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Chapter 1

Introduction

1.1 Background

Formal verification provides mathematically precise proof of the correctness of soft-
ware with respect to formal logic-based specifications of the intended behavior. For-
mal verification can fully guarantee the correctness of software (as opposed, for
instance, to testing) but can be challenging in practice, as it typically requires sig-
nificant effort. However, without a formal analysis supported by verification tools,
software that is used by billions of users every single day may contain bugs, that is,
programming errors caused by humans. Indeed, in the TimSort case study [1], it
is demonstrated that the formal specification and verification of programs can very
well pay off: in an attempt to prove the correctness of the Timsort sorting algo-
rithm [2], a flaw was found in its implementation which under certain circumstances
could result in a crash. TimSort is the default sorting algorithm used e.g. in Java,
Python, and Android, hence the number of affected devices is well into the billions.
The correctness proof of [1] convincingly illustrates the importance and potential
of formal methods as a means of rigorously verifying widely used libraries and im-
proving them. For this result, the verification tool KeY, a semi-interactive theorem
prover for Java programs, was used to mechanically verify the fixed version, which
is therefore now guaranteed to be free of crashes and has been adopted in the most
recent version of Python, Java, and Android. KeY is tailored to the verification
of Java programs. It models the many programming features of the Java language
present in real-world programs. KeY uses the Java Modeling Language [3], JML for
short, for the specification of class invariants, method contracts, and loop invariants.
JML supports the design by contract paradigm, it provides a way to write specifica-
tions that are easy to understand for Java programmers by embedding specifications
as Java comments alongside the program.

The core work of this thesis is to extend the aforementioned successful applications
of formal methods to a systematic verification of object-oriented programs. Our
main focus is given to Java. Java is a widely used programming language that is de-
signed with object-oriented programming principles at its core. As per the TIOBE
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1. INTRODUCTION

Programming Community Index,1 Java consistently ranks among the top 5 most
popular programming languages worldwide. One of the key reasons behind Java’s
enduring popularity is its extensive range of libraries, which can be employed to
address virtually any type of programming challenge. The Java Collection Frame-
work is among the most heavily used software libraries in practice [4]. It provides
basic data structures and search and sorting algorithms (including Timsort) and is
among the most widely used libraries. We direct specification and verification efforts
towards the Java Collection Framework, and we also use it as a source of motivating
examples throughout this thesis.

Next to the Timsort case, another issue related to the Java Collection Framework
was revealed in [5]. LinkedList is the only List implementation in the Collection
Framework that allows collections of unbounded size. It turns out that Java’s linked
list implementation does not correctly take the Java integer overflow semantics into
account. It is exactly for large lists (≥231 items), that the implementation breaks
in many interesting ways, and sometimes even in ways oblivious to the client. This
basic observation gave rise to several test cases that show that Java’s LinkedList
class breaks the contract of 22 methods out of a total of 25 methods of the List
interface! While the above illustrates the importance of formal methods as a means
of putting widely used state-of-the-art software libraries to the test and improving
them, it is clear that without a formal analysis supported by verification tools,
libraries that are used by billions of users every single day are bound to contain
bugs.

Our work offers several significant advantages in real-world program correctness and
verification. Firstly, this thesis is based on extensive use of the KeY theorem prover,
a tool specifically designed for asserting the correctness of Java programs, enhancing
the accuracy and reliability of our verifications. Secondly, our work operates on a
large scale with a focus on general-purpose libraries. Thirdly, we focus on directly
verifying unaltered Java code from the standard library, ensuring that our methods
are directly applicable to real-world programming scenarios. Lastly, our work en-
compasses both classes and interfaces within the standard library, thereby providing
a thorough and robust examination of Java’s foundational components. This thesis
shows that formal verification of actual code can be done in practice.

Related work Here we provide a general related work of this thesis, more specific
related work is described in each individual chapter.

Throughout the history of computer science, a major challenge has been how to
assert that software is free of bugs and works as intended. Software bugs can lead
to serious negative impacts on any software system. From a user’s perspective,
these bugs can interfere with program functionality and undermine the overall user
experience. Additionally, they may create security vulnerabilities that can leave the
system open to malicious activity. According to new research in 2022 commissioned
by the Consortium for Information and Software Quality (CISQ), the economic
burden of poor software quality in the United States has escalated to at least $2.41
trillion, marking an increase of almost 16% from the 2020s $2.08 trillion [6]. This

1https://www.tiobe.com/tiobe-index/
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1.1 Background

substantial amount does not even include an estimated $1.52 trillion in “technical
debt” (TD) — accumulated software vulnerabilities in applications, networks, and
systems that are ignored for now but will need to be paid eventually.

Using informal root cause analysis [7], one could find from a system failure its root
causes, which may include bugs caused by programming errors. But, root cause
analysis can only be applied after a failure has happened. To prevent certain failures
from happening in the first place, program correctness is of the utmost importance.
Although establishing program correctness can be an expensive activity [8], it is
still worthwhile for critical software programs, such as the standard library that all
programs rely on.

It can be empirically established that Java libraries, and Java’s Collection Frame-
work in particular, are heavily used and have many implementations [4]. Various
case studies have focused on verifying parts of that framework [9, 10, 11]. Numer-
ous approaches have been proposed to specify and check Java programs to ensure
program reliability for run-time verification. Most of these approaches are based
on communication histories (or traces), which are defined as finite sequences of
messages. In particular, in [12], the tool environment prototyped for JML has pio-
neered runtime assertion checking by integrating communication histories, offering
a nuanced understanding of method interactions and invocations. A specialized
approach [13] extending this work for JML employs runtime assertion checking in
multithreaded applications, using e-OpenJML as a tooling environment. Further-
more, the development of the MOP framework [14] showcases the feasibility of a
generic and efficient approach to runtime verification, indicating its potential util-
ity beyond just the Java Collection Framework. Explicit method call sequences in
Java programs have also been studied in [15], ensuring that methods are invoked in
the intended order and manner, strengthening the reliability of the overall system.
LARVA [16], a tool also mainly developed for run-time verification, was extended in
e.g. [17] to optimize away checks at run-time that can be established statically. But,
there, static guarantees are limited by expressivity (no fully-fledged theorem prover
is used) and interfaces are not handled by the static analysis. The work [18] by
Welsch and Poetzsch-Heffter focuses on Java libraries. They reason about the back-
ward compatibility of Java libraries in a formal manner using histories to capture
and compare the externally observable behavior of two libraries. In [18], however,
two programs are compared, and not a program against a formal specification. The
Java PathFinder is an extensible software framework that performs model check-
ing directly on Java bytecode, originally developed at NAS Ames Research Center.
Works using Java PathFinder [19, 20] mostly focus on checking concurrency defects
and unhandled exceptions in Java programs.

The programming errors discovered in the Timsort and LinkedList case studies
are hard to discover at run-time due to their heap size requirements, necessitat-
ing a static approach to analysis. Static verification of the Collection Framework
was already initiated more than two decades ago, see e.g. the work by Huisman
et al. [10, 21]. A significant complication in static verification is that it requires
formal specifications. Two well-known approaches in this domain come from Huis-
man [10] and Knüppel et al. [11]. Huisman [10] presented the specification and

3



1. INTRODUCTION

modular verification of Java’s AbstractCollection class identifying a problem not
documented in the informal documentation: unexpected behavior occurs when a
collection contains a reference to itself. Knüppel et al. [11] specified and verified
several classes of the Java Collection Framework with standard JML state-based
annotations; they found that specification was one of the main bottlenecks. How-
ever, these approaches are not complete nor demonstrate the verification of various
clients and implementations. Generally speaking, while existing research mainly fo-
cuses on class specification and verification, there seems to be no obvious strategy in
specifying Java interfaces so that its clients and its implementations can be verified
statically using a theorem prover.

1.2 Thesis outline
The thesis is organized into eight chapters. Figure 1.1 provides an overview of the
thesis structure.

Figure 1.1: Thesis structure.

In this introductory chapter, we provide a brief overview of the background and
related work, outline the main challenges, and highlight the key contributions of this
thesis. Chapter 2 presents the background knowledge, offering an initial survey of
several key concepts and introduces the theorem provers used for verification.

In Chapter 3, we focus on class specification and verification. We present the
methodology for analyzing the java.util.LinkedList class to gain a deeper under-
standing of its behavior. We emphasize the crucial role of precise specifications using
JML. To validate the program’s behavior against these specifications, we take a for-
mal approach supported by the KeY tool, which uniquely allows for comprehensive
reasoning about Java programs.

4



1.3 Main challenges and contributions

However, we leave out some methods that take an interface type as a parameter,
as these present challenges we can not solve yet. Motivated by this challenge, we
focus on investigating a history-based approach to writing interface specifications
in the state-based specification language JML by referring to histories and their
attributes to describe the intended behavior of implementations The content related
to interface specification and verification is present in Chapters 4, 5, and 6.

Specifically, in Chapter 4, we outline the challenges of proving client code correct
with respect to arbitrary implementations and describe a practical specification
and verification effort of part of the Collection interface using KeY. We explore
two history-based approaches: the executable history-based approach (the EHB ap-
proach) and the logical history-based approach (the LHB approach).

In Chapter 5 and Chapter 6, we apply these history-based reasoning approaches
to Java’s Collection interface and use histories to prove the correctness of several
clients. As a more advanced case study, we have also verified clients using the
LHB approach, which operates on multiple objects. This significantly improves the
state-of-the-art of history-based reasoning.

In Chapter 7, we focus on hierarchical structures in object-oriented programs. We
investigate reasoning about behavioral subtyping based on histories, which enables
us to formally verify the class and interface hierarchy.

At last, Chapter 8 summarizes the contributions of the thesis and points out direc-
tions for future research.

1.3 Main challenges and contributions
This thesis demonstrates formal methods for systematically verifying real object-
oriented programs. The goal of this thesis is to develop techniques that are capable
of specifying and verifying interface/class hierarchies, such as those present in Java’s
collection framework, and to convincingly argue about the usefulness of these tech-
niques by means of case studies. To achieve this aim, in this thesis, we tackle several
challenging problems that hamper the verification of object-oriented programs.

When reasoning about object-oriented programs, the ultimate goal is to ensure that
program execution does not result in unexpected behavior. This requires a precise
specification of what behavior one expects and further requires a convincing argu-
ment that all possible executions of the program exhibit that behavior. Focusing on
this challenge, in Chapter 3, we give a tutorial on using the KeY theorem prover to
demonstrate formal verification of state-of-the-art, real software. In sufficient detail
for a beginning user of JML and KeY, the specification and verification of part of a
corrected version of the java.util.LinkedList class of the Java Collection frame-
work is explained. We provide technical details on how we use the KeY theorem
prover, and we give more detail concerning the production of the proofs. This tuto-
rial consists of artifacts and video materials. The collection of video material consists
of screen recordings of interactive proof sessions with the KeY theorem prover that
shows recordings of interactive sessions. Each video displays how to create a proof
for part of one method contract, or proofs of several method contracts.

5



1. INTRODUCTION

The material in Chapter 3 is based on a conference paper, an artifact, and a collection
of video materials:

• Hiep, H.A., Bian, J., de Boer, F.S., de Gouw, S. (2020). A Tutorial on
Verifying LinkedList Using KeY. Deductive Software Verification: Future Per-
spectives: Reflections on the Occasion of 20 Years of KeY, 221-245.

• Bian, J., Hiep, H.A.: A Tutorial on Verifying LinkedList using KeY: Video
Material (2020).
Available at: https://doi.org/10.6084/m9.figshare.c.4826589.v2

• Hiep, H.A., Bian, J., de Boer, F.S., de Gouw, S.: A Tutorial on Verifying
LinkedList using KeY: Proof Files (2020).
Available at: https://doi.org/10.5281/zenodo.3613711

In addition to the verification of class types, some of the methods in libraries contain
an interface type as a parameter, which generates the next challenge. For example,
as shown in Listing 1.1, the addAll method in java.util.LinkedList class of the
Java Collection framework takes two arguments, the second one is of the Collection
type:

public boolean addAll(int index, Collection c){
...
Object[] a = c.toArray();
...

}

Listing 1.1: The addAll method in LinkedList.

Following the design by contract paradigm, verification of LinkedList’s addAll
method requires a contract for each of the other methods called, including the
toArray method in the Collection interface. How can we specify interface meth-
ods, such as Collection.toArray? More generally, libraries employ the technique
of programming to interfaces, which is one of the most important principles in soft-
ware engineering. Interfaces in Java abstract from the state and other internal
implementation details. However, tool-supported programming logic and specifica-
tion languages are predominantly state-based which as such cannot be used for Java
interfaces. Furthermore, state-based specifications may expose the internal repre-
sentation of a data structure. Different implementations of, for example, a stack
would give rise to different specifications. Consequently, state-based specifications
are not robust under changes to the underlying representation.

Addressing this challenge, in Chapter 4, we show the feasibility of an approach
that overcomes this limitation, by integrating history-based reasoning with existing
specification and verification methods (in the KeY theorem prover). The formal
semantic justification of this approach is provided by the fully abstract semantics for
Java introduced in [22] which characterizes exactly the minimal information about
a method implementation in a class in a Java library that captures its external use.
This minimal information consists of histories (also called traces) of method calls and
returns, and provides a formal semantic justification of the basic observation that

6



1.3 Main challenges and contributions

such histories completely determine the concrete state of any implementation and
thus can be viewed as constituting the generic abstract state space of an interface.
This observation naturally leads to the development of a history-based specification
language for interfaces.

The material of Chapter 4 is based on a journal paper and a conference paper:

• Bian, J., Hiep, H.A., de Boer, F.S., de Gouw, S. (2023). Integrating ADTs in
KeY and their application to history-based reasoning about collection. Formal
Methods in System Design, 1-27.

• Hiep, H.A., Bian, J., de Boer, F.S., de Gouw, S. (2020). History-based
specification and verification of Java collections in KeY. In Integrated For-
mal Methods: 16th International Conference, IFM 2020, Lugano, Switzerland,
November 16–20, 2020, Proceedings 16 (pp. 199-217). Springer International
Publishing.

To implement history-based reasoning, we first embed histories and attributes in the
KeY theorem prover [23] by encoding them as Java objects, thereby avoiding the
need to change the KeY system itself. Interface specifications can then be written
in the state-based specification language JML [24] by referring to histories and their
attributes to describe the intended behavior of implementations. We call this ap-
proach the executable history-based approach (the EHB approach). In Chapter 5, we
use this approach to reason about Java’s Collection interface in proving client code
correct with respect to arbitrary implementations and describe a practical specifica-
tion and verification effort of the part of the Collection interface using KeY. We
provide source and video material of the verification effort to make the construction
of the proofs fully reproducible.

The material of Chapter 5 is based on a conference paper, an artifact, and a collection
of video materials:

• Hiep, H.A., Bian, J., de Boer, F.S., de Gouw, S. (2020). History-based
specification and verification of Java collections in KeY. In Integrated For-
mal Methods: 16th International Conference, IFM 2020, Lugano, Switzerland,
November 16–20, 2020, Proceedings 16 (pp. 199-217). Springer International
Publishing.

• Bian, J., Hiep, H.A. (2020). History-based Specification and Verification of
Java Collections in KeY: Video Material. figshare. Collection.
Available at: https://doi.org/10.6084/m9.figshare.c.5015645.v3

• Hiep, H.A., Bian, J., de Boer, F.S., de Gouw, S. (2020). History-based
Specification and Verification of Java Collections in KeY: Proof Files. Zenodo.
Available at: https://doi.org/10.5281/zenodo.3903204

However, the encoding of the EHB approach made use of pure methods in its spec-
ification and thus required extensive use of so-called accessibility clauses, which
express the set of locations on the heap that a method may access during its ex-
ecution. These accessibility clauses must be verified (with KeY). Furthermore, for
recursively defined pure methods we also need to verify their termination and deter-

7



1. INTRODUCTION

minism [25]. Essentially, the associated verification conditions boil down to verifying
that the method under consideration computes the same value starting in two heaps
that are different except for the locations stated in the accessibility clause. To that
end, one has to symbolically execute the method more than once (in two different
heaps) and relate the outcome of the method starting in different heaps to one an-
other. After such proof effort, accessibility clauses of pure methods can be used in
the application of dependency contracts, which are used to establish that the out-
come of a pure method in two heaps is the same if one heap is obtained from the
other by assignments outside of the declared accessible locations. The degree of
automation in the proof search strategy with respect to pure methods, accessibility
clauses, and dependency contracts turned out to be rather limited in KeY. So, while
the methodology works in principle, in practice, for advanced use, the pure methods
were a source of large overhead and complexity in the proof effort.

Facing this challenge, we introduce an innovative strategy: modeling histories as
Abstract Data Types, ADTs for short. Elements of abstract data types are not
present on the heap, avoiding the need to use dependency contracts to prove that
heap modifications affect their properties. We term this novel approach the logical
history-based (LHB) approach. In Chapter 6, we employ the LHB approach to verify
several example client use cases of the interface and prove the correctness of a client
that operates on multiple objects. This significantly improves the state-of-the-art of
history-based reasoning. We have supplied video material along with a source code
artifact for a more comprehensive understanding of our LHB approach.

The material in Chapter 6 is based on a conference paper, a journal paper, an
artifact, and a collection of video materials:

• Bian, J., Hiep, H.A., de Boer, F.S., de Gouw, S. (2023). Integrating ADTs in
KeY and their application to history-based reasoning about collection. Formal
Methods in System Design, 1-27.

• Bian, J., Hiep, H.A., de Boer, F.S., de Gouw, S. (2021). Integrating ADTs
in KeY and their application to history-based reasoning. In Formal Methods:
24th International Symposium, FM 2021, Virtual Event, November 20–26,
2021, Proceedings 24 (pp. 255-272). Springer International Publishing.

• Bian,J., Hiep, H.A. (2021). Integrating ADTs in KeY and their Application
to History-based Reasoning: Video Material. figshare. Collection.
Available at: https://doi.org/10.6084/m9.figshare.c.5413263.v1

• Bian, J., Hiep, H.A., de Boer, F.S., de Gouw, S. (2022). Integrating ADTs
in KeY and their Application to History-based Reasoning about Collection:
Proof files.
Available at: https://doi.org/10.5281/zenodo.7079126

The use of hierarchy in object-oriented design is foundational to organizing, struc-
turing, and modeling real-world entities and their relationships. Type hierarchies
support the programming to interfaces principle in object-oriented design by allow-
ing the declaration of new subtypes that inherit properties and behaviors from their
supertypes while also providing the flexibility to add or override specific features

8



1.3 Main challenges and contributions

as needed. In Chapter 7, we discuss the development of a general history-based
refinement approach, which allows us to formally verify behavioral subtyping in
class and interface hierarchies. Our primary focus is on the Java Collection Frame-
work; however, we extend our discussion to demonstrate the practical utility of our
history-based refinement theory through a banking example.

The material in Chapter 7 is based on a paper to be submitted and an artifact:

• Bian, J., Hiep, H.A., de Boer, F.S. History-based Reasoning about Behavioral
Subtyping. (To be submitted.)

• Bian, J., Hiep, H. A., de Boer, F. S. (2024). History-Based Reasoning about
Behavioral Subtyping: Proof files.
Available at: https://doi.org/10.5281/zenodo.10998227

The theoretical part of this thesis was developed in close collaboration with my co-
authors. The implementation, which includes using KeY for the formal verification
of the Java Collection Framework and creating video material of the interactive
sessions, was mainly done by myself. Actually, my whole thesis derived from the
challenge of verifying real Java programs. The actual work did not always proceed
in a top-down manner from theory to implementation; rather, problems encountered
during implementation led to further theoretical developments. For example, with
respect to verification of interfaces using the executable history-based approach, we
found that this approach is rather limited in KeY. This led to the development of
the logical history-based reasoning approach, which I then applied in developing the
history-based refinement theory.
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Chapter 2

Preliminaries

2.1 Object-oriented programming
Object-oriented programming (OOP) is a programming paradigm that utilizes "ob-
jects" to structure applications and computer programs. In OOP, classes act as
user-defined data types that serve as blueprints for creating unique instances called
objects. These objects can represent real-world entities or abstract concepts. Each
class defines both fields and methods, where fields represent the state of an object,
and methods describe its behaviors.

Fields in a class are variables that store data related to instances of the class, and
they define the state of an object. Class fields, on the other hand, belong to the class
itself. Methods are functions encapsulated within the class, enabling code reusability
and defining the behaviors associated with an object. Each method within a class
begins with a reference to an instance object, making them instance methods.

A method signature consists of the method name coupled with its parameter list.
An interface in OOP only contains method declarations, specifying what methods
a class must implement but not how to implement them. This allows multiple
classes to implement the same interface in different ways, giving programmers the
flexibility to change implementations without affecting the code that relies on these
interfaces.

The basic features of object-oriented programming include encapsulation, data ab-
straction, inheritance, and polymorphism, all of which are consistently adhered to
by object-oriented programs. Encapsulation involves using classes to encapsulate
both fields and methods, ensuring that the internal state of these objects is shielded
from the outside world—a principle known as information hiding. Methods serve as
the public interface through which interaction with object data is controlled, pre-
serving data integrity and restricting unauthorized access. Data abstraction allows
for the creation of abstract classes or interfaces that define the essential feature of
a data type, without revealing the underlying implementation details. This enables
users to interact with objects at a higher, more abstract level, which facilitates more
comfortable and straightforward usage. Inheritance is widely used in object-oriented
libraries to promote code reusability and to establish a relationship between super-
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type and subtype. A subtype inherits fields (if both types are classes) and methods
from a supertype, and it also has the ability to override or extend these inherited
features. This makes it easy to add functionalities to existing classes or interfaces
without modifying them. Polymorphism enables objects to be treated as instances
of their supertype, leading to simpler code and fewer errors. In object-oriented pro-
grams, polymorphism is often implemented through method overriding in subtypes,
allowing for different implementations under the same method name.

The programming to interfaces principle [26] is one of the most important principles
in OOP. This principle is supported by the feature of encapsulation and data abstrac-
tion, allowing developers of client code to focus on essential functionalities rather
than the need to consider irrelevant implementation details. By focusing on what
an object should do rather than how it should do it, this principle enables a higher
level of abstraction and decoupling in software systems. Furthermore, when com-
bined with the design by contract [27] principle, programming to interface becomes
a crucial strategy for managing the complexity of software today. This combination
ensures a structured approach to software design, where the focus is on fulfilling
clearly defined contracts, thereby enhancing the reliability and maintainability of
software systems.

2.2 Java Collection Framework
The Java Collections Framework is a comprehensive set of classes and interfaces
provided by Java for working with collections of objects. It provides basic data
structures and is among the most widely used libraries. The Java Collection Frame-
work is illustrated in Figure 2.1.

Figure 2.1: Java Collection framework.

The Java Collection Framework has a behavioral subtype hierarchy [28]. The
Collection interface serves as the topmost type and includes three sub-interfaces:
List, Set, and Queue. These sub-interfaces are implemented by some abstract
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classes and finally lead down to the concrete implementation classes at the bottom
of the hierarchy, such as ArrayList, HashSet, and LinkedList, etc.

The Collection interface outlines all the fundamental operations for collections,
such as add, remove, and other methods for querying and manipulating a collection
of objects.

public interface Collection {
boolean add(Object o);
boolean addAll(Collection c);
boolean remove(Object o);
boolean contains(Object o);
boolean isEmpty();
Iterator iterator();
...

}

Listing 2.1: The part of Collection interface.

The iterator method, declared within the Collection interface, returns an object
that implements the Iterator interface. The Iterator interface is another key
component of the Java Collection Framework, offering a way to enumerate all the
elements in a collection.

public interface Iterator {
boolean hasNext();
Object next();
void remove();

}

Listing 2.2: The Iterator interface.

In addition to collections, the framework also includes a variety of Map interfaces
and classes. These Map entities are used to store key/value pairs. Even though a
Map is not considered as a collection, it is fully integrated into the Java Collections
Framework.

The LinkedList class is one of the most important classes in the Java Collection
Framework. This class serves as a particular case study for the formal verification
of objection-oriented libraries, as discussed in Section 3. It was introduced in Java
version 1.2 as part of the Java Collection Framework in 1998. Figure 2.1 shows how
LinkedList fits in the type hierarchy of this framework: LinkedList implements
the List interface, and also supports all general Collection methods as well as
the methods from the Queue and Deque interfaces. The List interface provides
positional access to the elements of the list, where each element is indexed by Java’s
primitive int type. Each element in a LinkedList is stored as a separate object
referred to as a node, containing data and references to the previous and next
elements in the list.
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2.3 Theorem prover overview

In our setup, we distinguish domain-specific theorem provers from general-purpose
theorem provers. The theorems of a domain-specific theorem prover are correct pairs
of programs and specifications and thus can be seen as giving axiomatic semantics
to programs and specifications. In our case study, we use the state-of-the-art KeY
theorem prover, as KeY is tailored to the verification of Java programs. A general-
purpose theorem prover, in contrast, is oblivious to the intricate details of programs
and the specifications in question: e.g. it is not needed to formalize the semantics of
Java nor JML in a general-purpose theorem prover. As a general-purpose theorem
prover, we choose the Isabelle/HOL theorem prover. In this section, we will intro-
duce both the KeY theorem prover and the Isabelle/HOL theorem prover, offering
an overview of both tools.

2.3.1 KeY theorem prover

JML [24] is a specification language for Java that supports the design-by-contract
paradigm. Specifications are embedded as Java comments alongside the program.
A method precondition in JML is given by a requires clause and a postcondition is
given by ensures. JML also supports class invariants. A class invariant is a property
that all instances of a class should satisfy. In the design by contract setting, each
method is proven in isolation (assuming the contracts of methods that it calls), and
the class invariant can be assumed in the precondition and must be established in
the postcondition, as well as at all call-sites to other methods. To avoid manually
adding the class invariant at all these points, JML provides an invariant keyword
which implicitly conjoins the class invariant to all pre- and postconditions. Method
contracts may also contain an assignable clause stating the locations that may be
changed by the method (if the precondition is satisfied), and an accessible clause
that expresses the locations that may be read by the method (if the precondition is
satisfied). Our approach uses all of the above concepts.

JML also allows annotations of ghost fields and model fields. Ghost fields are virtual
fields that become part of the modelled state of an object on the heap, but are never
present when actually executing a Java program. Like normal fields, the ghost fields
are assigned a default value at object initialization and can be explicitly changed by
JML set annotations. These annotations occur anywhere in method bodies where
otherwise a normal statement can be expected. Model fields are introduced as func-
tion symbols, and several axioms are added that allow the definition of model fields
to be substituted during proof. An example model field is a class invariant, which is
implicitly assumed to hold the state of an object between method invocations.

KeY [23] is a semi-interactive theorem prover for Java programs (typically > 95%
of the proof steps are automated). The input for KeY is a Java program together
with a formal specification in a KeY-dialect of JML. The user proves the specifi-
cations method-by-method. KeY generates appropriate proof obligations and ex-
presses them in a sequent calculus (see Figure 2.2), where the formulas inside the
sequent are multi-modal dynamic logic formulas in which Java program fragments
are used as the modalities. To reduce such dynamic logic formulas to first-order

14



2.3 Theorem prover overview

formulas, KeY symbolically executes the Java program in the modality (it has rules
for nearly all sequential Java constructs). Once the program is fully symbolically ex-
ecuted, only formulas without Java program fragments remain. The main reference
work on the KeY system is the KeY book [29].

Figure 2.2: Proof tree in KeY(version 2.8.0).

The KeY system consists of three main components: a proof system, a translator of
Java programs annotated with JML into proof obligations, and an interactive tool
for constructing proofs.

The logic underlying KeY is JavaDL, a program logic that directly incorporates Java
program fragments. The program logic is a multi-modal logic: ⟨P ⟩φ expresses that
executing the program fragment P definitely terminates and φ holds in the final
state; and [P ]φ expresses if the program fragment P terminates, then φ holds in
the final state. The formula φ→ ⟨P ⟩ψ expresses that if φ holds in the initial state,
then execution of P terminates in a state for which ψ holds. See [29].

The program logic distinguishes program variables from logical variables : the value
of a program variable can be changed throughout executing a program, whereas a
logical variable always has the same value. As logical variables can never be modified
by a program fragment, they are used as so-called freeze variables.

The proof system that KeY uses to establish the validity of formulas is given as a
sequent calculus. A sequent φ1, . . . , φn ⇒ ψ1, . . . , ψm consists of n antecendents and
m consequents, all formulas of JavaDL, with the usual interpretation: φ1, . . . , φn ⇒
ψ1, . . . , ψm means that if all φi on the left are true, then at least one ψj on the
right is true. Derivability of a sequent in the proof system is as usual by means
of deduction rules, assembled into a proof tree. Next to the deduction rules for
classical first-order logic, the proof system also consists of a large number of other
rules.

15



2. PRELIMINARIES

Deduction rules are given by means of lightweight tactics (called taclets [30]) that
perform modifications on the sequent one is proving: e.g. split branches in the proof
tree, substitute variables, rewrite terms, or close a branch. There are approximately
1750 rules that implement symbolic execution for Java program fragments, and
implement the theories of many sorts: integers, sequences, heaps, location sets, and
others.

Of particular interest to us are rules concerning updates and heaps. Some rules
transform modalities with program fragments into so-called update modalities. Up-
dates always terminate and they assign JavaDL terms to program variables. As
such, updates cannot assign program variables to side-effectful expressions. Given
a formula φ, then {x1 := t1|| . . . ||xn := tn}φ is a formula where in parallel xi are
updated to ti. Updates are simplified by substitution.

There is a hidden and implicit program variable in JavaDL that is the heap of
heap sort. The heap is used to model the storage of objects, that is, the value of
fields associated with object references. From a practical perspective, updates of
program variables other than the heap can be thought of as stack variables. Such
program variables can refer to objects on the heap. Heap updates are tracked by
updating the heap program variable. Heap updates and program variable updates
easily form complex expressions, where both kinds of updates can be intertwined.
See [29, Section 2.4.3] and [29, Section 6.4].

Next to the built-in sorts of integers, sequences, heaps, and location sets, are Java
types. Each Java type has its own sort in JavaDL that models (infinitely many)
references to objects, including the null reference. References can be explicitly
coerced between sorts, to model subtypes: e.g. every reference can be coerced to a
reference of sort Object. A heap assigns values to the fields of a non-null reference.
Object references are global, but the creation status of each object is a special
Boolean field <created> local to each heap. An object becomes created in some
heap by taking a fresh reference, that has no value yet assigned to its creation field
in that heap, and setting that field to true. Fields can only be assigned to non-null
object references for which their created field is true. A heap is well-formed if a
finite number of references have <created> set to true.

An important aspect of Java programs is method calls. There are three main issues:
calling a method may introduce new program variables that shadow older program
variables, calling a method may change the heap, and it is possible to call a method
on an object for which its exact type is only known at run-time.

To solve the issue of overshadowing older program variables, KeY uses method
frames ; before a method frame is created, it is ensured that old program variables
and new program variables do not collide by renaming the program variables of a
method body. Since the this keyword cannot be renamed, the method frame pro-
vides a context in which program fragments evaluate this references; it also tracks
where the method return value must be placed.

The implicit heap variable is also stored in the method frame, referred to as the
before heap. Any heap update within the method is performed on a separate pro-
gram variable. Statements following a method call are performed using the heap

16



2.3 Theorem prover overview

H1 H2 H4 H5

〈P ; m();P ′〉 〈P ′〉

Hb Ha

ϕ → 〈m()〉ψ

〈m();P ′〉

Figure 2.3: Heaps are ‘threaded’ through method calls. In heap H1 the program
fragment P is executed, resulting in heap H2. Either a contract for method m() is
employed, which relates the before heap Hb to some heap after the method call Ha;
or, the method body is unfolded by wrapping it in a method frame that resolves
overshadowing of program variables. In both cases, to call the method, heap Hb is
equal to H2 and heap Ha is equal to H4. Then the program fragment P ′ that occurs
after the method call is executed using the heap returned by the method.

as it is after the method call completes: there are rules for ‘threading’ the heap
through a method call, see Figure 2.3. There are roughly two ways of treating
method calls: unfolding their method body wrapped in a method frame, or using
its method contract.

