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Chapter 3

Class specification and verification: a
step-by-step guide

This chapter is designed to serve as a comprehensive tutorial, illustrating the formal
methods for specifying and reasoning about program executions in Java. As a spe-
cific case study for java.util.LinkedList, we provide the source code and video
material to facilitate a deeper understanding of the entire proof process.

This chapter is based on the following publications and artifacts:

• Hiep, H. A., Bian, J., de Boer, F. S., de Gouw, S. (2020). A Tutorial on Verifying LinkedList
Using KeY. Deductive Software Verification: Future Perspectives: Reflections on the Occa-
sion of 20 Years of KeY, 221-245.

• Bian, J., Hiep, H. A.: A Tutorial on Verifying LinkedList using KeY: Part 1 (2020).
https://doi.org/10.6084/m9.figshare.11662824

• Bian, J., Hiep, H. A.: A Tutorial on Verifying LinkedList using KeY: Part 2 (2020).
https://doi.org/10.6084/m9.figshare.11673987

• Bian, J., Hiep, H. A.: A Tutorial on Verifying LinkedList using KeY: Part 3a (2020).
https://doi.org/10.6084/m9.figshare.11688816

• Bian, J., Hiep, H. A.: A Tutorial on Verifying LinkedList using KeY: Part3b(2020).
https://doi.org/10.6084/m9.figshare.11688858

• Bian, J., Hiep, H. A.: A Tutorial on Verifying LinkedList using KeY: Part 3c (2020).
https://doi.org/10.6084/m9.figshare.11688870

• Bian, J., Hiep, H. A.: A Tutorial on Verifying LinkedList using KeY: Part3d(2020).
https://doi.org/10.6084/m9.figshare.11688984

• Bian, J., Hiep, H. A.: A Tutorial on Verifying LinkedList using KeY: Part 3e (2020).
https://doi.org/10.6084/m9.figshare.11688891

• Bian, J., Hiep, H. A.: A Tutorial on Verifying LinkedList using KeY: Part 4a (2020).
https://doi.org/10.6084/m9.figshare.11699178

• Bian, J., Hiep, H. A.: A Tutorial on Verifying LinkedList using KeY: (2020).
https://doi.org/10.6084/m9.figshare.11699253

• Bian, J., Hiep, H. A.: A Tutorial on Verifying LinkedList using KeY: Video Material
(2020). https://doi.org/10.6084/m9.figshare.c.4826589.v2

• Hiep, H. A., Bian, J., de Boer, F.S., de Gouw, S.: A Tutorial on Verifying LinkedList using
KeY: Proof Files (2020). https://doi.org/10.5281/zenodo.3613711
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3. CLASS SPECIFICATION AND VERIFICATION: A STEP-BY-STEP GUIDE

3.1 Introduction

Software libraries, such as the Java standard library, serve as the building blocks
of many programs that run on the devices of many users every day. Given their
widespread usage, even minor errors in these libraries can result in serious conse-
quences, making it essential that such libraries be thoroughly tested and debugged
before being deployed. Therefore, it is crucial to rigorously test and debug these
libraries before deploying them. The focus should be on preempting issues, rather
than merely addressing them after they occur.

This chapter intends to show how we take an existing Java program that is part of
the Java standard library and study it closely to increase our understanding of it. If
we are only interested in showing the presence of an issue with the program, e.g. that
it lacks certain functionality, it suffices to show an example run that behaves unex-
pectedly. But to conclude that no unexpected behavior ever results from running
the program first requires a precise specification of what behavior one expects, and
further requires a convincing argument that all possible executions of the program
exhibit that behavior.

We take a formal approach to both specification and reasoning about program ex-
ecutions, allowing us to increase the reliability of our reached conclusions to near
certainty. In particular, the specifications we write are expressed in the JML, and
our reasoning is tool-supported and partially automated by KeY. To the best of the
authors’ knowledge, KeY is the only tool that supports enough features of the Java
programming language for reasoning about real programs, of which its run-time be-
havior crucially depends on the presence of features such as dynamic object creation,
exception handling, integer arithmetic with overflow, for loops with early returns,
nested classes (both static and non-static), inheritance, polymorphism, erased gener-
ics, etc.

As a demonstration of applying KeY to state-of-the-art, real software, we focus on
Java’s LinkedList class, for two reasons. First, a (doubly-)linked list is a well-
known basic data structure for storing and maintaining unbounded data and has
many applications: for example, in Java’s secure sockets implementation.1 Second,
it has turned out that there is a 20-year-old bug lurking in its program, that might
lead to security-in-depth issues on large memory systems, caused by the overflow of
a field that caches the length of the list [38]. Our specification and verification effort
is aimed at establishing the absence of this bug from a repaired program.

This chapter is based on the results as described in paper [38]. That paper provides
a high-level overview of the specification and verification effort of the linked list
class as a whole, for a more general audience. In the present chapter, more tech-
nical details on how we use the KeY theorem prover are given, and we give more
detail concerning the production of the proofs. In particular, this tutorial consists
of the online repository of proof files [39], and online video material that shows
how to (re)produce the proofs [40]: these are video recordings of the interactive
sessions in KeY that demonstrates exactly what steps one could take to complete

1e.g. see the JVM internal class sun.security.ssl.HandshakeStateManager.
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3.2 Preliminaries

the correctness proofs of the proof obligations generated by KeY from the method
contracts.

We see how to set up a project and configure the KeY tool (Section 3.2). We then
study the source code of the LinkedList to gain an intuitive understanding of its
structure: how the instances look like, and how the methods operate (Section 3.3).
We formulate, based on previous intuition, a class invariant in JML that expresses
a property that is true of every instance (Section 3.4). An interesting property that
follows from the class invariant, that is used as a separation principle, is described
next (Section 3.5). To keep this presentation reasonably short, we further focus on
the methods that pose the main challenges to formal verification, add and remove.
We give a method contract for the add method that describes its expected behavior
and we verify that its implementation is correct (Section 3.6). The difficulty level
increases after we specify the remove method (Section 3.7), as its verification requires
more work than for add. We study a deeper method that remove depends on, and
finally use loop invariants to prove the correctness of remove.

3.2 Preliminaries

First we set up the project files needed to use KeY. The project files are available
on-line [39]: these can be downloaded and include the KeY software version that
we use. After unpacking the project files, we end up with the directory structure of
Table 3.1.

linkedlist-tutorial
key-2.6.3.zip
LinkedList.key
src

java
util

LinkedList.old
LinkedList.java

jre
java

...
proof

...

Table 3.1: Directory structure of project files. The src directory contains the Java
classes we want to specify and verify. The jre directory contains stub files, with
specifications of unrelated classes. The LinkedList.java file is the source file we
end up with after following this tutorial. The proof directory contains the completed
proofs.

