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Introduction: Educational attainment, widely used in epidemiologic studies as a
surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes.

Methods: A two-stage genome-wide meta-analysis of low-density lipoprotein
cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG)
levels was performed while accounting for gene-educational attainment
interactions in up to 226,315 individuals from five population groups. We
considered two educational attainment variables: “Some College” (yes/no, for
any education beyond high school) and “Graduated College” (yes/no, for
completing a 4-year college degree). Genome-wide significant (p < 5 × 10−8)
and suggestive (p < 1 × 10−6) variants were identified in Stage 1 (in up to 108,784
individuals) through genome-wide analysis, and those variants were followed up in
Stage 2 studies (in up to 117,531 individuals).

Results: In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci
(nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2DF) joint
tests of main and interaction effects. Four loci showed significant interaction with
educational attainment. Two loci were significant only in cross-population
analyses. Several loci include genes with known or suggested roles in adipose
(FOXP1, MBOAT4, SKP2, STIM1, STX4), brain (BRI3, FILIP1, FOXP1, LINC00290,
LMTK2, MBOAT4, MYO6, SENP6, SRGAP3, STIM1, TMEM167A, TMEM30A), and
liver (BRI3, FOXP1) biology, highlighting the potential importance of brain-
adipose-liver communication in the regulation of lipid metabolism. An
investigation of the potential druggability of genes in identified loci resulted in
five gene targets shown to interact with drugs approved by the Food and Drug
Administration, including genes with roles in adipose and brain tissue.

Discussion:Genome-wide interaction analysis of educational attainment identified
novel lipid loci not previously detected by analyses limited to main genetic effects.

KEYWORDS

educational attainment, lipids, cholesterol, triglycerides, genome-wide association study,
meta-analysis

1 Introduction

Educational attainment is widely used in epidemiologic studies
as an index of socioeconomic status (SES) (Kaplan and Keil, 1993).
Many studies have identified educational level and other indices of
SES as predictors of health outcomes (Hamad et al., 2019), coronary
heart disease (CHD) risk factors (Hamad et al., 2019), and lifestyle
choices such as consumption of an atherogenic diet (Shea et al.,
1993). Although educational level may not capture a holistic
representation of SES (Braveman et al., 2005), higher educational
attainment has been shown to have a positive impact on all-cause
mortality (Kaplan and Keil, 1993) and cardiovascular risk traits
(Leino et al., 1999) such as blood pressure and hypertension (Leng
et al., 2015), coronary artery disease (Matthews et al., 1989),
coronary calcification (Gallo et al., 2001), metabolic syndrome
(Matthews et al., 1989), and lipid levels (Matthews et al., 1989;
Metcalf et al., 1998). However, the mitigating effects of higher
education on health outcomes are often attenuated in minoritized
groups (Braveman et al., 2005; Assari and Bazargan, 2019), even
after controlling for other indices of SES (Metcalf et al., 1998). This
differential effect raises the possibility that interactions between
educational attainment and genetics contribute to the association
with health outcomes.

There has been relatively little focus on genetic interactions with
educational attainment as determinants of health outcomes,

particularly cardiovascular health, although genetic influences on
education level itself (Okbay et al., 2016) have been explored. We
have previously reported novel blood pressure loci by genome-wide
association studies (GWAS) that explicitly modeled genetic
interactions with educational attainment (Basson et al., 2014; de
las Fuentes et al., 2020). Other studies have identified evidence of
gene-environment interactions for a variety of disease traits
including neuropsychiatric disorders (Assary et al., 2018; Werme
et al., 2021), systemic lupus erythematosus, (Woo et al., 2022), and
lung function (Melbourne et al., 2022).

There has been no comprehensive assessment of interactions
between genetic variation and educational attainment on lipid levels.
Dyslipidemia, a leading contributor to cardiovascular morbidity and
mortality, exhibits significant disparity among population groups.
Consideration of educational attainment as a genetic modifier may
allow identification of novel lipid loci and offer insights into the
biological mechanisms that may serve to identify new therapeutic
targets. Here, by combining cohorts available in the Cohorts for
Heart and Aging Research in Genomic Epidemiology (CHARGE)
Gene-Lifestyle Interactions Working Group (Rao et al., 2017), we
performed genome-wide meta-analysis of low-density lipoprotein
cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and
triglyceride (TG) levels while accounting for gene-educational
attainment interactions, used as a surrogate for socioeconomic
status.
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2 Materials and methods