The issue of run-time types is solved using method contracts. Method contracts
and other annotations of Java programs are specified in terms of the Java Mod-
eling Language (see [31]) but with KeY-specific extensions (see [29, Chapter 7]).
Each method is annotated by a contract that specifies pre- and post-conditions: all
implementations of this method should adhere to the contract. The contract deter-
mines corresponding correctness formulas in JavaDL: if they are verified, then the
corresponding method is correct with respect to its method contract. Consequently,
method contracts can be reused in other proofs involving program fragments that
call such a method.

Java programs annotated with JML are entered into the KeY system and the verifi-
cation begins by generating one or more proof obligations. Using the interactive tool,
a proof tree is constructed by applying rules until the branches of the tree are closed.
Each rule application may result in zero or more branches: in the case of multiple
branches, every branch needs to be closed. The tool also provides automation, that
automatically applies proof rules using heuristics. This speeds up the verification
effort considerably. Finally, after all proof obligations appear as the conclusion of a
closed proof tree, the verification effort is done. The proof trees can be stored in a
file and reloaded and inspected later.

2.3.2 Isabelle/HOL theorem prover

Isabelle/HOL (Isabelle instantiated with Church’s type theory) [32] is an interactive
theorem prover that supports the formalization and verification of mathematical
theorems and software systems. The main reference for Isabelle/HoL is its reference
manual [33, 34].
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Isabelle/HOL employs higher-order logic (HOL) to allow for a broader class of math-
ematical statements to be represented and proven. The underlying logic is conducive
to reasoning about functional programming constructs, data types, and even imper-
ative programming paradigms. It comes equipped with a variety of decision pro-
cedures and tactical theorem-proving capabilities that automate or semi-automate
the verification process [33].

Functional programs in Isabelle/HOL are outlined as shown in Figure 2.4. It defines
both datatypes and functions within a theory. Isabelle comes with a large the-
ory library of formally verified mathematics, including elementary number theory,
analysis, algebra, and set theory [35].

Figure 2.4: Isabelle/HoL proof system(version Isabelle2023/HOL).

Isabelle/HOL includes a definitional package for data types, as described in the
work of Biendarra et al. [36]. The definition mechanism provides so-called freely
generated data types: the user provides some signature consisting of constants and
function symbols and their types, and the system automatically derives (rather
than postulates) characteristic theorems. Under the hood, each data type definition
is associated with a Bounded Natural Functor (BNF) that admits a non-trivial
initial algebra [37]. User-defined datatypes are defined using the datatype keyword.
The definition usually outlines the constructor functions that can be used to create
instances of the datatype, along with the types of arguments these constructors can
take.

Functions in Isabelle/HOL are declared using the fun keyword. These functions
are characteristically pure, meaning they do not have side effects. Functions are
usually defined by specifying their behavior over user-defined or built-in datatypes,
commonly utilizing pattern matching to unambiguously identify the expected output
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for specific inputs. Additionally, these functions can also be recursively defined; they
may call themselves with altered arguments until a termination condition, often
referred to as the base case, is met. This recursion is typically defined with rigorous
formal properties to ensure termination and correctness, aligning with the overall
goal of theorem proving and formal verification in Isabelle/HOL.

The keywords theorem and lemma in Isabelle play crucial roles in formalizing and
verifying mathematical claims. While a lemma is generally a minor result used
as a foundational stepping stone, a theorem is a more significant mathematical
proposition that has been rigorously proven based on previously established lemmas,
theorems, and axioms. These two keywords are interchangeable and merely indicate
the level of importance we assign to a given proposition. Isabelle’s rich theory library
provides a wide array of pre-proven theorems and lemmas. These resources not only
expedite the formal verification of new mathematical claims but also contribute to a
robust foundational framework. This framework is invaluable for researchers across
multiple disciplines, enabling them to build upon proven results and advance both
theoretical and applied research with confidence.
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Chapter 3

Class specification and verification: a
step-by-step guide

This chapter is designed to serve as a comprehensive tutorial, illustrating the formal
methods for specifying and reasoning about program executions in Java. As a spe-
cific case study for java.util.LinkedList, we provide the source code and video
material to facilitate a deeper understanding of the entire proof process.

This chapter is based on the following publications and artifacts:

• Hiep, H. A., Bian, J., de Boer, F. S., de Gouw, S. (2020). A Tutorial on Verifying LinkedList
Using KeY. Deductive Software Verification: Future Perspectives: Reflections on the Occa-
sion of 20 Years of KeY, 221-245.

• Bian, J., Hiep, H. A.: A Tutorial on Verifying LinkedList using KeY: Part 1 (2020).
https://doi.org/10.6084/m9.figshare.11662824

• Bian, J., Hiep, H. A.: A Tutorial on Verifying LinkedList using KeY: Part 2 (2020).
https://doi.org/10.6084/m9.figshare.11673987

• Bian, J., Hiep, H. A.: A Tutorial on Verifying LinkedList using KeY: Part 3a (2020).
https://doi.org/10.6084/m9.figshare.11688816

• Bian, J., Hiep, H. A.: A Tutorial on Verifying LinkedList using KeY: Part3b(2020).
https://doi.org/10.6084/m9.figshare.11688858

• Bian, J., Hiep, H. A.: A Tutorial on Verifying LinkedList using KeY: Part 3c (2020).
https://doi.org/10.6084/m9.figshare.11688870

• Bian, J., Hiep, H. A.: A Tutorial on Verifying LinkedList using KeY: Part3d(2020).
https://doi.org/10.6084/m9.figshare.11688984

• Bian, J., Hiep, H. A.: A Tutorial on Verifying LinkedList using KeY: Part 3e (2020).
https://doi.org/10.6084/m9.figshare.11688891

• Bian, J., Hiep, H. A.: A Tutorial on Verifying LinkedList using KeY: Part 4a (2020).
https://doi.org/10.6084/m9.figshare.11699178

• Bian, J., Hiep, H. A.: A Tutorial on Verifying LinkedList using KeY: (2020).
https://doi.org/10.6084/m9.figshare.11699253

• Bian, J., Hiep, H. A.: A Tutorial on Verifying LinkedList using KeY: Video Material
(2020). https://doi.org/10.6084/m9.figshare.c.4826589.v2

• Hiep, H. A., Bian, J., de Boer, F.S., de Gouw, S.: A Tutorial on Verifying LinkedList using
KeY: Proof Files (2020). https://doi.org/10.5281/zenodo.3613711
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3.1 Introduction

Software libraries, such as the Java standard library, serve as the building blocks
of many programs that run on the devices of many users every day. Given their
widespread usage, even minor errors in these libraries can result in serious conse-
quences, making it essential that such libraries be thoroughly tested and debugged
before being deployed. Therefore, it is crucial to rigorously test and debug these
libraries before deploying them. The focus should be on preempting issues, rather
than merely addressing them after they occur.

This chapter intends to show how we take an existing Java program that is part of
the Java standard library and study it closely to increase our understanding of it. If
we are only interested in showing the presence of an issue with the program, e.g. that
it lacks certain functionality, it suffices to show an example run that behaves unex-
pectedly. But to conclude that no unexpected behavior ever results from running
the program first requires a precise specification of what behavior one expects, and
further requires a convincing argument that all possible executions of the program
exhibit that behavior.

We take a formal approach to both specification and reasoning about program ex-
ecutions, allowing us to increase the reliability of our reached conclusions to near
certainty. In particular, the specifications we write are expressed in the JML, and
our reasoning is tool-supported and partially automated by KeY. To the best of the
authors’ knowledge, KeY is the only tool that supports enough features of the Java
programming language for reasoning about real programs, of which its run-time be-
havior crucially depends on the presence of features such as dynamic object creation,
exception handling, integer arithmetic with overflow, for loops with early returns,
nested classes (both static and non-static), inheritance, polymorphism, erased gener-
ics, etc.

As a demonstration of applying KeY to state-of-the-art, real software, we focus on
Java’s LinkedList class, for two reasons. First, a (doubly-)linked list is a well-
known basic data structure for storing and maintaining unbounded data and has
many applications: for example, in Java’s secure sockets implementation.1 Second,
it has turned out that there is a 20-year-old bug lurking in its program, that might
lead to security-in-depth issues on large memory systems, caused by the overflow of
a field that caches the length of the list [38]. Our specification and verification effort
is aimed at establishing the absence of this bug from a repaired program.

This chapter is based on the results as described in paper [38]. That paper provides
a high-level overview of the specification and verification effort of the linked list
class as a whole, for a more general audience. In the present chapter, more tech-
nical details on how we use the KeY theorem prover are given, and we give more
detail concerning the production of the proofs. In particular, this tutorial consists
of the online repository of proof files [39], and online video material that shows
how to (re)produce the proofs [40]: these are video recordings of the interactive
sessions in KeY that demonstrates exactly what steps one could take to complete

1e.g. see the JVM internal class sun.security.ssl.HandshakeStateManager.
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the correctness proofs of the proof obligations generated by KeY from the method
contracts.

We see how to set up a project and configure the KeY tool (Section 3.2). We then
study the source code of the LinkedList to gain an intuitive understanding of its
structure: how the instances look like, and how the methods operate (Section 3.3).
We formulate, based on previous intuition, a class invariant in JML that expresses
a property that is true of every instance (Section 3.4). An interesting property that
follows from the class invariant, that is used as a separation principle, is described
next (Section 3.5). To keep this presentation reasonably short, we further focus on
the methods that pose the main challenges to formal verification, add and remove.
We give a method contract for the add method that describes its expected behavior
and we verify that its implementation is correct (Section 3.6). The difficulty level
increases after we specify the remove method (Section 3.7), as its verification requires
more work than for add. We study a deeper method that remove depends on, and
finally use loop invariants to prove the correctness of remove.

3.2 Preliminaries

First we set up the project files needed to use KeY. The project files are available
on-line [39]: these can be downloaded and include the KeY software version that
we use. After unpacking the project files, we end up with the directory structure of
Table 3.1.

linkedlist-tutorial
key-2.6.3.zip
LinkedList.key
src

java
util

LinkedList.old
LinkedList.java

jre
java

...
proof

...

Table 3.1: Directory structure of project files. The src directory contains the Java
classes we want to specify and verify. The jre directory contains stub files, with
specifications of unrelated classes. The LinkedList.java file is the source file we
end up with after following this tutorial. The proof directory contains the completed
proofs.

The original source file of LinkedList.old was obtained from OpenJDK version
jdk8-b132. The original has been pre-processed: generic class parameters are re-
moved, and all methods and nested classes irrelevant to this tutorial are removed.
Both the removal of generics and the stub files in the jre folder were generated
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Max. rule applications 1000
Stop at Default
Proof splitting Delayed
Loop treatment Invariant
Block treatment Contract
Method treatment Contract
Dependency contract On
Query treatment Off
Expand local queries On
Arithmetic treatment Basic
Quantifier treatment No splits
Class axiom rule Off
Auto induction Off
User-defined taclets All off

JavaCard Off
Strings On
Assertions Safe
BigInt On
Initialization Disable static ...
Int Rules Java semantics
Integer Simpl. Rules Full
Join Generate Off
Model Fields Treat as axiom
More Seq. Rules On
Permissions Off
Program Rules Java
Reach On
Runtime Exceptions Ban
Sequences On
Well-def. Checks Off
Well-def. Operator L

Table 3.2: Proof search strategy and taclet options

automatically, using the Eclipse extensions for KeY. Repeating those steps is not
necessary here.

Throughout the next sections, we modify the original source file and add annotations
to formally specify its behavior, and helper methods for presenting intermediary
lemmas. The annotations are usual Java comments and thus ignored when the file is
read by a Java compiler. The helper methods introduce slight performance overhead
(of calling a method that performs no operations, and immediately returning from
it); it is clear that these do not change the original behavior of the program.

To produce proofs in KeY, the first step is to set up KeY’s proof strategy and
taclet options. This has to be done only once, as these taclet settings are stored
per computer user. Sometimes, KeY overwrites or corrupts these settings if differ-
ent versions are used. To ensure KeY starts in a fresh state, one can remove the
.key directory from the user’s home directory, and clean out preferences from the
.java/.userPrefs directory by deleting the de/uka/ilkd/key hierarchy contain-
ing prefs.xml files.1 Now start up KeY, and the example selection screen appears
(if not, selecting File ▷Load Example opens the same screen). Load any example,
to enter proof mode.

First, we set up a proof strategy: this ensures the steps as done in the videos can
be reproduced. On the left side of the window, change the settings in the Proof
Search Strategy tab to match those of the left column in Table 3.2. We ensure to
use particular taclet rules that correctly model Java’s integer overflow semantics.

1On Windows, the preferences are instead stored in the Windows Registry. Use
the regedit tool and clean out under HKEY_CURRENT_USER\Software\JavaSoft\Prefs or
HKEY_CURRENT_USER\Software\Wow6432Node\JavaSoft\Prefs the same hierarchy. On Mac OS,
open a terminal, change the directory to ~/Library/Preferences, and delete de.uka.ilkd.plist
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Select Options ▷Taclet Options, and configure the options as in the right column in
Table 3.2. The taclet options become effective after loading the next problem. We
do that now: the main proof file LinkedList.key can be loaded, and a Proof Man-
agement window opens up, showing a class hierarchy and its methods. A method is
not shown when no specifications are present. After giving the specifications below,
more methods can be selected in this window.

3.3 Structure and behavior of java.util.LinkedList
In this section we walk through part of the source code of Java’s linked list: see the
LinkedList.old file in the artifact. Throughout this tutorial, we add annotations
at the appropriate places. We finally obtain the LinkedList.java file.

Our LinkedList class has three attributes and a constructor (Listing 3.1): a size
field, which stores a cached number of elements in the list, and two fields that store a
reference to the first and last Node. The public constructor contains no statements:
thus it initializes size to zero, and first and last to null.

package java.util;

public class LinkedList {

transient int size = 0;
transient Node first;
transient Node last;

public LinkedList() {}

Listing 3.1: The LinkedList class fields and constructor (begin of file).

The linked list fields are declared transient and package private. The transient
flag is not relevant to our verification effort. The reason the fields are declared
package private seems to prevent generating accessor methods by the Java compiler.
However, in practice, the fields are treated as if they were private.

The Node class is defined as a private static nested class to represent the containers
of items stored in the list (Listing 3.2). A static nested private class behaves like a
top-level class, except that it is not visible outside the enclosing class. The nodes
are doubly linked, that is, each node is connected to its preceding node (through
field prev) and succeeding node (through field next). These fields contain null in
case no preceding or succeeding node exists. The data itself is contained in the item
field of a node.
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private static class Node{
Object item;
Node next;
Node prev;

Node(Node prev, Object element, Node next) {
this.item = element;
this.next = next;
this.prev = prev;

}
}

}

Listing 3.2: The Node nested class fields and constructor (end of file).

The method add for adding new elements to the list, takes one argument, the item
to add (Listing 3.3). According to Java informal documentation for the Collection,
this method is designed to always return true. The implementation immediately
calls linkLast.

// implements java.util.Collection.add
public boolean add(Object e) {

linkLast(e);
return true;

}

Listing 3.3: The method add.

The method remove for removing elements, also takes one argument, the item to
remove (Listing 3.4). If that item was present in the list, then its first occurrence is
removed and true is returned; otherwise, if the item was not present, then the list
is not changed and false is returned.

// implements java.util.Collection.remove
public boolean remove(Object o) {

if (o == null) {
for (Node x = first; x != null; x = x.next) {

if (x.item == null) {
unlink(x);
return true;

}
}

} else {
for (Node x = first; x != null; x = x.next) {

if (o.equals(x.item)) {
unlink(x);
return true;

}
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}
}
return false;

}

Listing 3.4: The method remove.

The presence of the item depends on whether the argument of the remove method
is null or not. If the argument is null, then it searches for the first occurrence of
a null item in the list. Otherwise, it uses the equals method, that every Object
in Java has, to determine the equality of the argument with respect to the contents
of the list. The first occurrence of an item that is considered equal by the argument
is then returned. In both cases, the execution walks over the linked list, from the
first node until it has reached the end. In the case that the node was found that
contains the first occurrence of the argument, an internal method is called: unlink,
and afterward true is returned.

Observe that the linked list is not modified if unlink is not called. Although not
immediately obvious, this requires that the equals method of every object cannot
modify our current linked list, for the duration of the call to remove. When the
remove method is called with an item that is not contained in the list, either loop
eventually exits, and false is returned.

The internal method linkLast changes the structure of the linked list (Listing 3.5).
After performing this method, a new node has been created, and the last field of
the linked list now points to it. To maintain structural integrity, also other fields
change: if the linked list was empty, the first field now points to the new, and
only, node. If the linked list was not empty, then the new last node is also reachable
via the former last node’s next field. It is always the case that all items of a linked
list are reachable through the first field, then following the next fields, and also
for the opposite direction.

void linkLast(Object e) {
final Node l = last;
final Node newNode = new Node(l, e, null);
last = newNode;
if (l == null) first = newNode;
else l.next = newNode;
size++;

}

Listing 3.5: The internal method linkLast.

The internal method unlink is among the most complex methods that alter the
structure of a linked list (Listing 3.6). The method is used only when the linked list
is not empty. Its argument is a node, necessarily one that belongs to the linked list.
We first store the fields of the node in local variables: the old item, and the next
and previous node references.
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Object unlink(Node x) {
final Object element = x.item;
final Node next = x.next;
final Node prev = x.prev;
if (prev == null) {first = next;}
else {

prev.next = next;
x.prev = null;

}
if (next == null) {last = prev;}
else {

next.prev = prev;
x.next = null;

}
x.item = null;
size−−;
return element;

}

Listing 3.6: The internal method unlink.

After the method returns, the argument fields are all cleared, presumably to help
the garbage collector. However, other fields also change: if the argument is the first
node, the first field is updated; if the argument is the last node, the last field
is updated. The predecessor or successor fields next and prev of other nodes are
changed to maintain the integrity of the linked list: the successor of the unlinked
node becomes the successor of its predecessor, and the predecessor of the unlinked
node becomes the predecessor of its successor.

3.3.1 Expected and unexpected method behavior

We draw pictures of linked list instances to understand better how the structure
looks like over time. In Figure 3.1, we see three linked list instances. The left-most
linked list is an object without any items: its size is zero. When we perform add
with some item (it is not important what item), a new node is created and the first
and last pointers are changed to point to the new node. Now the prev and next
fields of the new node are null, indicating that there is no other node before and
there is no other node after it. Also, the size field is increased by one. Adding
another item further creates another node, that is linked up to the previous node
properly; the last field is then pointed to the newly created node. In the third
instance, suppose we would perform remove with the first item. We would then
have to unlink the node, see the code of unlink in Listing 3.6: the new value of
first becomes the value of next which is the last node, and the value of prev of
the succeeding node becomes the value of prev of the node that is unlinked, which
is null. We thus end up in a similar situation as the second instance (except for the
item that may be different). Removing the last item brings us back to the situation
depicted by the first instance.
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null null
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Node
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Figure 3.1: Three example linked lists: empty, with a chain of one node, and with a
chain of two nodes. Items themselves are not shown.

An important aspect of the implementation of our linked list is the cached size
field: it represents the number of nodes that form a chain between first and last.
It turns out an overflow may happen under certain conditions [38]. Consider two
facts: Java integer primitives are stored in signed 32-bit registers, and it is possible
to create a chain that is larger than the maximum positive value that can be stored
in such fields, 231−1. Now, the cached size and the actual size no longer correspond.
In the methods we have seen above, this seems to be no issue. But another method
of the linked list may be used to demonstrate the key problem: toArray. The
intention of toArray is to give back an array containing all the items of the list (see
Listing 3.7). There are two problems: after the overflow has occurred and the size is
negative, the toArray throws an unexpected NegativeArraySizeException. Also,
after adding more items that bring the size back to a positive integer, e.g. adding
232 + 1 items in total, the array is of the wrong (positive) size and cannot contain
all items of the list, and an IndexOutOfBoundsException is thrown.

public Object[ ] toArray() {
Object[ ] result = new Object[size];
int i = 0;
for (Node x = first; x != null; x = x.next)

result[i++] = x.item;
return result;

}

Listing 3.7: The method toArray has unexpected behavior.

3.3.2 Integer overflow bug

The List interface is part of the collection framework. The method int size()
provided by class LinkedList, as shown in Listing 3.8.

/∗∗ Returns the number of elements in this list. ∗∗/
private int size() {

return size;
}

Listing 3.8: The size method.

Its (informal) specification states that it returns the number of elements in the list.
This method is further specified by the interface Collection, where additionally it is
stated that if the collection contains more than Integer.MAX_VALUE elements, then
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size() returns Integer.MAX_VALUE (Java integers are bounded). Adding an ele-
ment unconditionally increments the size, and thus can overflow, resulting in a neg-
ative size. This error breaks the contract of size() and propagates in various ways.
For example, sorting a linked list first copies the list to a new array Object[size] by
the method toArray, which thus may crash with a NegativeArraySizeException.
Further, many methods of the List interface use an integer index to refer to an
element. For very large lists with more than Integer.MAX_VALUE elements, it is
unclear what the behavior should be. This is perhaps not surprising: triggering
these bugs requires at least 231 elements (i.e., at least 64 GiB of memory), and each
element has 232 values; the state space is too large to explore for fully automated
analysis methods. Similarly, the smallest test cases that triggered the TimSort crash
consist of inputs of 226 (≈ 67 million) elements, and each element has 232 possible
values. Such cases are clearly out of range for fully automated methods, such as
model checking, which are typically based on finite abstractions of limited size.

As this case study involves real software, we have performed an analysis of existing
Java code to estimate the use of LinkedList and the potential impact of a bug. A
basic analysis of at least 140,000 classes,1 found by sampling Java packages on Maven
Central and in software distributions such as Red Hat Linux, reveals 1,677 cases of
direct use of the LinkedList class where a constructor of LinkedList is invoked.
As an overestimation of the potential reach of such instances, we find at least 37,000
usage call sites where some method of the Collection, List, or Queue interface
is called. It is infeasible for us to analyze for each constructor call site where its
resulting instance will be used. However, some usage of the LinkedList class occurs
in potentially security-sensitive contexts, such as the library for checking certificates
used by the Java secure socket implementation and checking the authenticity of the
source of dynamically loaded bytecode.

3.3.3 Verification goal

We thus revise the source code and add a method that implements an overflow check
(see Listing 3.9). The intention is that the overflow is signaled before it occurs, by
throwing an exception. This ensures that the integrity of the linked list is always
maintained. We modify the add method and perform a call to this checkSize()
method before invoking linkLast.

// new method, not in original LinkedList
private void checkSize() {

if (size == Integer.MAX_VALUE)
throw new IllegalStateException(...);

}

Listing 3.9: A new internal method checkSize.

Our aim in this tutorial is to keep the discussion general enough, without losing
interesting particular details. We apply step-wise refinements to our arguments,

1We have used the Rascal programming language [41] for loading .jar-files and analyzing
their class file contents that revealed method call sites. We thank Thomas Degueule for his help
in setting up this experiment.
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where we start with a higher-level intuition and drill down on technical details as
they become relevant. The reader can always see the video material; but, a high-level
intuition seems essential for following along.

Our specification and verification goals comprise two points:

1. Specification captures the ‘intended’ behavior of the methods with respect to
their structural properties: in particular, we abstract away from all properties
about the contents of the linked list.

2. Verification ensures the overflow bug no longer happens in the revised linked
list: the actual number of nodes and the cached size are always the same.

The first point depends on the aim of a verification attempt. Are we using the
specification to verify the correctness of clients of the linked list? The properties
of the contents of a linked list are essential. But, for our purpose of showing the
absence of an overflow bug, we abstract away some properties of the contents of
linked lists.

The second point deserves an introduction: how can we be sure that in every linked
list the number of nodes and the value stored in the size field are the same? Can we
keep the number of nodes bounded by what a Java integer can represent? Keeping
this number in a ghost field is not sufficient, since the number of nodes depends
on the success of a remove call: removing an item not present in the linked list
should not affect its size, while removing an item that is present decreases its size
by one. We refine: we could keep track of the items that are stored by the linked list.
The structure to collect these items cannot be a set of items, since we could have
duplicate items in the list. A multiset of items, the contents of a linked list, seems
right: the size field of the linked list must be the same as the size of its contents,
and the remove method is only successful if its argument is contained before the
call.

However, working with multisets is quite unnatural, as the remove method removes
the first item in the list. That can be refined by specifying the contents as a sequence
of items instead. Although this could work in principle, a major difficulty when ver-
ifying the remove method is to give an argument as to why the method terminates.
This requires knowledge of the linking structure of the nodes. We could relate the
sequence of items to a traversal over nodes, saying that the first item of a linked list
is found in the node by traversing first, and the item at index 0 < i < n is found
in the node by traversing first and then next for i − 1 times. Formalizing this
seems quite difficult, and as we shall see, not even possible in first-order logic.

Hence, we end up with our last refinement: we keep a sequence of nodes in a ghost
field. From this sequence, one obtains the sequence of items. We relate the sequence
of nodes to the linked list instance and require certain structural properties to hold
the nodes in the sequence. The length of this sequence is the actual number of
nodes, that we show to be equal to the cached size.
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3.4 Formulating a class invariant

We now formalize a class invariant, thereby characterizing all linked list instances.
We focus on unbounded linked lists first, as these are the structures we intend to
model: so most properties are expressed using KeY’s unbounded integer type \big-
int. Only at the latest, we restrict the size of each linked list to a maximum, as
a limitation imposed by the implementation. The setting in which to do our char-
acterization is multi-sorted first-order logic. This logic is presented in a simplified
form, leaving out irrelevant details (such as the heap): the full logic used by KeY is
described in Chapter 2 of [29].

Consider the following sorts or type symbols: LinkedList for a linked list, Node for a
node, Object for objects, and Null for null values. We have a type hierarchy, where
Null is related to LinkedList and Node, and LinkedList and Node are both related to
Object . This means that any object of sort Null is also an object of sort LinkedList
and Node. Moreover, every object that is a linked list is also of type Object , and
similar for nodes. We have the following signature: first : LinkedList → Node
and last : LinkedList → Node for the first and last fields of linked lists, and
prev : Node → Node, item : Node → Object , and next : Node → Node for the prev,
item and next fields of nodes. Further, we assume there is exactly one object of Null
sort, which is the null constant, for which the above functions are left undefined:
null is a valid object of the LinkedList and Node Java types, but one may not
access its fields.

We search for an axiomatization that characterizes linked list instances. One can
find these axioms by trial and error. We start listing some (obvious) axioms:

1. ∀xLinkedList ; (x ̸= null → (first(x) ̸= null ↔ last(x) ̸= null))
Every linked list instance either has both first and last set to null, or both
point to some (possibly different) node.

2. ∀xLinkedList ; (x ̸= null → (first(x) ̸= null → prev(first(x)) = null))
The predecessor of the first node of a linked list is set to null.

3. ∀xLinkedList ; (x ̸= null → (last(x) ̸= null → next(last(x)) = null))
The successor of the last node of a linked list is set to null.

4. ∀xNode ; (x ̸= null → (prev(x) ̸= null → next(prev(x)) = x))
Every node that has a predecessor, must be the successor of that predecessor.

5. ∀xNode ; (x ̸= null → (next(x) ̸= null → prev(next(x)) = x))
Every node that has a successor, must be the predecessor of that successor.

These axioms are not yet sufficient: consider a linked list, in which its first and last
nodes are different and both have neither a predecessor nor a successor. This linked
list should not occur: intuitively, we know that the nodes between first and last are
all connected and should form a doubly-linked ‘chain’. Moreover, for every linked
list, this chain is necessarily finite: one can traverse from first to last by following
the next reference a finite number of times. This leads to a logical difficulty.

Proposition 1. It is not possible to define the reachability of nodes of a linked list
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in first-order logic.

Proof 1. Let x be a linked list and y a node: there is no formula ϕ(x, y) that is
true if and only if next i(first(x)) = y for some integer i ≥ 0.1 Suppose towards
contradiction that there is such a formula ϕ(x, y). Now consider the infinite set
∆ of first-order formulas {ϕ(x, y)} ∪ {¬(next i(first(x)) = y) | 0 ≤ i}. Let Γ be
an arbitrary finite subset of ∆. Consider that there must exists some j such that
Γ ⊆ {ϕ(x, y)}∪{¬(next i(first(x)) = y) | 0 ≤ i < j}, so we can construct a linked list
with j nodes, and we interpret x as that linked list and y as the last node. Clearly
ϕ(x, y) is true as the last node is reachable, and all ¬(next i(first(x)) = y) is true
for all 0 ≤ i < j because j is not reachable within i steps from the first node. Since
Γ is arbitrary, we have established that all finite subsets of ∆ have a model. By
compactness, ∆ must have a model too. However, that is contradictory: no such
model for ∆ can exist, as neither ϕ(x, y) and next i(first(x)) ̸= y for all integers
0 ≤ i can all be true.

We extend our signature to include other sorts: sequences and integers. These sorts
are interpreted in the standard model. A schematic rule to capture integer induction
is included in KeY (see [29, Section 2.4.2]). Sequences (see [29, Chapter 5.2]) have a
non-negative integer length n and consist of an element at each position 0 ≤ i < n.
We write σ[i] to mean the ith element of sequence σ, and ℓ(σ) to mean its length
n.

Intuitively, each linked list consists of a sequence of nodes between its first and last
node. Let instanceofNode : Object be a built-in predicate that states that the object
is not null and of sort Node. A chain is a sequence σ such that:

(a) ∀iint; (0 ≤ i < ℓ(σ) → instanceofNode(σ[i]))
All its elements are nodes and not null

(b) ∀iint; (0 < i < ℓ(σ) → prev(σ[i]) = σ[i− 1])
The predecessor of the node at position i is the node at position i− 1

(c) ∀iint : (0 ≤ i < ℓ(σ)− 1 → next(σ[i]) = σ[i+ 1])
The successor of the node at position i is the node at position i+ 1

Let ϕ(σ) denote the above property that σ is a chain. If ℓ(σ) = 0 then ϕ(σ) is
vacuously true: the empty sequence is thus a chain. We now describe properties
ψ1(σ, x) and ψ2(σ, x) that relate a chain σ to a linked list x. These denote the
following intuitive properties: there is no first and last node and the chain is empty,
or the chain is not empty and the first and last node are the first and last elements
of the chain.

ψ1(σ, x) ≡ (ℓ(σ) = 0 ∧ first(x) = last(x) = null)

ψ2(σ, x) ≡ (ℓ(σ) > 0 ∧ first(x) = σ[0] ∧ last(x) = σ[ℓ(x)− 1])

6. ∀xLinkedList ; (x ̸= null → ∃σsig; (ϕ(σ) ∧ (ψ1(σ, x) ∨ ψ2(σ, x))))
Every linked list necessitates the existence of a chain of either property

1next i is not a function symbol in first-order logic but an abbreviation of a finite term built by
iteration of i times next , where next0(x) = x and next i(x) = next(next i−1(x)) for all i > 0.
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Further, we require that the size field of the linked list and the length of the chain
are the same: this property is essential to our verification goal. The size field is
modeled by the function size : LinkedList → int , and we require its value (1) to
equal the length of the chain, and (2) to be bounded by the maximum value stored
in a 32-bit integer. In formulating the above properties in JML, we skolemize the
existential quantifier using a ghost field: see Listing 3.10. This has the additional
benefit that we can easily refer to the chain ghost field in specifications.

/∗@ nullable @∗/ transient Node first;
/∗@ nullable @∗/ transient Node last;
//@ private ghost \seq nodeList;
/∗@ invariant

@ nodeList.length == size &&
@ nodeList.length <= Integer.MAX_VALUE &&
@ (\forall \bigint i; 0 <= i < nodeList.length;
@ nodeList[i] instanceof Node) &&
@ ((nodeList == \seq_empty && first == null && last == null)
@ || (nodeList != \seq_empty && first != null &&
@ first.prev == null && last != null &&
@ last.next == null && first == (Node)nodeList[0] &&
@ last == (Node)nodeList[nodeList.length−1])) &&
@ (\forall \bigint i; 0 < i < nodeList.length;
@ ((Node)nodeList[i]).prev == (Node)nodeList[i−1]) &&
@ (\forall \bigint i; 0 <= i < nodeList.length−1;
@ ((Node)nodeList[i]).next == (Node)nodeList[i+1]);
@∗/

Listing 3.10: The class invariant of LinkedList expressed in JML.

