
Reasoning about object-oriented programs: from classes to interfaces
Bian, J.

Citation
Bian, J. (2024, May 21). Reasoning about object-oriented programs: from classes to
interfaces. Retrieved from https://hdl.handle.net/1887/3754248

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3754248

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3754248

Chapter 2

Preliminaries

2.1 Object-oriented programming
Object-oriented programming (OOP) is a programming paradigm that utilizes "ob-
jects" to structure applications and computer programs. In OOP, classes act as
user-defined data types that serve as blueprints for creating unique instances called
objects. These objects can represent real-world entities or abstract concepts. Each
class defines both fields and methods, where fields represent the state of an object,
and methods describe its behaviors.

Fields in a class are variables that store data related to instances of the class, and
they define the state of an object. Class fields, on the other hand, belong to the class
itself. Methods are functions encapsulated within the class, enabling code reusability
and defining the behaviors associated with an object. Each method within a class
begins with a reference to an instance object, making them instance methods.

A method signature consists of the method name coupled with its parameter list.
An interface in OOP only contains method declarations, specifying what methods
a class must implement but not how to implement them. This allows multiple
classes to implement the same interface in different ways, giving programmers the
flexibility to change implementations without affecting the code that relies on these
interfaces.

The basic features of object-oriented programming include encapsulation, data ab-
straction, inheritance, and polymorphism, all of which are consistently adhered to
by object-oriented programs. Encapsulation involves using classes to encapsulate
both fields and methods, ensuring that the internal state of these objects is shielded
from the outside world—a principle known as information hiding. Methods serve as
the public interface through which interaction with object data is controlled, pre-
serving data integrity and restricting unauthorized access. Data abstraction allows
for the creation of abstract classes or interfaces that define the essential feature of
a data type, without revealing the underlying implementation details. This enables
users to interact with objects at a higher, more abstract level, which facilitates more
comfortable and straightforward usage. Inheritance is widely used in object-oriented
libraries to promote code reusability and to establish a relationship between super-

11

2. PRELIMINARIES

type and subtype. A subtype inherits fields (if both types are classes) and methods
from a supertype, and it also has the ability to override or extend these inherited
features. This makes it easy to add functionalities to existing classes or interfaces
without modifying them. Polymorphism enables objects to be treated as instances
of their supertype, leading to simpler code and fewer errors. In object-oriented pro-
grams, polymorphism is often implemented through method overriding in subtypes,
allowing for different implementations under the same method name.

The programming to interfaces principle [26] is one of the most important principles
in OOP. This principle is supported by the feature of encapsulation and data abstrac-
tion, allowing developers of client code to focus on essential functionalities rather
than the need to consider irrelevant implementation details. By focusing on what
an object should do rather than how it should do it, this principle enables a higher
level of abstraction and decoupling in software systems. Furthermore, when com-
bined with the design by contract [27] principle, programming to interface becomes
a crucial strategy for managing the complexity of software today. This combination
ensures a structured approach to software design, where the focus is on fulfilling
clearly defined contracts, thereby enhancing the reliability and maintainability of
software systems.

2.2 Java Collection Framework
The Java Collections Framework is a comprehensive set of classes and interfaces
provided by Java for working with collections of objects. It provides basic data
structures and is among the most widely used libraries. The Java Collection Frame-
work is illustrated in Figure 2.1.

Figure 2.1: Java Collection framework.

The Java Collection Framework has a behavioral subtype hierarchy [28]. The
Collection interface serves as the topmost type and includes three sub-interfaces:
List, Set, and Queue. These sub-interfaces are implemented by some abstract

12

2.2 Java Collection Framework

classes and finally lead down to the concrete implementation classes at the bottom
of the hierarchy, such as ArrayList, HashSet, and LinkedList, etc.

The Collection interface outlines all the fundamental operations for collections,
such as add, remove, and other methods for querying and manipulating a collection
of objects.

public interface Collection {
boolean add(Object o);
boolean addAll(Collection c);
boolean remove(Object o);
boolean contains(Object o);
boolean isEmpty();
Iterator iterator();
...

}

Listing 2.1: The part of Collection interface.

The iterator method, declared within the Collection interface, returns an object
that implements the Iterator interface. The Iterator interface is another key
component of the Java Collection Framework, offering a way to enumerate all the
elements in a collection.

public interface Iterator {
boolean hasNext();
Object next();
void remove();

}

Listing 2.2: The Iterator interface.