The original source file of LinkedList.old was obtained from OpenJDK version
jdk8-b132. The original has been pre-processed: generic class parameters are re-
moved, and all methods and nested classes irrelevant to this tutorial are removed.
Both the removal of generics and the stub files in the jre folder were generated
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3. CLASS SPECIFICATION AND VERIFICATION: A STEP-BY-STEP GUIDE

Max. rule applications 1000
Stop at Default
Proof splitting Delayed
Loop treatment Invariant
Block treatment Contract
Method treatment Contract
Dependency contract On
Query treatment Off
Expand local queries On
Arithmetic treatment Basic
Quantifier treatment No splits
Class axiom rule Off
Auto induction Off
User-defined taclets All off

JavaCard Off
Strings On
Assertions Safe
BigInt On
Initialization Disable static ...
Int Rules Java semantics
Integer Simpl. Rules Full
Join Generate Off
Model Fields Treat as axiom
More Seq. Rules On
Permissions Off
Program Rules Java
Reach On
Runtime Exceptions Ban
Sequences On
Well-def. Checks Off
Well-def. Operator L

Table 3.2: Proof search strategy and taclet options

automatically, using the Eclipse extensions for KeY. Repeating those steps is not
necessary here.

Throughout the next sections, we modify the original source file and add annotations
to formally specify its behavior, and helper methods for presenting intermediary
lemmas. The annotations are usual Java comments and thus ignored when the file is
read by a Java compiler. The helper methods introduce slight performance overhead
(of calling a method that performs no operations, and immediately returning from
it); it is clear that these do not change the original behavior of the program.

To produce proofs in KeY, the first step is to set up KeY’s proof strategy and
taclet options. This has to be done only once, as these taclet settings are stored
per computer user. Sometimes, KeY overwrites or corrupts these settings if differ-
ent versions are used. To ensure KeY starts in a fresh state, one can remove the
.key directory from the user’s home directory, and clean out preferences from the
.java/.userPrefs directory by deleting the de/uka/ilkd/key hierarchy contain-
ing prefs.xml files.1 Now start up KeY, and the example selection screen appears
(if not, selecting File ▷Load Example opens the same screen). Load any example,
to enter proof mode.

First, we set up a proof strategy: this ensures the steps as done in the videos can
be reproduced. On the left side of the window, change the settings in the Proof
Search Strategy tab to match those of the left column in Table 3.2. We ensure to
use particular taclet rules that correctly model Java’s integer overflow semantics.

1On Windows, the preferences are instead stored in the Windows Registry. Use
the regedit tool and clean out under HKEY_CURRENT_USER\Software\JavaSoft\Prefs or
HKEY_CURRENT_USER\Software\Wow6432Node\JavaSoft\Prefs the same hierarchy. On Mac OS,
open a terminal, change the directory to ~/Library/Preferences, and delete de.uka.ilkd.plist

24



3.3 Structure and behavior of java.util.LinkedList

Select Options ▷Taclet Options, and configure the options as in the right column in
Table 3.2. The taclet options become effective after loading the next problem. We
do that now: the main proof file LinkedList.key can be loaded, and a Proof Man-
agement window opens up, showing a class hierarchy and its methods. A method is
not shown when no specifications are present. After giving the specifications below,
more methods can be selected in this window.

3.3 Structure and behavior of java.util.LinkedList
In this section we walk through part of the source code of Java’s linked list: see the
LinkedList.old file in the artifact. Throughout this tutorial, we add annotations
at the appropriate places. We finally obtain the LinkedList.java file.

Our LinkedList class has three attributes and a constructor (Listing 3.1): a size
field, which stores a cached number of elements in the list, and two fields that store a
reference to the first and last Node. The public constructor contains no statements:
thus it initializes size to zero, and first and last to null.

package java.util;

public class LinkedList {

transient int size = 0;
transient Node first;
transient Node last;

public LinkedList() {}

Listing 3.1: The LinkedList class fields and constructor (begin of file).

The linked list fields are declared transient and package private. The transient
flag is not relevant to our verification effort. The reason the fields are declared
package private seems to prevent generating accessor methods by the Java compiler.
However, in practice, the fields are treated as if they were private.

The Node class is defined as a private static nested class to represent the containers
of items stored in the list (Listing 3.2). A static nested private class behaves like a
top-level class, except that it is not visible outside the enclosing class. The nodes
are doubly linked, that is, each node is connected to its preceding node (through
field prev) and succeeding node (through field next). These fields contain null in
case no preceding or succeeding node exists. The data itself is contained in the item
field of a node.
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private static class Node{
Object item;
Node next;
Node prev;

Node(Node prev, Object element, Node next) {
this.item = element;
this.next = next;
this.prev = prev;

}
}

}

Listing 3.2: The Node nested class fields and constructor (end of file).

The method add for adding new elements to the list, takes one argument, the item
to add (Listing 3.3). According to Java informal documentation for the Collection,
this method is designed to always return true. The implementation immediately
calls linkLast.

// implements java.util.Collection.add
public boolean add(Object e) {

linkLast(e);
return true;

}

Listing 3.3: The method add.

The method remove for removing elements, also takes one argument, the item to
remove (Listing 3.4). If that item was present in the list, then its first occurrence is
removed and true is returned; otherwise, if the item was not present, then the list
is not changed and false is returned.

// implements java.util.Collection.remove
public boolean remove(Object o) {

if (o == null) {
for (Node x = first; x != null; x = x.next) {

if (x.item == null) {
unlink(x);
return true;

}
}

} else {
for (Node x = first; x != null; x = x.next) {

if (o.equals(x.item)) {
unlink(x);
return true;

}
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3.3 Structure and behavior of java.util.LinkedList

}
}
return false;

}

Listing 3.4: The method remove.

The presence of the item depends on whether the argument of the remove method
is null or not. If the argument is null, then it searches for the first occurrence of
a null item in the list. Otherwise, it uses the equals method, that every Object
in Java has, to determine the equality of the argument with respect to the contents
of the list. The first occurrence of an item that is considered equal by the argument
is then returned. In both cases, the execution walks over the linked list, from the
first node until it has reached the end. In the case that the node was found that
contains the first occurrence of the argument, an internal method is called: unlink,
and afterward true is returned.

Observe that the linked list is not modified if unlink is not called. Although not
immediately obvious, this requires that the equals method of every object cannot
modify our current linked list, for the duration of the call to remove. When the
remove method is called with an item that is not contained in the list, either loop
eventually exits, and false is returned.