2.1 Participating studies

We performed analyses in two stages (Supplementary Figure S1). A
total of 41 cohorts including 108,784 men and women (aged
17–80 years) from European (EUR), African (AFR), East Asian
(EAS), Hispanic admixed (HIS), and Brazilian admixed (BRZ)
populations contributed to Stage 1 genome-wide interaction analyses
(Supplementary Table S1); populations were defined by individual
cohorts. An additional 42 cohorts (Supplementary Table S2)
including 117,531 individuals contributed to Stage 2 analyses of most
promising genetic variants [mostly single nucleotide variants (SNVs),
also including a small number of insertions and deletions (indels)]
selected from Stage 1. Participating studies are described in the
Supplementary Material. Each study obtained informed consent from
participants and approval from the appropriate institutional and/or
ethical review boards.

2.2 Lipid and educational attainment
variables

Both longitudinal and cross-sectional studies were included. In
longitudinal cohorts that had multiple clinic visits for each subject, a
single visit was chosen that maximized the sample size. Three lipid
traits were considered for analyses: low-density lipoprotein cholesterol
(LDL), high-density lipoprotein cholesterol (HDL), and triglyceride
(TG) (all mg/dL). LDL was directly assayed or calculated via the

Friedewald equation (LDL = TC−HDL−[TG/5]) for those with fasting
TG ≤ 400 mg/dL (Friedewald et al., 1972). If fasting TG > 400 mg/dL
or if TG is non-fasting, LDL was set to missing unless directly assayed.
LDL concentrations were adjusted for statin use as described
elsewhere (Peloso et al., 2014). Either fasting or non-fasting HDL
was acceptable for analysis. Non-fasting TG levels were set to missing.
HDL and TG concentrations were natural log-transformed for
analysis. Descriptive statistics for these lipid traits are presented in
Supplementary Tables S3, S4. For educational attainment, two
dichotomous variables were defined in a way that made it possible
to harmonize the variable in most cohorts, thereby maximizing the
sample size. The first variable, “Some College” (SomeCol), was coded
as 1 if the subject received any education beyond high school
(i.e., 12 years of combined primary and secondary education),
including vocational school, and as 0 if no education beyond high
school. The second variable, “Graduated College” (GradCol), was
coded as 1 if the subject completed at least a 4-year college degree
(i.e., post-secondary or tertiary education, at least 16 years of formal
education), and as 0 for any education less than a 4-year degree.
Subjects with missing data for lipid levels, educational attainment, or
any covariates were excluded from analysis.

2.3 Genotype data

Genotyping was performed by each participating study using
Illumina (San Diego, CA, United States) or Affymetrix (Santa Clara,
CA, United States) genotyping arrays. Imputation was performed
using the 1000 Genomes Project (1000 Genomes Project

FIGURE 1
Overview. A two-stage meta-analysis of gene-educational attainment interactions on lipid traits considering two educational attainment (a
surrogate for socioeconomic status) was performed. Subsequently, a meta-analysis combining results of Stages 1 and 2 was performed to identify known
and novel loci for lipid traits. Identified loci include genes with known or suggested roles in brain, adipose, and liver biology. Functional annotation,
expression quantitative trait loci (eQTLs), and potential druggability of targets was explored. In theManhattan plot, known and novel loci are depicted
in gray and red/blue, respectively. GxE, gene-environment interaction; GradCol, graduated college; SES, socioeconomic status; SomeCol, some college.
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TABLE 1 Summary of novel loci.

Locus rsIDa Chr Pos
(hg19)

