Universiteit

4 Leiden
The Netherlands

Reasoning about object-oriented programs: from classes to interfaces
Bian, J.

Citation
Bian, J. (2024, May 21). Reasoning about object-oriented programs: from classes to
interfaces. Retrieved from https://hdl.handle.net/1887/3754248

Version: Publisher's Version

Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3754248

License:

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3754248

Chapter 1

Introduction

1.1 Background

Formal verification provides mathematically precise proof of the correctness of soft-
ware with respect to formal logic-based specifications of the intended behavior. For-
mal verification can fully guarantee the correctness of software (as opposed, for
instance, to testing) but can be challenging in practice, as it typically requires sig-
nificant effort. However, without a formal analysis supported by verification tools,
software that is used by billions of users every single day may contain bugs, that is,
programming errors caused by humans. Indeed, in the TimSort case study [I], it
is demonstrated that the formal specification and verification of programs can very
well pay off: in an attempt to prove the correctness of the Timsort sorting algo-
rithm [2], a flaw was found in its implementation which under certain circumstances
could result in a crash. TimSort is the default sorting algorithm used e.g. in Java,
Python, and Android, hence the number of affected devices is well into the billions.
The correctness proof of [I] convincingly illustrates the importance and potential
of formal methods as a means of rigorously verifying widely used libraries and im-
proving them. For this result, the verification tool KeY, a semi-interactive theorem
prover for Java programs, was used to mechanically verify the fixed version, which
is therefore now guaranteed to be free of crashes and has been adopted in the most
recent version of Python, Java, and Android. KeY is tailored to the verification
of Java programs. It models the many programming features of the Java language
present in real-world programs. KeY uses the Java Modeling Language [3], JML for
short, for the specification of class invariants, method contracts, and loop invariants.
JML supports the design by contract paradigm, it provides a way to write specifica-
tions that are easy to understand for Java programmers by embedding specifications
as Java comments alongside the program.

The core work of this thesis is to extend the aforementioned successful applications
of formal methods to a systematic verification of object-oriented programs. Our
main focus is given to Java. Java is a widely used programming language that is de-
signed with object-oriented programming principles at its core. As per the TIOBE

1. INTRODUCTION

Programming Community Indexﬂ Java consistently ranks among the top 5 most
popular programming languages worldwide. One of the key reasons behind Java’s
enduring popularity is its extensive range of libraries, which can be employed to
address virtually any type of programming challenge. The Java Collection Frame-
work is among the most heavily used software libraries in practice [4]. It provides
basic data structures and search and sorting algorithms (including Timsort) and is
among the most widely used libraries. We direct specification and verification efforts
towards the Java Collection Framework, and we also use it as a source of motivating
examples throughout this thesis.

Next to the Timsort case, another issue related to the Java Collection Framework
was revealed in [5]. LinkedList is the only List implementation in the Collection
Framework that allows collections of unbounded size. It turns out that Java’s linked
list implementation does not correctly take the Java integer overflow semantics into
account. It is exactly for large lists (>23! items), that the implementation breaks
in many interesting ways, and sometimes even in ways oblivious to the client. This
basic observation gave rise to several test cases that show that Java’s LinkedList
class breaks the contract of 22 methods out of a total of 25 methods of the List
interface! While the above illustrates the importance of formal methods as a means
of putting widely used state-of-the-art software libraries to the test and improving
them, it is clear that without a formal analysis supported by verification tools,
libraries that are used by billions of users every single day are bound to contain
bugs.

Our work offers several significant advantages in real-world program correctness and
verification. Firstly, this thesis is based on extensive use of the KeY theorem prover,
a tool specifically designed for asserting the correctness of Java programs, enhancing
the accuracy and reliability of our verifications. Secondly, our work operates on a
large scale with a focus on general-purpose libraries. Thirdly, we focus on directly
verifying unaltered Java code from the standard library, ensuring that our methods
are directly applicable to real-world programming scenarios. Lastly, our work en-
compasses both classes and interfaces within the standard library, thereby providing
a thorough and robust examination of Java’s foundational components. This thesis
shows that formal verification of actual code can be done in practice.

Related work Here we provide a general related work of this thesis, more specific
related work is described in each individual chapter.