The internal method linkLast changes the structure of the linked list (Listing 3.5).
After performing this method, a new node has been created, and the last field of
the linked list now points to it. To maintain structural integrity, also other fields
change: if the linked list was empty, the first field now points to the new, and
only, node. If the linked list was not empty, then the new last node is also reachable
via the former last node’s next field. It is always the case that all items of a linked
list are reachable through the first field, then following the next fields, and also
for the opposite direction.

void linkLast(Object e) {
final Node l = last;
final Node newNode = new Node(l, e, null);
last = newNode;
if (l == null) first = newNode;
else l.next = newNode;
size++;

}

Listing 3.5: The internal method linkLast.

The internal method unlink is among the most complex methods that alter the
structure of a linked list (Listing 3.6). The method is used only when the linked list
is not empty. Its argument is a node, necessarily one that belongs to the linked list.
We first store the fields of the node in local variables: the old item, and the next
and previous node references.
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Object unlink(Node x) {
final Object element = x.item;
final Node next = x.next;
final Node prev = x.prev;
if (prev == null) {first = next;}
else {

prev.next = next;
x.prev = null;

}
if (next == null) {last = prev;}
else {

next.prev = prev;
x.next = null;

}
x.item = null;
size−−;
return element;

}

Listing 3.6: The internal method unlink.

After the method returns, the argument fields are all cleared, presumably to help
the garbage collector. However, other fields also change: if the argument is the first
node, the first field is updated; if the argument is the last node, the last field
is updated. The predecessor or successor fields next and prev of other nodes are
changed to maintain the integrity of the linked list: the successor of the unlinked
node becomes the successor of its predecessor, and the predecessor of the unlinked
node becomes the predecessor of its successor.

3.3.1 Expected and unexpected method behavior

We draw pictures of linked list instances to understand better how the structure
looks like over time. In Figure 3.1, we see three linked list instances. The left-most
linked list is an object without any items: its size is zero. When we perform add
with some item (it is not important what item), a new node is created and the first
and last pointers are changed to point to the new node. Now the prev and next
fields of the new node are null, indicating that there is no other node before and
there is no other node after it. Also, the size field is increased by one. Adding
another item further creates another node, that is linked up to the previous node
properly; the last field is then pointed to the newly created node. In the third
instance, suppose we would perform remove with the first item. We would then
have to unlink the node, see the code of unlink in Listing 3.6: the new value of
first becomes the value of next which is the last node, and the value of prev of
the succeeding node becomes the value of prev of the node that is unlinked, which
is null. We thus end up in a similar situation as the second instance (except for the
item that may be different). Removing the last item brings us back to the situation
depicted by the first instance.
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LinkedList LinkedList

null null

Node

LinkedList

null

Node

null

Node

first last

prev item next prev item next prev item next

null null

size

0

first lastsize

1

first lastsize

2

Figure 3.1: Three example linked lists: empty, with a chain of one node, and with a
chain of two nodes. Items themselves are not shown.

An important aspect of the implementation of our linked list is the cached size
field: it represents the number of nodes that form a chain between first and last.
It turns out an overflow may happen under certain conditions [38]. Consider two
facts: Java integer primitives are stored in signed 32-bit registers, and it is possible
to create a chain that is larger than the maximum positive value that can be stored
in such fields, 231−1. Now, the cached size and the actual size no longer correspond.
In the methods we have seen above, this seems to be no issue. But another method
of the linked list may be used to demonstrate the key problem: toArray. The
intention of toArray is to give back an array containing all the items of the list (see
Listing 3.7). There are two problems: after the overflow has occurred and the size is
negative, the toArray throws an unexpected NegativeArraySizeException. Also,
after adding more items that bring the size back to a positive integer, e.g. adding
232 + 1 items in total, the array is of the wrong (positive) size and cannot contain
all items of the list, and an IndexOutOfBoundsException is thrown.

public Object[ ] toArray() {
Object[ ] result = new Object[size];
int i = 0;
for (Node x = first; x != null; x = x.next)

result[i++] = x.item;
return result;

}

Listing 3.7: The method toArray has unexpected behavior.

3.3.2 Integer overflow bug

The List interface is part of the collection framework. The method int size()
provided by class LinkedList, as shown in Listing 3.8.

/∗∗ Returns the number of elements in this list. ∗∗/
private int size() {

return size;
}

Listing 3.8: The size method.

Its (informal) specification states that it returns the number of elements in the list.
This method is further specified by the interface Collection, where additionally it is
stated that if the collection contains more than Integer.MAX_VALUE elements, then
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size() returns Integer.MAX_VALUE (Java integers are bounded). Adding an ele-
ment unconditionally increments the size, and thus can overflow, resulting in a neg-
ative size. This error breaks the contract of size() and propagates in various ways.
For example, sorting a linked list first copies the list to a new array Object[size] by
the method toArray, which thus may crash with a NegativeArraySizeException.
Further, many methods of the List interface use an integer index to refer to an
element. For very large lists with more than Integer.MAX_VALUE elements, it is
unclear what the behavior should be. This is perhaps not surprising: triggering
these bugs requires at least 231 elements (i.e., at least 64 GiB of memory), and each
element has 232 values; the state space is too large to explore for fully automated
analysis methods. Similarly, the smallest test cases that triggered the TimSort crash
consist of inputs of 226 (≈ 67 million) elements, and each element has 232 possible
values. Such cases are clearly out of range for fully automated methods, such as
model checking, which are typically based on finite abstractions of limited size.

As this case study involves real software, we have performed an analysis of existing
Java code to estimate the use of LinkedList and the potential impact of a bug. A
basic analysis of at least 140,000 classes,1 found by sampling Java packages on Maven
Central and in software distributions such as Red Hat Linux, reveals 1,677 cases of
direct use of the LinkedList class where a constructor of LinkedList is invoked.
As an overestimation of the potential reach of such instances, we find at least 37,000
usage call sites where some method of the Collection, List, or Queue interface
is called. It is infeasible for us to analyze for each constructor call site where its
resulting instance will be used. However, some usage of the LinkedList class occurs
in potentially security-sensitive contexts, such as the library for checking certificates
used by the Java secure socket implementation and checking the authenticity of the
source of dynamically loaded bytecode.

3.3.3 Verification goal

We thus revise the source code and add a method that implements an overflow check
(see Listing 3.9). The intention is that the overflow is signaled before it occurs, by
throwing an exception. This ensures that the integrity of the linked list is always
maintained. We modify the add method and perform a call to this checkSize()
method before invoking linkLast.

// new method, not in original LinkedList
private void checkSize() {

if (size == Integer.MAX_VALUE)
throw new IllegalStateException(...);

}

Listing 3.9: A new internal method checkSize.

Our aim in this tutorial is to keep the discussion general enough, without losing
interesting particular details. We apply step-wise refinements to our arguments,

1We have used the Rascal programming language [41] for loading .jar-files and analyzing
their class file contents that revealed method call sites. We thank Thomas Degueule for his help
in setting up this experiment.
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3.3 Structure and behavior of java.util.LinkedList

where we start with a higher-level intuition and drill down on technical details as
they become relevant. The reader can always see the video material; but, a high-level
intuition seems essential for following along.