The class invariant is implicitly required to hold for the this object when invoking
methods on a linked list instance. In particular, for the constructor of the linked
list, the class invariant needs to be established after it returns. In Listing 3.11,
we state that the constructor always constructs a linked list instance for which its
chain is empty. The proof of correctness follows easily: at construct time, the fields
(including the ghost field) of the linked list instance are initialized with their default
values. This means the size is zero, and the first and last references are null, and
the ghost field is the empty sequence.

/∗@
@ public normal behavior
@ ensures nodeList == \seq_empty;
@∗/

public LinkedList() {}

Listing 3.11: The method contract of the constructor of LinkedList in JML.

For verifying the constructor above, see the video [42, 0:23–0:53], where the relevant
video material is between timestamps 0:23 and 0:53.
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3.5 The acyclicity property

An interesting consequence of the class invariant is the property that traversal of
only next fields is acyclic. In other words, following only next references of any node
that is present in a chain never reaches itself. The acyclicity property implies there
is a number of times to follow the next reference until the last node is reached. For
the last node, this number is zero (the last node is already reached). A symmetric
property holds for prev too.

We logically specify the acyclicity property as follows. Let σ be the chain of a non-
empty linked list x for which the class invariant holds. The following holds:

∀iint; (0 ≤ i < ℓ(σ)− 1 → ∀jint; (i < j < ℓ(σ) → σ[i] ̸= σ[j]))

Let n abbreviate ℓ(σ). By contradiction: assume there are two indices, 0 ≤ i <
j < n, such that the nodes σ[i] and σ[j] are equal. Then it must hold that for
all k such that j ≤ k < n, the node σ[k] is equal to the node σ[k − (j − i)]: by
induction on k. Base case: if k = j, then node σ[j] and node σ[j− (j− i)] are equal
by assumption, since σ[j − (j − i)] = σ[i]. Induction step: suppose node at σ[k] is
equal to the node at σ[k − (j − i)]. We must show if k + 1 < n then node σ[k + 1]
equals node σ[k+ 1− (j − i)]. This follows from the fact that σ[k+ 1] = next(σ[k])
and σ[k + 1 − (j − i)] = next(σ[k − (j − i)]) for k < n − 1, since σ is a chain and
the chain property (c) of last section. Now we have established, for all j ≤ k < n,
node σ[k] equals node σ[k − (j − i)]. In particular, this holds when k is n − 1, the
index of the last node: so we have σ[n− 1] = σ[n− 1− (j − i)]. Since the difference
(j − i) is positive, we know σ[n− 1− (j − i)] is not the last node. By the linked list
property 3 we have next(last(x)) = null and by ψ2(σ, x) we have last(x) = σ[n−1]:
so we have next(σ[n − 1]) = null. By the chain properties (c) and (a) we have
next(σ[n−1−(j−i)]) = σ[n−(j−i)] and instanceofNode(σ[n−(j−i)]), respectively.
From the latter we know σ[n− (j− i)] ̸= null. So we have next(σ[n−1− (j−1)]) ̸=
null. But this is a contradiction: if nodes σ[n− 1] and σ[n− 1− (j − i)] are equal
then their next fields must also have equal values, but next(σ[n − 1]) = null and
next(σ[n− 1− (j − i)]) ̸= null!

For verifying the lemma as formalized in Listing 3.12, see the video [43].

/∗@ public normal_behavior
@ requires true;
@ ensures (\forall \bigint i;
@ 0 <= i < (\bigint)nodeList.length − (\bigint)1;
@ (\forall \bigint j; i < j < nodeList.length; nodeList[i] != nodeList[j]));
@∗/

private /∗@ strictly_pure @∗/ void lemma_acyclic() {}

Listing 3.12: The method of a lemma added to LinkedList expressed in JML.

3.6 The add method

Due to the revision of the source code, the add method now calls checkSize first
(see Listing 3.9) to ensure that the size field does not overflow when we add another
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item. This means that the add method has two expected behaviors: the normal
behavior when the length of the linked list is not yet at its maximum, and the
exceptional behavior when the length of the linked list is at its maximum.

In the normal case, we expect the add method to add the given argument as an
item to the linked list. Thus the sequence of nodes must become larger. We further
specify the position where the item is added: at the end of the list. If add returns
normally, it returns true. In the exceptional case, we expect that an exception is
thrown. We formalize the contract for add in Listing 3.13.
/∗@ private normal_behavior

@ requires nodeList.length + (\bigint)1 <= Integer.MAX_VALUE;
@ ensures
@ nodeList == \seq_concat(\old(nodeList),
@ \seq_singleton(nodeList[nodeList.length−1])) &&
@ ((Node)nodeList[nodeList.length−1]).item == e && \result;
@private exceptional_behavior
@ requires nodeList.length == Integer.MAX_VALUE;
@ signals_only IllegalStateException;
@ signals (IllegalStateException e) true;
@∗/

public boolean add(/∗@ nullable @∗/ Object e) {
checkSize(); // new
linkLast(e);
return true;

}

Listing 3.13: The add method with its method contract expressed in JML.

Since the add method calls the deeper methods checkSize and linkLast, we may
employ their method contracts when verifying this method. So, before we verify
add, we specify and verify these methods first.

We expect checkSize to throw an exception if the length of the linked list is too
large to add another element, and it returns normally otherwise: see Listing 3.14
for its specification. Verification of checkSize in both normal and exceptional cases
is done automatically by KeY, as can be seen in [42, 0:54–1:24].
/∗@ private exceptional_behavior

@ requires nodeList.length == Integer.MAX_VALUE;
@ signals_only IllegalStateException;
@ signals (IllegalStateException e) true;
@ private normal_behavior
@ requires nodeList.length != Integer.MAX_VALUE;
@ ensures true;
@∗/

Listing 3.14: The method contract in JML of the checkSize method.

For the linkLast method, we assume that the length of the linked list is smaller than
its maximum length, so we can safely add another node without causing an overflow
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of the size field. When adding a new node, the resulting chain now is an extension
of the previous chain, and additionally the class invariant holds afterwards—this is
an implicit post-condition. Since we modify the chain, we need a set annotation
that changes the ghost field.

/∗@
@ normal_behavior
@ requires nodeList.length + (\bigint)1 <= Integer.MAX_VALUE;
@ ensures nodeList == \seq_concat(\old(nodeList),
@ \seq_singleton(nodeList[nodeList.length−1])) &&
@ ((Node)nodeList[nodeList.length−1]).item == e;
@∗/

void linkLast(/∗@ nullable @∗/ Object e) {
final Node l = last;
final Node newNode = new Node(l, e, null);
last = newNode;
if (l == null) first = newNode;
else l.next = newNode;
size++;
//@ set nodeList = \seq_concat(nodeList,\seq_singleton(last));

}

Listing 3.15: The linkLast method with its method contract expressed in JML.

The verification of this method is no longer fully automatic, see [42, 1:25–6:52].

Observe that there are two different situations we have to deal with: either the
linked list was empty, or it was not. If the linked list was empty, then last is null,
and we not only set the last field but also the first. Otherwise, if the linked list
was not empty, we update the former last node to set its next field. The challenge
is to prove that the class invariant holds after these heap updates, knowing that the
class invariant holds in the before heap. The main insight is that the creation of a
new node does not alias with any of the existing nodes, and that the modification of
the next field only affects the old last node. Intuitively, we have a proof situation
with two heaps as depicted in Figure 3.2.

The properties (b) on page 33, that fixes prev fields to point to the previous node in
the sequence, and (c), that fixes next fields to point to the next node in the sequence,
of the chain are the remaining goals in [42, 3:58]. Proving (b) is straightforward if
one makes a distinction between the old nodes and the new node. Proving (c) in the
‘heap after’ involves two cases: either the index is between 0 and less than ℓ(σ)− 2,
or it used to be the last node and now has index ℓ(σ) − 2. In the former case, the
heap update has no effect, as we can show that these nodes are separate from the
old last node because they differ in the old value of the next field. In the latter case,
the heap update can be used to prove the property directly.

Finally, we can verify the add method: see [42, 6:58] for the normal behavior case,
and [42, 8:09] for the exceptional behavior case.
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Figure 3.2: The heap before (Hb) consists of an arbitrary chain of nodes. In the heap
after (Ha) the dashed lines show which objects are identical to the heap before. The
old last node at σ[ℓ(σ) − 1] has a different value for its next field in the heap after:
this must be the result of a heap update. The new last node is not created in the heap
before: indeed, it is the result of creating a new node.

3.7 The remove method

The remove method takes as an argument an object; it searches the linked list for
the first node which contains the argument as an item. If found, it unlinks the node
from the linked list. Using this intuition, we specify the remove method contract.
Like with the add method, there is a deeper method that is called, unlink, which
we have to specify and verify first.

An immediate difficulty in specifying the remove method contract is that its intended
behavior depends on the behavior of the Object.equals method. Namely, the
informal Java documentation states that the first element occurrence in the list
that is ‘equal to’ the argument must be removed. Equality can be user-defined
by overriding the equals method! We solve this difficulty by assuming a method
contract for the equality method, see Listing 3.16.

/∗@ public normal_behavior
@ requires true;
@ ensures \result == self.equals(param0);
@∗/

public /∗@ helper strictly_pure @∗/
boolean equals(/∗@ nullable @∗/ Object param0);

Listing 3.16: The equals stub method with its method contract expressed in JML.

We declare the equality method to be strictly pure, which implies that it must be a
side-effect-free and terminating method (see [29, Section 7.3.5]). Each strictly pure
method is also directly accessible as an observer symbol (a function symbol) that
can be used in specifications (see [29, Section 8.1.2]). However, no obvious relation
between the possibly overridden equality method and its observer symbol is present.
The intention of the contract given in Listing 3.16 is to relate the outcome of the
method call of equals to the observer symbol equals , and this furthermore requires
that the implementation is deterministic.

The ramifications of adding this assumed contract are not clear. We note that there
are Java classes for which equality is not terminating under certain circumstances.
Even LinkedList itself does not have terminating equality, where two linked lists
that contain each other may lead to a StackOverflowError when testing their
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equality. This example is described in the Javadoc [44] of the linked list: “Some
collection operations which perform recursive traversal of the collection may fail with
an exception for self-referential instances where the collection directly or indirectly
contains itself.” Another approach is to specify the outcome of equality as referential
equality only, e.g. see [10, Section 4.4].

Now we can specify the behavior of remove. It can be seen as consisting of two cases:
either its result is true and it has removed the first item equal to its argument from
the list, or its result is false and the argument was not found and thus not removed.
In the first case, the number of elements decreases by one. In the second case, the
number of elements in the linked list remains unchanged. See Listing 3.17.

/∗@
@ public normal_behavior
@ requires true;
@ ensures \result == false ==>
@ (\forall \bigint i; 0 <= i < \old(nodeList.length);
@ (o==null ==> \old(((Node)nodeList[i]).item) != null) &&
@ (o!=null ==> !\old(o.equals(((Node)nodeList[i]).item)))) &&
@ nodeList == \old(nodeList);
@ ensures \result == true ==>
@ (\exists \bigint j; 0 <= j < \old(nodeList.length);
@ (\forall \bigint i; 0 <= i < j;
@ (o==null ==> \old(((Node)nodeList[i]).item) != null) &&
@ (o!=null ==> !\old(o.equals(((Node)nodeList[i]).item)))) &&
@ nodeList == \seq_concat(\old(nodeList)[0..j],
@ \old(nodeList)[j+1..\old(nodeList.length)]) &&
@ (o==null ==> \old(((Node)nodeList[j]).item) == null) &&
@ (o!=null ==> \old(o.equals(((Node)nodeList[j]).item))));
@∗/

Listing 3.17: The remove method contract expressed in JML.

It is important to note that we make use of JML’s \old operator to refer to the
equality observer symbol in the old heap. Using equality in the new heap is a
different observation, and it should not be possible to verify the remove method in
this case. To see why, consider two linked list instances x and y: we add x to itself,
and to y we add x and then y. Now we perform the remove operation on y with y
as argument. Clearly, x and y are not equal, because they have a different length.
But the second item is y itself, and y equals y, so it is removed: see Figure 3.3. In
the resulting heap, both x and y contain x as the only item: thus, x and y are equal.
If we would observe equality in the new heap, then the implementation is incorrect:
the item to remove should not be the second but the first!

Before we can verify the remove method, we must specify and verify its deeper
method: unlink. Within the method of unlink, we have to update the chain ghost
field as well, to remove a node from the sequence, so we add a set annotation to the
method body. Additionally, we make use of the lemma lemma_acyclic by calling
it as the first statement of the method. See Listing 3.18. This method call is also
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Figure 3.3: The situation (Hb) before remove is invoked on y with argument y, and
after (Ha). The result of this operation is that y’s second node n3 is unlinked, hence
the first node n2 becomes the last node and its next pointer is cleared: now x and y
are equal because they have the same length, and they have the same item, namely x.

not present in the original definition for unlink, but we already argued that it does
not affect behavior.

/∗@ normal_behavior
@ requires nodeList != \seq_empty &&
@ 0 <= nodeIndex < nodeList.length &&
@ (Node)nodeList[nodeIndex] == x;
@ ensures \result == \old(x.item) &&
@ nodeList == \seq_concat(\old(nodeList)[0..nodeIndex],
@ \old(nodeList)[nodeIndex+1..\old(nodeList).length]) &&
@ nodeIndex == \old(nodeIndex);
@∗/

/∗@ nullable @∗/ Object unlink(Node x) {
lemma_acyclic(); // new
//@ set nodeList = \seq_concat(\dl_seqSub(nodeList,0,nodeIndex),

\dl_seqSub(nodeList,nodeIndex+1,\dl_seqLen(nodeList)));
// rest of method body
...

Listing 3.18: The first part of method unlink and its method contract. Note that
the @set annotation must not contain a new line, but kept on a single line: otherwise
KeY 2.6.3 cannot load the source file. Here, /*@ @*/ does not work.

An interesting aspect of the specification of unlink is its use of a ghost parameter.
Although KeY does not directly support ghost parameters, we can work around that
by adding the parameter as a ghost field to our class:

//@ private ghost \bigint nodeIndex;

Its value is left undefined for most of the lifetime of the linked list until we are about
to invoke unlink. In particular, the ghost parameter contains the index of the node
argument, thereby requiring that the node object passed in is part of the chain. In
the following discussion, let I be the node index ghost parameter and σ the chain
of the linked list: then σ[I] is assumed to be the node argument of the method
unlink.

The verification of the unlink method is not fully automatic, see the five videos
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[45, 46, 47, 48, 49].

Verifying unlink consists of four main cases: these correspond to the possible branches
of the two if-statements (see Listing 3.6). The challenge again is to reestablish the
class invariant in the heap after the method completes. The main insight is that, by
the acyclicity property, all the nodes are separate: this allows us to distinguish the
heap updates to apply only to the node that is actually affected while leaving the
other nodes equal to the situation in the heap before. The three important cases
are depicted in Figure 3.4, Figure 3.5, Figure 3.6 (compare with Figure 3.2).

1. Suppose the test of both if-statements evaluate to true: for node x, it holds
that next(x) = null and prev(x) = null. Then we know the list consists of
exactly one node, as the node we are unlinking is the first and the last node.
So I cannot be larger than 0. In the case the node index is zero, the class
invariant is proven automatically [45, 7:25].
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Figure 3.4: The heap before (Hb) consists of a chain σ with ℓ(σ) ≥ 2. The dashed
lines show which objects are identical in the heaps. Interpreting σ[I] in the new heap
gives σ[I + 1] in the old heap, as I does not change. The first field of the linked list
has changed (not shown), and the second node in the old heap now has null as prev.
Moreover, the next and prev fields of the unlinked node have been set to null (not
shown).

2. Suppose the test of the first if-statement evaluates to true, but the test of the
second if-statement evaluates to false: for node x, it holds that next(x) ̸= null

and prev(x) = null. We thus know that the list consists of at least two nodes,
and it is the first node we are unlinking. Thus, I cannot be larger than 0. If the
node index is zero, the class invariant is not proven automatically [46, 2:40],
but we have two open goals corresponding to the chain properties (b) and (c),
cf. proof of linkLast. Our situation is different now, see Figure 3.4. Here our
insight applies: because of acyclicity, we know all nodes are different. Thus, an
update of σ[I]’s fields does not affect the other nodes. When proving (c) this
is sufficient as no next field of nodes in the new chain is changed compared to
the old heap [46, 10:14-15:28]. When proving (b), we furthermore make a case
distinction between the new first node and the other nodes: the former follows
from the heap update, the latter from the old invariant [46, 3:27-10:13].

3. Suppose the test of the first if-statement evaluates to false, and the test of the
second to true: for node x, it holds that next(x) = null and prev(x) ̸= null.
This means that the list consists of at least two nodes, and it is the last node
we are unlinking. The proof is similar to the previous case: see Figure 3.5 and
[47].
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Figure 3.5: The heap before (Hb) consists of a chain σ with ℓ(σ) ≥ 2. The dashed
lines show which objects are identical in the heaps. Interpreting σ[I] in the new heap
is invalid, as I = ℓ(σ) in the new heap. The last field of the linked list has changed
(not shown), and the before last node in the old heap now has null as next field.

4. Suppose both tests of if-statements evaluate to false: for node x, it holds that
next(x) ̸= null and prev(x) ̸= null. This implies that the list consists of at
least three nodes: where x is some ‘interior’ node. This part of the proof is
the largest, as it involves many case distinctions. Up to the point where the
class invariant is established in the heap after goes as before, except for (b)
and (c). Keep in mind the situation as depicted in Figure 3.6, and see [48, 49].
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Figure 3.6: The situation (Hb) consists of a chain σ with ℓ(σ) ≥ 3. The index I
remains unchanged in the heaps, thus σ[I] in the heap after is equal to σ[I +1] in the
heap before. The following fields are updated in the new heap: the next field of the
node at σ[I − 1] in the old heap becomes the node at σ[I + 1] in the old heap, and
the prev field of the node at σ[I + 1] in the old heap becomes the node at σ[I − 1] in
the old heap. In the new heap, these two nodes are present in succession in the chain,
thus satisfying the chain properties (b) and (c).

We distinguish the two cases:

(b) Establishing the prev field property of the chain involves the following
observation: there are three cases. First case, for all nodes at an index
0 ≤ i < I in the old heap, we know they are identical to the nodes at the
same index in the new heap. We know the heap is updated to assign the
prev field of σ[I+1] in the old heap, and by acyclicity we know this node
is separate from the nodes all before σ[I] in the old heap. Second case,
σ[I] interpreted in the new heap is identical to σ[I + 1] in the old heap,
and precisely for this node the prev field was updated to become σ[I−1]
in the old heap (which is σ[I] in the new heap). Third and last case, for
all nodes at an index I + 1 < i < ℓ(σ) in the old heap, we know they are
identical to the nodes at σ[i − 1] in the new heap. Again, by acyclicity,
we know that the node σ[I+1] in the old heap is separate from the nodes
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with a higher index, so we know their prev field cannot be affected by
the update.

(c) Establishing the next fields property of the chain is very similar but with
the index offset by one. Observe that the next field of σ[I − 1] in the old
heap is updated to σ[I + 1] in the old heap. Thus the three cases are:
first, for the nodes with index 0 ≤ i < I − 1 in the old heap, second, for
the node σ[I − 1] in the old heap, and third, for the nodes with index
I < i < ℓ(σ) in the old heap.

Now that we have established that unlink removes a node from the chain while
maintaining the class invariant, we can return to the verification of the remove
method. The remove method iterates over the linked list until it has obtained a
node to remove. However, the termination of this iteration is not obvious. More-
over, before invoking the unlink method, we need to specify the value of its ghost
parameter: the index corresponding to the node. So, before we can verify the remove
method, we add three kinds of annotations to its source: a ghost variable for main-
taining the current index, a loop invariant that establishes termination and main-
tains the class invariant, and a set annotation before invoking the unlink method
(see Listing 3.19).

public boolean remove(/∗@ nullable @∗/ Object o) {
//@ ghost \bigint index = −1;
if (o == null) {

/∗@ maintaining 0 <= (index + 1) &&
@ (index + 1) <= nodeList.length;
@ maintaining (\forall \bigint i; 0 <= i < (index + 1);
@ ((Node)nodeList[i]).item != null);
@ maintaining (index + 1) < nodeList.length ==>
@ x == nodeList[index + 1];
@ maintaining
@ (index + 1) == nodeList.length <==> x == null;
@ decreasing nodeList.length − (index + 1);
@ assignable \strictly_nothing; ∗/

for (Node x = first; x != null; x = x.next) {
//@ set index = index + 1;
if (x.item == null) {

//@ set nodeIndex = index;
unlink(x);
return true;

} }
} else {

/∗@ maintaining 0 <= (index + 1) &&
@ (index + 1) <= nodeList.length;
@ maintaining (\forall \bigint i; 0 <= i < (index + 1);
@ !o.equals(((Node)nodeList[i]).item));
@ maintaining (index + 1) < nodeList.length ==>
@ x == nodeList[index + 1];
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@ maintaining
@ (index + 1) == nodeList.length <==> x == null;
@ decreasing nodeList.length − (index + 1);
@ assignable \strictly_nothing; ∗/

for (Node x = first; x != null; x = x.next) {
//@ set index = index + 1;
if (o.equals(x.item)) {

//@ set nodeIndex = index;
unlink(x);
return true;

} } }
return false;

}

Listing 3.19: The JML annotations of method remove. We use a slightly unnatural
initial value for the index ghost variable since the KeY 2.6.3 parser does not recognize
the @set annotation if it appears after the if-statement.

The verification of the above method is not fully automatic, see [50, 51]. The proof
consists of two parts, corresponding to the branches of the if-statement. In the proof,
one shows (among other properties) that the loop invariant holds initially, after
each iteration, and at the end of the loop. It is important to note that (index + 1)
is equal to the length of the chain precisely when the end of the loop has been
reached. This holds since we use the next field to traverse the chain, and only the
last node has a null successor. Moreover, the distance to the last node decreases
each iteration, and this distance is bounded from below by zero: thus the loop must
terminate. Moreover, the loop is strictly pure, as it never modifies the heap in any
of its completed iterations. The exceptional case is the last iteration in which the
remove method returns early. Due to the early return, the loop invariant no longer
needs to be shown (and so also not its heap purity). For reasons of limited space,
further examination of its proof is left as a challenge to the reader.

3.8 Summary

In the chapter, we have shown the verification of two essential methods of Java’s
LinkedList class: add and remove. The original implementation contains an over-
flow bug (see Section 3.3.2), and we have looked at a revised version that imposes a
maximum length of the list. Furthermore, we have set out to verify that the overflow
bug indeed no longer occurs. Towards this end, we have formally specified a class
invariant and method contracts, with two goals: establishing the absence of the
overflow bug and capturing the ‘essential’ behavior of the methods with respect to
the structural properties of the linked list. All methods have been formally verified
[39] using the KeY theorem prover, and video material shows on [40].

This chapter aims to provide a comprehensive guide on using KeY and JML for the
specification and verification of selected portions of Java libraries. We did a lot of
work on recording the video materials, aiming to cater to both the beginning user,
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the expert user, and the developer of KeY as a ‘benchmark’ for specification and
(automatic) verification techniques.
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Chapter 4

History-based reasoning about
interfaces

Programming to interfaces is one of the core principles in object-oriented program-
ming. However, current practical static analysis tools, including model checkers
and theorem provers such as KeY, are primarily state-based. Since interfaces do
not expose a state or concrete representation, a major question is how to support
interfaces.

In this chapter, we discuss reasoning about the correctness of Java interfaces us-
ing histories, with a particular application to Java’s Collection interface. Histories,
defined as sequences of method calls and returns, offer a novel approach to speci-
fying state-hiding interfaces. We outline the challenges of proving client code cor-
rect with respect to arbitrary implementations with histories. To specify interface
method contract using histories, we present two approaches: the executable history-
based approach, which models histories as an ordinary Java class, and the logical
history-based approach, which models histories as an external abstract data type
with functions.

This chapter is based on the following publications:

• Bian, J., Hiep, H. A., de Boer, F. S., de Gouw, S. (2023). Integrating ADTs in KeY and
their application to history-based reasoning about collection. Formal Methods in System
Design, 1-27.

• Hiep, H. A., Bian, J., de Boer, F. S., de Gouw, S. (2020). History-based specification and
verification of Java collections in KeY. In Integrated Formal Methods: 16th International
Conference, IFM 2020, Lugano, Switzerland, November 16–20, 2020, Proceedings 16 (pp.
199-217). Springer International Publishing.
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4.1 Introduction

The importance and potential of formal software verification as a means of rigorously
validating state-of-the-art, real software and improving it, is convincingly illustrated
by its application to LinkedList implementation within the Java Collection Frame-
work. In the previous chapter, we focused on the specification and verification of
the add and remove methods. A fixed version of the core methods of the linked list
implementation in Java has also been formally proven correct using KeY [5].

However, some of the methods of the linked list implementation contain an in-
terface type as a parameter and were out of the scope of the work in [5]. For
example, we could take the retainAll method. Verification of LinkedList’s imple-
mentation of retainAll requires the verification of the inherited retainAll method
from AbstractCollection. The implementation in AbstractCollection (see List-
ing 4.1) shows a difficult method to verify: the method body implements an interface
method, acts as a client of the supplied Collection instance by calling contains,
but it also acts as a client of the this instance by calling iterator. Moreover,
as AbstractCollection is an abstract class and does not provide a concrete im-
plementation of the interface, implementing iterator is left to a subclass such as
LinkedList. Thus arises the need for an approach to specify interfaces that allows
us to verify its (abstract) implementations and its clients.

public boolean retainAll(Collection c) {
boolean modified = false;
Iterator it = iterator();
while (it.hasNext()) {

if ( ! c.contains(it.next())) {
it.remove();
modified = true;

}
}
return modified;

}

Listing 4.1: A difficult method to verify: retainAll in AbstractCollection.

More generally, libraries form the basis of the “programming to interfaces” discipline,
which is one of the most important principles in software engineering. Interfaces
abstract from state and other internal implementation details, and aid modular pro-
gram development. However, tool-supported programming logic and specification
languages are predominantly state-based which as such cannot be directly used for
interfaces. For example, JML is inherently state-based. JML mainly provides sup-
port for the specification of classes in terms of their fields, including so-called model
fields that represent certain aspects of the data structure underlying the implemen-
tation.

The main contribution of this chapter is to show the feasibility of an approach that
overcomes state-based limitations, by integrating history-based reasoning with ex-
isting specification and verification methods. The approach detailed in [12] comes
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closest to our desired goal: it supports data and integrates with JML. The specifica-
tion language is based on attribute grammars. Call or return events are represented
as grammar terminals with attributes that store e.g. the actual parameters. To
specify properties of sequences of such events, the user first introduces attributes of
non-terminals (where each grammar production is annotated with code that com-
putes the value of the attribute) and then uses assertions over this attribute to
specify properties. The original program is instrumented with calls to update the
history at the beginning and end of a method. The new values of the attributes are
determined by parsing the new history in the grammar.

The formal semantic justification of our approach is provided by the fully abstract
semantics for Java introduced in [22]. This semantic framework precisely isolates
the essential elements of a Java class method that are visible during external use.
Such essential elements are captured as histories of method calls and returns. These
histories not only serve as a full representation of an implementation’s concrete state
but also define a universal abstract state for any given interface. Our methodology
is based on a symbolic representation of histories. Such representation allows the
expression of relations between different method calls and their parameters and
return values, by implementing abstractions over histories, called attributes. These
abstractions are specified using JML.

The background of our approach is given in Sect. 4.2. An important use case, which
leads us to formal requirements on interface specifications, is to reason about the
correctness of clients, viz. programs that use instances of an interface by calling
methods on it. In Sect. 4.3 we analyze concrete examples that motivate the design
choices that lead us to the core of our approach: we associate to each instance of an
interface a history that represents the sequence of method calls performed on the
object since its creation. For each method call, the parameters and return value are
recorded symbolically in the history. This crucially allows us to define abstractions
over histories, called attributes, used to describe all possible behaviors of objects
regardless of their implementation. Our methodology for embedding histories and
attributes into the KeY theorem prover is described in Sect. 7.3.1. We explore two
approaches: either encoding histories and attributes as Java objects or encoding
them as abstract data types. We discuss these two approaches and compare their
respective strengths and weaknesses across several aspects in the last section.

4.2 Background

At the lowest level of abstraction, a history is a sequence of events. So the question
arises: what events does it contain, and how are the events related to a given pro-
gram? To concretize this, we first note that in our setting we focus on histories for
single-threaded object-oriented programs and classes and interfaces of Java libraries
in particular. For such programs, there are two main kinds of histories: (a) a single
global history for the entire program, and (b) a local history per object. The first
kind, a global history, does not result in a modular specification and verification ap-
proach: such a history is specific to a particular program and thus cannot be reused
in other programs, since as soon as other objects or classes are added this affects the
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global history. A global history is therefore not suitable for specifying and verifying
Java libraries, since libraries are reused in many different client programs. Hence, in
our setting, we tend towards using a local history for each object separately.1

Following the concept of information hiding, we assume that an object encapsulates
its own state, i.e. other objects cannot directly access its fields, but only indirectly
by calling methods. This is not a severe limitation: one can introduce getter and
setter methods rather than reading and writing a field directly. But this assumption
is crucial to enable any kind of (sound) reasoning about objects: if objects do not
encapsulate their own state, any other object that has a reference to it can simply
modify the values of the fields directly in a malicious fashion where the new internal
state breaks the class invariant of the object without the object being able to prevent
(or even being aware of) this. Roughly speaking, a class invariant is a property
that all objects of the class must satisfy before and after every method call. Class
invariants typically express the consistency properties of the object. For example,
an instance of ArrayList has a size field that is supposed to represent the number
of items in the list. A simple class invariant is size ≥ 0. If the ArrayList does not
encapsulate the size field, the following can happen:

ArrayList ℓ = new ArrayList();
ℓ.size = −1; // size becomes negative!

Without encapsulation, the list cannot enforce its own class invariant that its size is
non-negative! This causes many issues. For example, the list exposes an add method
which executes elementData[size++] = e; so calling add on the above list causes
a crash because it accesses an array at −1, a negative index!

Assuming encapsulation, each object has full control over its own internal state, it
can enforce invariants over its own fields and its state can be completely determined
by the sequence of method calls invoked on the object. How an object realizes the
intended behavior of each method may differ per implementation: to a client of
the object, the internal method body is of no concern, including any calls to other
objects that may be done in the method body. We name the calls that an object
invokes on other objects inside a method outgoing calls (their direction is out of the
object, into another object), and we name the calls made to the object on methods
it exposes incoming calls. The above discussion makes clear that the semantics
of an object-oriented program can be described purely in terms of its behavior on
incoming method calls. Indeed, formally, this is confirmed by Jeffrey and Rathke’s
work [22] which presents a fully abstract semantics for Java based on traces.

4.3 Specification and verification challenges for the
Collection interface

In this section, we highlight several specification and verification challenges with
histories that occur in real-world programs. We guide our discussion with exam-
ples based on Collection, the central interface of the Java Collection Framework.

1A more sophisticated approach will be introduced for inner classes (see Section 4.3).
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However, note that our approach, and methodology in general, can be applied to all
interfaces, as our discussion can be generalized from Collection.

A collection contains elements of type Object and can be manipulated independently
of its implementation details. Typical manipulations are adding and removing ele-
ments, and checking whether they contain an element. Sub-interfaces of Collection
may have refined behavior. In the case of interface List, each element is also associ-
ated with a unique position. In the case of interface Set, every element is contained
at most once. Further, collections are extensible: interfaces can also be implemented
by programs outside of the Java Collection Framework.