In addition to collections, the framework also includes a variety of Map interfaces
and classes. These Map entities are used to store key/value pairs. Even though a
Map is not considered as a collection, it is fully integrated into the Java Collections
Framework.

The LinkedList class is one of the most important classes in the Java Collection
Framework. This class serves as a particular case study for the formal verification
of objection-oriented libraries, as discussed in Section 3. It was introduced in Java
version 1.2 as part of the Java Collection Framework in 1998. Figure 2.1 shows how
LinkedList fits in the type hierarchy of this framework: LinkedList implements
the List interface, and also supports all general Collection methods as well as
the methods from the Queue and Deque interfaces. The List interface provides
positional access to the elements of the list, where each element is indexed by Java’s
primitive int type. Each element in a LinkedList is stored as a separate object
referred to as a node, containing data and references to the previous and next
elements in the list.

13

2. PRELIMINARIES

2.3 Theorem prover overview

In our setup, we distinguish domain-specific theorem provers from general-purpose
theorem provers. The theorems of a domain-specific theorem prover are correct pairs
of programs and specifications and thus can be seen as giving axiomatic semantics
to programs and specifications. In our case study, we use the state-of-the-art KeY
theorem prover, as KeY is tailored to the verification of Java programs. A general-
purpose theorem prover, in contrast, is oblivious to the intricate details of programs
and the specifications in question: e.g. it is not needed to formalize the semantics of
Java nor JML in a general-purpose theorem prover. As a general-purpose theorem
prover, we choose the Isabelle/HOL theorem prover. In this section, we will intro-
duce both the KeY theorem prover and the Isabelle/HOL theorem prover, offering
an overview of both tools.

2.3.1 KeY theorem prover

JML [24] is a specification language for Java that supports the design-by-contract
paradigm. Specifications are embedded as Java comments alongside the program.
A method precondition in JML is given by a requires clause and a postcondition is
given by ensures. JML also supports class invariants. A class invariant is a property
that all instances of a class should satisfy. In the design by contract setting, each
method is proven in isolation (assuming the contracts of methods that it calls), and
the class invariant can be assumed in the precondition and must be established in
the postcondition, as well as at all call-sites to other methods. To avoid manually
adding the class invariant at all these points, JML provides an invariant keyword
which implicitly conjoins the class invariant to all pre- and postconditions. Method
contracts may also contain an assignable clause stating the locations that may be
changed by the method (if the precondition is satisfied), and an accessible clause
that expresses the locations that may be read by the method (if the precondition is
satisfied). Our approach uses all of the above concepts.

JML also allows annotations of ghost fields and model fields. Ghost fields are virtual
fields that become part of the modelled state of an object on the heap, but are never
present when actually executing a Java program. Like normal fields, the ghost fields
are assigned a default value at object initialization and can be explicitly changed by
JML set annotations. These annotations occur anywhere in method bodies where
otherwise a normal statement can be expected. Model fields are introduced as func-
tion symbols, and several axioms are added that allow the definition of model fields
to be substituted during proof. An example model field is a class invariant, which is
implicitly assumed to hold the state of an object between method invocations.

KeY [23] is a semi-interactive theorem prover for Java programs (typically > 95%
of the proof steps are automated). The input for KeY is a Java program together
with a formal specification in a KeY-dialect of JML. The user proves the specifi-
cations method-by-method. KeY generates appropriate proof obligations and ex-
presses them in a sequent calculus (see Figure 2.2), where the formulas inside the
sequent are multi-modal dynamic logic formulas in which Java program fragments
are used as the modalities. To reduce such dynamic logic formulas to first-order

14

2.3 Theorem prover overview

formulas, KeY symbolically executes the Java program in the modality (it has rules
for nearly all sequential Java constructs). Once the program is fully symbolically ex-
ecuted, only formulas without Java program fragments remain. The main reference
work on the KeY system is the KeY book [29].

Figure 2.2: Proof tree in KeY(version 2.8.0).

The KeY system consists of three main components: a proof system, a translator of
Java programs annotated with JML into proof obligations, and an interactive tool
for constructing proofs.