Our specification and verification goals comprise two points:

1. Specification captures the ‘intended’ behavior of the methods with respect to
their structural properties: in particular, we abstract away from all properties
about the contents of the linked list.

2. Verification ensures the overflow bug no longer happens in the revised linked
list: the actual number of nodes and the cached size are always the same.

The first point depends on the aim of a verification attempt. Are we using the
specification to verify the correctness of clients of the linked list? The properties
of the contents of a linked list are essential. But, for our purpose of showing the
absence of an overflow bug, we abstract away some properties of the contents of
linked lists.

The second point deserves an introduction: how can we be sure that in every linked
list the number of nodes and the value stored in the size field are the same? Can we
keep the number of nodes bounded by what a Java integer can represent? Keeping
this number in a ghost field is not sufficient, since the number of nodes depends
on the success of a remove call: removing an item not present in the linked list
should not affect its size, while removing an item that is present decreases its size
by one. We refine: we could keep track of the items that are stored by the linked list.
The structure to collect these items cannot be a set of items, since we could have
duplicate items in the list. A multiset of items, the contents of a linked list, seems
right: the size field of the linked list must be the same as the size of its contents,
and the remove method is only successful if its argument is contained before the
call.

However, working with multisets is quite unnatural, as the remove method removes
the first item in the list. That can be refined by specifying the contents as a sequence
of items instead. Although this could work in principle, a major difficulty when ver-
ifying the remove method is to give an argument as to why the method terminates.
This requires knowledge of the linking structure of the nodes. We could relate the
sequence of items to a traversal over nodes, saying that the first item of a linked list
is found in the node by traversing first, and the item at index 0 < i < n is found
in the node by traversing first and then next for i − 1 times. Formalizing this
seems quite difficult, and as we shall see, not even possible in first-order logic.

Hence, we end up with our last refinement: we keep a sequence of nodes in a ghost
field. From this sequence, one obtains the sequence of items. We relate the sequence
of nodes to the linked list instance and require certain structural properties to hold
the nodes in the sequence. The length of this sequence is the actual number of
nodes, that we show to be equal to the cached size.

31



3. CLASS SPECIFICATION AND VERIFICATION: A STEP-BY-STEP GUIDE

3.4 Formulating a class invariant

We now formalize a class invariant, thereby characterizing all linked list instances.
We focus on unbounded linked lists first, as these are the structures we intend to
model: so most properties are expressed using KeY’s unbounded integer type \big-
int. Only at the latest, we restrict the size of each linked list to a maximum, as
a limitation imposed by the implementation. The setting in which to do our char-
acterization is multi-sorted first-order logic. This logic is presented in a simplified
form, leaving out irrelevant details (such as the heap): the full logic used by KeY is
described in Chapter 2 of [29].

Consider the following sorts or type symbols: LinkedList for a linked list, Node for a
node, Object for objects, and Null for null values. We have a type hierarchy, where
Null is related to LinkedList and Node, and LinkedList and Node are both related to
Object . This means that any object of sort Null is also an object of sort LinkedList
and Node. Moreover, every object that is a linked list is also of type Object , and
similar for nodes. We have the following signature: first : LinkedList → Node
and last : LinkedList → Node for the first and last fields of linked lists, and
prev : Node → Node, item : Node → Object , and next : Node → Node for the prev,
item and next fields of nodes. Further, we assume there is exactly one object of Null
sort, which is the null constant, for which the above functions are left undefined:
null is a valid object of the LinkedList and Node Java types, but one may not
access its fields.

We search for an axiomatization that characterizes linked list instances. One can
find these axioms by trial and error. We start listing some (obvious) axioms:

1. ∀xLinkedList ; (x ̸= null → (first(x) ̸= null ↔ last(x) ̸= null))
Every linked list instance either has both first and last set to null, or both
point to some (possibly different) node.

2. ∀xLinkedList ; (x ̸= null → (first(x) ̸= null → prev(first(x)) = null))
The predecessor of the first node of a linked list is set to null.

3. ∀xLinkedList ; (x ̸= null → (last(x) ̸= null → next(last(x)) = null))
The successor of the last node of a linked list is set to null.

4. ∀xNode ; (x ̸= null → (prev(x) ̸= null → next(prev(x)) = x))
Every node that has a predecessor, must be the successor of that predecessor.

5. ∀xNode ; (x ̸= null → (next(x) ̸= null → prev(next(x)) = x))
Every node that has a successor, must be the predecessor of that successor.

These axioms are not yet sufficient: consider a linked list, in which its first and last
nodes are different and both have neither a predecessor nor a successor. This linked
list should not occur: intuitively, we know that the nodes between first and last are
all connected and should form a doubly-linked ‘chain’. Moreover, for every linked
list, this chain is necessarily finite: one can traverse from first to last by following
the next reference a finite number of times. This leads to a logical difficulty.

Proposition 1. It is not possible to define the reachability of nodes of a linked list
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3.4 Formulating a class invariant

in first-order logic.

Proof 1. Let x be a linked list and y a node: there is no formula ϕ(x, y) that is
true if and only if next i(first(x)) = y for some integer i ≥ 0.1 Suppose towards
contradiction that there is such a formula ϕ(x, y). Now consider the infinite set
∆ of first-order formulas {ϕ(x, y)} ∪ {¬(next i(first(x)) = y) | 0 ≤ i}. Let Γ be
an arbitrary finite subset of ∆. Consider that there must exists some j such that
Γ ⊆ {ϕ(x, y)}∪{¬(next i(first(x)) = y) | 0 ≤ i < j}, so we can construct a linked list
with j nodes, and we interpret x as that linked list and y as the last node. Clearly
ϕ(x, y) is true as the last node is reachable, and all ¬(next i(first(x)) = y) is true
for all 0 ≤ i < j because j is not reachable within i steps from the first node. Since
Γ is arbitrary, we have established that all finite subsets of ∆ have a model. By
compactness, ∆ must have a model too. However, that is contradictory: no such
model for ∆ can exist, as neither ϕ(x, y) and next i(first(x)) ̸= y for all integers
0 ≤ i can all be true.

We extend our signature to include other sorts: sequences and integers. These sorts
are interpreted in the standard model. A schematic rule to capture integer induction
is included in KeY (see [29, Section 2.4.2]). Sequences (see [29, Chapter 5.2]) have a
non-negative integer length n and consist of an element at each position 0 ≤ i < n.
We write σ[i] to mean the ith element of sequence σ, and ℓ(σ) to mean its length
n.