How do we specify and verify interface methods using histories?

We focus our discussion on the core methods add, remove, contains, and iterator
of the Collection interface. These four methods comprise the events of our history.
More precisely, we have at least the following events:

• add(o) = b,

• remove(o) = b,

• contains(o) = b,

• iterator() = i,

where o is an element, b is a Boolean return value indicating the success of the
method, and i is an object implementing Iterator. Abstracting from the imple-
mentations of these methods we can still compute the contents of a collection from
the history of its add and remove events; the other events do not change the con-
tents. This computation results in a representation of the contents of a collection
by a multiset of objects. For each object, its multiplicity then equals the number
of successful add events minus the number of successful remove events. Thus, the
content of a collection (represented by a multiset) is an attribute.

For example, for two separate elements o and o′,
add(o) = true, add(o′) = true, add(o′) = false, remove(o′) = true

is a history of some collection (where the left-most event happens first). The mul-
tiplicity of o in the multiset attribute of this history is 1 (there is one successful
add event), and the multiplicity of o′ is 0 (there is one successful add event and one
successful remove event).

The main idea is to associate each instance with its own history. Consequently, we
can use the multiset attribute in method contracts. For example, we can state that
the add method ensures that after returning true the multiplicity of its argument
is increased by one, that the contains method returns true when the argument
is contained (i.e. its multiplicity is positive), and that the remove method ensures
that the multiplicity of a contained object is decreased by one.

How can we specify and verify client-side properties of interfaces?

Consider the client program in Listing 4.2, where x is a Collection and y is an
Object. To specify the behavior of this program fragment, we could now use the
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multiset attribute to express that the content of the Collection instance x is not
affected.

if (x.add(y)) x.remove(y);

Listing 4.2: Adding and removing an element does not affect contents.

Another example of this challenge is shown in Listing 4.3: can we prove the termi-
nation of a client? For an arbitrary collection, it is possible to obtain an object that
can traverse the collection: this is an instance of the Iterator interface containing
the core methods hasNext and next. To check whether the traversal is still ongoing,
we use hasNext. Subsequently, a call to next returns an object that is an element
of the backing collection and continues the traversal. Finally, if all objects of the
collection are traversed, hasNext returns false.

Iterator it = x.iterator();
while (it.hasNext()) it.next();

Listing 4.3: Iterating over the collection.

How do we deal with intertwined object behaviors?

Since an iterator by its very nature directly accesses the internal representation of
the collection it was obtained from,1 the behavior of the collection and its iterator(s)
are intertwined: to specify and reason about collections with iterators a notion of
ownership is needed. The behavior of the iterator itself depends on the collection
from which it was created.

How do we deal with non-local behavior in a modular fashion?

Consider the example in Listing 4.4, where the collection x is assumed non-empty.
We obtain an iterator and its call to next succeeds (because x is non-empty). Con-
sequently, we perform the calls as in Listing 4.2: this leaves the collection with the
same elements as before the calls to add and remove. However, the iterator may
become invalidated by a call that modifies the collection; then the iterator it is
no longer valid, and we should not call any methods on it—doing so throws an
exception.

Iterator it = x.iterator(); it.next();
if (x.add(y)) x.remove(y); // may invalidate iterator it

Listing 4.4: Invalidating an iterator by modifying the owning collection.

Invalidation of an iterator is the result of non-local behavior: the expected behavior
of the iterator depends on the methods called on its owning collection and also all
other iterators associated with the same collection. The latter is true since the
Iterator interface also has a remove method (to allow the in-place removal of an
element) which should invalidate all other iterators. Moreover, a successful method

1To iterate over the content of a collection, iterators are typically implemented as so-called
inner classes that have direct access to the fields of the enclosing object.
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call to add or remove (or any mutating method) on the collection invalidates all its
iterators.

We can resolve both phenomena by generalizing the above notion of a history, strictly
local to a single object, without introducing interference. We take the iterator to
be a ‘subobject’ of a collection: the methods invoked on the iterator are recorded
in the history of its owning collection. More precisely, we also have the following
events recorded in the history of Collection:

• hasNext(i) = b,

• next(i) = o,

• remove(i),

where b is a Boolean return value indicating the success of the method, and i is
an iterator object. Now, not only can we express what the content of a collection
is at the moment the iterator is created and its methods are called, but we can
also define the validity of an iterator as an attribute of the history of the owning
collection.

This does warrant a short discussion about the consistency of a history: not all
histories are consistent. By consistency, we mean there exists a client and a correct
implementation that can produce the history. To see why, consider the program
where an iterator invalidates some other iterator, in Listing 4.5.

static void example(Collection x) { // assume non−empty x
Iterator it = x.iterator();
Iterator jt = x.iterator();
it.next();
it.remove(); // invalidates jt
jt.next(); // should throw exception

}

Listing 4.5: Invalidating an iterator by another iterator.

Suppose the history for collection x is consistent and we record the method invo-
cations that return normally. The last next method on jt is not recorded in the
history. Thus, there are sequences of events that are never produced by any client,
because somewhere in the middle of those sequences an exception is thrown. A his-
tory is consistent if none of the methods associated with the recorded events throw
an exception.

How do we deal with client-side correctness with multiple objects imple-
menting the same interface?

Binary methods are methods that act on two objects that are instances of the same
interface. The difficulty in reasoning about binary methods [52] lies in the fact that
one instance may, by its implementation of the interface method, interfere with the
other instance of the same interface. For example, as shown in Listing 4.6, the
method Collection#addAll(Collection) is a binary method: both the receiving
object and the supplied argument are instances of the interface Collection.
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/∗∗ Adds all of the elements in the specified collection to this collection
∗ (optional operation).
∗ The behavior of this operation is undefined if the specified collection is
∗ modified while the operation is in progress.
∗ This implies that the behavior of this call is undefined if the specified
∗ collection is this collection, and this collection is nonempty. ∗∗/

boolean addAll(Collection c);

Listing 4.6: The Collection#addAll(Collection) method.

By using our history-based approach, we can limit such interference by requiring that
the history of the other instances remains the same during the execution of a method
on some receiving instance. Consequently, properties of other collection’s histories
remain invariant over the execution of methods on the receiving instance.

For client-side verification, verifying clients that operate on two collections concur-
rently is interesting. This is because each collection may have a distinct imple-
mentation, and there’s potential for mutual interference. Our applied strategy here
emphasizes the identification of properties that consistently remain invariant across
histories of all collections. For instance, invoking a method on one collection should
not alter the history of any other collection.

4.4 History-based reasoning approach

Reasoning about the correctness of interfaces involves two aspects: the client side
and the implementation side of an interface. A client of an interface is a program
fragment that uses instances of the interface by calling methods on it. An imple-
mentation of an interface is an instance of a class that implements the interface, by
providing a method body for each of the methods defined in the interface. Clients of
interfaces need not have knowledge of their implementations. Thus, the state of an
implementation is hidden from the client. Moreover, clients accept any implemen-
tation, even those not conceived at the moment the client is designed: verification
of an interface client is in that sense open-ended.

The verification of interface clients and verification of interface implementations
depends on the specification technique applied to the interface. We need a way to
encode histories in the formalism used in expressing specifications. There are two
approaches we identify, we refer to model histories using Java classes [53] as the
executable history-based (EHB) approach, and model histories using abstract data
types as the logical history-based (LHB) approach.

4.4.1 The executable history-based approach

The EHB approach is to embed histories and attributes in the KeY theorem prover
[23] by encoding them as Java objects, thereby avoiding the need to change the
KeY system itself. Interface specifications can then be written in the state-based
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specification language JML [24] by referring to histories and their attributes to
describe the intended behavior of implementations.

We give an overview of the EHB approach: through what framework can we see the
different concepts involved? The goal is to specify interface method contracts using
histories. This is done in a number of steps:

1. We introduce histories by Java classes that represent the inductive data type of
sequences of events, and we introduce attributes of histories encoded by static
Java methods. These attributes are defined inductively over the structure
of a history. The attributes are used within the interface method contracts
to specify the intended behavior of every implementation in terms of history
attributes.

2. Attributes are deterministic and thus represent a function. Certain logical
properties of and between attributes hold, comparable to an equational specifi-
cation of attributes. These are represented by the method contracts associated
with the static Java methods that encode the attributes.

3. Finally, we append an event to a history by creating a new history object in a
static factory method. The new object consists of the new event as the head
and the old history object as the tail. The contract for these static methods
also expresses certain logical properties of and between attributes, of the new
history related to the old history.

The practical specification and verification effort of a part of the Collection inter-
face employing the EHB approach is detailed in Chapter 5.

4.4.2 The logical history-based approach

In state-based approaches, including the work by Knüppel et al. [11], (dynamic)
frames [54] inherently heavily depend on the chosen representation, i.e. at some
point, the concrete fields that are touched or changed must be made explicit. The
same holds for separation logic [55] approaches for Java [56]. Since interfaces do not
have a concrete state-based representation, a priori specification of frames is not
possible. Instead, for each class that implements the interface, further specifications
must be provided to name the concrete fields. One can abstract from these concrete
fields by using a footprint model method that specifies the frame dynamically, i.e.
a frame may depend on the state. However, the footprint model method itself
also requires a frame, leading to recursion in dependency contracts [57]. Moreover,
any specification that mentions (abstract or concrete) fields can be problematic for
clients of classes, since the concrete representation is typically hidden from them
(using an interface), which raises the question: how to verify clients that make use
of interfaces?

The LHB approach avoids specifying such frames, thus eliminating much effort
needed in specification: there is no need to introduce ad hoc abstractions of the
underlying state, as the complete behavior of an interface is captured by its history.
The main core of the LHB approach is modeling histories as abstract data types,
ADTs for short. Additionally, since we model such histories as elements of an ADT
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separate from the sorts used by Java, histories can not be touched by Java programs
under verification themselves, and so we never have to use dependency contracts
for reasoning about properties of histories. This allows us to avoid the bottlenecks
that arise in the approach of EHB approach, which uses an encoding of histories as
ordinary Java objects living on the heap.

The LHB approach can be done in a number of steps:

1. We begin by defining algebraic data types and functions to logically model
the domain-specific knowledge relevant to the Java program we aim to verify.
These definitions rely on polymorphic type parameters, abstracting away from
specific Java types and allowing for a more generalizable and flexible model.

2. We translate the signatures of our data types and functions into a formal verifi-
cation environment, mapping them to appropriate sorts and function symbols.
This step involves writing specifications for the Java program in a way that in-
tegrates these new sorts and function symbols, ensuring that our model aligns
with the program’s structure and behavior.

3. We proceed with symbolic execution of the Java program, leading to the gen-
eration of proof obligations. These obligations might initially contain unin-
terpreted symbols, limiting direct reasoning. To address this, we specify and
prove additional properties that capture our expectations about these symbols.
Successful proofs are then incorporated back into the symbolic execution envi-
ronment, enhancing our ability to reason about and verify the Java program.

The last step will usually be repeated many times until we finish the overall proof
because typically one can not find all required lemmas at once.

The case study demonstrating the LHB approach, which reasons about Java’s Col-
lection interface using histories and proves the correctness of several clients that
operate on multiple objects, is presented in Chapter 6.

4.4.3 Comparative analysis

At its core, the LHB approach can be viewed as an advanced approach of the EHB
approach, encapsulating the growth and advancement of our research. We explain
the advantages of the LHB approach in the following aspects: logical representation,
expressiveness of attributes, logical consistency, and verification complexity.

Logical representation

Modeling histories modeled as ADT is possible by declaring a new logical sort for
histories and events. Thus histories do not have any representation in the program
itself, but only in the theorem prover and they are immutable and inaccessible: no
program can modify or even inspect a history value from this sort. Since histories
thus have a run-time representation in the program (they are ordinary Java objects
on the heap) they can potentially be modified by a program. To ensure meaningful
specifications one thus needs to ensure that histories are not accessed by a program
under analysis. Histories are extended by the creation of a new history object with a
new event corresponding to a method call, its return value, and points to an old and
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unmodified history object. This requires showing that history/event objects occupy
a separate part of the heap: modifications during the creation of new histories and
events do not affect old history objects. Clearly, modeling histories and events as a
separate ADT avoids these non-trivial proof steps in the first place. Thus, for static
verification, one can consider the logical representation to be a positive aspect of
the LHB approach and a negative aspect of the EHB approach.

Expressiveness of attributes

In the LHB approach, with ADT, history attributes can be defined logically by spec-
ifying attributes using a (recursive) system of equations. The definitions can use ide-
alized mathematical data types and operations, such as mathematical (unbounded)
integers. Attributes of objects need to be expressed within the Java programming
language. Java is Turing-complete so in principle all computable functions are avail-
able to define attribute values. While Java does contain an unbounded integer type
(BigInteger) its use typically complicates reasoning.

Logical consistency

In the EHB approach, we introduce no new rules of the proof system: the consis-
tency is thus the same as that of the base system. In the LHB approach, we add
new rules to the proof system so there is a risk of introducing an inconsistency.
However, our LHB approach allows leveraging Isabelle/HOL to guarantee, for ex-
ample, meta-properties such as the consistency of axioms about user-defined ADT
functions.

Verification complexity

The encoding of the EHB approach made use of pure methods in its specification
and thus required extensive use of so-called accessibility clauses, which express the
set of locations on the heap that a method may access during its execution. These
accessibility clauses must be verified. Furthermore, for recursively defined pure
methods we also need to verify their termination and determinism [25]. Essentially,
the associated verification conditions boil down to verifying that the method un-
der consideration computes the same value starting in two heaps that are different
except for the locations stated in the accessibility clause. To that end, one has to
symbolically execute the method more than once (in two different heaps) and relate
the outcome of the method starting in different heaps to one another. After such
proof effort, accessibility clauses of pure methods can be used in the application of
dependency contracts, which are used to establish that the outcome of a pure method
in two heaps is the same if one heap is obtained from the other by assignments out-
side of the declared accessible locations. The degree of automation in the proof
search strategy with respect to pure methods, accessibility clauses, and dependency
contracts turned out to be rather limited in KeY. So, while the methodology works
in principle, in practice, for advanced use, the pure methods were a source of large
overhead and complexity in the proof effort. In contrast, in the LHB approach, ele-
ments of abstract data types are not present on the heap, avoiding the need to use
dependency contracts to prove that heap modifications affect their properties.

While the LHB method offers advantages over the EHB in various dimensions, it
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comes with its own set of demands. Adopting the LHB approach necessitates not
only proficiency in Java and JML but also an in-depth understanding of taclets and
JavaDL. Moreover, verifiers need to be well-acquainted with domain-specific theorem
provers like KeY, as well as general-purpose theorem provers, such as Isabelle/HOL
in our case.

To conclude, for those who are new to history-based reasoning, the EHB approach
offers a gentler introduction. It situated specifications within the programming
language context, making functions computable and available in Java. However, the
advantage of the LHB approach is that it opens up the possibility of defining many
more functions on histories, thus furthering the ability to model complex object
behavior: this we demonstrated by verifying complex and realistic client code that
uses collections in Chapter 6.

4.5 Summary
In this chapter, we address a key challenge in object-oriented programming: the
specification and verification of state-hiding interfaces. Traditional static analysis
tools, such as KeY theorem prover, often fall short in this context due to their
emphasis on state-based reasoning. Our work introduces a novel methodology for
reasoning about Java interfaces through the use of histories, which are sequences of
method calls and returns. We particularly apply this reasoning to Java’s Collection
interface and discuss several challenges associated with using histories in real-world
programs. We explore two approaches to implementing the concept of histories:
the EHB approach, which models histories as standard Java classes, and the LHB
approach which treats histories as external ADTs with associated functions. These
methodologies offer new possibilities for verifying the correctness of client code in
relation to the expected behavior of interface implementations.
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Chapter 5

Executable history-based reasoning:
a case study

As a case study for the executable history-based reasoning approach, we describe
a practical specification and verification effort of part of the Collection interface
using KeY. To model the history as an ordinary Java class, we introduce a new spec-
ification method (in the KeY theorem prover) using histories, that record method
invocations including their parameters and return value, on an interface. We provide
source and video material of the verification effort to make the construction of the
proofs fully reproducible.

This chapter is based on the following publications:

• Hiep, H. A., Bian, J., de Boer, F. S., de Gouw, S. (2020). History-based specification and
verification of Java collections in KeY. In Integrated Formal Methods: 16th International
Conference, IFM 2020, Lugano, Switzerland, November 16–20, 2020, Proceedings 16 (pp.
199-217). Springer International Publishing.

• Bian, J., Hiep, H. A. (2020). History-based Specification and Verification of Java Collec-
tions in KeY: Video Material. figshare. Collection.
https://doi.org/10.6084/m9.figshare.c.5015645.v3

• Hiep, H. A., Bian, J., de Boer, F. S., de Gouw, S. (2020). History-based Specification and
Verification of Java Collections in KeY: Proof Files. Zenodo.
https://doi.org/10.5281/zenodo.3903204
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5.1 Introduction
In this chapter, we demonstrate the feasibility of the executable history-based (EHB)
approach by specifying part of the Java Collection Framework with promising re-
sults. The EHB approach allows us to embed histories and attributes in the KeY
theorem prover [23] by encoding them as Java objects, thereby avoiding the need
to change the KeY system itself. Interface specifications can then be written in
the state-based specification language JML [24] by referring to histories and their
attributes to describe the intended behavior of implementations. A detailed expla-
nation of this methodology is described in Section 5.2. Further, a distinguishing
feature of histories is that they support a history-based reference implementation
for each interface which is defined in a systematic manner. This allows an impor-
tant application of our methodology: the verification of the satisfiability of interface
specifications themselves. This is done for part of the Collection interface in Sec-
tion 5.3.

Our methodology is based on a symbolic representation of history. We encode
histories as Java objects to avoid modifying the KeY system and thus avoid the
risk of introducing an inconsistency. Such representation allows the expression of
relations between different method calls and their parameters and return values, by
implementing abstractions over histories, called attributes, as Java methods. These
abstractions are specified using JML.

5.2 History-based specification in KeY
The main motivation of the EHB approach is derived from the fact that the KeY
theorem prover uses the JML as the specification language and that both JML
and the KeY system do not have built-in support for specification of interfaces
using histories. Instead of extending JML and KeY, we introduce Java encodings of
histories that can be used for the specification of the Collection interface, which
as such can also be used by other tools [3].

Remark 1. JML supports model fields which are used to define an abstract state and
its representation in terms of the concrete state given (by the fields) in a concrete
class. For clients, only the interface type Collection is known rather than a concrete
class, and thus a represents clause cannot be defined. Ghost variables cannot be used
either, since ghost variables are updated by adding set statements in method bodies
and interfaces do not have method bodies. What remains are model methods, which
we use as our specification technique.

5.2.1 The History class for Collection

In principle, our histories are a simple inductive data type of a sequence of events.
Inductive data types are convenient for defining attributes by induction. However,
no direct support for inductive definitions is given in either Java or KeY. Thus,
we encode histories by defining a concrete History class in Java itself, specifically
for Collection. The externally observable behavior of any implementation of the
Collection interface is then represented by an instance of the History class, and

60



5.2 History-based specification in KeY

specific attributes (e.g., patterns) of this behavior are specified by pure methods
(which do not affect the global state of the given program under analysis). Every
instance represents a particular history value.

Figure 5.1: A number of history objects. The left-most represents the history of a
collection in which add is called three times followed by a remove. Intuitively, this
history captures the behavior of a set (the addition of an object already contained
returns false).

The History class implements a singly-linked list data structure: a history consists
of a head Event and a tail History. The class Event has sub-classes, one for
each method of the Collection interface. Moreover, there are sub-classes for each
method of the Iterator interface that additionally track the iterator instance sub-
objects. These events are also part of the history of a Collection. See Figure 5.1
and Listing 5.1.

public class History {
Event Head;
/∗@ nullable @∗/ History Tail;
/∗@ ghost int length; @∗/
// (attributes and their method contracts...)
// (factory methods... e.g.)
/∗@ pure ∗/ static History addEvent(/∗@ nullable ∗/ History h,

/∗@ nullable ∗/ Object o, boolean ret) {
return new History(new AddEvent(o, ret), h);

}
}

Listing 5.1: The History class structure. Later on, the specification of the addEvent
factory method is given in Listing 5.8.

Each sub-class of the Event class comprises the corresponding method’s arguments
and return value as data. For the Collection interface we have the events: AddEvent,
RemoveEvent, ContainsEvent, IteratorEvent. AddEvent has an Object field arg
for the method argument, and a Boolean field ret for the return value, that cor-
responds to the method declaration of boolean add(Object). RemoveEvent and
ContainsEvent are similar. IteratorEvent has an Object field ret for the return
value, for Iterator iterator(), which is seen as a creation event for the iterator
sub-object.

For the Iterator interface we have the following events: IteratorHasNextEvent,
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IteratorNextEvent, IteratorRemoveEvent. IteratorHasNextEvent has a field
inst for the sub-object instance of Iterator, and a Boolean field ret for the re-
turn value, that corresponds to the method declaration of boolean hasNext().
IteratorNextEvent has an instance field and an Object field ret, corresponding
to the method declaration Object next(). IteratorRemoveEvent only has an in-
stance field, since void remove() returns nothing.

As part of the History class, we define footprint() as a JML model method. The
footprint of a history is a particular set of heap locations; if those locations are not
modified then the value of attributes of the history remains unchanged. In our case,
the footprint is the set of fields of events and the singly-linked history list, but we
do not include in our footprint the fields of the objects that are elements of the
collection, since those never influence any attribute value of a history (we never cast
elements of a collection to a specific sub-class to access its fields).

We treat the history as an immutable data type1: once an object is created, its
fields are never modified. History updates are encoded by the creation of a new
history, with an additional new event as the head, pointing to the old history as the
tail. Immutability allows us to lift any computed attribute of a history in some heap
over heap modifications that do not affect the footprint of the given history. This
turns out to be crucial in verifying that an implementation is correct with respect to
interface method contracts, where we update a history to reflect that an incoming
method call was performed. Such a contract expresses a particular relation between
the history’s attributes in the heap before and after object creation and history
update: the value of an attribute of the old history in the heap before remains the
same in the heap after these heap modifications.

5.2.2 Attributes of History

It is valuable to describe a specification technique first, that we commonly use, to
specify that a particular Java method is a function of the heap and its arguments.
A JML specification of a Java method is interpreted as a relation, that is, the return
value of the method is not necessarily unique, e.g. see Listing 5.2.

/∗@ ensures \result == 1 || \result == 2; @∗/
/∗@ strictly_pure @∗/ static int nondeterministic(int x);

Listing 5.2: A non-deterministic method: its result is not a fixed value.

In KeY, every pure method has an observer symbol that denotes the outcome of the
method call. This is also known as a query method: it typically is used to retrieve
the value of encapsulated fields or compute some value without changing the heap.
To enforce that the result of a method call is unique, we ensure that the result of
the method is the same as its observer symbol, e.g. see Listing 5.3.

/∗@ ensures \result == deterministic(x); @∗/
/∗@ strictly_pure @∗/ static int deterministic(int x);

Listing 5.3: A deterministic method: its result is a fixed value.

1By immutable, we mean an object for which its fields after construction are never modified,
and its reference type fields point only to immutable objects.
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To avoid tying ourselves to a particular history representation, the linked list of
events in the history itself is not exposed and cannot be used in specifications.
Rather, the history is accessed exclusively through “observer symbols” that map the
history to a value. Such observer symbols we call attributes. Attributes are defined as
strictly pure methods since their computation cannot affect the heap. Strictly pure
methods are also easier to work with than non-strict or non-pure methods, especially
when these methods are used in specifications of the Collection interface: these
methods evaluate in one heap without modifying it.

The advantage of the use of KeY is that pure methods that appear in specifications
as observer symbols can be translated into a modal JavaDL expression, and this
allows, more generally, reasoning about pure methods [58]. The rule in the proof
system, that replaces observer symbols associated with pure method by a modal
expression that expresses the result of a separate symbolic execution of calling the
method, is called query evaluation [23, Section 11.4].

Attributes are defined inductively over the history. To prove their termination we
also introduce a ghost field length that represents the length of the history. A ghost
field logically assigns to each object a value used for the purpose of verification but
is not present at run-time. In each call on the tail of the history, its length decreases,
and the length is always positive, thus realizing a so-called decreasing term.

Attributes are functions of the history. The functionality of an attribute amounts to
showing dependence (only on the footprint of a history), determinism (uniqueness
of result), and termination. To verify that an attribute is deterministic involves two
steps: we first symbolically execute the method body until we obtain a proof obli-
gation in which we have to show that the post-condition holds. The post-condition
consequently contains, as an observer symbol, the same method applied to the same
formal parameters: we use query evaluation to perform another symbolic execution
of the same method. We need to prove that their outcomes are identical, to verify
that the method is deterministic. Not every method can be proven to be determin-
istic: e.g. if a method body contains a call to a method that cannot be unfolded
and that has an unspecified result, then the two symbolic executions (first directly,
and secondly through an evaluated query of the observer symbol) need not pick the
same result in each method call.

Contents of a Collection: The multiset attribute of a Collection represents
its content and is defined inductively over the structure of the history: the events
corresponding to a successful add and remove call of the Collection interface in-
crease and decrease the multiplicity of their argument. Note that removing an
element never brings it down to a negative multiplicity. Moreover, remove of the
Iterator interface also decreases the multiplicity; but no longer an argument is
supplied because the removed element is the return value of the previous next call
of the corresponding iterator sub-object. Thus, we define an attribute for each iter-
ator that denotes the object returned by the last next call. Calling remove on an
iterator without a preceding next call is not allowed, so neither is calling remove
consecutively multiple times.
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/∗@ normal_behavior
@ requires h != null && \invariant_for(h);
@ ensures \result == History.Multiset(h,o) && \result >= 0;
@ measured_by h.length;
@ accessible h.footprint(); // dependency contract
@∗/

/∗@ strictly_pure ∗/ static int Multiset(
/∗@ nullable ∗/ History h, /∗@ nullable ∗/ Object o) {

if (h == null) return 0;
else {

int c = History.Multiset(h.Tail, o);
if (h.Head instanceof AddEvent &&

((AddEvent) h.Head).arg == o &&
((AddEvent) h.Head).ret == true) { // important

return c+ 1;
} else ...
return c;

}
}

Listing 5.4: Part of Multiset method of the History class, with one JML contract.

Listing 5.4 shows part of the implementation of the Multiset attribute that is com-
puted by the Multiset static method. It is worthwhile to observe that AddEvent is
counted only when its result is true. This makes it possible to compute the Multiset
attribute based on the history: if the return value is omitted, one cannot be certain
whether an add has affected the contents. With this design, further refinements can
be made into lists and sets.

Iterating over a Collection: Once an iterator is obtained from a collection,
the elements of the collection can be retrieved one by one. If the Collection
is subsequently modified, the iterator becomes invalidated. An exception to this
rule is if the iterator instance itself directly modifies the collection, i.e. with its
own Iterator.remove() method (instead of Collection.remove(Object)): call-
ing that method invalidates all other iterators. We have added an attribute Valid
that is true exactly for valid iterators (definition omitted).

For each iterator, there is another multiset attribute, Visit (definition omitted),
that tracks the multiplicities of the objects already visited. Intuitively, this visited
attribute is used to specify the next method of an iterator. Namely, next returns an
element that has not yet been visited. Calling Iterator.next increases the Visit
multiplicity of the returned object by one and leaves all other element multiplicities
the same. Intuitively, the iterator increases the size of its Visit multiset attribute
during traversal, until it completely covers the whole collection, represented by the
Multiset attribute: then the iterator terminates.

Although these two attributes are useful in defining an implementation of an iterator,
they are less useful in showing the client-side correctness of code that uses an iterator.
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To show the termination of a client that iterates over a collection, we introduce two
derived attributes: CollectionSize and IteratorSize. One can think of the collection’s
size as a sum of the multiplicities of all elements, and similar for an iterator size of
its visited multiset.

5.2.3 The Collection interface
public interface Collection {

/∗@ model_behavior
@ requires true;
@ model nullable History history();
@∗/

// (interface methods and their method contracts ...)
}

Listing 5.5: The history() model method of the Collection interface.

The Collection interface has an associated history that is retrieved by an abstract
model method called history(). This model method is used in the contracts for the
interface methods, to specify what relation must hold of the attribute values of the
history in the heap before and after executing the interface method.

As a typical example, we show the specification of the add method in terms of the
Multiset attribute of the new history (after the call) and the old history (prior to the
call). The specification of add closely corresponds to the informal Javadoc specifi-
cation written above it. Similar contracts are given for the remove, contains, and
iterator methods. In each contract, we implicitly assume a single event is added to
the history corresponding to a method call on the interface. The assignable clause
is important, as it rules out implementations from modifying its past history: this
ensures that the attributes of the old history object in the heap before executing the
method have the same value in the heap after the method finished execution.

/∗∗ Ensures that this collection contains the specified element (optional
∗ operation). Returns true if this collection changed as a result of the call.
∗ Returns false if this collection does not permit duplicates and already
∗ contains the specified element. ... ∗∗/

/∗@ public normal_behavior
@ ensures history() != null ;
@ ensures History.Multiset(history(),o) ==

History.Multiset(\old(history()), o) + (\result ? 1 : 0);
@ ensures History.Multiset(history(),o) > 0;
@ ensures (\forall Object o1; o1 != o; History.Multiset(history(),o1) ==

History.Multiset(\old(history()), o1));
@ assignable \set_minus(\everything, (history() == null) ? \empty :

history().footprint());
@∗/

boolean add( /∗@ nullable ∗/ Object o);

Listing 5.6: The use of Multiset in the specification of add in the Collection inter-
face.
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It is important to note that the value of \result is unspecified. The intended meaning
of the result is that it is true if the collection is modified. There are at least two
implementations: that of a set, and that of a list. For a set, the result is false if the
multiplicity prior to the call is positive, for a list the result is always true. Thus
it is not possible to specify the result any further in the Collection interface that
is compatible with both Set and List sub-interfaces. In particular, consider the
following refinements [23, Section 7.4.5] of add:

• The Set interface also specifies that \result is true if and only if the multiset
attribute before execution of the method is zero, i.e.
ensures History.Multiset(\old(history()), o) == 0 ⇐⇒ \result == true;

• The List interface also specifies that \result is true unconditionally, i.e.
ensures \result == true;

As in another approach [11], one could use a static field that encodes a closed enu-
meration of the possible implementations, e.g. set or list, and specify \result directly.
Such a closed world perspective does not leave room for other implementations. In
our approach, we can obtain refinements of interfaces that inherit from Collection,
while keeping the interface open to other possible implementations, such as Google
Guava’s Multiset or Apache Commons’ MultiSet.

5.2.4 History-based refinement

Given an interface specification, we can extract a history-based implementation, that
is used to verify there exists a correct implementation of the interface specification.
The latter establishes that the interface specification itself is satisfiable. Since one
could write inconsistent interface specifications for which there does not exist a
correct implementation, this step is crucial.

The state of the history-based implementation BasicCollection consists of a single
concrete history field this.h. Compare this to the model method of the interface,
which only exists conceptually. By encoding the history as a Java object, we can
also directly work with the history at run-time instead of only symbolically. The
concrete history field points to the most recent history, and we can use it to com-
pute attributes. The implementation of a method simply adds for each call a new
corresponding event to the history, where the return value is computed depending
on the (attributes of the) old history and method arguments. The contract of each
method is inherited from the interface.

public boolean add(/∗@ nullable ∗/ Object o) {
boolean ret = true;
this.h = History.addEvent(this.h, o, ret);
return ret;

}

Listing 5.7: One of the possible implementations of add in BasicCollection.

See Listing 5.7 for an implementation of add, that inherits the contract in List-
ing 5.6. Note that due to underspecification of \result there are several possible
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implementations, not a unique one. For our purposes of showing that the interface
specification is satisfiable, it suffices to prove that at least one correct implementation
exists.