Coded
allele

Coded
allele
Freqb

Beta0c Beta1d 2 DF
Pe

1 DF
G ×
E Pf

N Genesg RefPop-
trait-Exph

1 rs139845754 1 180,258
167

A 0.052 −0.101 −0.06 3.40E-
08

2.00E-01 10,913 LHX4; RP5-11
80C10.2; ACBD6;
XPR1; KIAA1614;
STX6

AFR-TG-
SomeCol

2i rs7567133 2 103,239
356

C 0.031 0.102 0.021 1.72E-
08

1.16E-03 6,361 IL1RL1; IL18R1;
IL18RAP; SLC9A4;
SLC9A2; MFSD9;
TMEM182

AFR-HDL-
GradCol

3 rs79367750 3 9,096 107 C 0.096 1.251 −10.279 3.99E-
08

1.94E-04 8,855 SRGAP3 EAS-LDL-
SomeCol

4i rs147731578 3 70,605
665

ATTATT 0.018 −0.145 0.034 1.39E-
09

3.51E-09 15,584 MITF; FOXP1 EUR-HDL-
SomeCol

5i rs74620279 4 179,620
483

C 0.025 −12.24 11.59 4.67E-
08

1.39E-06 5,669 SNORD65 AFR-LDL-
SomeCol

6 rs77249395 4 181,181
245

G 0.035 0.006 −0.026 3.17E-
06

2.41E-08 134,413 LINC00290 TA-HDL-
GradCol
EUR-HDL-
GradCol

7i rs11132093 4 182,664
815

A 0.061 −1.65 15.84 5.04E-
09

4.10E-07 2,809 RP11-540E16.2;
TENM3

EAS-LDL-
GradCol

8 rs190502162 5 37,160
808

C 0.013 9.266 −0.715 3.35E-
08

4.04E-07 48,467 SKP2; NADK2;
RANBP3L;
SLC1A3; NIPBL;
CPLANE1;
NUP155; WDR70;
GNDF

EUR-LDL-
SomeCol

9 rs192718305 5 82,514
005

G 0.025 3.481 19.901 2.05E-
08

1.60E-03 5,664 RP11-343L5.2;
TMEM167A;
XRCC4

AFR-LDL-
SomeCol

10i rs147892694 6 76,693
587

G 0.034 −0.037 −0.087 8.61E-
09

1.20E-01 8,599 TMEM30A; FILIP1;
SENP6; MYO6;
IMPG1

AFR-HDL-
SomeCol

11 rs7015 7 97,920
623

A 0.203 −1.142 −0.526 4.56E-
08

6.18E-02 157,929 LMTK2; TECPR1;
BRI3; BAIAP2L1;
NPTX2

CPA-LDL-
SomeCol

12j rs77655002 8 30,437
023

C 0.042 −9.97 10.73 5.52E-
09

7.65E-08 7,166 MBOAT4; RBPMS-
AS1; RBPMS;
GTF2E2; GSR;
TEX15

AFR-LDL-
GradCol
CPA-LDL-
GradCol

13 rs144190766 10 108,927
076

C 0.03 −0.015 −0.103 2.52E-
08

5.64E-03 9,677 SORCS1;
RNA5SP326

AFR-HDL-
SomeCol

14 rs116562538 10 129,845
329

A 0.028 −4.573 −9.049 6.79E-
09

4.82E-02 20,939 PTPRE CPA-LDL-
SomeCol

15 rs35287906 11 4,041 010 C 0.014 3.405 −5.247 1.53E-
09

7.71E-11 81,020 PGAP2; RHOG;
STIM1; RRM1;
OR55B1P; RP11-
23F23.3

EUR-LDL-
GradCol

16 rs11230661 11 55,451
313

A 0.185 0.01 0.007 3.15E-
10

3.90E-01 151,320 TRIM48; TRIM51;
87 Olfactory
Receptor Genes;
APLNR

EUR-HDL-
GradCol
EUR-HDL-
SomeCol

(Continued on following page)
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Consortium et al., 2012) Phase I Integrated Release Version
3 Haplotypes (2010-11 data freeze, 2012-03-14 haplotypes) as a
reference panel by most cohorts. Information on genotype platform
and imputation for each study is presented in Supplementary Tables
S5, S6 and as described in the Supplementary Material.

2.4 Analysis methods

Each study performed population-specific association analyses
using the following Model 1 (joint model) that includes the effects of
G, educational attainment, and their interaction (see below):
E Y( ) � β0 + βG G + βE Education + βGE G × Education + βC C (1)

where Y is the lipid variable (LDL, HDL, or TG), “Education” is the
educational variable (SomeCol or GradCol), and G is the dosage of
the imputed variant coded additively from 0 to 2. The vector of
adjustment covariates (C) includes age, sex, indicators of field center
(for multi-center studies), and principal components (as many as
deemed necessary by study personnel to adjust for population
stratification). In addition, studies in Stage 1 performed
association analysis using the following Model 2 that includes the
effects of G and educational attainment (but not their interaction):