Intuitively, each linked list consists of a sequence of nodes between its first and last
node. Let instanceofNode : Object be a built-in predicate that states that the object
is not null and of sort Node. A chain is a sequence σ such that:

(a) ∀iint; (0 ≤ i < ℓ(σ) → instanceofNode(σ[i]))
All its elements are nodes and not null

(b) ∀iint; (0 < i < ℓ(σ) → prev(σ[i]) = σ[i− 1])
The predecessor of the node at position i is the node at position i− 1

(c) ∀iint : (0 ≤ i < ℓ(σ)− 1 → next(σ[i]) = σ[i+ 1])
The successor of the node at position i is the node at position i+ 1

Let ϕ(σ) denote the above property that σ is a chain. If ℓ(σ) = 0 then ϕ(σ) is
vacuously true: the empty sequence is thus a chain. We now describe properties
ψ1(σ, x) and ψ2(σ, x) that relate a chain σ to a linked list x. These denote the
following intuitive properties: there is no first and last node and the chain is empty,
or the chain is not empty and the first and last node are the first and last elements
of the chain.

ψ1(σ, x) ≡ (ℓ(σ) = 0 ∧ first(x) = last(x) = null)

ψ2(σ, x) ≡ (ℓ(σ) > 0 ∧ first(x) = σ[0] ∧ last(x) = σ[ℓ(x)− 1])

6. ∀xLinkedList ; (x ̸= null → ∃σsig; (ϕ(σ) ∧ (ψ1(σ, x) ∨ ψ2(σ, x))))
Every linked list necessitates the existence of a chain of either property

1next i is not a function symbol in first-order logic but an abbreviation of a finite term built by
iteration of i times next , where next0(x) = x and next i(x) = next(next i−1(x)) for all i > 0.

33



3. CLASS SPECIFICATION AND VERIFICATION: A STEP-BY-STEP GUIDE

Further, we require that the size field of the linked list and the length of the chain
are the same: this property is essential to our verification goal. The size field is
modeled by the function size : LinkedList → int , and we require its value (1) to
equal the length of the chain, and (2) to be bounded by the maximum value stored
in a 32-bit integer. In formulating the above properties in JML, we skolemize the
existential quantifier using a ghost field: see Listing 3.10. This has the additional
benefit that we can easily refer to the chain ghost field in specifications.

/∗@ nullable @∗/ transient Node first;
/∗@ nullable @∗/ transient Node last;
//@ private ghost \seq nodeList;
/∗@ invariant

@ nodeList.length == size &&
@ nodeList.length <= Integer.MAX_VALUE &&
@ (\forall \bigint i; 0 <= i < nodeList.length;
@ nodeList[i] instanceof Node) &&
@ ((nodeList == \seq_empty && first == null && last == null)
@ || (nodeList != \seq_empty && first != null &&
@ first.prev == null && last != null &&
@ last.next == null && first == (Node)nodeList[0] &&
@ last == (Node)nodeList[nodeList.length−1])) &&
@ (\forall \bigint i; 0 < i < nodeList.length;
@ ((Node)nodeList[i]).prev == (Node)nodeList[i−1]) &&
@ (\forall \bigint i; 0 <= i < nodeList.length−1;
@ ((Node)nodeList[i]).next == (Node)nodeList[i+1]);
@∗/

Listing 3.10: The class invariant of LinkedList expressed in JML.

The class invariant is implicitly required to hold for the this object when invoking
methods on a linked list instance. In particular, for the constructor of the linked
list, the class invariant needs to be established after it returns. In Listing 3.11,
we state that the constructor always constructs a linked list instance for which its
chain is empty. The proof of correctness follows easily: at construct time, the fields
(including the ghost field) of the linked list instance are initialized with their default
values. This means the size is zero, and the first and last references are null, and
the ghost field is the empty sequence.

/∗@
@ public normal behavior
@ ensures nodeList == \seq_empty;
@∗/

public LinkedList() {}

Listing 3.11: The method contract of the constructor of LinkedList in JML.

For verifying the constructor above, see the video [42, 0:23–0:53], where the relevant
video material is between timestamps 0:23 and 0:53.
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3.5 The acyclicity property

An interesting consequence of the class invariant is the property that traversal of
only next fields is acyclic. In other words, following only next references of any node
that is present in a chain never reaches itself. The acyclicity property implies there
is a number of times to follow the next reference until the last node is reached. For
the last node, this number is zero (the last node is already reached). A symmetric
property holds for prev too.

We logically specify the acyclicity property as follows. Let σ be the chain of a non-
empty linked list x for which the class invariant holds. The following holds:

∀iint; (0 ≤ i < ℓ(σ)− 1 → ∀jint; (i < j < ℓ(σ) → σ[i] ̸= σ[j]))

Let n abbreviate ℓ(σ). By contradiction: assume there are two indices, 0 ≤ i <
j < n, such that the nodes σ[i] and σ[j] are equal. Then it must hold that for
all k such that j ≤ k < n, the node σ[k] is equal to the node σ[k − (j − i)]: by
induction on k. Base case: if k = j, then node σ[j] and node σ[j− (j− i)] are equal
by assumption, since σ[j − (j − i)] = σ[i]. Induction step: suppose node at σ[k] is
equal to the node at σ[k − (j − i)]. We must show if k + 1 < n then node σ[k + 1]
equals node σ[k+ 1− (j − i)]. This follows from the fact that σ[k+ 1] = next(σ[k])
and σ[k + 1 − (j − i)] = next(σ[k − (j − i)]) for k < n − 1, since σ is a chain and
the chain property (c) of last section. Now we have established, for all j ≤ k < n,
node σ[k] equals node σ[k − (j − i)]. In particular, this holds when k is n − 1, the
index of the last node: so we have σ[n− 1] = σ[n− 1− (j − i)]. Since the difference
(j − i) is positive, we know σ[n− 1− (j − i)] is not the last node. By the linked list
property 3 we have next(last(x)) = null and by ψ2(σ, x) we have last(x) = σ[n−1]:
so we have next(σ[n − 1]) = null. By the chain properties (c) and (a) we have
next(σ[n−1−(j−i)]) = σ[n−(j−i)] and instanceofNode(σ[n−(j−i)]), respectively.
From the latter we know σ[n− (j− i)] ̸= null. So we have next(σ[n−1− (j−1)]) ̸=
null. But this is a contradiction: if nodes σ[n− 1] and σ[n− 1− (j − i)] are equal
then their next fields must also have equal values, but next(σ[n − 1]) = null and
next(σ[n− 1− (j − i)]) ̸= null!

For verifying the lemma as formalized in Listing 3.12, see the video [43].

/∗@ public normal_behavior
@ requires true;
@ ensures (\forall \bigint i;
@ 0 <= i < (\bigint)nodeList.length − (\bigint)1;
@ (\forall \bigint j; i < j < nodeList.length; nodeList[i] != nodeList[j]));
@∗/

private /∗@ strictly_pure @∗/ void lemma_acyclic() {}

Listing 3.12: The method of a lemma added to LinkedList expressed in JML.