Throughout the history of computer science, a major challenge has been how to
assert that software is free of bugs and works as intended. Software bugs can lead
to serious negative impacts on any software system. From a user’s perspective,
these bugs can interfere with program functionality and undermine the overall user
experience. Additionally, they may create security vulnerabilities that can leave the
system open to malicious activity. According to new research in 2022 commissioned
by the Consortium for Information and Software Quality (CISQ), the economic
burden of poor software quality in the United States has escalated to at least $2.41
trillion, marking an increase of almost 16% from the 2020s $2.08 trillion [6]. This

Thttps:/ /www.tiobe.com /tiobe-index/

1.1 Background

substantial amount does not even include an estimated $1.52 trillion in “technical
debt” (TD) — accumulated software vulnerabilities in applications, networks, and
systems that are ignored for now but will need to be paid eventually.

Using informal root cause analysis [7], one could find from a system failure its root
causes, which may include bugs caused by programming errors. But, root cause
analysis can only be applied after a failure has happened. To prevent certain failures
from happening in the first place, program correctness is of the utmost importance.
Although establishing program correctness can be an expensive activity [§], it is
still worthwhile for critical software programs, such as the standard library that all
programs rely on.

It can be empirically established that Java libraries, and Java’s Collection Frame-
work in particular, are heavily used and have many implementations [4]. Various
case studies have focused on verifying parts of that framework [9, 10, 11]. Numer-
ous approaches have been proposed to specify and check Java programs to ensure
program reliability for run-time verification. Most of these approaches are based
on communication histories (or traces), which are defined as finite sequences of
messages. In particular, in [12], the tool environment prototyped for JML has pio-
neered runtime assertion checking by integrating communication histories, offering
a nuanced understanding of method interactions and invocations. A specialized
approach [13] extending this work for JML employs runtime assertion checking in
multithreaded applications, using e-OpenJML as a tooling environment. Further-
more, the development of the MOP framework [I4] showcases the feasibility of a
generic and efficient approach to runtime verification, indicating its potential util-
ity beyond just the Java Collection Framework. Explicit method call sequences in
Java programs have also been studied in [15], ensuring that methods are invoked in
the intended order and manner, strengthening the reliability of the overall system.
LARVA [16], a tool also mainly developed for run-time verification, was extended in
e.g. [I7] to optimize away checks at run-time that can be established statically. But,
there, static guarantees are limited by expressivity (no fully-fledged theorem prover
is used) and interfaces are not handled by the static analysis. The work [I§] by
Welsch and Poetzsch-Heffter focuses on Java libraries. They reason about the back-
ward compatibility of Java libraries in a formal manner using histories to capture
and compare the externally observable behavior of two libraries. In [I8|, however,
two programs are compared, and not a program against a formal specification. The
Java PathFinder is an extensible software framework that performs model check-
ing directly on Java bytecode, originally developed at NAS Ames Research Center.
Works using Java PathFinder [19, 20] mostly focus on checking concurrency defects
and unhandled exceptions in Java programs.

The programming errors discovered in the Timsort and LinkedList case studies
are hard to discover at run-time due to their heap size requirements, necessitat-
ing a static approach to analysis. Static verification of the Collection Framework
was already initiated more than two decades ago, see e.g. the work by Huisman
et al. |10, 21]. A significant complication in static verification is that it requires
formal specifications. Two well-known approaches in this domain come from Huis-
man [I0] and Kniippel et al. [II]. Huisman [I10] presented the specification and

1. INTRODUCTION

modular verification of Java’s AbstractCollection class identifying a problem not
documented in the informal documentation: unexpected behavior occurs when a
collection contains a reference to itself. Kniippel et al. [11] specified and verified
several classes of the Java Collection Framework with standard JML state-based
annotations; they found that specification was one of the main bottlenecks. How-
ever, these approaches are not complete nor demonstrate the verification of various
clients and implementations. Generally speaking, while existing research mainly fo-
cuses on class specification and verification, there seems to be no obvious strategy in
specifying Java interfaces so that its clients and its implementations can be verified
statically using a theorem prover.

1.2 Thesis outline

The thesis is organized into eight chapters. Figure [I.1] provides an overview of the
thesis structure.