E Y( ) � β0 + βG G + βE Education + βC C (2)
For model 1, each study provided the estimated variant effect

(βG), estimated variant-educational attainment interaction effect
(βGE), their robust standard errors, and a robust estimate of the
covariance between βG and βGE. We considered the 1 degree of
freedom (DF) test of the interaction effect (βGE) and 2 DF joint test
of both variant (βG) and interaction effects (βGE) (Kraft et al., 2007).
Population-specific and cross-population inverse-variance weighted
meta-analysis was performed for the 1 DF test and joint 2 DF test
(Manning et al., 2011), both using METAL (Willer et al., 2010). In
Stage 1, EUR, AFR, EAS meta-analyses, variants were included if

they were available in more than 5,000 samples or at least 3 cohorts
(these filters were not applied to BRZ or HIS because of the limited
number/size of the available cohorts included in these meta-
analyses). We applied genomic control correction (Devlin and
Roeder, 1999) twice in Stage 1, first for study-specific GWAS
results and again for meta-analysis results. Genome-wide
significant (p < 5 × 10−8) and suggestive (p < 1 × 10−6) variants
in Stage 1 were taken forward into Stage 2 analysis. Genomic control
correction was not applied to the Stage 2 results as association
testing was performed for only selected variants. Results presented
reflect meta-analyses combining Stages 1 and 2. Loci were defined by
physical distance (±1 Mb around the lead variant of the respective
locus).

Extensive quality control was performed, as described in the
Supplementary Material. For Stages 1 and 2, to remove unstable
study-specific results that reflected small sample size, low minor
allele count (MAC), or low imputation quality, we excluded variants
for which the “approximate DF” (defined as the minimum of
[MAC0, MAC1] × imputation quality) < 20, where MAC0 and
MAC1 are the MAC in the two educational attainment strata per
exposure variable.

2.5 Characterization of functional roles

Loci were characterized as known (previously reported, as
defined in the Supplementary Methods) or novel. A suite of tools
implemented in Functional Mapping and Annotation (FUMA) of
Genome-Wide Association Studies (Watanabe et al., 2017) (version
1.3.5; described in detail in the Supplementary Material) were used
to identify functional roles for the lead variants and nearby variants
in linkage disequilibrium (LD; r2 ≥ 0.2) in each of the novel lipid loci.
LD information was obtained from the 1000 Genomes Project Phase
3 reference genome for the population with the most significant

TABLE 1 (Continued) Summary of novel loci.

Locus rsIDa Chr Pos
(hg19)

Coded
allele

Coded
allele
Freqb

Beta0c Beta1d 2 DF
Pe

1 DF
G ×
E Pf

N Genesg RefPop-
trait-Exph

17i rs148063115 12 14,221
135

T 0.026 0.022 0.222 4.86E-
08

4.35E-03 6,168 GRIN2B; RP11-
72J9.1; RP11-
298E10.1;
RN7SL676P;
GUCY2C

AFR-TG-
GradCol

18i rs190746034 13 101,418
063

G 0.022 −0.002 −0.158 1.26E-
08

1.06E-05 6,361 RP11-151A6.4;
TMTC4; NALCN-
AS1; ARF4P3

AFR-HDL-
GradCol

Notes:
arsID, based on dbSNP, build 146.
bCoded allele frequency.
cEffect size (beta) of the unexposed group.
dEffect size (beta) of the exposed group.
eGWAS, 2 DF p-value of the significant lead SNP, for this locus.
fGWAS, 1 DF, genetic-educational attainment interaction p-value of the significant lead SNP, for this locus.
gNearest gene of all SNVs, in LD (r2>0.2) with lead variant; if SNV, not in FUMA, gene or nearest flanking coding genes noted. Bolded genes reflect intragenic lead SNV.
hThe reference panel used in FUMA, to obtain functional annotations-trait-exposure; if more than one RefPop-Trait-Exp listed, the data provided is for the more significant association which is

listed first.
iOnly significant in Stage I analyses.
j2DF p = 1.83E-08, 1 DF G×E p = 4.14E-08 in CPA-LDL-GradCol analyses.