3.6 The add method

Due to the revision of the source code, the add method now calls checkSize first
(see Listing 3.9) to ensure that the size field does not overflow when we add another
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item. This means that the add method has two expected behaviors: the normal
behavior when the length of the linked list is not yet at its maximum, and the
exceptional behavior when the length of the linked list is at its maximum.

In the normal case, we expect the add method to add the given argument as an
item to the linked list. Thus the sequence of nodes must become larger. We further
specify the position where the item is added: at the end of the list. If add returns
normally, it returns true. In the exceptional case, we expect that an exception is
thrown. We formalize the contract for add in Listing 3.13.
/∗@ private normal_behavior

@ requires nodeList.length + (\bigint)1 <= Integer.MAX_VALUE;
@ ensures
@ nodeList == \seq_concat(\old(nodeList),
@ \seq_singleton(nodeList[nodeList.length−1])) &&
@ ((Node)nodeList[nodeList.length−1]).item == e && \result;
@private exceptional_behavior
@ requires nodeList.length == Integer.MAX_VALUE;
@ signals_only IllegalStateException;
@ signals (IllegalStateException e) true;
@∗/

public boolean add(/∗@ nullable @∗/ Object e) {
checkSize(); // new
linkLast(e);
return true;

}

Listing 3.13: The add method with its method contract expressed in JML.

Since the add method calls the deeper methods checkSize and linkLast, we may
employ their method contracts when verifying this method. So, before we verify
add, we specify and verify these methods first.

We expect checkSize to throw an exception if the length of the linked list is too
large to add another element, and it returns normally otherwise: see Listing 3.14
for its specification. Verification of checkSize in both normal and exceptional cases
is done automatically by KeY, as can be seen in [42, 0:54–1:24].
/∗@ private exceptional_behavior

@ requires nodeList.length == Integer.MAX_VALUE;
@ signals_only IllegalStateException;
@ signals (IllegalStateException e) true;
@ private normal_behavior
@ requires nodeList.length != Integer.MAX_VALUE;
@ ensures true;
@∗/

Listing 3.14: The method contract in JML of the checkSize method.

For the linkLast method, we assume that the length of the linked list is smaller than
its maximum length, so we can safely add another node without causing an overflow
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of the size field. When adding a new node, the resulting chain now is an extension
of the previous chain, and additionally the class invariant holds afterwards—this is
an implicit post-condition. Since we modify the chain, we need a set annotation
that changes the ghost field.

/∗@
@ normal_behavior
@ requires nodeList.length + (\bigint)1 <= Integer.MAX_VALUE;
@ ensures nodeList == \seq_concat(\old(nodeList),
@ \seq_singleton(nodeList[nodeList.length−1])) &&
@ ((Node)nodeList[nodeList.length−1]).item == e;
@∗/

void linkLast(/∗@ nullable @∗/ Object e) {
final Node l = last;
final Node newNode = new Node(l, e, null);
last = newNode;
if (l == null) first = newNode;
else l.next = newNode;
size++;
//@ set nodeList = \seq_concat(nodeList,\seq_singleton(last));

}

Listing 3.15: The linkLast method with its method contract expressed in JML.

The verification of this method is no longer fully automatic, see [42, 1:25–6:52].

Observe that there are two different situations we have to deal with: either the
linked list was empty, or it was not. If the linked list was empty, then last is null,
and we not only set the last field but also the first. Otherwise, if the linked list
was not empty, we update the former last node to set its next field. The challenge
is to prove that the class invariant holds after these heap updates, knowing that the
class invariant holds in the before heap. The main insight is that the creation of a
new node does not alias with any of the existing nodes, and that the modification of
the next field only affects the old last node. Intuitively, we have a proof situation
with two heaps as depicted in Figure 3.2.

The properties (b) on page 33, that fixes prev fields to point to the previous node in
the sequence, and (c), that fixes next fields to point to the next node in the sequence,
of the chain are the remaining goals in [42, 3:58]. Proving (b) is straightforward if
one makes a distinction between the old nodes and the new node. Proving (c) in the
‘heap after’ involves two cases: either the index is between 0 and less than ℓ(σ)− 2,
or it used to be the last node and now has index ℓ(σ) − 2. In the former case, the
heap update has no effect, as we can show that these nodes are separate from the
old last node because they differ in the old value of the next field. In the latter case,
the heap update can be used to prove the property directly.

Finally, we can verify the add method: see [42, 6:58] for the normal behavior case,
and [42, 8:09] for the exceptional behavior case.
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Figure 3.2: The heap before (Hb) consists of an arbitrary chain of nodes. In the heap
after (Ha) the dashed lines show which objects are identical to the heap before. The
old last node at σ[ℓ(σ) − 1] has a different value for its next field in the heap after:
this must be the result of a heap update. The new last node is not created in the heap
before: indeed, it is the result of creating a new node.

3.7 The remove method

The remove method takes as an argument an object; it searches the linked list for
the first node which contains the argument as an item. If found, it unlinks the node
from the linked list. Using this intuition, we specify the remove method contract.
Like with the add method, there is a deeper method that is called, unlink, which
we have to specify and verify first.

An immediate difficulty in specifying the remove method contract is that its intended
behavior depends on the behavior of the Object.equals method. Namely, the
informal Java documentation states that the first element occurrence in the list
that is ‘equal to’ the argument must be removed. Equality can be user-defined
by overriding the equals method! We solve this difficulty by assuming a method
contract for the equality method, see Listing 3.16.

/∗@ public normal_behavior
@ requires true;
@ ensures \result == self.equals(param0);
@∗/

public /∗@ helper strictly_pure @∗/
boolean equals(/∗@ nullable @∗/ Object param0);

Listing 3.16: The equals stub method with its method contract expressed in JML.

We declare the equality method to be strictly pure, which implies that it must be a
side-effect-free and terminating method (see [29, Section 7.3.5]). Each strictly pure
method is also directly accessible as an observer symbol (a function symbol) that
can be used in specifications (see [29, Section 8.1.2]). However, no obvious relation
between the possibly overridden equality method and its observer symbol is present.
The intention of the contract given in Listing 3.16 is to relate the outcome of the
method call of equals to the observer symbol equals , and this furthermore requires
that the implementation is deterministic.

The ramifications of adding this assumed contract are not clear. We note that there
are Java classes for which equality is not terminating under certain circumstances.
Even LinkedList itself does not have terminating equality, where two linked lists
that contain each other may lead to a StackOverflowError when testing their
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equality. This example is described in the Javadoc [44] of the linked list: “Some
collection operations which perform recursive traversal of the collection may fail with
an exception for self-referential instances where the collection directly or indirectly
contains itself.” Another approach is to specify the outcome of equality as referential
equality only, e.g. see [10, Section 4.4].