Chapter 1:
Introduction

/— Chapter 2: \ - 00 Programming

- Java Collection Framework

\\ Preliminaries - Verification Tool

" Chapter3:
Motivation |— Class Specification |
__ and Verification ./

/— " Chapter5:

s/ Chapter 4: |.\ Executable |
; ' History-based | __History-based g
Solution — Hemmg Rbout J|-——-r Applications
\ Interfaces _/ /" Chapter&: O\
| Logical |

\.__ History-based

Chapter 7:
History-based

Refinement Theo

Chapter 8:
i |
Conclusion

Figure 1.1: Thesis structure.

In this introductory chapter, we provide a brief overview of the background and
related work, outline the main challenges, and highlight the key contributions of this
thesis. Chapter 2 presents the background knowledge, offering an initial survey of
several key concepts and introduces the theorem provers used for verification.

In Chapter 3, we focus on class specification and verification. We present the
methodology for analyzing the java.util.LinkedList class to gain a deeper under-
standing of its behavior. We emphasize the crucial role of precise specifications using
JML. To validate the program’s behavior against these specifications, we take a for-
mal approach supported by the KeY tool, which uniquely allows for comprehensive
reasoning about Java programs.

1.3 Main challenges and contributions

However, we leave out some methods that take an interface type as a parameter,
as these present challenges we can not solve yet. Motivated by this challenge, we
focus on investigating a history-based approach to writing interface specifications
in the state-based specification language JML by referring to histories and their
attributes to describe the intended behavior of implementations The content related
to interface specification and verification is present in Chapters 4, 5, and 6.

Specifically, in Chapter 4, we outline the challenges of proving client code correct
with respect to arbitrary implementations and describe a practical specification
and verification effort of part of the Collection interface using KeY. We explore
two history-based approaches: the ezecutable history-based approach (the EHB ap-
proach) and the logical history-based approach (the LHB approach).

In Chapter 5 and Chapter 6, we apply these history-based reasoning approaches
to Java’s Collection interface and use histories to prove the correctness of several
clients. As a more advanced case study, we have also verified clients using the
LHB approach, which operates on multiple objects. This significantly improves the
state-of-the-art of history-based reasoning.

In Chapter 7, we focus on hierarchical structures in object-oriented programs. We
investigate reasoning about behavioral subtyping based on histories, which enables
us to formally verify the class and interface hierarchy.

At last, Chapter 8 summarizes the contributions of the thesis and points out direc-
tions for future research.

1.3 Main challenges and contributions

This thesis demonstrates formal methods for systematically verifying real object-
oriented programs. The goal of this thesis is to develop techniques that are capable
of specifying and verifying interface/class hierarchies, such as those present in Java’s
collection framework, and to convincingly argue about the usefulness of these tech-
niques by means of case studies. To achieve this aim, in this thesis, we tackle several
challenging problems that hamper the verification of object-oriented programs.

When reasoning about object-oriented programs, the ultimate goal is to ensure that
program execution does not result in unexpected behavior. This requires a precise
specification of what behavior one expects and further requires a convincing argu-
ment that all possible executions of the program exhibit that behavior. Focusing on
this challenge, in Chapter 3, we give a tutorial on using the KeY theorem prover to
demonstrate formal verification of state-of-the-art, real software. In sufficient detail
for a beginning user of JML and KeY, the specification and verification of part of a
corrected version of the java.util.LinkedList class of the Java Collection frame-
work is explained. We provide technical details on how we use the KeY theorem
prover, and we give more detail concerning the production of the proofs. This tuto-
rial consists of artifacts and video materials. The collection of video material consists
of screen recordings of interactive proof sessions with the KeY theorem prover that
shows recordings of interactive sessions. Each video displays how to create a proof
for part of one method contract, or proofs of several method contracts.

1. INTRODUCTION

The material in Chapter 3 is based on a conference paper, an artifact, and a collection
of video materials:

e Hiep, H.A., Bian, J., de Boer, F.S., de Gouw, S. (2020). A Tutorial on
Verifying LinkedList Using KeY. Deductive Software Verification: Future Per-
spectives: Reflections on the Occasion of 20 Years of KeY, 221-245.

e Bian, J., Hiep, H.A.: A Tutorial on Verifying LinkedList using KeY: Video
Material (2020).
Available at: https://doi.org/10.6084/m9.figshare.c.4826589.v2

e Hiep, H.A., Bian, J., de Boer, F.S., de Gouw, S.: A Tutorial on Verifying
LinkedList using KeY: Proof Files (2020).
Available at: https://doi.org/10.5281 /zenodo.3613711

In addition to the verification of class types, some of the methods in libraries contain
an interface type as a parameter, which generates the next challenge. For example,
as shown in [Listing 1.1] the addA1l method in java.util.LinkedList class of the
Java Collection framework takes two arguments, the second one is of the Collection

type:

public boolean addAll(int index, Collection c){

Object|] a = c.toArray();

.