The logic underlying KeY is JavaDL, a program logic that directly incorporates Java
program fragments. The program logic is a multi-modal logic: ⟨P ⟩φ expresses that
executing the program fragment P definitely terminates and φ holds in the final
state; and [P]φ expresses if the program fragment P terminates, then φ holds in
the final state. The formula φ→ ⟨P ⟩ψ expresses that if φ holds in the initial state,
then execution of P terminates in a state for which ψ holds. See [29].

The program logic distinguishes program variables from logical variables : the value
of a program variable can be changed throughout executing a program, whereas a
logical variable always has the same value. As logical variables can never be modified
by a program fragment, they are used as so-called freeze variables.

The proof system that KeY uses to establish the validity of formulas is given as a
sequent calculus. A sequent φ1, . . . , φn ⇒ ψ1, . . . , ψm consists of n antecendents and
m consequents, all formulas of JavaDL, with the usual interpretation: φ1, . . . , φn ⇒
ψ1, . . . , ψm means that if all φi on the left are true, then at least one ψj on the
right is true. Derivability of a sequent in the proof system is as usual by means
of deduction rules, assembled into a proof tree. Next to the deduction rules for
classical first-order logic, the proof system also consists of a large number of other
rules.

15

2. PRELIMINARIES

Deduction rules are given by means of lightweight tactics (called taclets [30]) that
perform modifications on the sequent one is proving: e.g. split branches in the proof
tree, substitute variables, rewrite terms, or close a branch. There are approximately
1750 rules that implement symbolic execution for Java program fragments, and
implement the theories of many sorts: integers, sequences, heaps, location sets, and
others.

Of particular interest to us are rules concerning updates and heaps. Some rules
transform modalities with program fragments into so-called update modalities. Up-
dates always terminate and they assign JavaDL terms to program variables. As
such, updates cannot assign program variables to side-effectful expressions. Given
a formula φ, then {x1 := t1|| . . . ||xn := tn}φ is a formula where in parallel xi are
updated to ti. Updates are simplified by substitution.

There is a hidden and implicit program variable in JavaDL that is the heap of
heap sort. The heap is used to model the storage of objects, that is, the value of
fields associated with object references. From a practical perspective, updates of
program variables other than the heap can be thought of as stack variables. Such
program variables can refer to objects on the heap. Heap updates are tracked by
updating the heap program variable. Heap updates and program variable updates
easily form complex expressions, where both kinds of updates can be intertwined.
See [29, Section 2.4.3] and [29, Section 6.4].

Next to the built-in sorts of integers, sequences, heaps, and location sets, are Java
types. Each Java type has its own sort in JavaDL that models (infinitely many)
references to objects, including the null reference. References can be explicitly
coerced between sorts, to model subtypes: e.g. every reference can be coerced to a
reference of sort Object. A heap assigns values to the fields of a non-null reference.
Object references are global, but the creation status of each object is a special
Boolean field <created> local to each heap. An object becomes created in some
heap by taking a fresh reference, that has no value yet assigned to its creation field
in that heap, and setting that field to true. Fields can only be assigned to non-null
object references for which their created field is true. A heap is well-formed if a
finite number of references have <created> set to true.

An important aspect of Java programs is method calls. There are three main issues:
calling a method may introduce new program variables that shadow older program
variables, calling a method may change the heap, and it is possible to call a method
on an object for which its exact type is only known at run-time.

To solve the issue of overshadowing older program variables, KeY uses method
frames ; before a method frame is created, it is ensured that old program variables
and new program variables do not collide by renaming the program variables of a
method body. Since the this keyword cannot be renamed, the method frame pro-
vides a context in which program fragments evaluate this references; it also tracks
where the method return value must be placed.

The implicit heap variable is also stored in the method frame, referred to as the
before heap. Any heap update within the method is performed on a separate pro-
gram variable. Statements following a method call are performed using the heap

16

2.3 Theorem prover overview

H1 H2 H4 H5

〈P ; m();P ′〉 〈P ′〉

Hb Ha

ϕ → 〈m()〉ψ

〈m();P ′〉

Figure 2.3: Heaps are ‘threaded’ through method calls. In heap H1 the program
fragment P is executed, resulting in heap H2. Either a contract for method m() is
employed, which relates the before heap Hb to some heap after the method call Ha;
or, the method body is unfolded by wrapping it in a method frame that resolves
overshadowing of program variables. In both cases, to call the method, heap Hb is
equal to H2 and heap Ha is equal to H4. Then the program fragment P ′ that occurs
after the method call is executed using the heap returned by the method.

as it is after the method call completes: there are rules for ‘threading’ the heap
through a method call, see Figure 2.3. There are roughly two ways of treating
method calls: unfolding their method body wrapped in a method frame, or using
its method contract.