Now we can specify the behavior of remove. It can be seen as consisting of two cases:
either its result is true and it has removed the first item equal to its argument from
the list, or its result is false and the argument was not found and thus not removed.
In the first case, the number of elements decreases by one. In the second case, the
number of elements in the linked list remains unchanged. See Listing 3.17.

/∗@
@ public normal_behavior
@ requires true;
@ ensures \result == false ==>
@ (\forall \bigint i; 0 <= i < \old(nodeList.length);
@ (o==null ==> \old(((Node)nodeList[i]).item) != null) &&
@ (o!=null ==> !\old(o.equals(((Node)nodeList[i]).item)))) &&
@ nodeList == \old(nodeList);
@ ensures \result == true ==>
@ (\exists \bigint j; 0 <= j < \old(nodeList.length);
@ (\forall \bigint i; 0 <= i < j;
@ (o==null ==> \old(((Node)nodeList[i]).item) != null) &&
@ (o!=null ==> !\old(o.equals(((Node)nodeList[i]).item)))) &&
@ nodeList == \seq_concat(\old(nodeList)[0..j],
@ \old(nodeList)[j+1..\old(nodeList.length)]) &&
@ (o==null ==> \old(((Node)nodeList[j]).item) == null) &&
@ (o!=null ==> \old(o.equals(((Node)nodeList[j]).item))));
@∗/

Listing 3.17: The remove method contract expressed in JML.

It is important to note that we make use of JML’s \old operator to refer to the
equality observer symbol in the old heap. Using equality in the new heap is a
different observation, and it should not be possible to verify the remove method in
this case. To see why, consider two linked list instances x and y: we add x to itself,
and to y we add x and then y. Now we perform the remove operation on y with y
as argument. Clearly, x and y are not equal, because they have a different length.
But the second item is y itself, and y equals y, so it is removed: see Figure 3.3. In
the resulting heap, both x and y contain x as the only item: thus, x and y are equal.
If we would observe equality in the new heap, then the implementation is incorrect:
the item to remove should not be the second but the first!

Before we can verify the remove method, we must specify and verify its deeper
method: unlink. Within the method of unlink, we have to update the chain ghost
field as well, to remove a node from the sequence, so we add a set annotation to the
method body. Additionally, we make use of the lemma lemma_acyclic by calling
it as the first statement of the method. See Listing 3.18. This method call is also
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Figure 3.3: The situation (Hb) before remove is invoked on y with argument y, and
after (Ha). The result of this operation is that y’s second node n3 is unlinked, hence
the first node n2 becomes the last node and its next pointer is cleared: now x and y
are equal because they have the same length, and they have the same item, namely x.

not present in the original definition for unlink, but we already argued that it does
not affect behavior.

/∗@ normal_behavior
@ requires nodeList != \seq_empty &&
@ 0 <= nodeIndex < nodeList.length &&
@ (Node)nodeList[nodeIndex] == x;
@ ensures \result == \old(x.item) &&
@ nodeList == \seq_concat(\old(nodeList)[0..nodeIndex],
@ \old(nodeList)[nodeIndex+1..\old(nodeList).length]) &&
@ nodeIndex == \old(nodeIndex);
@∗/

/∗@ nullable @∗/ Object unlink(Node x) {
lemma_acyclic(); // new
//@ set nodeList = \seq_concat(\dl_seqSub(nodeList,0,nodeIndex),

\dl_seqSub(nodeList,nodeIndex+1,\dl_seqLen(nodeList)));
// rest of method body
...

Listing 3.18: The first part of method unlink and its method contract. Note that
the @set annotation must not contain a new line, but kept on a single line: otherwise
KeY 2.6.3 cannot load the source file. Here, /*@ @*/ does not work.

An interesting aspect of the specification of unlink is its use of a ghost parameter.
Although KeY does not directly support ghost parameters, we can work around that
by adding the parameter as a ghost field to our class:

//@ private ghost \bigint nodeIndex;

Its value is left undefined for most of the lifetime of the linked list until we are about
to invoke unlink. In particular, the ghost parameter contains the index of the node
argument, thereby requiring that the node object passed in is part of the chain. In
the following discussion, let I be the node index ghost parameter and σ the chain
of the linked list: then σ[I] is assumed to be the node argument of the method
unlink.

The verification of the unlink method is not fully automatic, see the five videos

40



3.7 The remove method

[45, 46, 47, 48, 49].

Verifying unlink consists of four main cases: these correspond to the possible branches
of the two if-statements (see Listing 3.6). The challenge again is to reestablish the
class invariant in the heap after the method completes. The main insight is that, by
the acyclicity property, all the nodes are separate: this allows us to distinguish the
heap updates to apply only to the node that is actually affected while leaving the
other nodes equal to the situation in the heap before. The three important cases
are depicted in Figure 3.4, Figure 3.5, Figure 3.6 (compare with Figure 3.2).

1. Suppose the test of both if-statements evaluate to true: for node x, it holds
that next(x) = null and prev(x) = null. Then we know the list consists of
exactly one node, as the node we are unlinking is the first and the last node.
So I cannot be larger than 0. In the case the node index is zero, the class
invariant is proven automatically [45, 7:25].
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Figure 3.4: The heap before (Hb) consists of a chain σ with ℓ(σ) ≥ 2. The dashed
lines show which objects are identical in the heaps. Interpreting σ[I] in the new heap
gives σ[I + 1] in the old heap, as I does not change. The first field of the linked list
has changed (not shown), and the second node in the old heap now has null as prev.
Moreover, the next and prev fields of the unlinked node have been set to null (not
shown).

2. Suppose the test of the first if-statement evaluates to true, but the test of the
second if-statement evaluates to false: for node x, it holds that next(x) ̸= null

and prev(x) = null. We thus know that the list consists of at least two nodes,
and it is the first node we are unlinking. Thus, I cannot be larger than 0. If the
node index is zero, the class invariant is not proven automatically [46, 2:40],
but we have two open goals corresponding to the chain properties (b) and (c),
cf. proof of linkLast. Our situation is different now, see Figure 3.4. Here our
insight applies: because of acyclicity, we know all nodes are different. Thus, an
update of σ[I]’s fields does not affect the other nodes. When proving (c) this
is sufficient as no next field of nodes in the new chain is changed compared to
the old heap [46, 10:14-15:28]. When proving (b), we furthermore make a case
distinction between the new first node and the other nodes: the former follows
from the heap update, the latter from the old invariant [46, 3:27-10:13].