Listing 1.1: The addA11l method in LinkedList.

Following the design by contract paradigm, verification of LinkedList’s addAll
method requires a contract for each of the other methods called, including the
toArray method in the Collection interface. How can we specify interface meth-
ods, such as Collection.toArray? More generally, libraries employ the technique
of programming to interfaces, which is one of the most important principles in soft-
ware engineering. Interfaces in Java abstract from the state and other internal
implementation details. However, tool-supported programming logic and specifica-
tion languages are predominantly state-based which as such cannot be used for Java
interfaces. Furthermore, state-based specifications may expose the internal repre-
sentation of a data structure. Different implementations of, for example, a stack
would give rise to different specifications. Consequently, state-based specifications
are not robust under changes to the underlying representation.

Addressing this challenge, in Chapter 4, we show the feasibility of an approach
that overcomes this limitation, by integrating history-based reasoning with existing
specification and verification methods (in the KeY theorem prover). The formal
semantic justification of this approach is provided by the fully abstract semantics for
Java introduced in [22] which characterizes exactly the minimal information about
a method implementation in a class in a Java library that captures its external use.
This minimal information consists of histories (also called traces) of method calls and
returns, and provides a formal semantic justification of the basic observation that

1.3 Main challenges and contributions

such histories completely determine the concrete state of any implementation and
thus can be viewed as constituting the generic abstract state space of an interface.
This observation naturally leads to the development of a history-based specification
language for interfaces.

The material of Chapter 4 is based on a journal paper and a conference paper:

e Bian, J., Hiep, H.A., de Boer, F.S., de Gouw, S. (2023). Integrating ADTs in
KeY and their application to history-based reasoning about collection. Formal
Methods in System Design, 1-27.

e Hiep, H.A., Bian, J., de Boer, F.S., de Gouw, S. (2020). History-based
specification and verification of Java collections in KeY. In Integrated For-
mal Methods: 16th International Conference, IFM 2020, Lugano, Switzerland,
November 16-20, 2020, Proceedings 16 (pp. 199-217). Springer International
Publishing.

To implement history-based reasoning, we first embed histories and attributes in the
KeY theorem prover [23| by encoding them as Java objects, thereby avoiding the
need to change the KeY system itself. Interface specifications can then be written
in the state-based specification language JML [24] by referring to histories and their
attributes to describe the intended behavior of implementations. We call this ap-
proach the executable history-based approach (the EHB approach). In Chapter 5, we
use this approach to reason about Java’s Collection interface in proving client code
correct with respect to arbitrary implementations and describe a practical specifica-
tion and verification effort of the part of the Collection interface using KeY. We
provide source and video material of the verification effort to make the construction
of the proofs fully reproducible.

The material of Chapter 5 is based on a conference paper, an artifact, and a collection
of video materials:

e Hiep, H.A., Bian, J., de Boer, F.S., de Gouw, S. (2020). History-based
specification and verification of Java collections in KeY. In Integrated For-
mal Methods: 16th International Conference, IFM 2020, Lugano, Switzerland,
November 16-20, 2020, Proceedings 16 (pp. 199-217). Springer International
Publishing.

e Bian, J., Hiep, H.A. (2020). History-based Specification and Verification of
Java Collections in KeY: Video Material. figshare. Collection.
Available at: https://doi.org/10.6084/m9.figshare.c.5015645.v3

e Hiep, H.A., Bian, J., de Boer, F.S., de Gouw, S. (2020). History-based
Specification and Verification of Java Collections in KeY: Proof Files. Zenodo.
Available at: https://doi.org/10.5281/zenodo.3903204

However, the encoding of the EHB approach made use of pure methods in its spec-
ification and thus required extensive use of so-called accessibility clauses, which
express the set of locations on the heap that a method may access during its ex-
ecution. These accessibility clauses must be verified (with KeY). Furthermore, for
recursively defined pure methods we also need to verify their termination and deter-

