not have knowledge of their implementations. Thus, the state of an
implementation is hidden from the client. Moreover, clients accept any implemen-
tation, even those not conceived at the moment the client is designed: verification
of an interface client is in that sense open-ended.

The verification of interface clients and verification of interface implementations
depends on the specification technique applied to the interface. We need a way to
encode histories in the formalism used in expressing specifications. There are two
approaches we identify, we refer to model histories using Java classes [53] as the
executable history-based (EHB) approach, and model histories using abstract data
types as the logical history-based (LHB) approach.

4.4.1 The executable history-based approach

The EHB approach is to embed histories and attributes in the KeY theorem prover
[23] by encoding them as Java objects, thereby avoiding the need to change the
KeY system itself. Interface specifications can then be written in the state-based
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specification language JML [24] by referring to histories and their attributes to
describe the intended behavior of implementations.

We give an overview of the EHB approach: through what framework can we see the
different concepts involved? The goal is to specify interface method contracts using
histories. This is done in a number of steps:

1. We introduce histories by Java classes that represent the inductive data type of
sequences of events, and we introduce attributes of histories encoded by static
Java methods. These attributes are defined inductively over the structure
of a history. The attributes are used within the interface method contracts
to specify the intended behavior of every implementation in terms of history
attributes.

2. Attributes are deterministic and thus represent a function. Certain logical
properties of and between attributes hold, comparable to an equational specifi-
cation of attributes. These are represented by the method contracts associated
with the static Java methods that encode the attributes.

3. Finally, we append an event to a history by creating a new history object in a
static factory method. The new object consists of the new event as the head
and the old history object as the tail. The contract for these static methods
also expresses certain logical properties of and between attributes, of the new
history related to the old history.

The practical specification and verification effort of a part of the Collection inter-
face employing the EHB approach is detailed in Chapter 5.

4.4.2 The logical history-based approach

In state-based approaches, including the work by Knüppel et al. [11], (dynamic)
frames [54] inherently heavily depend on the chosen representation, i.e. at some
point, the concrete fields that are touched or changed must be made explicit. The
same holds for separation logic [55] approaches for Java [56]. Since interfaces do not
have a concrete state-based representation, a priori specification of frames is not
possible. Instead, for each class that implements the interface, further specifications
must be provided to name the concrete fields. One can abstract from these concrete
fields by using a footprint model method that specifies the frame dynamically, i.e.
a frame may depend on the state. However, the footprint model method itself
also requires a frame, leading to recursion in dependency contracts [57]. Moreover,
any specification that mentions (abstract or concrete) fields can be problematic for
clients of classes, since the concrete representation is typically hidden from them
(using an interface), which raises the question: how to verify clients that make use
of interfaces?

The LHB approach avoids specifying such frames, thus eliminating much effort
needed in specification: there is no need to introduce ad hoc abstractions of the
underlying state, as the complete behavior of an interface is captured by its history.
The main core of the LHB approach is modeling histories as abstract data types,
ADTs for short. Additionally, since we model such histories as elements of an ADT
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separate from the sorts used by Java, histories can not be touched by Java programs
under verification themselves, and so we never have to use dependency contracts
for reasoning about properties of histories. This allows us to avoid the bottlenecks
that arise in the approach of EHB approach, which uses an encoding of histories as
ordinary Java objects living on the heap.

The LHB approach can be done in a number of steps:

1. We begin by defining algebraic data types and functions to logically model
the domain-specific knowledge relevant to the Java program we aim to verify.
These definitions rely on polymorphic type parameters, abstracting away from
specific Java types and allowing for a more generalizable and flexible model.

2. We translate the signatures of our data types and functions into a formal verifi-
cation environment, mapping them to appropriate sorts and function symbols.
This step involves writing specifications for the Java program in a way that in-
tegrates these new sorts and function symbols, ensuring that our model aligns
with the program’s structure and behavior.

3. We proceed with symbolic execution of the Java program, leading to the gen-
eration of proof obligations. These obligations might initially contain unin-
terpreted symbols, limiting direct reasoning. To address this, we specify and
prove additional properties that capture our expectations about these symbols.
Successful proofs are then incorporated back into the symbolic execution envi-
ronment, enhancing our ability to reason about and verify the Java program.

The last step will usually be repeated many times until we finish the overall proof
because typically one can not find all required lemmas at once.

The case study demonstrating the LHB approach, which reasons about Java’s Col-
lection interface using histories and proves the correctness of several clients that
operate on multiple objects, is presented in Chapter 6.