3. Suppose the test of the first if-statement evaluates to false, and the test of the
second to true: for node x, it holds that next(x) = null and prev(x) ̸= null.
This means that the list consists of at least two nodes, and it is the last node
we are unlinking. The proof is similar to the previous case: see Figure 3.5 and
[47].
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Figure 3.5: The heap before (Hb) consists of a chain σ with ℓ(σ) ≥ 2. The dashed
lines show which objects are identical in the heaps. Interpreting σ[I] in the new heap
is invalid, as I = ℓ(σ) in the new heap. The last field of the linked list has changed
(not shown), and the before last node in the old heap now has null as next field.

4. Suppose both tests of if-statements evaluate to false: for node x, it holds that
next(x) ̸= null and prev(x) ̸= null. This implies that the list consists of at
least three nodes: where x is some ‘interior’ node. This part of the proof is
the largest, as it involves many case distinctions. Up to the point where the
class invariant is established in the heap after goes as before, except for (b)
and (c). Keep in mind the situation as depicted in Figure 3.6, and see [48, 49].
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Figure 3.6: The situation (Hb) consists of a chain σ with ℓ(σ) ≥ 3. The index I
remains unchanged in the heaps, thus σ[I] in the heap after is equal to σ[I +1] in the
heap before. The following fields are updated in the new heap: the next field of the
node at σ[I − 1] in the old heap becomes the node at σ[I + 1] in the old heap, and
the prev field of the node at σ[I + 1] in the old heap becomes the node at σ[I − 1] in
the old heap. In the new heap, these two nodes are present in succession in the chain,
thus satisfying the chain properties (b) and (c).

We distinguish the two cases:

(b) Establishing the prev field property of the chain involves the following
observation: there are three cases. First case, for all nodes at an index
0 ≤ i < I in the old heap, we know they are identical to the nodes at the
same index in the new heap. We know the heap is updated to assign the
prev field of σ[I+1] in the old heap, and by acyclicity we know this node
is separate from the nodes all before σ[I] in the old heap. Second case,
σ[I] interpreted in the new heap is identical to σ[I + 1] in the old heap,
and precisely for this node the prev field was updated to become σ[I−1]
in the old heap (which is σ[I] in the new heap). Third and last case, for
all nodes at an index I + 1 < i < ℓ(σ) in the old heap, we know they are
identical to the nodes at σ[i − 1] in the new heap. Again, by acyclicity,
we know that the node σ[I+1] in the old heap is separate from the nodes

42



3.7 The remove method

with a higher index, so we know their prev field cannot be affected by
the update.

(c) Establishing the next fields property of the chain is very similar but with
the index offset by one. Observe that the next field of σ[I − 1] in the old
heap is updated to σ[I + 1] in the old heap. Thus the three cases are:
first, for the nodes with index 0 ≤ i < I − 1 in the old heap, second, for
the node σ[I − 1] in the old heap, and third, for the nodes with index
I < i < ℓ(σ) in the old heap.

Now that we have established that unlink removes a node from the chain while
maintaining the class invariant, we can return to the verification of the remove
method. The remove method iterates over the linked list until it has obtained a
node to remove. However, the termination of this iteration is not obvious. More-
over, before invoking the unlink method, we need to specify the value of its ghost
parameter: the index corresponding to the node. So, before we can verify the remove
method, we add three kinds of annotations to its source: a ghost variable for main-
taining the current index, a loop invariant that establishes termination and main-
tains the class invariant, and a set annotation before invoking the unlink method
(see Listing 3.19).

public boolean remove(/∗@ nullable @∗/ Object o) {
//@ ghost \bigint index = −1;
if (o == null) {

/∗@ maintaining 0 <= (index + 1) &&
@ (index + 1) <= nodeList.length;
@ maintaining (\forall \bigint i; 0 <= i < (index + 1);
@ ((Node)nodeList[i]).item != null);
@ maintaining (index + 1) < nodeList.length ==>
@ x == nodeList[index + 1];
@ maintaining
@ (index + 1) == nodeList.length <==> x == null;
@ decreasing nodeList.length − (index + 1);
@ assignable \strictly_nothing; ∗/

for (Node x = first; x != null; x = x.next) {
//@ set index = index + 1;
if (x.item == null) {

//@ set nodeIndex = index;
unlink(x);
return true;

} }
} else {

/∗@ maintaining 0 <= (index + 1) &&
@ (index + 1) <= nodeList.length;
@ maintaining (\forall \bigint i; 0 <= i < (index + 1);
@ !o.equals(((Node)nodeList[i]).item));
@ maintaining (index + 1) < nodeList.length ==>
@ x == nodeList[index + 1];
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@ maintaining
@ (index + 1) == nodeList.length <==> x == null;
@ decreasing nodeList.length − (index + 1);
@ assignable \strictly_nothing; ∗/

for (Node x = first; x != null; x = x.next) {
//@ set index = index + 1;
if (o.equals(x.item)) {

//@ set nodeIndex = index;
unlink(x);
return true;

} } }
return false;

}

Listing 3.19: The JML annotations of method remove. We use a slightly unnatural
initial value for the index ghost variable since the KeY 2.6.3 parser does not recognize
the @set annotation if it appears after the if-statement.

The verification of the above method is not fully automatic, see [50, 51]. The proof
consists of two parts, corresponding to the branches of the if-statement. In the proof,
one shows (among other properties) that the loop invariant holds initially, after
each iteration, and at the end of the loop. It is important to note that (index + 1)
is equal to the length of the chain precisely when the end of the loop has been
reached. This holds since we use the next field to traverse the chain, and only the
last node has a null successor. Moreover, the distance to the last node decreases
each iteration, and this distance is bounded from below by zero: thus the loop must
terminate. Moreover, the loop is strictly pure, as it never modifies the heap in any
of its completed iterations. The exceptional case is the last iteration in which the
remove method returns early. Due to the early return, the loop invariant no longer
needs to be shown (and so also not its heap purity). For reasons of limited space,
further examination of its proof is left as a challenge to the reader.

3.8 Summary

In the chapter, we have shown the verification of two essential methods of Java’s
LinkedList class: add and remove. The original implementation contains an over-
flow bug (see Section 3.3.2), and we have looked at a revised version that imposes a
maximum length of the list. Furthermore, we have set out to verify that the overflow
bug indeed no longer occurs. Towards this end, we have formally specified a class
invariant and method contracts, with two goals: establishing the absence of the
overflow bug and capturing the ‘essential’ behavior of the methods with respect to
the structural properties of the linked list. All methods have been formally verified
[39] using the KeY theorem prover, and video material shows on [40].

This chapter aims to provide a comprehensive guide on using KeY and JML for the
specification and verification of selected portions of Java libraries. We did a lot of
work on recording the video materials, aiming to cater to both the beginning user,
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the expert user, and the developer of KeY as a ‘benchmark’ for specification and
(automatic) verification techniques.
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