For each method of the interface we have specified, we also have a static factory
method in the history class which creates a new history object that consists of
the previous history as tail, and the event corresponding to the method call of the
interface as head. We verify that for each such factory method, the relation between
the attributes of the old and the resulting history holds. It is not possible to directly
use the constructor of History to create a new history, because some methods have
the same signature (such as Collection’s add, remove, contains). So we introduce
an indirection: the constructor for History takes an event and another history as
tail, but does not have a method contract. For each event we add to the history
we define a static factory method, for which we will later prove that the relevant
relations between the values of the attributes of the old and new history hold.

/∗@ normal_behavior
@ requires h != null ==> \invariant_for(h);
@ ensures \result != null && \invariant_for(\result);
@ ensures History.Multiset(\result,o) ==

History.Multiset(h,o) + (ret ? 1 : 0);
@ ensures (\forall Object o1; o1 != o;

History.Multiset(\result,o1) == History.Multiset(h,o1));
@ ensures \result.Tail == \old(h); ∗/

/∗@ pure ∗/ static History addEvent(
/∗@ nullable ∗/ History h, /∗@ nullable ∗/ Object o, boolean ret);

Listing 5.8: The contract for the factory method for AddEvent in class History.

For example, the event corresponding to Collection’s add method is added to
a history in Listing 5.8 (see also Listing 5.1). We have proven that the Multiset
attribute remains unchanged for all elements, except for the argument o if the return
value is true (see Listing 5.4). This property is reflected in the factory method
contract. Similarly, we have a factory method for other events, e.g. corresponding
to Collection’s remove.

5.3 History-based verification of Collection

This section describes the verification work that we performed to show the feasibility
of our approach. We use KeY version 2.7-1681 with the default settings. For the
purpose of this chapter, we have recorded est. 2.5 hours of video1 showing how
to produce some of our proofs using KeY. A repository of all our produced proof
files is available on Zenodo2 and includes the KeY version we used. The proof files
include:

• Contracts for the Event class hierarchy, corresponding to methods of the inter-
faces Collection and Iterator. These can be verified almost without human

1https://doi.org/10.6084/m9.figshare.c.5015645
2https://doi.org/10.5281/zenodo.3903203
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intervention.

• Contracts specifying properties of history attributes (Multiset , CollectionSize,
IteratorSize, Last , LastValid) and history factory methods corresponding to
the events. The implementation of Multiset and factory methods not related
to iterators have been verified. The verification of these contracts requires
significant human intervention.

• Contracts for the history-based implementation of the interfaces Collection
and Iterator. We have verified the contracts for the add, remove and contains
events. Importantly, the verification of these methods required the majority
of the application of dependency contracts. Also, the verification of these
contracts requires significant human intervention.

• Contracts for four example client-side programs. Also, the verification of these
contracts requires significant intervention.

The proof statistics are shown in Table 5.1. These statistics must be interpreted
with care: shorter proofs (in the number of nodes and interactive steps) may exist,
and the reported time depends largely on the user’s experience with the tool. The
reported time does not include the time to develop the specifications.

Nodes Branches I.step Q.inst O.Contract Dep. Inv. Time

171,543 3,771 1,499 965 79 263 1 388 min

Table 5.1: Summary of proof statistics. Nodes and branches are measures of proof
trees, I.step is the number of interactive proof steps, Q.inst is the number of quantifier
instantiation rules, O.Contract is the number of method contracts applied, Dep. is the
number of dependency contracts applied, Loop inv. is the number of loop invariants,
and Time is an estimated wall-clock duration for interactively producing the proof
tree.

We now describe several proofs, that also have been formally verified using KeY.
Note that the formal proof produced in KeY consists of many low-level proof steps,
of which the details are too cumbersome to consider here.

To verify clients of the interface, we use the interface method contracts. In particular,
the client code given in Listing 5.9 makes use of the contracts of add and remove,
to establish that the contents of the Collection parameter passed to the program
remains unchanged.

/∗@ ...
@ ensures (\forall Object o1; !\fresh(o1) ;

History.Multiset(x.history(),o1) == History.Multiset(\old(x.history()),o1));
@∗/

public static void add_remove(Collection x, Object y) {
if (x.add(y)) x.remove(y);

}

Listing 5.9: Adding an object and if successful removing it again, leaves the contents
of a Collection the same.
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More technically, during the symbolic execution of a Java program fragment in KeY,
one can replace the execution of a method with its associated method contract. The
contract we have formulated for add and remove is sufficient in proving the client
code in Listing 5.9: the multiset remains unchanged. In the proof, the user has
to interactively replace occurrences of history attributes by their method contracts.
Method contracts for attributes can in turn be verified by unfolding the method
body, thereby inductively establishing their equational specifications. The specifi-
cation of the latter is not shown here but can be found in the source files.

During the verification, we faced another interesting challenge: dealing with object
creation is difficult. We have an alternative program to Listing 5.9 that adds to and
removes a newly created object, given in Listing 5.10. Part of the verification of this
alternative program (where the object is created by the program) takes 60 minutes,
and we fail to close some of the proof branches. In particular, we are unable to show
that the multiplicity of newly created objects is zero. Intuitively, we know that a
newly created object cannot be part of the past history, as the history only refers
to created objects, and a new object was not yet created before. The verification
of the program in Listing 5.9 is considerably shorter and takes 4 times less time to
prove. Except for our own inability, there seems to be no clear explanation for why
these programs have different difficulties.

public static void example(Collection x) {
Object y = new Object(); // Is x.Multiset(y) = 0 true?
if (x.add(y))

x.remove(y);
}

Listing 5.10: What is the multiplicity of a newly created element?

We needed to introduce a quite technical lemma to show that created objects, e.g.
History and Event objects in the history-based implementation of the add method,
have the same multiplicity as in the old history: since histories and events inherit
from Object, in principle these newly created objects could be elements of the
collection too. But our lemma shows that this cannot be the case, since these
objects are newly created and cannot thus be referred to from the old history (at
the time the old history was created, these objects did not yet exist). We could
refine the specification of the add method of Collection: objects created by the
implementation must have a zero multiplicity in the post-heap. To see why, consider
an implementation that creates a new object. New objects cannot occur in the old
history and not as method argument, since new objects are not yet created and all
objects referenced and arguments are already created. Hence, the multiplicity of the
new object in the old history must be zero, since the multiplicity of any object not
occurring in a history is zero. The multiplicity of the new object in the new history
must be zero because the new object is not equal to the argument. This argument
also applies to an implementation such as LinkedList, which creates internal Node
objects [5].

For the client in Listing 5.11, we make use of the contracts for iterator and the
methods of the Iterator interface. The iterator method returns a fresh Iterator
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sub-object that is valid upon creation, and its owner is set to be the collection. The
history of the owning collection is updated after each method call to an iterator sub-
object. Each iterator has as derived attribute IteratorSize, the size of the visited
multiset. It is a property of the IteratorSize attribute that it is not bigger than
CollectionSize, the size of the overall collection. To verify the termination of a client
using the iterator in Listing 5.11, we can specify a loop invariant that maintains the
validity and ownership of the iterator, and take as a decreasing term the value
of CollectionSize minus IteratorSize. Since each call to next causes the visited
multiset to become larger, this term decreases. Since an iterator cannot iterate
over more objects than the collection contains, this term is non-negative. We never
needed to verify that the equational specification for the involved attributes holds
and this can be done separately from verifying the client, thus allowing modular
verification.

public static void iter_only(Collection x) {
Iterator it = x.iterator();
/∗@ ...

@ decreasing History.CollectionSize(x.history()) −
History.IteratorSize(x.history(),it);
@∗/

while (true) {
if (!it.hasNext()) {break;}

it.next(); }
}

Listing 5.11: Iterating over the collection.

The other problem we encountered is program rules for dealing with while state-
ments with side-effectful guard expressions are difficult to work with. Since a
side-effectful guard expression may throw an exception and change the heap, the
assumption that the guard completes normally with a true result leads to some
post-expression heap. During the symbolic execution of the loop body, the guard
expression is also executed so the loop body is executed in the same heap. However,
this requires comparing two separate heaps, making it difficult to lift properties from
one heap to another if the guard is not deterministic. A workaround is to change
the program, where we take a side-effect free guard (such as true) and evaluate the
side-effectful expression within the loop body: if it is false, we break out of the loop.
This avoids working with two different heaps and relating them.

One of the complications of our history-based approach is reasoning about invariant
properties of (immutable) histories, caused by potential aliasing. This currently
cannot be automated by the KeY tool. We manually introduce a general but crucial
lemma, that addresses the issue, as illustrated by the following verification condition
that arises when verifying the reference implementation.

One specific verification condition is a conjunct of the method contract for the add
method of Collection, namely that in the post-condition, Multiset(history(), o)
== Multiset(\old(history()), o) + (\result ? 1 : 0 ) should hold. We verify that in
class BasicCollection the add method is correct with respect to this contract.
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Within BasicCollection, the model method history() is defined by the field this.h,
which is updated during the method call with a newly created history using the
factory method History.addEvent. We can use the contract of the addEvent factory
method to establish the relation between the multiset value of the new and old
history (see Listing 5.8); this contract is in turn simply verified by unfolding the
method body of the multiset attribute and performing symbolic execution, which
computes the multiplicity recursively over the history and adds one to it precisely if
the returned value is true. Back in BasicCollection, after the update of the history
field this.h, we need to prove that the post-condition of the interface method holds
(see Listing 5.6); but we already have obtained that this property holds after the
static factory method add before this.h was updated.

∀ int n; (n ≥ 0 → ∀ History g;
(g.⟨inv⟩ ∧ g.⟨created⟩ = true ∧ g.history_length = n →

this.h ̸∈ g.footprint()))

The update of the history field, as a pointer to the History linked list, does not affect
this structure itself, i.e. the values of attributes are not affected by changing the
history field. This is an issue of aliasing, but we know that the updated pointer does
not affect the attribute values of any History linked list. This can not be proven
automatically: we need to interactively introduce a cut formula (shown above) so
that the history field does not occur in the footprint of the history object itself. The
formula can be proven by induction on the length of the history.

5.4 Summary
In this chapter, we show a new systematic method for history-based reasoning and
reusable specifications for Java programs that integrates seamlessly in the KeY the-
orem prover, without affecting the underlying proof system (this ensures our method
introduces no inconsistencies). Our approach includes support for reasoning about
interfaces from the client perspective, as well as about classes that implement in-
terfaces. To show the feasibility of our EHB approach, we specified part of the
Collection Framework with promising results. We showed how we can reason about
clients with these specifications, and showed the satisfiability of the specifications
by a witness implementation of the interface. We also showed how to handle in-
ner classes with a notion of ownership. This is essential for showing termination of
clients of the Iterator.
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Chapter 6

Logical history-based reasoning: an
advanced case study

We discuss integrating abstract data types in the KeY theorem prover by a new
approach to model data types using Isabelle/HOL as an interactive back-end and
represent Isabelle theorems as user-defined taclets in KeY. As a case study of the
logical history-based (LHB) approach, we reason about Java’s Collection interface
using histories, and we prove the correctness of several clients that operate on mul-
tiple objects, thereby significantly improving the state-of-the-art of history-based
reasoning.

This chapter is based on the following publications and artifacts:

• Bian, J., Hiep, H. A., de Boer, F. S., de Gouw, S. (2023). Integrating ADTs in KeY and
their application to history-based reasoning about collection. Formal Methods in System
Design, 1-27.

• Bian, J., Hiep, H. A., de Boer, F. S., de Gouw, S. (2021). Integrating ADTs in KeY
and their application to history-based reasoning. In Formal Methods: 24th International
Symposium, FM 2021, Virtual Event, November 20–26, 2021, Proceedings 24 (pp. 255-272).
Springer International Publishing.

• Bian, J., Hiep, H. A. (2021). Integrating ADTs in KeY and their Application to History-
based Reasoning: Video Material. figshare. Collection.
https://doi.org/10.6084/m9.figshare.c.5413263.v1

• Bian, J., Hiep, H. A., de Boer, F. S., de Gouw, S. (2022). Integrating ADTs in KeY and
their Application to History-based Reasoning about Collection: Proof files.
https://doi.org/10.5281/zenodo.7079126
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6.1 Introduction

In this chapter, we present an advanced case study focused on the logical history-
based approach (LHB approach). The main core of the LHB approach is to model
histories logically as a user-defined abstract data type. Given that KeY has lim-
ited support for user-defined abstract data types (ADTs), we introduce a general
workflow which integrates the domain-specific theorem prover KeY and the general-
purpose theorem prover Isabelle/HOL [59] for the specification of ADTs.

More generally, in our set-up, we distinguish domain-specific theorem provers, in
our case KeY, from general-purpose theorem provers, in our case Isabelle/HOL.
The domain-specific theorem prover acts as a verification condition generator: KeY
has domain-specific knowledge of the programming language (Java) and program
specification language (JML) in question. The theorems of a domain-specific the-
orem prover are correct pairs of programs and specifications and thus can be seen
as giving axiomatic semantics to programs and specifications. A general-purpose
theorem prover, in contrast, is oblivious to the intricate details of programs and
their specifications in question: e.g. it is not needed to formalize the semantics
of Java nor JML in our general-purpose theorem prover Isabelle/HOL. Our set-up
thus differs from other approaches, such as in the Bali [59, 60] and LOOP [61, 62]
projects, that embed the semantics of the programming language and specification
language within the general-purpose theorem prover.

The idea presented in this paper of integrating Isabelle/HOL and KeY arises out of
the need for user-defined data types usable within specifications. Other tools, such
as Dafny [63] and Why3 [64], support user-defined data types in the specification
language, contrary to JML as it is implemented by KeY. However, the former tools
are not suitable for verifying Java programs: for that, as far as the authors know,
only KeY is suitable due to its modeling of the many programming features of the
Java language present in real-world programs.

We apply our workflow to the Java Collection interface, study a number of example
client use cases of the interface, and compare our new approach with the previous
approach described in [53]. Although the EHB approach works in principle, with
our new approach we can practically give a specification of the addAll method and
verify the correctness properties of its clients. Going further, we are now able to
reason about advanced, realistic use cases involving multiple instances of the same
interface: we also have verified a complex client program that destructively compares
two collections.

6.2 Intergrating Abstract Data Types in KeY

Abstract data types were introduced in 1974 by Barbara Liskov and Stephen Zilles
[65] to ease the programming task: instead of directly programming with concrete
data representations, programmers would use a suitable abstraction that instead
exposes an interface, thereby hiding the implementation details of a data type. In
most programming languages, such interfaces only fix the signature of an abstract
data type (e.g. Java’s interface or Haskell’s typeclass). Further research has led
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to many approaches for specifying abstract data types, e.g. ranging from simple
equational specifications to axiomatizations in predicate logic. See for an extensive
treatment of the subject in the textbook [66].

In the context of our work, we need to distinguish the two levels in which abstract
data types can appear: at the programming level, and at the specification level. In
fact, Java supports abstract data types by means of its interfaces, and for example,
the Java Collection Framework provides many abstractions to ease the programming
task. The specification language JML does support reasoning about the instances of
such interfaces, but does not allow user-defined abstract data types on the specifica-
tion level only. The reason is that JML is designed to be “easier for programmers to
learn and less intimidating than languages that use special-purpose mathematical
notations” [67]. There are extensions of JML to support user-defined types on the
specification level, e.g. model classes [68], but KeY does not implement them.

However, KeY does extend JML in an important way: several built-in abstract
data types at the specification level are provided [23, Section 2.4.1]. There is the
abstract data type of sequences that consists of finite sequences of arbitrary ele-
ments. Further, KeY provides the abstract data type of integers that comprises the
mathematical integers (and not the integers modulo finite storage, as used in the
Java language) to interpret JML’s \bigint. Elements of these abstract types are
not accessible by Java programs and are not stored on the heap. It is possible to
reason about elements of such abstract data types since the KeY theorem prover
allows the definition of their theories implemented by inference rules for deducing
true statements involving these elements.

When introducing user-defined abstract data types, KeY does allow the specifica-
tion of abstract data types by adding new sorts, function symbols, and inference
rules. These new sorts and function symbols can be used in JML by a KeY-specific
extension. A drawback is that KeY provides no guarantee that the resultant theory
is consistent. Thus, a small error in a user-defined abstract data type specifica-
tion could lead to unsound proofs. In contrast, Isabelle/HOL (Isabelle instantiated
with Church’s type theory) includes a definitional package for data types [36] that
provides a mechanism for defining so-called algebraic data types, which are freely
generated inductive data types: the user provides some signature consisting of con-
structors and their parameters, and the system automatically derives characteristic
theorems, such as a recursion principle and an induction principle. Under the hood,
each algebraic data type definition is associated with a Bounded Natural Functor
(BNF) that admits an initial algebra [37], but for our purposes, we simply trust that
the system maintains consistency.

The overall approach of integrating ADTs in KeY can be summarized by a workflow
diagram, see Figure 6.1.

What is common between Isabelle/HOL and KeY are the abstract data types. From
KeY, the underlying definition of the algebraic data type is not visible, nor are the
Java-specific types visible in Isabelle/HOL. This allows us to make use of the best
of both worlds: Isabelle/HOL is used as a general-purpose theorem prover, while
KeY is used as a domain-specific theorem prover for showing the correctness of Java
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1 2

3

Figure 6.1: The workflow of integrating ADTs in KeY.

programs. Essentially, we will be following three steps for defining the abstract data
type between the two provers:

1. We define algebraic data types and functions in Isabelle/HOL to logically
model domain-specific knowledge of the Java program that we want to verify.

2. We take the signature of our data types and functions from Isabelle/HOL and
add corresponding sorts and function symbols in KeY, using a type mapping
for common types. Then we write specifications of the Java program in JML
that makes use of the new sorts and function symbols by using a KeY-specific
extension of JML.

3. We use the KeY system to perform symbolic execution of the Java program.
This leads to proof obligations in which the imported symbols are uninter-
preted, meaning that one is limited in reasoning about them in KeY. Some-
times, contracts in JML specify sufficient detail such that the proof obligations
can already be closed in KeY. Other times, specific properties of the imported
symbols are needed. At this stage, properties can be formulated that capture
our expectations, and after formulating these properties in Isabelle/HOL we
can prove them also in Isabelle/HOL. If we succeed in proving a lemma, that
lemma is added to KeY by representing it as an inference rule called a taclet.

The last step will usually be repeated many times until we finish the overall proof
because typically one can not find all required lemmas at once.

Below we give more detail on each of these main steps.

Step 1. Formalizing ADTs in Isabelle/HOL. One defines data types and
functions in Isabelle/HOL in the usual manner: using the datatype command to
define a data type and the fun command to define functions. There are a number
of caveats when working in Isabelle/HOL, to ensure a smooth transfer of the theory
to KeY:

• For data types that contain Java objects, we have to work around the limitation
that Java types are not available in Isabelle/HOL. We can instead introduce
a polymorphic type parameter. Below we show how in our translation back
to KeY, we put back the original types by instantiating the polymorphic type
parameters by Java types which are available in KeY.
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• Isabelle/HOL allows higher-order definitions, whereas the dynamic logic of
KeY is first-order. Thus, for function symbols that we wish to import in KeY,
we limit ourselves to first-order type signatures, therefore we only allow a
subset of Isabelle/HOL to be imported in KeY.

As a simple example, we declare a new parameterized data type (in Isabelle type
parameters, such as α, are written prefixed to the parameterized type):

datatype α option = None | Some(α)

This data type allows us to model partially defined functions: an element of α option
represents either ‘nothing’ or an element of the given type α. The definition intro-
duces the constructors None : α option and Some : α ⇒ α option. We can define
functions recursively over the structure of a user-defined data type. The latter is
illustrated in Section 6.3.

Step 2. Using ADTs in JML specifications. The dynamic logic underlying
KeY is multi-sorted. To declare new data types and functions, we may introduce
sorts and function symbols. The behavior of these function symbols is encoded as
proof rules, which we formulate using an extensible formalism called taclets [69, 70].
Taclets in KeY are stored in plain-text files alongside the Java program sources that
comprise the following blocks:

• We declare sorts corresponding to our data types in a block named \sorts.
KeY has no parameterized sorts. So, we instantiate each type (where the
type parameters are replaced by corresponding sorts provided by KeY) and
introduce a sort with a suitable name for each type instantiation.

• We declare the signatures of each function in a block named \functions.
A function signature consists of its arity and the sorts corresponding to its
parameters. We erase polymorphic type parameters, by replacing them with
their instantiated sorts. Also, we ensure that Isabelle/HOL’s built-in types
are mapped to the corresponding KeY built-in types, e.g. for int and bool.

• We add axioms to specify properties of functions in a block named \axioms.

Listing 6.1 shows how to represent the above data type α option. We have instan-
tiated the type parameter α with the java.lang.Object sort.

\sorts { option; }
\functions { option Some(java.lang.Object); option None; ... }
\axioms { ... }

Listing 6.1: Declaring sorts and function symbols for new ADTs in KeY.

The new function symbols can then be used in JML specifications (such as method
contracts and class invariants) by prefixing their name with \dl_. For example, the
function symbol None can be referred to in a JML contract by writing it as \dl_None.
Axioms are not (yet) needed to use our function symbols in JML specifications.
Therefore, in step two of our workflow, we do not specify any axioms. We describe
adding axioms in more detail in step three below.
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Step 3. Using the imported ADTs during verification. We now focus on
using the new ADTs in proofs of Java programs with KeY. When one starts proving
that a Java program satisfies its JML specification and that specification contains
function symbols as above (prefixed with \dl_), KeY treats these as uninterpreted
symbols (with unknown behavior, other than their signature). In other words: with-
out adding any axioms, only facts about general predicates and functions that are
universally valid can be used in KeY proofs. Typically this is insufficient to complete
the proof: one needs specific properties that follow from the underlying definition
in Isabelle/HOL.

There are two ways of “importing” such properties in KeY. The first way is to specify
expected properties in JML contracts (e.g. preconditions, postconditions, invariants)
where the data type is used: this defers the moment in which the expected properties
are actually proved, e.g. if used in the contracts for interface methods. The second
way is to “import” such properties about the behavior of user-defined functions into
KeY by defining inference rules in the axioms block. These rules allow the inference
of properties that KeY can not derive from any other inference rules. By combining
these two ways, the human-proof engineer has some flexibility when the proofs of
specific properties are done.

We leverage Isabelle/HOL to prove the soundness and consistency of the imported
axioms. In essence, this provides a way to use Isabelle/HOL as an interactive back-
end to KeY. Our workflow supports a lazy approach that minimizes the amount
of work: we only add axioms about functions when they are necessary, i.e., when
we are stuck in a proof situation that requires more knowledge of the function
behavior.

Let us consider a simple concrete example that illustrates the above concepts. Sup-
pose we have a proof obligation in KeY in which Some(o) = None appears as an
assumption (it occurs as an antecedent of an open goal, and to discharge this proof
obligation it is sufficient to show this assumption leads to a contradiction). We need
to show that if there is some object o, then Some(o) ̸= None. KeY can not proceed
in proving this goal without any axioms because Some and None are uninterpreted
symbols in KeY. We thus formulate in Isabelle/HOL, abstracting from the particular
sorts as they appear in KeY, the following lemma

lemma option_distinct :: Some(o) ̸= None

which we easily verified (in Isabelle) using a characteristic theorem of α option.

\axioms {
option_distinct {

\schemaVar \term java.lang.Object o1;
\find(Some(o1) = None)
\replacewith(false)

};
}

Listing 6.2: Adding a taclet to KeY that expresses the distinctness of constructors.
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Our next objective is to import this lemma to KeY to make it available during
the proving process. We do this by formulating the lemma as a taclet in the block
axioms, as can be seen in Listing 6.2.

This taclet states that the name of the inference rule is option_distinct. The
keyword find states to which expression or formula the rule can be applied (on
either side of the sequent). The placeholder symbols, called schema variables, are
used to stand for, in this case, the argument of the Some function. The placeholders
are instantiated when the inference rule is applied in a concrete proof. The keyword
replacewith states that the expression or formula in the find clause to which the
rules is applied, is replaced after application by a new expression or formula (which
in this case is the formula false) in the resulting sequent. One may also express
side conditions on other formulas that need to be present in the sequent with the
clause assumes (as shown in Listing 6.13 later on).

Another example shown below expresses the injectivity of the function Some. This
lemma can also be verified using the characteristic theorems of the data type.

lemma Some_injective :: Some(a) = Some(b) ↔ a = b

We can express this injectivity rule by using the find clause with the expression
Some(o1) = Some(o2), and use o1 = o2 as the replacewith clause. A taclet that
uses find and replacewith on formulas corresponds to a logical equivalence in
Isabelle/HOL, since the formula can appear either as an antecedent or a succedent
in a sequent in KeY. A full exposition of the taclet language is out of the scope of
this thesis, we instead refer to the KeY book [23].

6.3 History-based specification
As a particular case study of working with abstract data types in KeY, we will em-
ploy ADTs to support history-based reasoning [53]. In this section, we will motivate
our approach, and give specifications of the Collection interface in terms of histo-
ries. In Section 6.4, we will illustrate the use of these specification in the verification
of the correctness of clients of the Collection interface.

Listing 6.3 shows some of the main methods of the Collection interface. We want
to give a specification of these methods, which formalizes the informal Javadoc
documentation [71], by means of preconditions and postconditions using JML. As
already pointed out in the introduction, such a JML specification is intrinsically
state-based, describing properties of instance variables. But interfaces abstract from
any information about instance variables because these expose details about the
underlying implementation.

Existing approaches model the general properties of a collection using model fields
in JML [10, 11]. However, there are two main methodological problems with using
model fields: first, adding model fields to an interface is ad hoc, e.g., they capture
specific properties, and, second, model fields denote locations on the heap and thus
require (dynamic) frame conditions (see e.g. [54]) for each method of the interface.
From a client perspective, however, what is only observable about any implementa-
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tion of the Collection interface is the sequence of calls and returns of the methods
of the Collection interface. This sequence of events is also called the history of
the instance of the interface. Therefore in our approach, the methods of a collection
are formally specified by mathematical relations between user-defined abstractions
of such sequences. Histories thus can be viewed to constitute the canonical abstract
state space of an interface [22, 53]: by modeling the interface using its history, we
no longer need ad hoc abstractions at the level of the interface. Further, since his-
tories are modeled using ADTs of which elements are not stored on the heap, we
do not have to specify frame conditions when reasoning about general properties of
histories.

All implementations of the Collection interface have certain constraints on se-
quences of method calls and returns in common, which characterize valid behavior.
These constraints are formalized as pre- and postcondition specifications of the inter-
face methods. In fact, the signature of the methods of the Collection interface has
been designed to allow for the expression of such constraints, e.g., the Boolean value
returned by the add method, according to the informal documentation, expresses
whether the specified element has been added:

boolean add(Object o)
Ensures that this collection contains the specified element. Returns true
if this collection changed as a result of the call. Returns false if this
collection does not permit duplicates and already contains the specified
element. ... [A] collection always contains the specified element after
this call returns [normally]. [71]

Whether the element is actually added to the Collection is thus, in some cases,
left to the underlying implementation to decide. However, we can still infer from
a sequence of calls of add and remove and their corresponding returns what is the
content of the Collection, abstracting from the underlying implementation.

The Java Collection Framework has a behavioral subtype hierarchy [28]. Here,
Collection is the topmost type, that has two subtypes List and Set. These two
subtypes are incompatible: no set can be considered a list. As we shall see in the
next subsection, it is quite surprising that we can make use of multisets to formally
capture the content of a collection, since in algebraically specified data types multiset
is a subtype of list and a supertype of set.

public interface Collection {
boolean add(Object o);
boolean addAll(Collection c);
boolean remove(Object o);
boolean contains(Object o);
boolean isEmpty();
Iterator iterator();
...

}

Listing 6.3: The Collection interface.

public interface Iterator {
boolean hasNext();
Object next();
void remove();

}

Listing 6.4: The Iterator inter-
face.
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To formalize in Isabelle/HOL sequences of calls and returns of the methods of the
Collection interface, we introduce for each method definition a corresponding con-
structor in the following parameterized data type:

datatype (α, β, γ) event = Add(α,bool) | AddAll(γ, α elemlist) |
Remove(α,bool) | Iterator(β) | IteratorNext(β, α) | IteratorRemove(β) | ...

The type parameters α, β and γ correspond to (type abstractions of) the Java types
Object, Iterator, and Collection, respectively. In general, events specify both
the actual parameters and the return value (the last argument of the event) of a
call of the specified method. For simplicity, we focus here only on the essential
methods of the collection interface, but without much difficulty, all other methods
can be added too. For technical convenience, only normal returns from method calls
are considered events. The limitation of this is that some programs rely on thrown
exceptions, and may exhibit different method behavior based on past method calls
that throw exceptions. With extra work, this restriction can be lifted by also consid-
ering additional events corresponding to method calls that do not return normally,
e.g. by recording the exception that is thrown instead of the return value.

Note that in our definition above, one event is special: namely, the one that corre-
sponds with calls to the addAll method, which, roughly, adds all the elements of
the argument collection [71]:

boolean addAll(Collection c)
Adds all of the elements in the specified collection to this collection. The
behavior of this operation is undefined if the specified collection is modi-
fied while the operation is in progress. (This implies that the behavior of
this call is undefined if the specified collection is this collection, and this
collection is nonempty.) The parameter c is the collection containing
elements to be added to this collection. Returns true if this collection
changed as a result of the call.

The problem here is that the Boolean return value only indicates that the underly-
ing collection has been modified. This information does not suffice to infer from a
sequence of events the contents of the underlying collection: the informal specifica-
tion that in this case all elements have been added is ambiguous in that it does not
take into account the possible underlying implementation of the receiving collection,
e.g., what happens if you want to add all elements of a list with duplicates to a set?
In our formalization, the addAll event returns a selection that is consistent with
the type of the receiving collection. This selection is represented by the α elemlist
type which denotes lists of pairs of elements of type α and a Boolean value. Intu-
itively, instances of this type represent the contents of the argument filtered by the
receiving collection, where each Boolean is a status flag whether the paired element
is considered to be included or not.

Note that this return type is a refinement of the Boolean returned by the addAll
method, which returns true if and only if the element list contains a pair (o, true),
for some object o. The requirement that the first component of the pairs in such a
list corresponds to the content of the added collection will be stated in the contract
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of the addAll method (see the next section). The α elemlist data type is defined as
follows:

datatype α elemlist = Nil | Cons(α,bool, α elemlist).

It introduces a polymorphic type, a constant Nil : α elemlist and a 3-ary function
symbol Cons : α × bool× α elemlist ⇒ α elemlist . The use of the names Nil and
Cons is standard for sequences.

An iterator provides a view of the elements that the collection contains. Iterators
are obtained by calling the iterator method of the Collection interface. This
method returns an object of a so-called inner class (which implements the Iterator
interface) of the surrounding collection. Objects of inner classes have access to the
internal state of the surrounding class. Iterator objects exploit this property to
access the elements of the collection. It is possible to obtain multiple iterators,
each with their own local view on a collection. Thus, we model iterators as sub-
objects of their owning collection: method calls to sub-objects are registered in the
history of the associated owning object. The methods of the iterator interface are
represented by corresponding events, e.g., IteratorNext(β, α) and IteratorRemove(β)
represent the Iterator#next() and Iterator#remove() methods of the iterator β,
respectively. As a sequence of events, the history of a collection, as defined below,
thus includes the calls and returns of the methods of its iterators.

Finally, we introduce the type history as a recursive datatype:

datatype (α, β, γ) history = Empty | Event((α, β, γ) event , (α, β, γ) history)

As above, the type parameters α, β and γ correspond to (type abstractions of) the
Java types Object, Iterator and Collection. Here the data type history uses the
constructors Empty and Event : either the history is empty, or it consists of an event
at its head and another history as its tail. To add a new event to an old history, the
new event will become the head in front and the old history will be its tail.

6.3.1 History abstractions

Abstractions of a history are used to map the history to a particular value. Instead of
dealing with a specific history representation, we use abstractions to reason about
histories. Since clients of an interface are oblivious to the implementation of the
interface, clients cannot know the exact events that comprise a history, only the value
of our abstractions. In this sense, we could consider two histories observationally
equivalent whenever the value of all our abstractions is the same. Since the contracts
are specified in JML, and the verification of clients is based on those contracts, client
verification can be done within KeY by leaving histories uninterpreted, thus at the
level of KeY one cannot know the internal structure of the history. From this point
of view, it is fair to say that we use abstract data types on the specification level in
JML, and use algebraic data types in Isabelle/HOL with a fixed representation to
realize the abstract type.