1. INTRODUCTION

minism [25)]. Essentially, the associated verification conditions boil down to verifying
that the method under consideration computes the same value starting in two heaps
that are different except for the locations stated in the accessibility clause. To that
end, one has to symbolically execute the method more than once (in two different
heaps) and relate the outcome of the method starting in different heaps to one an-
other. After such proof effort, accessibility clauses of pure methods can be used in
the application of dependency contracts, which are used to establish that the out-
come of a pure method in two heaps is the same if one heap is obtained from the
other by assignments outside of the declared accessible locations. The degree of
automation in the proof search strategy with respect to pure methods, accessibility
clauses, and dependency contracts turned out to be rather limited in KeY. So, while
the methodology works in principle, in practice, for advanced use, the pure methods
were a source of large overhead and complexity in the proof effort.

Facing this challenge, we introduce an innovative strategy: modeling histories as
Abstract Data Types, ADTs for short. Elements of abstract data types are not
present on the heap, avoiding the need to use dependency contracts to prove that
heap modifications affect their properties. We term this novel approach the logical
history-based (LHB) approach. In Chapter 6, we employ the LHB approach to verify
several example client use cases of the interface and prove the correctness of a client
that operates on multiple objects. This significantly improves the state-of-the-art of
history-based reasoning. We have supplied video material along with a source code
artifact for a more comprehensive understanding of our LHB approach.

The material in Chapter 6 is based on a conference paper, a journal paper, an
artifact, and a collection of video materials:

e Bian, J., Hiep, H.A., de Boer, F.S., de Gouw, S. (2023). Integrating ADTs in
KeY and their application to history-based reasoning about collection. Formal
Methods in System Design, 1-27.

e Bian, J., Hiep, H.A., de Boer, F.S., de Gouw, S. (2021). Integrating ADTs
in KeY and their application to history-based reasoning. In Formal Methods:
24th International Symposium, FM 2021, Virtual Event, November 20-26,
2021, Proceedings 24 (pp. 255-272). Springer International Publishing.

e Bian,J., Hiep, H.A. (2021). Integrating ADTs in KeY and their Application
to History-based Reasoning: Video Material. figshare. Collection.
Available at: https://doi.org/10.6084/m9.figshare.c.5413263.v1

e Bian, J., Hiep, H.A., de Boer, F.S., de Gouw, S. (2022). Integrating ADTs
in KeY and their Application to History-based Reasoning about Collection:
Proof files.

Available at: https://doi.org/10.5281 /zenodo.7079126

The use of hierarchy in object-oriented design is foundational to organizing, struc-
turing, and modeling real-world entities and their relationships. Type hierarchies
support the programming to interfaces principle in object-oriented design by allow-
ing the declaration of new subtypes that inherit properties and behaviors from their
supertypes while also providing the flexibility to add or override specific features

1.3 Main challenges and contributions

as needed. In Chapter 7, we discuss the development of a general history-based
refinement approach, which allows us to formally verify behavioral subtyping in
class and interface hierarchies. Our primary focus is on the Java Collection Frame-
work; however, we extend our discussion to demonstrate the practical utility of our
history-based refinement theory through a banking example.

The material in Chapter 7 is based on a paper to be submitted and an artifact:

e Bian, J., Hiep, H.A., de Boer, F.S. History-based Reasoning about Behavioral
Subtyping. (To be submitted.)

e Bian, J., Hiep, H. A., de Boer, F. S. (2024). History-Based Reasoning about
Behavioral Subtyping: Proof files.
Available at: https://doi.org/10.5281 /zenodo.10998227

The theoretical part of this thesis was developed in close collaboration with my co-
authors. The implementation, which includes using KeY for the formal verification
of the Java Collection Framework and creating video material of the interactive
sessions, was mainly done by myself. Actually, my whole thesis derived from the
challenge of verifying real Java programs. The actual work did not always proceed
in a top-down manner from theory to implementation; rather, problems encountered
during implementation led to further theoretical developments. For example, with
respect to verification of interfaces using the executable history-based approach, we
found that this approach is rather limited in KeY. This led to the development of
the logical history-based reasoning approach, which I then applied in developing the
history-based refinement theory.

