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Regional reemergence 
of a SARS‑CoV‑2 Delta lineage 
amid an Omicron wave detected 
by wastewater sequencing
Auke Haver 1,2, Rick Theijn 1, Ivo D. Grift 1, Gino Raaijmakers 1, Elsa Poorter 1, 
Jeroen F. J. Laros 2,3, Jaap T. van Dissel 1,4 & Willemijn J. Lodder 1*

The implementation and integration of wastewater-based epidemiology constitutes a valuable 
addition to existing pathogen surveillance systems, such as clinical surveillance for SARS-CoV-2. 
In the Netherlands, SARS-CoV-2 variant circulation is monitored by performing whole-genome 
sequencing on wastewater samples. In this manuscript, we describe the detection of an AY.43 lineage 
(Delta variant) amid a period of BA.5 (Omicron variant) dominance in wastewater samples from 
two wastewater treatment plants (WWTPs) during the months of August and September of 2022. 
Our results describe a temporary emergence, which was absent in samples from other WWTPs, and 
which coincided with peaks in viral load. We show how these lineage estimates can be traced back 
to lineage-specific substitution patterns. The absence of this variant from reported clinical data, but 
high associated viral loads suggest cryptic transmission. Our findings highlight the additional value of 
wastewater surveillance for generating insights into circulating pathogens.

The ongoing COVID-19 pandemic has promoted the implementation and subsequent integration of wastewater-
based epidemiology (WBE) into existing public health surveillance systems1. Coronavirus infected individuals 
shed viral particles in their feces, and the detection of SARS-CoV-2 RNA in wastewater constitutes a non-invasive 
monitoring tool of virus circulation in the population of a specific region, which is independent of health-
seeking behavior2. In the Netherlands more than 99% of the population is connected to a wastewater treatment 
plant (WWTP). Currently, the Dutch National Wastewater Surveillance program samples each WWTP (over 
300) four times per week3. Molecular analysis is performed on each wastewater sample to determine viral loads 
per WWTP, which are reported via the Dutch Coronavirus Dashboard4. Furthermore, amplicon-based whole-
genome sequencing (WGS) is performed on a subset of samples, which allows for additional information on the 
circulating variants in a population connected to a specific WWTP5. The data generated by wastewater surveil-
lance adds to existing surveillance systems such as epidemiological and clinical surveillance, because it provides 
information on virus circulation among the population, filling in the lowest domain of the disease pyramid and 
thus provides insight of the overall impact of disease6,7.

Whereas consensus sequences are used in clinical testing to determine which variant caused the infection of 
an individual, an alternate approach is required for sequence data obtained from wastewater samples, which are 
presumed to contain a heterogenous mix of variants8. Indeed, most studies performing WGS employ variant-
calling algorithms such as VarScan9, LoFreq10 or iVar11, to identify signature mutations12–14. These are subse-
quently reported or thereafter used for the estimation of relative frequencies of (sub-)lineages15–17. These studies 
have shown high similarity to sequence data of clinical samples in estimation of regional lineage prevalence, as 
well as the ability to detect lineages not observed through clinical sampling14,16.

We report on the detection of a regional and transient reemergence of an AY.43 Delta-variant lineage in two 
WWTPs during August and September of 2022 amid an Omicron wave. Our results show a transient mutation 
pattern coinciding with peaks in viral load in WWTP Weert and WWTP Eindhoven located in the South-East of 
the Netherlands. Notably, the detection of this lineage and its associated sub-lineage in wastewater is absent in the 
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clinical surveillance reporting from the same time period. This observation reaffirms that wastewater surveillance, 
as a supplement to clinical surveillance, can generate additional information on circulating coronavirus variants.