The issue of run-time types is solved using method contracts. Method contracts
and other annotations of Java programs are specified in terms of the Java Mod-
eling Language (see [31]) but with KeY-specific extensions (see [29, Chapter 7]).
Each method is annotated by a contract that specifies pre- and post-conditions: all
implementations of this method should adhere to the contract. The contract deter-
mines corresponding correctness formulas in JavaDL: if they are verified, then the
corresponding method is correct with respect to its method contract. Consequently,
method contracts can be reused in other proofs involving program fragments that
call such a method.

Java programs annotated with JML are entered into the KeY system and the verifi-
cation begins by generating one or more proof obligations. Using the interactive tool,
a proof tree is constructed by applying rules until the branches of the tree are closed.
Each rule application may result in zero or more branches: in the case of multiple
branches, every branch needs to be closed. The tool also provides automation, that
automatically applies proof rules using heuristics. This speeds up the verification
effort considerably. Finally, after all proof obligations appear as the conclusion of a
closed proof tree, the verification effort is done. The proof trees can be stored in a
file and reloaded and inspected later.

2.3.2 Isabelle/HOL theorem prover

Isabelle/HOL (Isabelle instantiated with Church’s type theory) [32] is an interactive
theorem prover that supports the formalization and verification of mathematical
theorems and software systems. The main reference for Isabelle/HoL is its reference
manual [33, 34].

17

2. PRELIMINARIES

Isabelle/HOL employs higher-order logic (HOL) to allow for a broader class of math-
ematical statements to be represented and proven. The underlying logic is conducive
to reasoning about functional programming constructs, data types, and even imper-
ative programming paradigms. It comes equipped with a variety of decision pro-
cedures and tactical theorem-proving capabilities that automate or semi-automate
the verification process [33].

Functional programs in Isabelle/HOL are outlined as shown in Figure 2.4. It defines
both datatypes and functions within a theory. Isabelle comes with a large the-
ory library of formally verified mathematics, including elementary number theory,
analysis, algebra, and set theory [35].

Figure 2.4: Isabelle/HoL proof system(version Isabelle2023/HOL).

Isabelle/HOL includes a definitional package for data types, as described in the
work of Biendarra et al. [36]. The definition mechanism provides so-called freely
generated data types: the user provides some signature consisting of constants and
function symbols and their types, and the system automatically derives (rather
than postulates) characteristic theorems. Under the hood, each data type definition
is associated with a Bounded Natural Functor (BNF) that admits a non-trivial
initial algebra [37]. User-defined datatypes are defined using the datatype keyword.
The definition usually outlines the constructor functions that can be used to create
instances of the datatype, along with the types of arguments these constructors can
take.

Functions in Isabelle/HOL are declared using the fun keyword. These functions
are characteristically pure, meaning they do not have side effects. Functions are
usually defined by specifying their behavior over user-defined or built-in datatypes,
commonly utilizing pattern matching to unambiguously identify the expected output

18

2.3 Theorem prover overview

for specific inputs. Additionally, these functions can also be recursively defined; they
may call themselves with altered arguments until a termination condition, often
referred to as the base case, is met. This recursion is typically defined with rigorous
formal properties to ensure termination and correctness, aligning with the overall
goal of theorem proving and formal verification in Isabelle/HOL.

The keywords theorem and lemma in Isabelle play crucial roles in formalizing and
verifying mathematical claims. While a lemma is generally a minor result used
as a foundational stepping stone, a theorem is a more significant mathematical
proposition that has been rigorously proven based on previously established lemmas,
theorems, and axioms. These two keywords are interchangeable and merely indicate
the level of importance we assign to a given proposition. Isabelle’s rich theory library
provides a wide array of pre-proven theorems and lemmas. These resources not only
expedite the formal verification of new mathematical claims but also contribute to a
robust foundational framework. This framework is invaluable for researchers across
multiple disciplines, enabling them to build upon proven results and advance both
theoretical and applied research with confidence.

19