4.4.3 Comparative analysis

At its core, the LHB approach can be viewed as an advanced approach of the EHB
approach, encapsulating the growth and advancement of our research. We explain
the advantages of the LHB approach in the following aspects: logical representation,
expressiveness of attributes, logical consistency, and verification complexity.

Logical representation

Modeling histories modeled as ADT is possible by declaring a new logical sort for
histories and events. Thus histories do not have any representation in the program
itself, but only in the theorem prover and they are immutable and inaccessible: no
program can modify or even inspect a history value from this sort. Since histories
thus have a run-time representation in the program (they are ordinary Java objects
on the heap) they can potentially be modified by a program. To ensure meaningful
specifications one thus needs to ensure that histories are not accessed by a program
under analysis. Histories are extended by the creation of a new history object with a
new event corresponding to a method call, its return value, and points to an old and
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unmodified history object. This requires showing that history/event objects occupy
a separate part of the heap: modifications during the creation of new histories and
events do not affect old history objects. Clearly, modeling histories and events as a
separate ADT avoids these non-trivial proof steps in the first place. Thus, for static
verification, one can consider the logical representation to be a positive aspect of
the LHB approach and a negative aspect of the EHB approach.

Expressiveness of attributes

In the LHB approach, with ADT, history attributes can be defined logically by spec-
ifying attributes using a (recursive) system of equations. The definitions can use ide-
alized mathematical data types and operations, such as mathematical (unbounded)
integers. Attributes of objects need to be expressed within the Java programming
language. Java is Turing-complete so in principle all computable functions are avail-
able to define attribute values. While Java does contain an unbounded integer type
(BigInteger) its use typically complicates reasoning.

Logical consistency

In the EHB approach, we introduce no new rules of the proof system: the consis-
tency is thus the same as that of the base system. In the LHB approach, we add
new rules to the proof system so there is a risk of introducing an inconsistency.
However, our LHB approach allows leveraging Isabelle/HOL to guarantee, for ex-
ample, meta-properties such as the consistency of axioms about user-defined ADT
functions.

Verification complexity

The encoding of the EHB approach made use of pure methods in its specification
and thus required extensive use of so-called accessibility clauses, which express the
set of locations on the heap that a method may access during its execution. These
accessibility clauses must be verified. Furthermore, for recursively defined pure
methods we also need to verify their termination and determinism [25]. Essentially,
the associated verification conditions boil down to verifying that the method un-
der consideration computes the same value starting in two heaps that are different
except for the locations stated in the accessibility clause. To that end, one has to
symbolically execute the method more than once (in two different heaps) and relate
the outcome of the method starting in different heaps to one another. After such
proof effort, accessibility clauses of pure methods can be used in the application of
dependency contracts, which are used to establish that the outcome of a pure method
in two heaps is the same if one heap is obtained from the other by assignments out-
side of the declared accessible locations. The degree of automation in the proof
search strategy with respect to pure methods, accessibility clauses, and dependency
contracts turned out to be rather limited in KeY. So, while the methodology works
in principle, in practice, for advanced use, the pure methods were a source of large
overhead and complexity in the proof effort. In contrast, in the LHB approach, ele-
ments of abstract data types are not present on the heap, avoiding the need to use
dependency contracts to prove that heap modifications affect their properties.

While the LHB method offers advantages over the EHB in various dimensions, it
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comes with its own set of demands. Adopting the LHB approach necessitates not
only proficiency in Java and JML but also an in-depth understanding of taclets and
JavaDL. Moreover, verifiers need to be well-acquainted with domain-specific theorem
provers like KeY, as well as general-purpose theorem provers, such as Isabelle/HOL
in our case.

To conclude, for those who are new to history-based reasoning, the EHB approach
offers a gentler introduction. It situated specifications within the programming
language context, making functions computable and available in Java. However, the
advantage of the LHB approach is that it opens up the possibility of defining many
more functions on histories, thus furthering the ability to model complex object
behavior: this we demonstrated by verifying complex and realistic client code that
uses collections in Chapter 6.

4.5 Summary
In this chapter, we address a key challenge in object-oriented programming: the
specification and verification of state-hiding interfaces. Traditional static analysis
tools, such as KeY theorem prover, often fall short in this context due to their
emphasis on state-based reasoning. Our work introduces a novel methodology for
reasoning about Java interfaces through the use of histories, which are sequences of
method calls and returns. We particularly apply this reasoning to Java’s Collection
interface and discuss several challenges associated with using histories in real-world
programs. We explore two approaches to implementing the concept of histories:
the EHB approach, which models histories as standard Java classes, and the LHB
approach which treats histories as external ADTs with associated functions. These
methodologies offer new possibilities for verifying the correctness of client code in
relation to the expected behavior of interface implementations.
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