Results
Lineage abundances show transient pattern
Initial detection of a B.1.617.2 Delta lineage occurred in a sample from WTTP Weert from August 4th, 2022 
(Fig. 1). After detection of mutation patterns of an AY.43 Delta lineage in both a sample originating from WWTP 
Weert from August 14th, 2022, and one week later in a sample originating from WWTP Eindhoven (August 
25th, 2022), the emergence of a regional pattern became apparent. Consequently, these and neighboring WWTPs 
were subjected to additional sequencing and analysis in order to track the dynamics of these mutation patterns 

2 2 3 3 2

2

2

Westpoort

Weert

Eindhoven

Aug−02 Aug−08 Aug−14 Aug−20 Aug−26 Sep−01 Sep−07 Sep−13 Sep−19 Sep−25

Aug−02 Aug−08 Aug−14 Aug−20 Aug−26 Sep−01 Sep−07 Sep−13 Sep−19 Sep−25

Aug−02 Aug−08 Aug−14 Aug−20 Aug−26 Sep−01 Sep−07 Sep−13 Sep−19 Sep−25
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

Sample Date

Es
tim

at
ed

 F
ra

ct
io

n

Viral Load (10
14 particles/10

5 inhabitants)

Pango−lineage (binned)
AY.43

B.1.617.2

BA.2

BA.4

BA.5

Other

Figure 1.   A barplot of estimated fractions (left y-axis) of binned pango-lineages for three WWTPS: Eindhoven 
(Top), Weert (Center) and Westpoort (bottom). Lineages were binned into either the monophyletic clades 
AY.43 (B.1.617.2.43), BA.2 (B.1.1.529.2), BA.4 (B.1.1.529.4) and BA.5 (B.1.1.529.5) or the paraphyletic B.1.617.2 
(excluding AY.43), with the remainder binned into ‘Other’. As a result of the abundance cut-off, not all 
abundances sum to 1. Viral load estimates (right y-axis), corrected for flow and number of connected inhabitant 
equivalents, are depicted as white dots connected by a gray line. Abundance estimates with bootstrapping 
confidence intervals are shown in Supplementary Table 1. Samples which were sequenced more than once are 
labeled with the corresponding number of times.
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over time. However, detection of Delta lineages was restricted to these two WWTPs in the months of August and 
September. In total, 50 samples from these two locations were sequenced, consisting of 24 samples for WWTP 
Eindhoven and 26 samples for WWTP Weert. These WWTPs treat the wastewater of respectively 467,169 and 
67,890 inhabitant equivalents18. To serve as a reference for wastewater samples in the Netherlands and show 
variability between wastewater samples, 20 samples from WWTP Westpoort were included in the analysis as 
well. This location was chosen as it is the fifth largest WWTP in the Netherlands and services 313,928 inhabit-
ant equivalents. Three samples were omitted from the results due to low sequencing coverage (1) and recurrent 
errors during bootstrapping (2) (Supplementary Table 1).

Lineage abundance estimates revealed a pattern of three transient detections with associated peaks in viral 
loads (Fig. 1). Whereas multiple Delta lineages were detected, the AY.43 lineage and associated sublineages were 
observed most frequently (Supplementary Table 1). After the initial detections in WWTP Weert, viral loads 
steadily increased from August 18th onwards, reaching its highest viral load on August 22nd and subsequently 
decreasing from August 25th onwards. Between August 29th and September 5th, no Delta lineages were observed 
in the samples from WWTP Weert. During this period Delta lineages were increasingly found in wastewater 
samples originating from WWTP Eindhoven, with the highest frequency as well as highest viral load detected 
in a sample from September 3rd and the last detection in a sample from September 11th. A second and final 
pattern in Delta lineage detection and viral load increase was observed in the samples from September 15th, 
16th and 18th. In addition to Omicron and Delta lineages, the presence of other lineages was estimated as well, 
however these did not display a similar pattern of detection (Supplementary Table 1). A comparison of these 
findings to the results of pathogen surveillance data from SARS-CoV-2 test samples, as reported by the RIVM19, 
revealed none of the clinical samples analyzed during this time contained a Delta lineage (Supplementary Fig. 1). 
Furthermore, after consultation with the local municipal health services, no clear event could be identified to 
explain this detection pattern.