The abstraction multiset can be recursively defined to compute the multiplicity of
an object given a particular history. Intuitively it represents the ‘contents’ of a
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collection at a particular instant.

fun multiset : (α, β, γ) history × α ⇒ int

multiset(Empty , x) = 0

multiset(Event(Add(y, b), h), x) = multiset(h, x) + (x = y ∧ b ? 1 : 0)

multiset(Event(AddAll(y, xs), h), x) = multiset(h, x) +multisetEl(xs , x)

multiset(Event(Remove(y, b), h), x) = multiset(h, x)− (x = y ∧ b ? 1 : 0)

multiset(Event(IteratorRemove(i), h), x) =

multiset(h, x)− (last(h, i) = Some(x) ? 1 : 0)

multiset(Event(e, h), x) = multiset(h, x)

and e is any event not specified above leave the multiset unchanged.

The function multisetEl is defined as follows: given an element list and an element,
it computes the multiplicity of pairings of that element with true, intuitively rep-
resenting the ‘contents’ of a filtered sequence.

fun multisetEl : α elemlist × α ⇒ int

multisetEl(Nil , x) = 0

multisetEl(Cons((y, b), t), x) = multisetEl(t, x) + (x = y ∧ b ? 1 : 0)

Similarly, occurs is defined as follows: given an element list, it computes the mul-
tiplicity of elements occurring on the left in each pair that is in the element list,
regardless of the Boolean status flag.

A call to the iterator() method should return a new iterator sub-object. We use
the abstraction iterators to collect all previously returned iterators and store them
in a set. If we are to ensure that a new iterator is returned then the newly created
iterator must not be in this set.

The Iterator#remove() method does not carry any arguments from which we can
infer what element of the collection is to be removed: this element is only retrieved
by searching the past history. Each iterator sub-object can be associated with an
element that it has returned by a previous call to its next() method (if it exists).
To that end, we define the partial function last below:

fun last : (α, β, γ) history × β ⇒ α option

last(Empty , i) = None

last(Event(IteratorNext(j, x), h), i) = (i = j ? Some(x ) : last(h, i))

last(Event(e, h), i) = (modify(e) ? None : last(h, i))

where in the final clause e is any event different from IteratorNext .

We use the α option type to model this as a partial function, because not all iterators
have a last element (e.g., a newly created iterator). We cannot use null, since a
collection could contain such objects and that reference is not available in our Isabelle
theory. We also define the modify abstraction recursively: it is true for those and
only those events that represent a modification of the collection (e.g. successfully

83



6. LOGICAL HISTORY-BASED REASONING: AN ADVANCED CASE STUDY

adding or removing elements).

The abstraction visited tracks the multiplicities of the elements already seen. In-
tuitively, a call on method Iterator#next() will increase the visited multiplicity
of the returned object by one and leave all other element multiplicities the same.
We also define size that takes a history and gives the number of elements contained
by the collection, iteratorSize of a history and an iterator which computes the total
number of elements already seen by the iterator, and the attribute objects that col-
lects all elements that occur in the history in a set. The abstraction hasNext models
the outcome of the Iterator#hasNext() method. That method returns true if and
only if the iterator has a next element. If the iterator has not yet seen all elements
that are contained in its owner, it must have a next element that can be retrieved by
a call to Iterator#next(). We define hasNext to be true if and only if iteratorSize
is less than size.

What happens when using an iterator if the collection it was obtained from is mod-
ified after the creation of the iterator? A ConcurrentModificationException is
thrown in practice. To ensure that the iterator methods are only called when the
backing collection is not modified in the meantime, we introduce the notion of va-
lidity of an iterator as below. If the backing collection is modified, all iterators
associated with that collection will be invalidated.

We introduce the following abstraction:

fun isIteratorValid : (α, β, γ) history × β ⇒ bool

isIteratorValid(Empty , i) ↔ false

isIteratorValid(Event(Iterator(y), h), i) ↔
(y = i ? true : isIteratorValid(h, i))

isIteratorValid(Event(IteratorNext(y, x), h), i) ↔
((y = i→ hasNext(h, y)) ∧
(visited(h, y, x) < multiset(h, x)) ∧ isIteratorValid(h, i))

isIteratorValid(Event(IteratorRemove(y), h), i) ↔
((y = i) ∧ (∃w. last(h, y) = Some(w) ∧
(0 < visited(h, y, w))) ∧ isIteratorValid(h, i))

isIteratorValid(Event(e, h), i) = (¬modify(e) ∧ isIteratorValid(h, i))

where in the last clause, again e is any event not specified above: for those events we
first check if the collection was modified then we leave isIteratorValid the same as
for its tail. Note that calling the Iterator#remove() method invalidates all other
iterators, but leaves the iterator on which that method was called valid.

Finally, the abstraction isValid is a global invariant of the Collection interface and
is used only in Isabelle/HOL. We say a history is valid if all the conditions on the
history as specified by the method contracts are satisfied (see next section). The
sort of histories that are imported in KeY comprises only the valid histories, i.e.
the subtype of histories for which this global invariant holds. Validity of histories is
defined recursively over the history data type as follows (but we only focus on the
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definition of validity for the most important events, for the full definition we refer
the reader to the artifact [72]):

fun isValid : (α, β, γ) history ⇒ bool

isValid(Empty) ↔ true

isValid(Event(Add(y, b), h)) ↔ (multiset(h, y) = 0 → b) ∧ isValid(h)

isValid(Event(AddAll(xs , b), h)) ↔
(∀y. multiset(h, y) = 0 → multisetEl(xs, y) > 0) ∧
(b↔ ∃y. multisetEl(xs, y) > 0) ∧ isValid(h)

isValid(Event(Remove(y, b), h)) ↔ (b↔ multiset(h, y) > 0) ∧ isValid(h)

isValid(Event(Iterator(x), h)) ↔ x /∈ iterators(h) ∧ isValid(h)

isValid(Event(IteratorNext(x, y), h)) ↔ x ∈ iterators(h) ∧
isIteratorValid(Event(IteratorNext(x, y), h)) ∧ isValid(h)

isValid(Event(IteratorRemove(x), h)) ↔ x ∈ iterators(h) ∧
isIteratorValid(Event(IteratorRemove(x), h)) ∧ isValid(h)

Intuitively, the clauses of the isValid predicate capture the following conditions
which are based on the Javadoc descriptions:

• Add : If one adds an element to the receiver, it must return true if it was not
yet contained before.

• AddAll : All elements of the argument that are not contained in the receiver
should be added, and the return value must be true whenever one such add
succeeds.

• Remove: An element is removed (the return value must be true) if and only
if it was contained.

• Iterator : The returned iterator sub-object is an object that is not returned by
a previous call to Collection#iterator().

• IteratorNext : The method is only called on sub-objects returned before by
a previous call to Collection#iterator(), and the iterator should remain
valid. By definition of isIteratorValid , we also know that it implies the at-
tribute isIteratorValid(h), i.e. that the iterator must be valid before the
method Iterator#next() is called.

• IteratorRemove: Similar to above.

6.3.2 Method contracts of Collection

We are now able to formulate method contracts of the methods of the interface,
making use of histories and abstractions. Every instance of the Collection interface
has an associated history, which we specify by using a model method in JML, as
shown in Listing 6.5. The model method has as a return type the sort corresponding
to the histories we defined earlier in Isabelle/HOL. We also specify the owner of an
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iterator using a model method, see Listing 6.6. This allows us to refer to the history
of the owning collection in the specification of methods of the iterator.

public interface Collection {
/∗@ model_behavior

@ requires true;
@ model history history();
@∗/

...
}

Listing 6.5: The history() model
method in JML.

public interface Iterator {
/∗@ model_behavior

@ requires true;
@ model Collection owner();
@∗/

...
}

Listing 6.6: The owner() model
method in JML.

The history() model method here returns an element of an abstract data type:
these elements are independent of the heap, meaning that heap modifications do
not affect the value returned by the model method before the heap modifications
took place, thus eliminating the need to apply dependency contracts for lifting ab-
stractions of the history to updated heaps as was required in the EHB approach
[53].

As a guiding principle, our contracts are specified in terms of the history abstrac-
tions only. This principle ensures that interfaces are specified up to observational
equivalence, thus leaving more room on the side of an implementor of an interface
to make choices on how to implement a method. For example, the add method can
be implemented in terms of calling the addAll method of the same implementation
supplied with a singleton collection wrapping the argument. Another example would
be implementing the addAll method by iterating over the supplied collection and
for each object calling the add method of the same implementation.

Method contract of the add() method.

We have specified this method in terms of the multiset of the new history (after
the method call) and the old history (prior to the method call, referred to in the
postcondition with \old).

1 /∗∗ Ensures that this collection contains the specified element
2 ∗ (optional operation).
3 ∗ Returns true if this collection changed as a result of the call.
4 ∗ Returns false if this collection does not permit duplicates and
5 ∗ already contains the specified element. ∗∗/
6 /∗ @ public normal_behavior
7 @ ensures \dl_multiset(history(),o) ==
8 \dl_multiset(\old(history()), o) + ((\result == true) ? 1 : 0);
9 @ ensures (\forall Object o1; o1 != o; \dl_multiset(history(),o1) ==

10 \dl_multiset(\old(history()), o1));
11 @ ensures \dl_multiset(history(),o) > 0;
12 @ ensures \result == false ==>
13 (\forall Iterator it; it.owner() == this;
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14 \dl_isIteratorValid(\old(history()), it) ==>
15 \dl_isIteratorValid(history(), it));
16 @ ensures (\forall Iterator it;
17 \old(it.owner()) == this; it.owner() == this);
18 @∗/
19 boolean add(Object o);

Listing 6.7: The specification of the add() method.

In Listing 7, lines 1–5 show the informal Javadoc of the add method [71]. The
JML specification (lines 7–17) covers all information present in the Javadoc. More
explanation about the specification is given below:

• On lines 7–8: This clause ensures that the collection contains the specified
element after the add method call (as described in the informal Javadoc).
If the collection changed as a result of the call, the result is true and the
multiset will be incremented accordingly. Otherwise, the multiset will remain
unchanged. Note that the value of \result is underspecified, leaving room
for multiple implementations of the collection interface. Indeed, the difference
between the refinements List and Set of the Collection interface makes
a distinction between the behavior of add(Object): lists always allow the
addition of new elements, whereas sets only add unique elements. So, for the
List interface, the \result is unconditionally true. For the Set interface,
the \result is true if and only if the multiplicity of the object to add is zero
before execution of the add method.

• On lines 9–10: For each object different from the object to be added, the mul-
tiplicity does not change. The Javadoc does not explicitly cover this. However,
this makes more precise how the collection may change by the call: no other
objects may be added, other than the one in the parameter.

• On line 11: The call to the add method guarantees that the multiplicity of
the object to add is positive. This formalizes the informal Javadoc property
that the collection will contain the specified element after returning.

The last two postconditions in the contract of add are not related to the Javadoc
description, but rather specify two properties related to our formalization of itera-
tors as sub-objects. On lines 12–15, the specification is a direct translation of the
isIteratorValid definition in Isabelle/HOL. If the collection remains unchanged, all
iterators related to the collection are still valid, otherwise, the iterators will be in-
validated due to the successful adding of elements to the collection. On lines 16–17,
it specified that a call to the add method does not affect ownership of iterators of
the collection.

Method contract of the addAll() method.

Consider modeling the addAll() method: how can we represent an invocation of
this method in a history? We can not simply record the argument instance, since
that instance may be modified over time. Could we instead take a snapshot of its
history, and embed that in the event corresponding to addAll? No, it turns out that
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such a nested history snapshot leads to difficulty in defining the multiset function
that represents the contents of a collection: the receiver of the addAll method,
being a concrete implementation, is underspecified at the level of Collection. A
snapshot of the history of the argument merely allows us to retrieve the contents
of the argument at that time, but not how the receiving collection deals with those
individual elements.

Listing 6.8 shows the interface specification of the addAll method. Lines 1–7 show
the informal Javadoc of the addAll method. Lines 8–23 show the postconditions of
the addAll method.

1 /∗∗ Adds all of the elements in the specified collection to this
2 ∗ collection (optional operation).
3 ∗ The behavior of this operation is undefined if the specified
4 ∗ collection is modified while the operation is in progress.
5 ∗ This implies that the behavior of this call is undefined if the
6 ∗ specified collection is this collection, and this collection is
7 ∗ nonempty. ∗∗/
8 ∗ @ ensures (\exists elemlist el;
9 (\forall Object o;

10 \dl_occurs(el,o) == \dl_multiset(c.history(),o) &&
11 \dl_multiset(history(),o) ==
12 \dl_multiset(\old(history()),o) + \dl_multisetEl(el,o)));
13 @ ensures (\forall Object o;
14 \dl_multiset(c.history(),o) == \dl_multiset(\old(c.history()),o));
15 @ ensures (\forall Object o;
16 \dl_multiset(c.history(),o) > 0 ==>\dl_multiset(history(),o) > 0);
17 @ ensures \result == false ==>
18 (\forall Iterator it; it.owner() == this;
19 \dl_isIteratorValid(\old(history()), it) ==>
20 \dl_isIteratorValid(history(), it));
21 @ ensures (\forall Iterator it;
22 \old(it.owner()) == this; it.owner() == this);
23 @∗/
24 boolean addAll(Collection c);

Listing 6.8: The use of multiset and elemlist in the specification of addAll.

• On lines 8–12: The ensures clause shows how the multiplicities of elements of
the argument collection are related to that of the receiving collection. Here,
\dl_multiset(c.history(),o) and \dl_multiset(history(),o), defined
above, denote the multiplicity of an element o in the argument and receiving
collection, respectively. The list el associates a status flag with each occur-
rence of an element of the argument collection. This flag indicates whether the
receiving collection’s implementation actually does add the supplied element
(e.g., a Set filters out duplicate objects but a List does not). Consequently,
the multiplicity of the elements of the receiving collection is updated by how
many times the object is actually added, denoted by \dl_multisetEl(el,o)
(also defined above). The existential quantification of this list allows both
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for abstraction from the particular enumeration order of the argument col-
lection and the implementation of the receiving collection as specified by the
association of the Boolean values.

• On lines 13–14: The multiplicity of the elements of the argument collection
will not change due to this method call. The Javadoc does not explicitly state
this, but this property is needed to reason about unchanged contents of the
supplied argument collection.

• On lines 15–16: If there are some objects in the argument collection that are
not yet added to this collection, then the multiplicity of those objects must
be positive after the method returns. This formalizes the informal Javadoc
that all of the elements in the specified collection need to be added to this
collection.

The postconditions on lines 17–20 and lines 21–22 have the same meaning as the
last two postconditions of the add method. On lines 17–20, the specification is a
direct translation of the isIteratorValid definition in Isabelle/HOL. If the collection
remains unchanged, all iterators related to the collection are still valid, otherwise,
the iterators will be invalidated due to the successful adding of elements to the
collection. On lines 21–22, it specified that a call to the add method does not affect
ownership of iterators of the collection.

Method contract of the Iterator#remove() method.

Next, we consider the following use case: iterating over the elements of a collec-
tion. The question arises: what happens when using an iterator when the collec-
tion it was obtained from is modified after its creation? In practice, an exception
named ConcurrentModificationException is thrown. To ensure that the iterator
methods are only called when the backing collection is not modified in the mean-
time, we introduce the notion of the validity of an iterator. As already discussed
above, we record the events of the iterators in the history of the owning collection,
alongside other events that signal whether that collection is modified, so that in-
deed we can define a recursive function that determines whether an iterator is still
valid. Another complex feature of the iterator is that it provides a parameterless
Iterator#remove() method, producing no return value. Its intended semantics is
to delete from the backing collection the element that was returned by a previous
call to Iterator#next(), and invalidate all other iterators.

The specification of this method is illustrated in Listing 6.9.

1 /∗∗ Removes from the underlying collection the last element returned by
2 ∗ this iterator (optional operation).
3 ∗ This method can be called only once per call to next().
4 ∗ The behavior of an iterator is unspecified if the underlying
5 ∗ collection is modified while the iteration is in progress in any way
6 ∗ other than by calling this method. ∗∗/
7 /∗ @ ...
8 @ requires \dl_last(owner().history(),this) != \dl_None;
9 @ ensures (\exists Object o;
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10 \dl_last(\old(owner().history()),this) == \dl_Some(o);
11 \dl_multiset(owner().history(),o) ==
12 \dl_multiset(\old(owner().history()),o) − 1);
13 @ ensures (\exists Object o;
14 \dl_last(\old(owner().history()),this) == \dl_Some(o);
15 (\forall Object o1; o1 != o;
16 \dl_multiset(owner().history(),o1) ==
17 \dl_multiset(\old(owner().history()),o1)));
18 @∗/
19 void remove();

Listing 6.9: Part of the specification of the remove method on Iterator.

• On line 8: Here we use the last property to capture the return value of a
previous call to Iterator#next(). This formalizes the informal Javadoc that
the remove() method can be called only once per call to next(): after the
remove method returns, the last property gives back None as can be seen from
the definition in the previous section. Thus calling remove() twice after one
call to next() is not allowed.

• On lines 9–12: The object that was last returned by next() is removed from
the owning collection.

• On lines 13–17: This postcondition is not explicitly covered by the informal
Javadoc, but this specifies that no other object may be removed, other than
the object that was returned by the previous call to next.

For the full Isabelle/HOL theory and method contracts of our case study, we refer
the reader to the artifact accompanying this paper [72]. This artifact includes the
translation of the theory to a signature that can be loaded in KeY (version 2.8.0) so
that its function symbols are available in the JML specifications we formulated for
Collection and Iterator. It also includes the taclets we imported from Isabelle,
which we used to close the proof obligations generated by KeY.

6.4 History-based client-side verification

In this section, we will describe several case studies that we perform to show the
feasibility and usability of our history-based reasoning approach supported by ADTs.
Section 6.4.1 provides an example that we have verified with both the EHB approach
[53] and the LHB approach described in this paper. This case supports our claim that
the LHB approach yields a significant improvement in the total proof effort when
compared to the EHB approach. As such, we are now able to verify more complex
examples: the examples in Section 6.4.2 demonstrate reasoning about iterators,
and, advancing further, we will verify binary methods in Section 6.4.3. Finally,
proof statistics for all case studies are in Section 6.4.4.

We focus in this paper on the verification of client-side programs. Clients of an
interface are, in principle, oblivious to the implementation of the interface. Hence,
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every property that we verify of a client of an interface should hold for any correct
implementation of that interface.

6.4.1 Significant improvement in proof effort

Using ADTs instead of encoding histories as Java objects results in significantly
lower effort in defining functions for use in contracts and giving correctness proofs.
This can be best seen by revisiting an example of our EHB work [53] and comparing
it to the proof effort required in the LHB approach using ADTs.

/∗@ ...
@ ensures (\forall Object o1; \dl_multiset(x.history(),o1) ==

\dl_multiset(\old(x.history()),o1)); @∗/
public static void add_remove(Collection x, Object y) {

if (x.add(y)) x.remove(y);
}

Listing 6.10: Adding an object and if successful removing it again, leaves the contents
of a Collection the same.

The client code and its contract are given in Listing 6.10, which has the same contract
as in previous work, except we now use the imported functions we have defined in
Isabelle instead of using pure methods and their dependency contracts.

In both the previous and current work, we specify the behavior of the client by
ensuring that the ‘contents’ of the collection remain unmodified: we do so in terms of
the multiset of the old history and the new history (after the add_remove method).
During verification, we make use of the contracts of methods add(Object) and
remove(Object). These contracts specify their method behavior also in terms of
the old and new history, relative to each call. Let h be the old history (before the
call) and h′ be the new history (after the call). Let y be the argument, the remove
method contract specifies that multiset(h′, y) = multiset(h, y)−1 if the return value
was true, and multiset(h′, y) = multiset(h, y) otherwise. Further, it ensures the
return value is true if multiset(h, y) > 0. Also, multiset(h′, x) = multiset(h, x)
holds for any object x ̸= y. In similar terms, a contract is given for add that
specifies that the multiplicity of the argument is increased by one, in the case that
true is returned, and that regardless of the return value the multiplicity of the
argument is positive after add.

We need to show that the multiplicity of the object y after the add method and the
remove method is the same as before executing both methods. At this point, we can
see a clear difference in the verification effort required between the two approaches.
In the EHB approach, multiplicities are computed by a pure Java method Multiset
that operates on an encoding of the history that lives on the heap. Since Java
methods may diverge or use non-deterministic features, we need to show that the
pure method behaves as a function: it terminates and is deterministic. Moreover,
since we deal with the effects of the heap, we also need to show that the computation
of this pure method is not affected by calls of add or remove, which requires the use
of an accessibility clause of the multiset method.
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To make this explicit, Listing 6.11 shows a concrete example of a proof obligation
from KeY that arose in the EHB approach.

...
History.Multiset(h,y)@heap2 + 1 = History.Multiset(h,y)@heap1,
History.Multiset(h,y)@heap1 = History.Multiset(h,y)@heap + 1,
...
==>
History.Multiset(h,y)@heap2 = History.Multiset(h@heap,y)@heap2

Listing 6.11: Simplified proof obligation with histories as Java objects showing eval-
uation of the multiset function as a pure (Java) method in various heaps.

Informally, the proof obligation states that we must establish that the multiplicity
of y after adding and removing object y (resulting in the heap named heap2) is
equal to the multiplicity of y before both methods were executed (in the heap
named heap). So we have to perform proof steps relating the result/behavior of the
multiset method in different heaps. In practice, heap terms may grow very large
(i.e. in a different, previous case study [73] we encountered heap terms that were
several pages long) which further complicates reasoning.

By contrast, in the LHB approach of this paper, we model multiset as a function
without any dependency on the heap, and so we do not have to perform proof steps
to relate the behavior of multiset in different heaps (the interpretation of multiset is
fixed and does not change if the heap is modified). While the arguments of multiset
may still depend on the heap (such as the history associated with an interface that
lives on the heap), when we evaluate the argument to a particular value (such as
an element of the history ADT) the behavior of the multiset function when given
such values do not depend on the heap.1 Moreover, by defining the function in
Isabelle/HOL, we make use of its facilities to show that the function is well-defined
(terminating and deterministic). These properties are verified fully automatically
in Isabelle: contrary to the proofs of the same properties given in KeY in the EHB
approach. Thus, the LHB approach significantly reduces the total verification effort
required.

More specifically, the proof statistics that show how to verify the Multiset pure
method is terminating and deterministic and satisfies its equational specification in
our EHB approach is shown in Table 6.1. This (partially manual) effort in KeY is
eliminated in the LHB approach since the proof can be done automatically using
Isabelle/HOL: these properties follow automatically from the function definition and
the characteristic theorems of the underlying data type definitions.

Furthermore, comparing the verification of the add_remove method in both ap-
proaches, it can be immediately seen that we no longer have to apply any dependency
contract in the LHB approach. The EHB approach was studied in the context of a
simpler definition for histories (without modeling the addAll event), thus favoring
the LHB approach even more. Moreover, the proof obligations involving the function

1This can be compared to the expression x+ y in Java where x and y are fields: the value of
x and y depends on the heap but the meaning of the ‘+’ operation does not.
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symbol multiset can be resolved using the contracts of the methods add(Object)
and remove(Object) only since these contracts specify that the multiplicity of the
argument is first increased by one and then decreased by one. Thus, this example
client can be verified without importing any lemma from Isabelle/HOL.

Name Nodes Branches I.step Q.inst Contract Dep. Inv. Time
Multiset 54,857 1,053 52 476 39 0 0 72 min

Table 6.1: Proof statistics of verifying termination, determinacy, and equational
specification of the Multiset pure method in the EHB approach. The required effort
for a single pure method is large.

6.4.2 Reasoning about Iterator

In this subsection, we will illustrate the benefits of our LHB approach in the ver-
ification of client-side examples that work with iterators. We model iterators as
sub-objects so that their history is recorded by the associated owning collection. As
we discussed above, iterators require special treatment because their behavior relies
on the history of other objects, in our case the enclosing collection that owns the
iterator.

In the EHB approach [53], we did verify a client (shown in Listing 6.12) of iterator
and showed its termination: but we did not verify the pure methods (termination,
determinism, equational specification) used in the specification that modeled the
behavior of iterators. The EHB approach was not practical in this respect, since
we need many abstractions: such as size, iteratorSize, isValid , isIteratorValid and
its supporting functions last , hasNext , and visited . The large number of abstrac-
tions needed to model the behavior of iterators shows a verification bottleneck we
encountered in the EHB approach: modeling these as pure methods and verifying
their properties takes roughly the same effort as required for multiset , per function!
In the LHB approach, we have defined these abstractions in Isabelle/HOL, and thus
eliminated the need to show termination, and determinism and that they satisfy
their equational specification within KeY.

public static void iter_only(Collection x) {
Iterator it = x.iterator();
/∗@ ...

@ decreasing \dl_size(it.owner().history()) −
\dl_iteratorSize(it.owner().history(),it); @∗/

while (it.hasNext()) it.next();
}

Listing 6.12: Iterating over the collection. Why does it terminate?

The main term needed to show the termination of the client of iterator is given in
the decreasing clause in JML. For the decreasing term, it has to be shown that it
is strictly decreasing for each loop iteration and that it evaluates to a non-negative
value in any state satisfying the loop invariant [23]. Following our workflow in
Section 6.2, we are stuck in a proof situation of the verification conditions involving
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the decreasing term, since the function behaviors of size and iteratorSize are not
defined in KeY. We thus formulate the lemma below:

lemma sizeCompare :: isValid(h) ⇒ isIteratorValid(h, it) ⇒
size(h) ≥ iteratorSize(h, it)

According to the definition of iteratorSize, it only adds 1 when executing the next()
method, but the definition of isIteratorValid in Section 6.3.1 indicates that this
method is only executed under the condition that size is larger than iteratorSize, so
this lemma can be proven in Isabelle/HOL. The next step we take is translating the
above lemma to a taclet named sizeCompare as shown in Listing 6.13. We can now
apply this taclet to close the verification condition showing that the loop invariant
implies that the decreasing term is not negative.

\axioms {
sizeCompare {

\schemaVar \term history h;
\schemaVar \term Iterator it;
\assumes(isIteratorValid(h,it) = TRUE ==>)
\add(size(h) >= iteratorSize(h,it) ==>)

}; }

Listing 6.13: Adding a taclet to KeY that expresses the relationship between size
and iteratorSize.

Advancing further, we want to verify an example that modifies the backing collection
through an iterator. Consider the example in Listing 6.14 that makes use of the
Iterator#remove() method. We iterate over a given collection and at each step we
remove the last returned element by the iterator from the backing collection. Thus,
after completing the iteration, when there are no next elements left, we expect to
be able to prove that the backing collection is now empty.

/∗@ ...
@ ensures \dl_size(x.history()) == 0; @∗/

public static void iter_remove(Collection x) {
Iterator it = x.iterator();
/∗@ ...

@ loop_invariant \dl_iteratorSize(it.owner().history(),it) == 0;
@ decreasing \dl_size(it.owner().history()); @∗/

while (it.hasNext()) {
it.next();
it.remove();

}
}

Listing 6.14: Example 3: Iterating over the collection and removing all its elements.

This example also shows an important aspect of our LHB approach: being able to use
Isabelle/HOL to derive non-trivial properties of the functions we have defined. The
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crucial insight here is that, after we exit the loop, we know that hasNext() returned
false. Following the definition of hasNext , we established in Isabelle/HOL the (non-
trivial) fact that a valid iterator has no next elements if and only if iteratorSize and
size are equal. Following our workflow, we have proven this fact and imported it
into KeY as a taclet, which is shown in Listing 6.15. Since it is a loop invariant
that the size of the iterator remains zero (each time we remove an element through
its iterator, it is not only removed from the backing collection but also from the
elements seen by the iterator), we can thus deduce that finally, the collection must
be empty.

HasNext_size {
\schemaVar \term history h;
\schemaVar \term Iterator it;
\assumes(isIteratorValid(h,it) = TRUE ==>)
\find(HasNext(h,it) = FALSE)
\replacewith(size(h) = iteratorSize(h,it))
};

Listing 6.15: Taclet for showing the equality between size and iteratorSize.

6.4.3 Reasoning about binary methods

Binary methods are methods that act on two objects that are instances of the same
interface. The difficulty in reasoning about binary methods [52] lies in the fact
that one instance may, by its implementation of the interface method, interfere
with the other instance of the same interface. By using our history-based approach,
we can limit such interference by requiring that the history of the other instances
remains the same during the execution of a method on some receiving instance.
Consequently, properties of other collection’s histories remain invariant over the
execution of methods on the receiving instance.

As a client-side verification example, we have verified clients that operate on two
collections at the same time. This is interesting, since both collections can be
of a different implementation, and can potentially interfere with each other. The
technique we applied here is to specify what properties remain invariant of histories
of all other collections, e.g. that a call to a method of one collection does not change
the history of any other collection. Since histories are not part of the heap, that a
history remains invariant implies that all its (polymorphic) properties are invariant
too. However, if a history contains some reference to an object on the heap, it can
still be the case that the properties of such an object have changed.

In the example given in Listing 6.16, we make use of the addAll method of the
collection, adding elements of one collection to another. Clearly, during the addAll
call, the collections interfere: collection x could obtain an iterator of collection y
to add all elements of y to itself. So, in the specification of addAll, we have no
history invariance of y. Instead, we specify what properties of y’s history remain
invariant: in this case, its multiset must remain invariant (assuming x and y are not
aliases). In our example, the program first performs such addAll and then iterates
over the collection y that was supplied as an argument. For each of the elements
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in the argument collection y, we check whether x did indeed add that element, by
calling contains. We expect that after adding all elements, all elements must be
contained. Indeed, we were able to verify this property.

/∗@ ...
@ ensures \result = true; @∗/

public static boolean all_contains(Collection x, Collection y) {
x.addAll(y); Iterator it = y.iterator();
/∗@ ...

@ loop_invariant (\forall Object o1;
\dl_multiset(y.history(),o1) > 0 ==>
\dl_multiset(x.history(),o1) > 0); @∗/

while(it.hasNext()) {
if (!x.contains(it.next())) { return false; }

}
return true;

}

Listing 6.16: Using the addAll method and checking for inclusion.

The crucial property in this verification is shown as the loop invariant: all objects
that are contained in collection y are also contained in collection x. This can be
verified initially: the call to iterator does not change the multisets associated with
the histories of x and y, and after the addAll method is called this inclusion is true.
But why? As already explained above, in the specification of addAll, we state the
existence of an element list: this is an enumeration of the contents of the argument
collection y but for each element also a Boolean flag that states whether x has
decided to add those elements. Since this flag depends on the actual implementation
of x, which is inaccessible to us, the contract of addAll existentially quantifies the
element list. Thus, from the postcondition of addAll, for any element that was not
yet contained in x, at least one of the pairs in the element list with that same element
must have a true flag associated. Following from the specification of addAll, we
can deduce that the loop invariant holds initially. From the loop invariant, we can
further deduce that the contains method never returns false, so the then-branch
returning false is unreachable. Termination of the iterator can be verified as in the
previous example. Hence, the overall program returns true.

The last example we give is the most complex and realistic one: it is a program that
compares two collections. The example involves the mutation of two collections. Two
collections are considered equivalent whenever they have the same multiplicities for
all elements. The example shown in Listing 6.17 performs a destructive comparison:
the collections are modified in the process by removing elements. Thus, we have
formulated in the contract that this method returns true if and only if the two
collections were equivalent before calling the method. From this example, it is also
possible to build a non-destructive comparison method by first creating a copy of
the input collections, e.g. using IdentityHashMap (which, in recent work [74], has
its correctness verified).
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/∗@ ...
@ requires x != y;
@ ensures \result == true <==> (\forall Object o1;

\dl_multiset(\old(x.history()),o1) ==
\dl_multiset(\old(y.history()),o1)); @∗/

public static boolean compare_two(Collection x, Collection y) {
Iterator it = x.iterator();
/∗@ ...