Mutation patterns confirm abundance estimates
Estimates of relative lineage abundances could be susceptible to low sequencing coverage and amplification 
bias20. Since the method employed for abundance estimation uses a weighted least absolute deviation (WLAD) 
regression model16, if observed frequencies of defining substitutions vary heavily within individual lineages, the 
residuals of this model will increase. Accordingly, in order to confirm the validity of the estimates, the residuals 
for the WLAD model were compared between samples with an estimate of a Delta (B.1.617.2) lineage at a fre-
quency of ≥ 0.001 (Δ+) and samples without (Δ−) (Supplementary Fig. 2). A significant difference in (Mann–Whit-
ney U-test, p < 0.001) residuals between the two groups prompted further analysis of the substitution patterns.

Analysis of substitution patterns was limited to the Spike gene and revealed a distinct structure between 
Δ+ and Δ− samples (Fig. 2). Dominance of the Omicron BA.5 variant during this time period was reflected by 
a pattern of high substitution frequencies of BA.5 substitutions as well as an absence of structure in non-BA.5 
mutations in the Δ− and WWTP Westpoort samples. Conversely, Δ+ samples displayed a more heterogeneous 
substitution frequency pattern in accordance with the fluctuations in estimated lineage frequencies, whereby sam-
ples with lower estimated Delta lineage abundances displayed a substitution pattern more similar to Δ− samples 
(Figs. 1, 2). Although deviation in this pattern was observed for a subset of samples (WWTP Eindhoven August 
24th and September 13th, and WWTP Weert August 19th, August 29th and September 12th), such deviation 
can occur as lineage abundance estimation is based on substitutions in all sequenced regions. A dropout of 
amplicon 75 occurred frequently in Δ− samples, whereas this region could be sequenced in most Δ+ samples, 
where it lacked BA.5-specific substitutions (G339D, S371F, S373P, S375F, T376A & D405N), which suggests an 
amplification bias. These differences were similarly present in substitutions not associated with either the BA.5 
or AY.43 lineage according to the database used (Supplementary Table 2), such as A23056C (Q498H), C24034T 
(synonymous), and G24410A (D950N). However, association of substitutions to lineages can vary per database 
used, as D950N is associated to the Delta clade in the Nextstrain system21. Whereas a detailed analysis of private 
mutations is outside the scope of this work, these patterns confirm the Delta-lineage detections.

Discussion
In this study, we report on the transient detection of AY.43 substitution patterns obtained by sequencing and 
consequent bioinformatic analysis of wastewater samples from the WWTPs Eindhoven and Weert. Our data 
first shows an emergence in WWTP Weert, followed by a transition to WWTP Eindhoven and a transition back 
to WWTP Weert, after which the AY.43 mutation patterns disappear. Notable is the positive association shown 
between the AY.43 abundance estimates and the observed viral load.

Whereas many AY.43-specific mutations were found, other mutations were discovered which could not be 
attributed to either BA.5 or AY.43, which combined with the higher residuals of these demixing models suggest 
the presence of a cryptic lineage most similar to Delta but possessing unique mutations. Cryptic lineages have 
been detected in wastewater before14–16,24. Westcott et al.25 similarly observed a reemergence of a Delta variant 
in wastewater, isolated at a single WWTP and occurring three times in a timeframe of nine months. Gregory 
et al.13 described that the reservoir for these viruses could be one of three possible sources: (1) one of non-human/
animal origin, (2) an asymptomatic group of infected persons or (3) a group of immunocompromised persons. 
The study by Shafer et al.26 described how they were able to track a cryptic lineage back to a group of approxi-
mately 30 people and pointed a immunocompromised individual with a persistent gastrointestinal infection out 
to be the point of transmission. It is still unknown how many infected individuals would be needed to observe 
the rise in viral load in both locations, as shedding rates vary depending for instance on both the variant and 
health status of the infected individual2. Moreover, in case of the Delta and Omicron variants, reduced shedding 
has been observed for the latter, which reportedly could be attributed to a lower required infective dose27. With 
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no further observations of this AY.43 lineage in wastewater samples or reported from clinical sampling, source 
attribution remains unknown.