@ loop_invariant \dl_isiteratorValid(it.owner().history(), it);
@ loop_invariant (\forall Object o1;

\dl_multiset(\old(x.history()),o1) ==
\dl_multiset(\old(y.history()),o1) <==>

\dl_multiset(x.history(),o1) ==
\dl_multiset(y.history(),o1)); @∗/

while (it.hasNext()) {
if (!y.remove(it.next())) { return false; }
else { it.remove(); }

}
return y.isEmpty();

}

Listing 6.17: A realistic example of a binary method.

We assume the two collections are not aliases. The verification goes along the
following lines: it is a loop invariant that the two collections were equivalent at
the beginning of the method compare_two if and only if the two collections are
equivalent in the current state. The invariant is trivially valid at the start of the
method, and also at the start of the loop since the iterator does not change the
multisets of either collection: the call on x explicitly specifies that x’s multiset
values are preserved, but moreover specifies the invariance of properties of histories
of any other collection (so also that of y). The crucial point is that a call to a
method of one collection does not change the properties of other collections, such
as the value of its multiset. The same holds for iterators of other collections. We
specify that the history remains invariant for all other collections (and thus the
history of sub-objects too) and that the owners of all iterators are preserved, as
shown in Listing 6.18. These ensure clauses need to be additionally mentioned in
the collection’s method specifications.1

/∗@ ...
@ ensures (\forall Collection x; x != this;

x.history() == \old(x.history()));
@ ensures (\forall Iterator it; \old(it.owner())== it.owner());
@∗/

Listing 6.18: Additional specification clauses needed to prevent potential aliasing.

1See, in the artifact, the LocalCollection and LocalIterator interfaces.
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For each element of x, we remove it from y (which does not affect the iteration
over x, since the removal of an element of y specifies that the history of any other
collection remains unaffected). If that fails, then there is an element in x which is
not contained in y, hence x and y are not equivalent, hence they were not equivalent
at the start of the program. If removal from y succeeded, we also remove the element
from x through its iterator: hence x and y are equivalent if and only if they were
equivalent at the start of the loop. At the end of the loop, we know x is empty (a
similar argument as seen in a previous example). If y is not empty then it has (and
had) more elements than x, otherwise both are empty and thus were also equivalent
at the start of the program.

6.4.4 Proof statistics

The proof statistics of all the use cases discussed in this article are given in Table 6.2
below. These proofs were constructed with KeY version 2.8.0. Some of the lemmas
proven in Isabelle/HOL can be done automatically, but the overall proof effort in
Isabelle/HOL takes about two hours. The time estimates must be interpreted with
caution: the reported time is based on the final version of all definitions and spec-
ifications and does not include the development of the theory in Isabelle/HOL or
specifications in JML, and the time estimates are highly dependent on the user’s
experience with the tool.

Name Nodes Branches I.step Q.inst Contract Dep. Inv. Time
add_remove† 3,936 79 44 5 2 23 0 11 min
add_remove 1,514 15 12 7 2 0 0 1 min
iter_only† 8,549 58 53 0 4 12 1 15 min
iter_only 6,549 18 0 9 3 0 1 2 min
iter_remove 10,353 24 20 0 4 0 1 4 min
all_contains 23,900 94 187 40 5 0 2 40 min
compare_two 44,481 199 544 93 8 0 1 100 min

Table 6.2: Summary of proof statistics. Nodes and Branches measure the size of
the proof tree, I.step counts the number of interactive steps performed by the user,
Q.inst is the number of quantifier instantiations, Contract is the number of contracts
applied, Dep. is the number of dependency contracts applied, Loop inv. is the
number of loop invariants applied, and Time is the estimated time of completing the
proof in the KeY theorem prover.

The rows marked † come from the EHB approach (encoding histories as Java objects
[53]). The non-marked rows, i.e. the LHB approach, are part of the accompanying
artifact [72]. Compared with the artifact [72] for our conference paper [75], we have
simplified the contracts to make them more readable. For example, instead of adding
invariant properties to all pre- and postconditions explicitly in the contracts, we now
specify them as interface invariants. This requires more effort during verification,
since previously verification conditions that could be automatically closed need to
be proven manually (due to the limitations of KeY in its strategy of automatically
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unfolding partial invariants). We also provide video files (no sound!) that show a
recording of the interactive proof sessions [76].

6.5 Summary
In this chapter, we showed how ADTs externally defined in Isabelle/HOL can be used
in JML specifications and KeY proofs, and we applied this technique to specifying
and verifying an important part of the Java Collection Framework. Our technique
enables us to use Isabelle/HOL as an additional back-end for KeY, but also to enrich
the specification language. We successfully applied our approach to define an ADT
for histories of Java interfaces and specified core methods of the main interface of
the Java Collection Framework and verified several client programs that use it. Our
method is tailored to support programming to interfaces and is powerful enough to
deal with binary methods and sub-objects such as iterators. Sub-objects require
a notion of ownership as their behavior depends on the history of other objects,
e.g. the enclosing collection and other iterators over that collection. Moreover,
we specified the method Collection#addAll(Collection) and were able to verify
client code that makes use of that method, which solved a problem left open in our
previous work [5].
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Chapter 7

History-based reasoning about
behavioral subtyping

Behavioral subtyping [28], a concept predicated on the behavior of objects, is a key
principle in object-oriented programming. This principle ensures that a subtype
should seamlessly substitute its supertype without affecting the desirable properties
or expected behavior of a program. The importance of this concept is particularly
evident in the development of type hierarchies and type systems of programming
languages that enable polymorphism and inheritance.

In this chapter, we introduce a new history-based proof-theory for reasoning about
behavioral subtyping in class and interface hierarchies. Our approach is based on a
semantic definition of types in terms of sets of sequences of method calls and returns,
so-called histories. Behavioral subtyping is then naturally defined semantically as a
set-theoretic subset relation between sets of histories, modulo a projection relation
that captures the syntactic subtype relation. The main contribution is a Hoare-style
proof theory for the specification and verification of the behavioral subtyping relation
in terms of histories, abstracting from the underlying implementation. Through the
use of a banking example we show the practical applicability of our approach.

This chapter is based on the following publication and artifact:

• Bian, J., Hiep, H.A., de Boer, F.S. History-based Reasoning about Behavioral Subtyping.
(Submitted for publication.)

• Bian, J., Hiep, H. A., de Boer, F. S. (2024). History-Based Reasoning about Behavioral
Subtyping: Proof files.
https://doi.org/10.5281/zenodo.10998227
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7.1 Introduction

The programming to interfaces discipline is one of the most important principles
in software engineering. This methodology allows the developer of client code to
abstract away from internal implementation details, such as object state, thereby
aiding modular program development. Type hierarchies support this principle in
object-oriented design by allowing the declaration of new subtypes that inherit prop-
erties and behaviors from their supertypes, while also providing the flexibility to add
or override specific features as needed. The concept of behavioral subtyping (which
refers to subtyping based on behavior, in contrast to nominal subtyping and struc-
tural subtyping [77]) ensures that in clients one should be able to replace the use of a
supertype by a subtype without causing unexpected behavior [27, 78]. This concept
is employed in object-oriented programming to ensure software maintainability and
robustness.

Histories, as defined in our previous work [53], are sequences of method calls per-
formed on the object. We define the semantics of a type as a set of histories, thus
abstracting from the underlying state/implementation. This allows to define the
behavioral subtype relation semantically as subset relation between sets of histories,
modulo a projection relation between histories that corresponds with the syntactic
definition of the subtype relation. For the specification and verification of the be-
havioral subtype relation we introduce method contracts using Hoare triples that
involve suitable user-defined abstractions over histories, called attributes. We dis-
cuss behavioral subtyping in three settings: class-class inheritance, class-interface
inheritance, as well as interface-interface inheritance.

There has been numerous research on behavioral subtyping [79, 80, 81, 82], starting
from the seminal work by Liskov and Wing [28], who point out that a subtype must
adhere to the behavioral contracts of its supertype. To define the subtype relation,
they introduced an abstraction function that maps the state of each subtype to a
state of its corresponding supertype. The soundness of the substitution principle
follows from two conditions: the precondition of the supertype implies the precondi-
tion of the subtype, and the postcondition of the subtype implies the postcondition
of the supertype. The pre/postconditions of the subtype speak of the state of the
subtype, whereas the pre/postconditions of the supertype speak of a different state:
so the abstraction function takes a state of the subtype and maps it to a state of
the supertype in such a way that these conditions hold. Is worth mentioning that
in Liskov and Wing’s work, they introduce a notion of history constraint, which is
different from our notion of a history. Their history refers to temporal properties of
objects, which are used to declare a relationship between pre-states and post-states
preserved by any method of a type [83]. Leavens and Weih [84, 85, 86] present
a technique for the modular reasoning about object-oriented programs, called su-
pertype abstraction, which allows adding behavioral subtypes without reverification.
However, their method is based on the assumption that each specified subtype re-
lation constitutes a behavioral subtype. Demonstrating such behavioral subtyping
requires again the use of an abstraction function. Although there have been several
logics for the reasoning about object-oriented programs including a notion of behav-
ioral subtyping, such as [87, 88, 89], they are all based on the abstraction function.
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In the field of refinement calculus [90, 91, 92], which focuses on the stepwise trans-
formation of an abstract specification into an executable implementation, one also
uses the abstraction functions. These functions help in mapping implementation to
specification, ensuring that each refinement step is correct.

In contrast to the above related work the history-based reasoning approach in this
paper avoids formulating ad hoc abstraction functions between different state-based
implementations. Instead it is based on a general semantic definition of the be-
havioral sub-type relation as a subset relation between sets of histories modulo a
projection relation. Further, our proof method is based on the use of suitable user-
defined history abstractions which allows for a modular verification of the proof
obligations. Finally, our approach is applicable to both interfaces and classes, and
allows reasoning about behavioral subtyping in settings that are typically absent in
most related studies [84, 93, 94, 95].

The paper is intentionally written to introduce and motivate a new idea rather
than to work out all the formal details. We discuss the methodology of history-
based behavioral subtyping in Sect. 7.2. Our specification methods are presented
in the context of history and attributes. In Sect. 7.3, we use a banking example
to illustrate our approach. We provide only informal proofs for three particular
subtype relations: interface-interface, interface-class, and class-class. The part of
this example is proven using the KeY theorem prover [23] and Isabelle/HOL [33].
The verification workflow is based on our previous work [96].

7.2 Methodology

In object-oriented programming, a method signature consists of a list of parameter
types and a return type. An interface contains a set of method signatures. A class
consists of a set of field declarations and a set of method declarations.

The type hierarchy for classes and interfaces in languages with a nominal type system
can be declared as below:

interface I [ extends I1, I2, . . . , In ]

class C ′ [ extends C ] [ implements I1, I2, . . . , In ]

An interface can extend zero or more interfaces, which is known as interface inheri-
tance. When one interface extends another, it inherits all of the methods defined in
its super interfaces, but it can also add new methods of its own. A class can inherit
from multiple interfaces, by providing implementations for all methods defined in
the interfaces. However, a class can only inherit from a single class. This is due to
the fact that class inheritance is typically used for defining the (memory) structure
of a class. Allowing multiple inheritance of classes can potentially lead to conflicts
among class invariants [97] and ambiguity, as exemplified by the so-called diamond
problem [98].

The basic behavioral notion of subtyping discussed in [28] is shown as in Fig. 7.1.
A Hoare triple specification, denoted as {p}m {q}, consists of a method m, a pre-
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condition p that describes the object state before the method is executed, and a
postcondition q that describes the expected object state after the method is exe-
cuted. In Fig. 7.1, we have {p}m {q} on top and {p′}m {q′} below, which represent
the supertype and subtype specification of m, respectively, where m is a method
inherited by the subtype from the supertype.

Figure 7.1: The behav-
ioral notion of subtyping.

From the perspective of a client, we ensure before a
method call that the precondition of the supertype
holds, so that after dynamic dispatch where we jump
to the implementation of the subtype, we also need
that the precondition of the corresponding method in
the subtype holds. After the execution of the subtype
method finishes, it reaches the postcondition of the sub-
type’s method. This postcondition should also imply

the postcondition of the method in the supertype, since the client assumes that
the postcondition of the supertype holds after the method returns. Moreover, if
both types are classes then the invariant of the supertype must be preserved in the
subtype.

However, typically the precondition and postcondition, given in some specification
language, are intrinsically state-based and as such are not directly suitable for the
specification of a state-hiding interface. In history-based reasoning, we introduce
the concept of a history that can be seen as the most general abstraction of the
state space of an interface. There are two approaches: the executable history-
based (EHB) approach [53], and the logical history-based (LHB) approach [96]. In
the former approach, histories become part of the run-time environment and are
encoded as objects. In the latter approach, histories do not exist at run-time and
are only introduced as bookkeeping devices for reasoning, similar to ghost variables.
We proceed with the latter approach. In the LHB approach, histories are modeled
as elements of an abstract data type (ADT). This means histories are immutable
and inaccessible: no program can modify or even inspect a history value.

A history is a sequence of events. Every method is represented by a corresponding
event type, that records the types of the parameters and the type of the return
value. For technical convenience, we only regard normal returns from method calls
as events. For each class and interface, we introduce a history type by defining it as
an inductive data type of sequences of events.

Following the information hiding principle, we assume an object encapsulates its
own state. Consequently, each object can enforce invariants over its own fields and
its state can be completely determined by the sequence of method calls invoked on
the object. Attributes are user-defined abstractions of histories that are in general
defined inductively over the history. These attributes are used in method specifica-
tions to specify the intended behavior of implementations, and by using attributes
the method specifications do not depend on the (hidden) state of an object.

The overall approach in history-based reasoning can be summarized by the following
diagram, see Fig. 7.2. We will now provide more details on each of the components
in Fig. 7.2.
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Figure 7.2: History-based reasoning about behavioral subtyping. In R(h, g), h rep-
resents the history of the supertype and g represents the history of the subtype. In
Um(h, g), h represents the history in the post-state, g represents the history in the
pre-state and m is the corresponding method.

7.2.1 History-based refinement theory

To establish that the behavioral subtype relation holds between two types, we define
a set of proof obligations between the preconditions and postconditions of methods
inherited by a subtype. For a modular verification of these proof obligations we
introduce a methodology that consists of two parts: verification of the refinement
relation and, separately, verification of the proof obligations generated from method
specifications, assuming the refinement relation. The method specifications refer to
the attributes of the associated history, and abstract from the inductive definition of
the history and its attributes. The refinement relation on the other hand captures
logically the relationship between attributes of different histories, namely the histo-
ries of the supertype and the subtype. The axioms of the refinement relation itself,
as a logical theory, should be established as logical consequences of the inductive
definitions of the attributes and the projection relation.

This assumption can be justified as follows. When a method from a subtype that
inherits from a supertype in the hierarchy is called, updates are made to both the his-
tories of supertype and subtype. However, for methods only present in the subtype,
updates are made only to the history of the subtype, while that of the supertype
remains unchanged. This design choice is intentional to avoid the potential issues
that may occur if the subtype is cast to the supertype. More general approaches,
where the history of a subtype can be simulated by a history of the supertype, are
out of scope in this paper. For any given histories h and g, where h is a projection
of g, the user-defined refinement relation R(h, g) describes a logical relation between
the attributes of h and g, abstracting from their inductive definitions. Note that
attributes in general may have different meanings when interpreted by the history
of a supertype or by the history of a subtype.
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The proof obligations, also called verification conditions, for interface-interface re-
finement, interface-class refinement and class-class refinement are shown below. For
a supertype, h represents the history of the supertype, p represents the precondi-
tion and q represents the postcondition. For a subtype, g represents the history
of the subtype, p′ represents the precondition and q′ represents the postcondition.
For classes, I and I ′ denote the superclass and the subclass invariant, respectively.
Class invariants in general describe a (logical) relation between the fields of a class
and the attributes of the assoctated class. In proving the verification conditions
for the pre- and postconditions of the inherited methods, the refinement relation
is assumed. It should be noted that, by using the logical consequence relation ⊢,
the history variables h and g are implicitly universally quantified (on both sides
of ⊢). The refinement relation itself involves a separate proof obligation which is
formulated by

h = proj (g) → R(h, g)

That is, the logical relation between the attributes of the histories of the super-
type and the subtype should follow from the projection relation and their inductive
definitions.

Verification Condition IIR (Interface-Interface Refinement).

R(h, g) ⊢ (p→ p′)

R(h, g) ⊢ (q′ → q)

Verification Condition ICR (Interface-Class Refinement).

R(h, g) ⊢ (p ∧ Inv′ → p′)

R(h, g) ⊢ (q′ ∧ Inv′ → q)

Verification Condition CCR (Class-Class Refinement).

R(h, g) ⊢ (Inv′ → Inv)

R(h, g) ⊢ (p ∧ Inv′ → p′)

R(h, g) ⊢ (q′ ∧ Inv′ → q)

7.2.2 Verifying method call and method implementation

In the usual manner, method calls are verified in terms of the corresponding method
specification (as determined by the static type of the callee expression). This involves
the usual substitution of the formal parameter by the actual parameter. More
specifically, a method specification {p}m(ū) {q} can be instantiated to a method call
x = y.m(ē) by substituting this with the calling object y and the method parameters
ū with the actual arguments ē in the preconditions and postconditions.

To validate the postcondition of a method body, which specifies the corresponding
update of the associated history, we assume in the following method implementation
rule a logical update relation Um(h, h

′) between the attributes of the updated history
h and the ‘old’ history h′.

Rule 1 (Method implementation Rule). Given the method definition {p}m {q}, the
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body S of m, and the class invariant I, we have the rule

{p ∧ I}S {r} Um(h, h
′) ⊢ r → (q ∧ I)

{p}m {q}

This rule thus allows to abstract from the inductive definitions of the history at-
tributes in the validation of the method body. The logical update relation Um(h, h

′)
between the attributes of the updated history h and the ‘old’ history h′, then can
be established separately as a logical consequence of h = Cons(m(x̄, result), h′)
which directly describes the relation between the updated history and the old one
in terms of their sequence structure. Here x̄ are the actual parameters and result is
the return value. The result variable here may either be null (indicating no return
value) or contain a return value.

7.3 Case study

In this section, we introduce a banking example to illustrate the methodology dis-
cussed in Section 2. This example features a type hierarchy, which allows us to
demonstrate our ideas effectively. It also presents some interesting challenges that
occur in real-world programs, such as how to enforce protocol at the interface level
where we have no access to the underlying state. We also consider some real-world
scenarios, like how to extend functionality in existing programs. We implement the
case study by defining the ADTs in Isabelle/HOL, and used ADTs in specification
and KeY proof for Java programs. The artifact accompanying this paper [99] in-
cludes the full Isabelle theory of banking example and the proof files for the example
discussed later.

In the banking example, we have two interfaces: the Saving interface and the
Payment interface.

interface Saving {
void deposit(int i);
int getbalance();

}

Listing 7.1: The Saving interface.

interface Payment extends Saving {
boolean query(int i);
void withdraw();

}

Listing 7.2: The Payment interface.

The Saving interface, as shown in Listing 7.1, specifies methods for depositing an
integer amount into the account and for retrieving the current balance. The Payment
interface (Listing 7.2) defines two methods: the query method and the withdraw
method. The query method is used to check whether there are sufficient funds in
the account before each withdrawal.

The method signatures of the interface are designed to allow for the expression of
the intended protocol, similar to how interfaces in Java Collection Framework are
explained in informal Javadoc documentation [71]. The protocol for the Payment
interface stipulates that the withdraw method can only be invoked when the return
value of the query is true. This protocol is designed to protect the interface from
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executing invalid withdrawal operations that could potentially lead to errors in the
system (e.g. increasing the balance by calling withdraw multiple times).

We have three classes for our example, the Account class, the Credit class and the
Debit class. The Account class (Listing 7.3) implements the methods defined in the
Saving interface.

class Account implements Saving {
int balance; // field
void deposit(int i) { balance=balance + i; }
int getbalance() { return balance; } }

Listing 7.3: The Account class.

The Credit class (Listing 7.4) permits withdrawals even if the balance is insufficient,
similar to a real-world credit card. The query method, which is designed to check
whether there are sufficient funds in the account before each withdraw method: in
the case of the credit card, the caller always receives an affirmative response.

class Credit implements Payment {
int request = −1; int balance; // fields
void deposit(int i) { balance=balance + i; }
int getbalance() { return balance; } }
boolean query(int i) { request = i; return true; }
void withdraw() { balance = balance − request; request = −1; }}

Listing 7.4: The Credit class.

In contrast, the Debit class (Listing 7.5) allows withdrawals only if the account
has sufficient funds. This condition is determined by the return value of the query
method. Specifically, it is true if and only if the balance is greater than or equal the
argument.

class Debit extends Account implements Payment {
int request = −1; // field
boolean query(int i) {

if (balance ≥ i) { request = i; return true; } else return false; }
void withdraw() { balance = balance − request; request = −1; }}

Listing 7.5: The Debit class.

The hierarchical structure for our running example is depicted in Fig. 7.3.

7.3.1 History-based reasoning

In this subsection, we illustrate how we formalize ADTs for banking examples. We
define data types and functions to logically model domain-specific knowledge of the
Java program that we want to verify. Although these definitions cannot directly
reference Java types, they can instead be defined using polymorphic type parame-
ters. One defines data types and recursive functions using the datatype and fun
commands.
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Figure 7.3: The type hierarchy of our running example.

The data types events contain the method name, the actual parameter values, and
the output value (which is the final argument of the event) of a method call. The
events are designed to be generic and do not contain information about the caller.
This design choice makes events useful for a general history-based theory that is
related to the caller. With regard to methods, there are methods like deposit that
take an integer as a parameter but have no return value, whereas the getbalance
method takes no input parameters but returns an integer. To distinguish between
the input type and output type, we use a unit type void to represent the absence
of a meaningful value. As discussed above, each subtype includes the events that
are inherited from its supertype. For example, the definitions of the events for the
interfaces in our running example are as follows:

datatype saveEvent = deposit(int,void) | balance(void, int)

datatype payEvent = deposit(int,void) | balance(void, int) |
query(int,bool) | withdraw(void,void)

The concept of history is formally defined as an inductive data type of a sequence of
events. Rather than employing temporal logic or formalizing history as an indexed
set of events, we find that inductive data types offer a more convenient approach for
defining attributes by induction and are easier to integrate with theorem provers in
general. Thus, we introduce the history as a parameterized inductive datatype:

datatype history(α) = Empty | Cons(α, history(α))

The type parameter α corresponds to the type of event occurring in the history,
such as saveEvent and payEvent . For example, we can instantiate the parameter
by the datatype saveEvent to obtain the histories for the Saving interface, which
is represented as history(saveEvent). The history data type uses the constructors
Empty and Cons , indicating that the history is either empty or composed of an event
as its head and another history as its tail. When a new event is added, the new
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event, along with its argument and return type, becomes the head of the history,
while the old history turns to become the tail. It is worth mentioning that a history
is generated in reverse order, which means that the last generated event appears at
the start of the sequence.

The amount attribute, defined below, denotes the total amount of money in a given
account. Intuitively, it serves as a snapshot representation of the interface’s ‘con-
tents’ at a particular instant. In the Saving interface, amount is defined inductively
over the structure of the saving history, as shown below: a successful deposit in-
creases the amount of money according to the value of the provided argument. We
use null to represent a constant of type void.

fun amount : history(saveEvent) ⇒ int

amount(Empty) = 0

amount(Cons(deposit(i, null), h)) = amount(h) + i

amount(Cons(balance(null, i), h)) = amount(h)

Attributes of history are treated similarly as “fields” in a class. To be specific,
attributes defined by a supertype can be freely used and reinterpreted by its subtype.
In our case, we redefine the amount attribute based on the payment history, taking
the new methods query and withdraw into account.

fun amount : history(payEvent) ⇒ int

amount(Empty) = 0

amount(Cons(deposit(i, null), h)) = amount(h) + i

amount(Cons(balance(null, i), h)) = amount(h)

amount(Cons(query(i, b), h)) = amount(h)

amount(Cons(withdraw(null, null), h)) =

amount(h)− (ready(h) ? take(h) : 0)

We define attributes ready and take as follows: given a history, ready checks whether
the previous query event has returned true, and if so, take returns the parameter
of query method.

fun ready : history(payEvent) ⇒ boolean

ready(Empty) = false

ready(Cons(query(i, b), h)) = b

ready(Cons(withdraw(null, null), h)) = false

ready(Cons(e, h)) = ready(h)

fun take : history(payEvent) ⇒ int

take(Empty) = −1

take(Cons(query(i, b), h)) = (b ? i : −1)

take(Cons(withdraw(null, null), h)) = −1

take(Cons(e, h)) = take(h)
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In the last clause, e is any event of payEvent not specified in the clauses above.

7.3.2 History-based specification

We now formulate method contracts of the methods of interface and class, making
use of histories and its attributes. By overloading field access notation, we can treat
the attributes of a history associated with this like how we would treat an unqualified
field. For example, when considering the amount defined in the Saving interface, we
can use syntactic sugar to simplify amount(h) which h is of type history(saveEvent)
to just amount within the Saving interface. For external objects, we can explicitly
indicate the object of which the corresponding history is taken in an attribute.
Listing 7.6 shows a concrete example: suppose we would add a default method
transfer to the Payment interface, that performs a withdrawal and immediately
transfers the amount to the given Saving instance, then the postcondition illustrates
that the amount of (the history of) this decreases, while the amount of (the history
of) the receiver increases. Moreover, this example illustrates why hiding the concrete
structure of a history from specifications is useful: while the default implementation
does not record transfer as an event in the history of Payment and instead records
the events which are used by the default implementation (in our case withdraw), non-
default implementations do record a transfer event, thus have a different structure
of the history.

// Transfer money from this Payment account to the given Saving account
{ready = true ∧ take = i}
default void transfer(int i, Saving s) { withdraw(); s.deposit(i); }
{(s ̸= this → amount = old(amount)−i ∧ s.amount = old(s.amount)+i) ∧
(s = this → amount = old(amount))}

Listing 7.6: An example to specify the object of a history explicitly.

To avoid introducing a logical freeze variable, which would capture the history as
it were in the pre-state, we use the notation old as a logical operation on terms
to denote the attribute value evaluated in the pre-state of the method call, where
old distributes over pure operations such as arithmetical functions. In the postcon-
dition, amount in our example refers to the amount after the method call, while
old(amount) represents the amount before the method call.

An interface specification includes the name of the interface being specified and the
method signatures that the interface provides along with their respective precondi-
tion and postcondition. Listing 7.7 illustrates the use of the history attribute in the
specification of the Saving interface.

Specification(Saving) =
({i ≥ 0} void deposit(int i) {amount = old(amount)+i},
{true} int getbalance() {amount = old(amount) ∧ result = amount})

Listing 7.7: The specification of the Saving interface in terms of attribute amount .

The special variable result in the postcondition captures the return value of a
method.

111



7. HISTORY-BASED REASONING ABOUT BEHAVIORAL SUBTYPING

The specification of the Payment interface in terms of the attribute amount is shown
in Listing 7.8.

Specification(Payment) =
({i ≥ 0} void deposit(int i) {amount = old(amount)+i},
{true} int getbalance() {amount = old(amount) ∧ result = amount},
{i ≥ 0} boolean query(int i) {amount = old(amount) ∧

result = ready ∧ (ready → take = i)},
{ready} void withdraw() {amount = old(amount−take) ∧ ¬ready)

Listing 7.8: The specification of the Payment interface in terms of attributes amount .

One should observe that the return value of the query method remains unspecified,
thereby leaving design decisions open for subtypes and implementors. The intended
meaning of the query method is to check whether money can be withdrawn from
the account. Two implementations can be considered: a credit account (see Listing
7.10) and a debit account (see Listing 7.11). It is not possible to further specify the
result in the Payment interface in a way that is compatible with both subtypes.

In addition to the type name and method specifications, a class specification may
also contain the class invariant. The class invariant is an essential component of
the class specification that should hold in the pre- and post-state of each method
execution [97]. The method specifications of a class are described in terms of both
fields and history attributes. The specification of the Account class is shown in
Listing 7.9.

Specification(Account) =
(balance = amount ∧ balance ≥ 0, // class invariant
{i ≥ 0} void deposit(int i) {balance = old(balance)+i},
{true} int getbalance() {balance = old(balance) ∧ result = balance})

Listing 7.9: The specification of the Account class.

The specification of the Credit class and the Debit class are present in Listing 7.10
and Listing 7.11, respectively.

Specification(Credit) =
(balance = amount ∧ request = take // class invariant
{i≥0} void deposit(int i) {balance = old(balance)+i},
{true} int getbalance() {balance = old(balance) ∧ result = balance},
{i≥0} boolean query(int i) {balance = old(balance) ∧

result = true ∧ request = i},
{request ̸= −1} void withdraw() {request = −1 ∧

balance = old(balance−request)})

Listing 7.10: The specification of the Credit class.

The value of result for the query method is explicitly specified in the classes Debit
and Credit that implement the interface. Specifically, for the Credit class, result
is unconditionally true. Conversely, for the Debit class, result is true when and
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only when the balance ≥ i. Note that these two conditions are not compatible: no
debit object can be considered as a credit object.

Specification(Debit) =
(balance = amount ∧ request = take ∧ balance ≥ 0 ∧ balance ≥ request,
{i ≥ 0} void deposit(i) {balance = old(balance)+i},
{true} int getbalance() {balance = old(balance) ∧ result = balance},
{i≥0} boolean query(i) {balance = old(balance) ∧ request = i ∧

result=(balance≥i)},
{balance ≥ request ∧ request ̸= −1} void withdraw()

{request = −1 ∧ balance = old(balance−request)})

Listing 7.11: The specification of the Debit class.

The preconditions and postconditions effectively specify protocols for methods. For
instance, suppose that the withdraw method should only be invoked following a valid
query. In both the withdraw method in the Debit and Credit class, we impose a
precondition constraint request ̸= −1. When dealing with an interface method
where we have no access to the underlying state, such as in the Payment interface
(Listing 7.8), the protocol can describe using the attribute of history, specifically the
ready attribute in this case. This allows us to capture the return value of a previous
query, abstracting from the underlying implementation.

7.3.3 Behavioral subtyping

In this subsection, we discuss the refinement of interface-interface, interface-class,
and class-class in the context of the banking example. Let us start with interface-
interface refinement. The example we provide is the deposit method in the Saving
interface (Listing 7.7) and its subtype, the Payment interface (Listing 7.8). First, we
consider formulating the refinement relation. For user-defined refinement relation
R(h, g), h is of type history(saveEvent), and g is of type history(payEvent), we can
formulate R(h, g) according to the definition of amount for both the Saving and
Payment interfaces, as provided below: every time the withdraw is called within
the Payment interface and returns a true value, the amount attribute defined on the
Payment history will decrease. To reflect this behavior, we introduce a new attribute,
withdrawamount , to accumulate the total amount successfully withdrawn:

fun withdrawamount : history(payEvent) ⇒ int

withdrawamount(Empty) = 0

withdrawamount(Cons(withdraw(null, null), h)) =

withdrawamount(h) + (ready(h) ? take(h) : 0)

withdrawamount(Cons(e, h)) = withdrawamount(h)

again e is any payEvent not mentioned above.

Due to the introduction of the new attributes, we need to modify the method spec-
ification to capture the behavior of the interface. In this example, the method
within the Payment interface requires modification for the introduction of attribute
withdrawamount , as illustrated in Listing 7.12.
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Spec(Payment) =
({i≥0} void deposit(i) {amount=old(amount)+i ∧

withdrawamount=old(withdrawamount)}, ...)

Listing 7.12: The deposit method specification for the Payment interface. The
specifications for other methods within the Payment interface have also been revised.

We can then define the refinement relation as follows:
R(h, g)

def≡ amount(h) = amount(g) + withdrawamount(g)

For h : history(saveEvent) and g : history(payEvent), we can formulate R(h, g)
by unfolding the attribute definition of h and g.

Now we apply Liskov and Wing’s method rules to supertype and subtype in order to
generate the verification conditions for behavioral subtyping. We first consider the
implication between the preconditions of both types, where i serves as the actual
parameter of the deposit method. The proof seems straightforward: i ≥ 0 → i ≥ 0
is trivial. But what about postcondition amount = old(amount) + i → amount =
old(amount) + i? We cannot directly prove this due to the attribute amount of
the Saving history is different from the attribute amount of the Payment history, as
amount definition given in below. Even though attribute names may be identical,
their definitions are specific to and can differ between different histories.

Instead, by de-sugaring and renaming the attribute, we explicitly get the amount of
h, which is of type history(saveEvent), and g, which is of type history(payEvent).
Since old distributes over pure operations, the designation of an attribute with the
keyword old means to take the attribute of the old history, that is, the history
prior to the method call. Thus, the expression old(amount(g)) is equivalent to
amount(old(g)). We now have to show the following verification condition:

amount(g) = amount(old(g)) + i
↓

amount(h) = amount(old(h)) + i
(VC1)

However, the condition (VC1) remains unproven because there is a lack knowledge
about the internal structure of the history and the definition of the attributes. To
solve this issue, we use the refinement relation which allows us to relate the his-
tories of supertype and subtype, and then we can further relate predicates about
the supertype to those about the subtype and vice versa. By assuming R(h, g), h
represents the history of the supertype and g represents the history of the subtype,
we can get the refinement relation for the history in the state where the method call
started for free, that is R(old(h), old(g)). We then can simply prove the VC1.

amount(g) = amount(old(g)) + i ∧
withdrawamount(g) = withdrawamount(old(g))
amount(h) = amount(g) + withdrawamount(g) ∧

amount(old(h)) = amount(old(g)) + withdrawamount(old(g))
↓

amount(h) = amount(old(h)) + i
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7.3 Case study

The refinement for interface and class needs to take into account the class invariants.
The specific example of interface-class refinement involves the precondition of the
withdraw method of the Payment interface and its subclass, the Debit class. We
can derive the following from their specifications (Listing 7.8 and Listing 7.11) based
on the precondition rule:

ready(h) → (balance ≥ request ∧ request ̸= −1) (VC2)

In the attribute declaration ready(h), the type of variable h is history(payEvent).

In this case, the Debit class fully inherits from the Payment interface. Thus, the
refinement relation between them is as follows:

R(h, g)
def≡ ready(h) = ready(g) ∧ amount(h) = amount(g)

The parameter h is an instance of the datatype history(payEvent), while g is an
instance of the datatype history(debitEvent).

One can see that only the refinement relation is not sufficient to solve the VC2. The
class invariant of the Debit class contains balance = amount and request = take
which relates the attributes amount and take to the fields balance and request.
By assuming the refinement relation, alongside the class invariants shown in Listing
7.11, we can prove the VC2: according to the definition of the attribute, if ready
returns true, then take ̸= −1.

ready(h) ∧
balance = amount(g) ∧ request = take(g)

balance ≥ 0 ∧ balance ≥ request
ready(h) = ready(g) ∧ amount(h) = amount(g)

↓
balance ≥ request ∧ request ̸= −1

Now we turn to focus on class-class refinement. The relation between two classes
needs to consider the use of class invariants in both the superclass and the subclass.
If invariants can be employed in supertypes for reasoning, subtypes must also obey
these invariants. To be specific, the complete invariant of a subclass specification
is formed as a conjunction of both the invariant in the supertype and the unique
invariant specific to the subtype itself. The class invariant, which typically connects
the fields and attributes of history, can leverage refinement relation to prove the
verification conditions. To be specific, given a refinement relation between a subclass
and a superclass, if the class invariants for the subclass hold, it would logically follow
that the class invariants for the superclass also hold. In the banking example, an
invariant property of the Account class is that its balance is always greater or equal
to zero. The Credit class allows one to withdraw money even if the balance is
negative, so the Credit class cannot be a subclass of the Account class. Conversely,
the Debit class inherits invariants from the specification of the Account class and
also has its own invariants, as outlined in Listing 7.11.

We now delve deeper into the design problem of method placement within the type
hierarchy, in order to emphasize the importance of adherence to the behavioral
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subtyping rule. In most cases, developers have the flexibility to decide at what level
a method should be placed. For instance, the Payment interface introduces two new
methods: query and withdraw. One potential approach is to define the withdraw
method within the Payment interface and introduce the query method exclusively
as an addition to the Debit implementation. However, this approach clashes with
behavioral subtyping, which requires the implication ready → balance ≥ request∧
request ̸= −1 to hold, but ready cannot be given a sensible meaning at the level of
the Payment interface without the query method. Thus, in our running example, we
define the query method in the supertype. This allows the subclasses to implement
the method, thereby ensuring compliance with behavioral subtyping.

From a developers’ perspective, another important consideration is how to extend
the functionality of a program. For example, with the increasing need for security,
the system may require an additional step: entering the pin code to verify whether
the person withdrawing money is legitimate. Instead of modifying the existing
Payment interface, a new sub-interface, named Security, can be defined. This sub-
interface would include a new attribute, pin, designed to capture the entered pin
code. Thus, in the query method, the subtype need to add a new precondition to
verify the correctness of the pin code. Benefiting from our approach, we do not
need to reconstruct abstract functions for each state, but only formulate refinement
relations between the new type and its supertypes and subtypes to ensure behavioral
subtyping.

7.3.4 Example of method call and implementation

We exemplify the method call rule through a client-side example: the verification of
the mybalance method, as shown in Listing 7.13.

class ClientExample{
{true}
int mybalance(Saving s){
int i = s.getbalance(); return i;}
{result = s.amount ∧ s.amount = old(s.amount)}

{j≥0}
int myAccount(Debit d, int j){

d.deposit(j); int r = mybalance(a); return r;}
{result = d.amount ∧ d.amount = old(d.amount)+j}

}

Listing 7.13: Client code that illustrate the method call rule.

At the beginning of the method, its precondition is assumed. To verify the call
to getbalance method, we rely on the specification of the callee, in this case, the
Saving interface (with specifications provided in Listing 7.7). By substituting the
callee for the implicit receiver this in the specification, we can assume the postcon-
dition.

{true} result = this .mybalance(Saving s) {result = s.amount}
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The technique for method call verification relies on the method specification, which
uses the attributes and fields to describe the expected behavior of the method. The
verification of clients based on those method specifications leaves histories unin-
terpreted, thereby eliminating the need to prove the correctness of the method’s
implementation each time the method is called. For myAccount method, the veri-
fication of the method call is independent of the implementation of the argument.
This means that only the specification given in the Account is accessible. We can
prove the postcondition of the myAccount method by referring to the history of the
Account class and its corresponding redefinition of the attribute amount .

A specific example of method implementation we can consider the deposit method
in the Account class, as shown in Listing 7.14.

class Account implements Saving {
balance ≥ 0 ∧ balance = amount , //invariant
{i≥0}
void deposit(i){balance=balance+i;}
{balance=old(balance)+i}

}

Listing 7.14: The deposit implementation in the Account class.

One verification condition involves reasoning about the class invariant balance =
amount should hold before and after the method deposit call. We verify the
deposit method is correct with respect to the contract. How can we show the
attribute amount also changed without knowing the internal structure of the his-
tory and the attribute definition? Within the implementing class, the history is
defined by the field this, which is updated during the method call with a newly
created history that involves the new event: the deposit event. Attributes are used
to map the history to a particular value, with the update of the history, the value
of the attribute also changed.

For the example in Listing 7.14, we can establish the update relation in terms of the
attributes as below. This can be verified by unfolding the amount definition.

amount(Cons(deposit(i, null), h′)) = amount(h′) + i

We provide a manual translation as amount = old(amount)+i, so it can be used in
the verification condition. One can prove the class invariant by showing that both
the class field and attribute increase accordingly.

7.4 Summary

Programming to interfaces, a key principle in object-oriented programming, is fun-
damental to numerous popular frameworks that offer hierarchies of interfaces and
classes. These interfaces abstract from state and implementation, enhancing modu-
larity and maintainability in software systems. Behavioral subtyping complements
the practice of programming to interfaces by ensuring that subtypes not only match
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the method signatures defined by their supertypes but also adhere to the intended
behaviors.

The main contribution of this chapter is to develop a general history-based refine-
ment approach for verifying behavioral subtyping, allowing consistent program spec-
ification at different abstraction levels. Our methodology enables us to reason about
interfaces, generating interfaces-based behavioral subtyping rules that are notably
absent in the majority of studies. We showed how our refinement approach can be
effectively employed to rationalize various kinds of refinements in terms of projection
relation: from interface to interface, interface to class and class to class.

As logical properties, attributes serve several purposes. They can map a single
history to a value, represent the relationship for different histories like the refinement
relation, and reflect different states of the same history like the update relation.
Moreover, we applied our approach to verifying method calls as well as classes that
implement interfaces. Our running example served as a practical guide, showcasing
the value of our approach in realistic scenarios.

Our history-based refinement theory is suitable for all three scenarios: method over-
riding, method inheritance, and methods explicitly defined within the subtype itself
[27]. When a method is inherited, the subclass simply inherits the same precondition
and postcondition as the method in its supertype. For method overriding, a subtype
that overrides its supertype’s method must adhere to the behavioral subtyping rule.
In the case of method overloading, the method in the subtype may have a different
signature compared to the methods of the same name in its supertype. We can
interpret this distinctive scenario as the subtype defining a new method, which is
independent of the supertype’s method.

This work simplifies the workflow by clearly distinguishing between the role of the
designer, who deals with attributes, and the role of the verifier, who handles ver-
ification conditions. Designers can not only define attributes but also provide the
grounding to confirm the realizability of the theory. The verifier’s assumptions are
based on refinement relation provided by the designer, which can used to prove the
verification conditions generated for behavioral subtyping.
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Chapter 8

Conclusion

Throughout the main body of the thesis, we implemented a series of studies on ex-
ploring ways to apply formal methods systematically for the verification of complex
object-oriented libraries such as the Java Collection Framework. We start with spec-
ifying and verifying methods in the java.util.LinkedList class, but we encounter
challenges with methods that take an interface type as a parameter. To address this,
we proposed to use histories as method calls and returns to completely determine the
concrete state of any implementation and thus can be seen as a way to reason about
the interface. The executable history-based (EHB) approach, designed to facili-
tate history-based reasoning and creating reusable specifications for Java programs,
embeds histories and attributes directly as Java objects. This approach could be
seamlessly integrated in the KeY theorem prover and avoids the need to change the
KeY system itself. However, the EHB approach still has its limitations, particularly
when it comes to reasoning about the heap and properties of user-defined attributes,
which can require a lot of work due to alias analysis and dynamic footprints. To
mitigate this, we introduce the logical history-based (LHB) approach, which models
histories as an external abstract data type with functions. This opened up new
possibilities for modeling complex behavior in object-oriented programs. Building
on the LHB approach, we have developed a history-based refinement theory for
reasoning about hierarchy in object-oriented programs. To systematically conclude
the thesis, in this final chapter, we first summarize the contributions we have made
to addressing the key challenges of formal verification in object-oriented libraries,
as formulated in the introductory chapter. Finally, we provide a list of possible
directions for future work.

8.1 Summary of contributions

Ensuring that software libraries operate without errors and function as intended has
always been a central concern in the field of computer science. This is especially
critical given that these libraries serve as the foundation for countless applications
and are used by billions of devices worldwide. Formal verification offers a rigorous,
mathematically sound way to confirm the accuracy of the software, grounded on
clearly defined behavior criteria expressed in formal logic. While formal verification
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provides robust assurance of software’s correctness, unlike testing, it often demands
considerable time and resources to define specifications and develop proofs. This
thesis has extended the application of the KeY theorem prover to achieve systematic
verification of object-oriented libraries of the popular programming language Java.
This work may interest non-specialists, as it shows what features of a specification
and verification system we need in order to reason about real-world programs. It is
also beneficial for beginning users of KeY and Isabelle/HOL, as we introduce and
informally explain several key concepts in Chapter 2. We also provide the artifacts
and video materials for each chapter to help in reproducing the proofs underlying
the results. These materials also help the expert user and the developer of KeY as
a ‘benchmark’ for specification and (automatic) verification techniques. Below, we
give a short summary of the contribution for each chapter.

In Chapter 3, we outline the methodology for analyzing an existing Java program to
gain a deeper understanding of its behavior. It emphasizes the importance of precise
specifications, using the JML for clarity. To validate the program’s behavior against
these specifications, the chapter advocates for a formal approach supported by the
KeY tool, which uniquely allows for comprehensive reasoning on Java programs.
This tutorial emphasizes the critical importance of ensuring program correctness in
software libraries, particularly in Java’s standard library, due to their widespread
use and potential for systemic impact.

In Chapter 4, we explore the reasoning about the correctness of Java interfaces, with
a particular application to Java’s Collection interface. We introduce the concept
of a history as a sequence of method calls and returns as a general methodology for
specifying interfaces and verifying clients and implementations of interfaces. This
helps us to develop a novel “proving to interface” methodology.

As a proof-of-concept, using the KeY theorem prover, in Chapter 5, the so-called
EHB approach has been applied to the core methods of Java’s Collection interface.
The EHB approach is to embed histories and attributes in the KeY theorem prover
by encoding them as Java objects on the heap, thereby avoiding the need to change
the KeY system itself. We show our approach is sufficient for reasoning about
interfaces from the client’s perspective, as well as about classes that implement
interfaces. However, the EHB approach uses pure methods that rely on the heap,
giving rise to additional proof obligations every time these pure methods are used
in JML specifications. Moreover, reasoning about the properties of user-defined
functions is complex. For instance, the proofs about multiset attribute modeled as
a pure method take 72 minutes of work.

We then proposed the LHB approach. The LHB approach encodes histories as built-
in ADTs with special proof rules, to avoid modeling histories as Java objects. We
discuss integrating ADTs in the KeY theorem prover by a new approach to model
data types using Isabelle/HOL as an interactive back-end and representing Isabelle
theorems as user-defined taclets in KeY. In Chapter 6, we detail on how we designed
our specification of the Collection interface, and describe in more detail the steps
needed to verify several complex example clients. In this chapter, we have seen
an application of our technique to the case of history-based reasoning. The main
contribution of this chapter is to provide a technique for integrating ADTs, defined
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in the general-purpose theorem prover Isabelle/HOL, in the domain-specific theorem
prover KeY. We describe how data types, functions, and lemmas can be imported
into KeY from Isabelle/HOL. Our LHB approach is not only useful for reasoning
about the Java Collection Framework, but it is a general method that can also be
applied to other libraries and their interfaces. We foresee that our technique can be
extended to other common data types, such as trees and graphs, which provides a
fruitful direction for future work.

The work using the LHB approach has opened up the possibility of defining many
more functions on histories, thus furthering the ability to model complex object be-
havior: this we demonstrated by verifying complex and realistic client code that uses
collections. The binary method takes more than 100 minutes to verify: it is hard to
imagine that it can be done with the EHB approach. Moreover, we significantly sim-
plified reasoning about the properties of user-defined functions themselves. We can
fully automate verification in Isabelle/HOL with user-defined attributes modeled as
a function. Further, while KeY is tailored for proving properties of concrete Java pro-
grams, Isabelle/HOL has more powerful facilities for general theorem proving. Our
approach allows leveraging Isabelle/HOL to guarantee, for example, meta-properties
such as the consistency of axioms about user-defined ADT functions. Using KeY
alone, was problematic or even impossible.

In Chapter 7, we introduce a new history-based proof-theory that allows us to
formally verify that inherited methods are correct with respect to refinements of
overridden methods. Benefiting from the LHB approach, we formulate behavioral
subtyping rules that can be employed to axiomatize various kinds of refinements in
terms of a projection relation: from interface to interface, interface to class, and
class to class. To bring these concepts to real code, we describe a simple running
example that captures the key hierarchy structure and some interesting challenges
in object-oriented programs, e.g. specifying interface protocols. Through this ex-
ample, we demonstrate the practical applicability of our history-based refinement
approach.

8.2 Future work
The research presented in this thesis achieved some interesting results and opened
up several potential research directions that we leave for future work. In this section,
we briefly discuss future directions related to our main topic.

In Chapter 3 and Chapter 4, we discuss the specification and verification of part of
the classes and interfaces provided by the Java Collection framework. To achieve
the ultimate goal of complete formal verification of Java’s Collection Framework still
requires a lot of effort. For example, with our novel approach, one can continue our
specification and verification work on LinkedList, which we introduced in Chapter
3, to include methods like retainAll and removeAll that have not yet been verified.
Furthermore, the verification of other classes in the Java collection framework, such
as ArryList, remains open. While Chapter 4 focuses on the Collection interface,
there are several other interfaces, such as, Map, List, Set and ListIterator, that
warrant attention in future work.

121



8. CONCLUSION

In Chapter 6, we introduced a technique for integrating ADTs into the KeY the-
orem prover. We outline how data types, functions, and lemmas can be imported
into domain-specific theorem prover KeY from the general-purpose theorem prove
Isabelle/HOL. It is noteworthy that the translation from Isabelle/HOL to KeY is
implemented manually. Our approach leverages that Isabelle/HOL guarantees the
consistency of introducing user-defined ADTs and functions. We manually translate
these ADTs and functions as axioms into KeY using taclet rules, and ensure that
these rules can be accepted and used by KeY. This process requires the verifier to
be very familiar with KeY, Isablle/HOL, JML, taclet rules, etc. From the practical
perspective, an automatic tool that imports Isabelle/HOL theories into KeY based
on our work could be implemented. This would further reduce manual intervention
and enable full automation of the verification process.

In Chapter 7, we proposed a history-based refinement theory to verify the hi-
erarchy structure in widely used object-oriented programs. For instance, within
the Java Collection Framework, the Collection interface serves as a foundational
component within the framework, representing a group of objects and providing
a blueprint for various concrete implementations, including List, Set, and Queue.
The more complex hierarchy structure in the Collection interface can be found in
the class Linkedlist that inherits from AbstractSequqntialList which inherits
from AbstractList and then inherits from AbstractCollection and implements
the List interface. Benefiting from our history-based refinement theory, we can
follow the hierarchy structure to systematically analyze and validate the behavioral
subtyping relations between each class and interface. Besides, the refinement theory
between Iterator and ListIterator is also an interesting direction, as an iterator
requires a notion of ownership since its behavior depends on the history of other
objects. It remains future work to apply this theory to verifying real software. Such
an effort could be used to demonstrate how formal methods improve the reliability
and accuracy of popular object-oriented libraries.

From a long-term perspective, it is worthwhile to consider future work related to veri-
fied code revisions and proof reuse. In Chapter 3, we discussed fixing the LinkedList
class by explicitly bounding its maximum size to Integer.MAX_VALUE elements, but
other solutions are possible. Rather than using integers indices for elements, one
could change to an index of type long or BigInteger. Such a code revision is how-
ever incompatible with the general Collection and List interfaces (whose method
signatures mandate the use of integer indices), thereby breaking all existing client
code that uses LinkedList. Clearly, this is not an option in a widely used language
like Java or any language that aims to be backward compatible. It raises the chal-
lenge: can we find code revisions that are compatible with existing interfaces and
their clients? We can take this challenge even further: can we use our workflow to
find such compatible code revisions, and are they also amenable to formal verifica-
tion? For code reuse, many case studies in mechanic verification [1, 23, 73] indicate
that the main bottleneck today is not verification, but specification. For example,
the LinkedList case study comprised approximately 18-21 person months in total.
But once the specifications were in place, after many iterations of the workflow,
producing the actual final proofs took only 1-2 weeks!
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Specifications typically need to be developed incrementally during the proof effort,
but there is little support for such an incremental approach in KeY: minor speci-
fication changes, like adding a conjunct to a class invariant, often require to redo
nearly the whole proof, causing an explosion in the amount of effort needed. This
vulnerability to change arises partly from proof rules that have a very fine granu-
larity: proof rule applications explicitly refer to the indices of the (sub) formulas
the rule is applied, resulting in fragile specifications. In the current version of KeY,
proofs consist of actual rule applications (rather than higher-level macro/strategy
applications), and proof rule applications explicitly refer to the indices of the (sub)
formulas the rule is applied to. This results in a fragile proof format, where small
changes to the specifications or source code (such as code refactoring) break the
proof. Moreover, the rule set used may change in different versions of KeY, limiting
backward compatibility for proofs made in a different KeY version. To improve the
reusability of proofs, one can develop a versioning system for proof rules that use
very fine-grained proof representations. The automatic generation of high-level proof
scripts by monitoring the interactions between the proof engineer and the prover is
also future work. Dealing with modifications of the underlying proof system of the
theorem prover while supporting resuming existing, possibly partial proofs (through
the versioning system and proof gaps) is also an interesting future direction.
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English summary

Software plays a crucial role in our interaction with the real world and is also em-
bedded within some of the most critical systems. Ensuring that software is free
of bugs and works as intended presents a significant challenge in software develop-
ment. Object-oriented programming is a programming paradigm widely used in the
development of many software systems. Applying formal specifications to verify the
correctness of object-oriented programs can be very beneficial, as even a minor error
within widely used programs can lead to significant issues, such as system outages
and failures. This thesis demonstrates the use of formal methods for systematically
verifying state-of-art, real object-oriented programs.

In Chapter 3, we focus on the formal verification of object-oriented classes. We
discuss the specification and verification of a corrected version of the linked list
implementation from the Java Collection framework, which originally contained an
overflow bug. Our formal specification aimed at two goals: to establish the absence
of the overflow bug, and to capture the essential behavior of the methods with
respect to the structural properties of the linked list. We successfully demonstrated,
using the KeY theorem prover, that the fixed version of the core methods of the
linked list implementation in Java is formally correct.

The work on verifying linked list successfully verified most methods but excluded
some method implementations that contain an interface type as a parameter. Inter-
faces abstract away from state and other internal implementation details, facilitating
modular program development. However, tool-supported programming logics and
specification languages are predominantly state-based, which as such cannot be di-
rectly used for interfaces. In Chapter 4, we introduce a novel specification method
using histories, recording method calls and returns, on an interface. The abstrac-
tions over histories, called attributes, are used to describe all possible behaviors of
objects regardless of its implementation. Interface specifications can then be writ-
ten in the state-based specification language JML by referring to histories and its
attributes to describe the intended behavior of implementations.

To demonstrate the feasibility of the history-based reasoning approach, we have
specified part of the core methods of Java’s Collection interfaces in Chapter 5, using
the executable history-based approach (the EHB approach). This approach uses an
encoding of histories as Java objects on the heap. That encoding, however, made
use of pure methods in its specification. While the methodology works in principle,
in practice, for advanced use, the pure methods were a source of large overhead and
complexity in the proof effort.
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To enhance the history-based approach, Chapter 6 discusses integrating abstract
data types (ADTs) in the KeY theorem prover by a new approach to model data
types using Isabelle/HOL as an interactive back-end, and represent Isabelle theorems
as user-defined taclets in KeY. We model histories as elements of an ADT, separate
from the sorts used by Java in the EHB approach (Chapter 5). Histories then can
not be touched by Java programs under verification themselves. We refer to this
as the logical history-based approach (the LHB approach). We showed how ADTs
externally defined in Isabelle/HOL can be used in JML specifications and KeY proofs
for Java programs. As a more advanced case study, we provide a specification of
the addAll method and verify the correctness properties of its clients. Furthermore,
we reasoned about advanced, realistic use cases involving multiple instances of the
same interface.

Chapter 7 focuses on the use of hierarchy in object-oriented programs. Hierarchy
naturally follows from behavioral subtyping, in which the subtypes must not only
match the method signatures defined by their supertypes but also adhere to the
intended behaviors. We develop a general history-based refinement theory that
used to verify the subtype relation. We associate each interface and class with a
history that represents the sequence of method calls performed on the object since
its creation. The subtype relation is described in terms of projection relation, which
means the relationship between subtypes and supertypes hinges on the projection
between histories, with each type having its own history. Through the use of a
running example, we demonstrate the practical applicability of our approach.

Programming to interfaces is one of the core principles in object-oriented program-
ming and is central to most of the standard libraries, which provide a hierarchy
of interfaces and classes that represent object containers. We proposed techniques
that are capable of specifying and verifying class, interface, and hierarchy structure.
Taking the Java collection framework as a case study, we show the usefulness of our
techniques. Thus, this thesis provides important novel contributions, insights, and
findings for the research community and future applications in the field of software
verification.
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Software speelt een essentiële rol in hoe we met de echte wereld interacteren en
is ingebed in enkele van de meest cruciale systemen die we dagelijks gebruiken.
Het verzekeren dat deze software foutloos is en naar behoren functioneert, vormt
een aanzienlijke uitdaging in de wereld van softwareontwikkeling. Het programmer-
ingsparadigma van objectgeoriënteerd programmeren, dat breed wordt toegepast
in de ontwikkeling van talrijke software systemen, staat centraal in deze discussie.
Het inzetten van formele specificaties om de correctheid van objectgeoriënteerde
programma’s te verifiëren, biedt aanzienlijke voordelen. Zelfs geringe fouten in veel-
gebruikte programma’s kunnen immers leiden tot grote problemen, zoals uitval en
storingen van systemen. Dit proefschrift illustreert hoe formele methoden kunnen
worden aangewend voor de systematische verificatie van geavanceerde, daadwerkelijk
gebruikte objectgeoriënteerde programma’s.

In het derde hoofdstuk richten we ons op de formele verificatie van objectgeoriën-
teerde klassen. We behandelen de specificatie en verificatie van een verbeterde
versie van de implementatie van de gelinkte lijst uit het Java Collection Frame-
work, die oorspronkelijk een bug gerelateerd aan geheugenoverloop bevatte. Onze
formele specificatie streefde naar twee doelstellingen: ten eerste het aantonen van de
afwezigheid van deze overflow bug en ten tweede het nauwkeurig beschrijven van het
essentiële gedrag van de methoden, in relatie tot de structurele eigenschappen van
de gelinkte lijst. We hebben met succes aangetoond, door het gebruik van de KeY
theorem prover, dat de gecorrigeerde versie van de kernmethoden van de gelinkte
lijst implementatie in Java formeel correct is.

In ons onderzoek naar gelinkte lijsten hebben we de meeste methoden geverifieerd,
maar sommigen, die interfaces gebruiken, overgeslagen. Interfaces abstraheren van
toestand en implementatiedetails, wat modulaire softwareontwikkeling bevordert.
Echter, veel programmeerlogica en specificatietalen zijn toestandgebaseerd en niet
direct geschikt voor interfaces. In Hoofdstuk 4 introduceren we een nieuwe methode
die ’geschiedenissen’ gebruikt voor het vastleggen van interface-interacties. Deze
methode, via ’attributen’, beschrijft objectgedrag onafhankelijk van implementatie.
Hiermee kunnen in JML geschreven interfacespecificaties verwijzen naar deze ’ge-
schiedenissen’ en attributen om implementatiegedrag te definiëren.

Om de toepasbaarheid van de benadering gebaseerd op geschiedenisredenering te
demonstreren, hebben we in Hoofdstuk 5 enkele kernmethoden van de Java Col-
lection interfaces beschreven met behulp van de uitvoerbare geschiedenisgebaseerde
methode (de EHB-methode). Deze aanpak hanteert een weergave van geschiedenis-
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sen als Java-objecten in het heapgeheugen. Deze representatie maakte echter gebruik
van zogenaamde pure methoden in de specificatie. Hoewel deze methodologie in the-
orie functioneert, bleken de pure methoden in de praktijk, vooral bij geavanceerd
gebruik, te leiden tot aanzienlijke overhead en complexiteit in het bewijsproces.

Om de geschiedenisgebaseerde methode verder te verfijnen, behandelt Hoofdstuk
6 de integratie van abstracte datatypes (ADT’s) in de KeY theorem prover. Dit
gebeurt via een innovatieve aanpak die datatypes modelleert met behulp van Is-
abelle/HOL als een interactieve back-end, en Isabelle-theorema’s vertaalt naar door
gebruikers gedefinieerde taclets in KeY. We conceptualiseren geschiedenissen als
elementen van een ADT, onderscheiden van de door Java gebruikte types in de
EHB-benadering (Hoofdstuk 5). Hierdoor kunnen de Java-programma’s die geveri-
fieerd worden de geschiedenissen zelf niet wijzigen. We duiden dit aan als de logis-
che geschiedenisgebaseerde benadering (LHB-benadering). We hebben aangetoond
hoe extern in Isabelle/HOL gedefinieerde ADT’s ingezet kunnen worden binnen
JML-specificaties en KeY-bewijzen voor Java-programma’s. Als een diepgaandere
casestudie hebben we de methode addAll gespecificeerd en de correctheid van de
eigenschappen van zijn cliënten geverifieerd. Bovendien hebben we geavanceerde,
realistische scenario’s onderzocht waarbij meerdere instanties van dezelfde interface
betrokken zijn.

Hoofdstuk 7 focust op het gebruik van hiërarchie binnen objectgeoriënteerde pro-
gramma’s. Deze hiërarchie volgt natuurlijk uit gedragsafhankelijke subtyperingen,
waarin de subtypen niet alleen moeten overeenkomen met de methodesignaturen
zoals gedefinieerd door hun supertypen, maar ook het beoogde gedrag moeten vol-
gen. Voor dit doeleinde ontwikkelen we een algemene theorie voor op geschiedenis
gebaseerde verfijning, die ingezet wordt om de relatie tussen subtypen te verifiëren.
Elke interface en klasse koppelen we aan een geschiedenis die de reeks methode-
naanroepen weergeeft die op het object zijn uitgevoerd sinds zijn creatie. De relatie
tussen subtypen wordt uitgedrukt in termen van een projectierelatie, die de connec-
tie tussen subtypen en supertypen baseert op de projectie tussen hun respectievelijke
geschiedenissen, waarbij elk type zijn eigen unieke geschiedenis heeft. Door middel
van een doorlopend voorbeeld tonen we de praktische bruikbaarheid van onze aan-
pak aan.

Het programmeren op basis van interfaces vormt een fundamenteel principe binnen
objectgeoriënteerd programmeren en speelt een centrale rol in de meeste standaard-
bibliotheken, die een hiërarchie van interfaces en klassen bieden ter vertegenwo-
ordiging van objectcontainers. We stellen technieken voor die in staat zijn om de
structuur van klassen, interfaces en hun hiërarchie te specificeren en verifiëren. Aan
de hand van het Java Collection Framework als casestudie, demonstreren we de effec-
tiviteit van onze technieken. Hiermee biedt dit proefschrift significante bijdragen en
nieuwe inzichten die van waarde zijn voor de onderzoeksgemeenschap en toekomstige
softwareverificatieprojecten.
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Propositions

pertaining to the thesis

Reasoning about object-oriented programs: from classes to interfaces

by Jinting Bian

1. The main bottleneck in the verification process is not the verification itself,
but the formulation of specifications. [Chapter 3]

2. The history-based reasoning approach provides a way to show the satisfiabil-
ity of specifications by a witness implementation of the interface, making it
possible to reason about the state-hidden interface. [Chapter 4]

3. The selection of abstractions of history in a concrete program requires careful
consideration. [Chapter 5 & 6]

4. It is necessary to verify the correctness of the subtype relation in the design
stage, especially in the case of complex systems. [Chapter 7]

5. Although the cost upfront for ensuring program correctness is expensive and
the benefits come late (even after time to market), it is still worthy.

6. The correctness of the theorem prover used in a formal verification requires
careful attention.

7. Testing can reveal the presence of faults in software, while formal verification
aims to prove the absence of failures; both of them are indispensable and
irreplaceable.

8. The rapid pace of technological change and the demand for new features pose a
significant challenge to the adaptability and effectiveness of formal verification
in system development.

9. Intelligent dialogue systems can help in the development of formal methods, yet
the techniques and expertise required for formal methods cannot be replaced
by artificial intelligence.

10. Open-source projects benefit from community contributions for faster bug
identification and resolution, but this doesn’t mean they are bug-free.
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