Lastly, the absence of Delta lineages in clinical surveillance would suggest this cryptic transmission to have 
had little to no clinical impact. However, this does not preclude similar future events to lead to an increased 
disease burden, in which WBE could help identify signals ahead of clinical sampling. In conclusion, the results 
shown here confirm the relevance of WGS performed on wastewater samples as a supplement to other surveil-
lance tools, such as clinical surveillance, as it enables the detection of otherwise unobserved virus circulation.

Methods and materials
Sample retrieval, preparation and sequencing
Twenty-four-hour composite influent wastewater samples from the WWTPs Eindhoven and Weert, August and 
September 2022, were selected for WGS analysis. Nucleic acids used to determine the viral load were additionally 
treated with DNase and purified using RNA Clean and Concentrator columns (Zymo Research, https://​www.​
zymor​esear​ch.​com/). On the purified RNA, a cDNA synthesis using random hexamer primers was performed and 
on the obtained cDNA a PCR was performed using the Artic V4.1 amplicon panel (ARTIC network, https://​artic.​
netwo​rk). Libraries were prepared with the TruSeq Nano DNA kit (Illumina, https://​www.​illum​ina.​com). Paired-
end short-read sequencing was performed in multiple runs a MiSeq platform (Illumina, https://​www.​illum​ina.​
com) using either combinatorial-dual (CD) or unique-dual (UD) indexes (Illumina, https://​www.​illum​ina.​com).

Bioinformatic analysis
Cleanup of sequencing reads was based on the method used in the SARS2seq pipeline (https://​github.​com/​
RIVM-​bioin​forma​tics/​SARS2​seq). Software versions and parameters for the various steps are described in Sup-
plementary Table 3. Briefly, adapter trimming was performed by aligning raw sequence reads using minimap228 
to the Wuhan reference genome (NC_045512.2) and subsequent removal of soft-clipped bases. Next, sequence 
quality control was performed with fastp29. Lastly, primer sequences were removed using the AmpliGone tool 
(https://​github.​com/​RIVM-​bioin​forma​tics/​Ampli​Gone). Reads of wastewater samples which were subject to 
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Figure 2.   A heatmap of Spike Gene substitution frequencies. Samples (x-axis) are split by location (WWTP 
Eindhoven, Weert and Westpoort) and variant definitions (DB). Substitutions (y-axis) were included based on 
the following criteria: (1) an observed frequency of 0.5 in at least one sample, (2) an observed frequency of. 01 
in at least five samples and (3) a p-value ≤ 0.05 for variant calling. Spike gene substitutions are shared between 
lineages BA.5 and BA.4, as well as between B.1.617.2 and AY.34 in the database used (Supplementary Table 2). 
Only sites with a coverage of at least 10 reads are included. This figure was generated with a custom script 
written in R22 (v4.3.1) using the ggplot223 (v3.4.2) package. (+)Sample with B.1.617 / AY.43 detection.
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multiple rounds of sequencing were combined for further analysis using Samtools30. Only libraries with at least 
50% genome coverage at a depth of 10 reads were included. Variant calling was performed with the iVar tool 
(https://​github.​com/​ander​sen-​lab/​ivar) using default settings. On the called variants, lineage demixing was per-
formed with the Freyja tool (https://​github.​com/​ander​sen-​lab/​Freyja) developed by Karthikeyan et al.16, which 
uses the UShER global phylogenetic tree to determine which substitutions are associated with which lineages. 
The output of the Freyja tool, including lineage definitions, substitution frequency and genome coverage, was 
used to analyze substitution frequency with custom scripts in R22 (v4.3.1). Only sites with coverage ≥ 10 were 
considered. Substitutions not associated with either the BA.5 or AY.43 lineage were included only when they 
were found to occur in at least 5 samples with a frequency of ≥ 0.01, in at least 1 sample with a frequency of ≥ 0.50 
and with a p-value ≤ 0.05 for variant calling. All figures in the manuscript were generated with custom scripts 
written in R22 (v4.3.1) using the ggplot223 (v3.4.2) package.

Data availability
Raw sequencing reads are available under Bioproject PRJNA922726. Viral load data is available at https://​data.​
rivm.​nl/​covid-​19/​COVID-​19_​riool​water​data.​csv.
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