AFR, african population; EAS, east asian population; EUR, european population; GradCol, graduated college; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein

cholesterol; CPA, cross-population analyses; TG, triglyceride.
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population-specific association. If the most significant association
was in cross-population analyses (CPA), the reference genome for
“1000G Phase 3 ALL” was used (Ward and Kellis, 2012). Two lead
insertion/deletion loci were not identified in the reference genomes
by FUMA and therefore not detailed. Nearest gene annotations were
limited to protein coding, long non-coding RNAs (lncRNAs), and
non-coding RNAs (ncRNAs) within 10 kb of lead variants and
variants in LD (r2 ≥ 0.2) with the lead variant (Wang et al., 2010).

For the lead and LD variants, we used FUMA to report the
RegulomeDB score, Combined Annotation Dependent Depletion
(CADD) scores, the 15-core chromatin state (ChromHMM), and
expression quantitative trait loci (eQTLs). Using nearest-gene
annotations, FUMA was used to generate tissue-specific gene
expression data (GTEx V8 dataset, 53 tissue types).

3 Results

3.1 Overview

We performed a two-stage meta-analysis of gene-educational
attainment interactions on lipid traits considering two educational

attainment variables, as previously described (Supplementary Figure
S1) (de las Fuentes et al., 2020) Herein, we report our findings based
on up to 227,850 individuals from five populations. In Stage 1, we
pursued genome-wide interrogation in 108,784 individuals of
European (EUR; n = 80,379), African (AFR; n = 12,295), East
Asian (EAS; n = 11,002), Hispanic/Latino admixed (HIS; n =
1,455), and Brazilian admixed (BRZ; n = 3,653) populations
(Supplementary Table S1). We performed genome-wide meta-
analyses of approximately 18.8 million SNVs and indels variants
imputed using the 1000 Genomes Project reference panel (QQ plots,
Supplementary Figures S2A–E). Through the 1 DF test of the
interaction effect and the 2 DF joint test of the SNV and
interaction effects, we identified 13,851 genome-wide significant
(p < 5 × 10−8) and 6,835 suggestive (p < 1 × 10−6 and ≥5 × 10−8)
variants in known or novel loci that were associated with any lipid
trait in any population or educational attainment analysis. These
were followed-up in 117,531 additional individuals of EUR (n =
92,690), AFR (n = 6,630), EAS (n = 6,589), and HIS (n = 11,622)
populations in Stage 2 (Supplementary Table S2).

We then performed meta-analyses combining Stages 1 and 2
(Figure 1; Manhattan Plots; Supplementary Figures S3A–F) and
identified 128 significant loci (p < 5 × 10−8): 18 were novel loci and

FIGURE 2
Interaction effects of Locus 15 (rs35287906; STIM1) identified through combined Stage 1 and Stage 2 interaction effects with GradCol for LDL in EUR
and CPA. Forest plots show β values (95% confidence intervals) and p-values (1 DF) for the rs35287906 × GradCol interaction term in linear regression
models of LDL adjusted for age, sex, field center (formulti-center studies), and principal components. Results shown are for each EUR study, as well as the
population-specific combined Stage 1 and 2 meta-analysis results. The interaction effect βG Educ corresponds to the difference in genetic effects
between higher (βG1 = −5.25 mg/dL per minor allele) and lower education (βG0 = 3.41 mg/dL per minor allele), for a combined interaction effect
of −8.66 mg/dL. AF, coded allele frequency; N, sample size.
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110 loci were known (previously reported) loci, although the specific
index variant often varied based on population (Supplementary
Table S7). The majority of the associations with known loci were
detected for EUR (99 loci) and cross-population analyses (CPA;
107 loci), reflecting the European-centric composition of prior
studies, although known loci were also detected for the other
populations: AFR (20 loci), EAS (15 loci), BRZ (3 loci), and HIS
(22 loci). Four LDL and five HDL known loci were only identified by
CPA. Eight of the 110 known loci were significantly associated with
two lipid traits.

Across the lipid fractions, educational exposures, and
populations, we identified 18 novel (p < 5 × 10−8) loci located
at least 1 Mb away from any known lipid loci (Table 1) using the
1 DF and/or the 2 DF tests. Of these 18 loci, seven were identified
by Stage 1 analyses only as Stage 2 analyses did not meet the filter
threshold of an “approximate DF” ≥ 20. Among the 18 loci, one
was identified only through 1 DF interaction-effect analyses (locus
6), 14 through 2 DF analyses, and three through both 2 DF and
1 DF interaction-effect only analyses (loci 4, 12, and 15). The four
loci with significant 1 DF interaction effects include lead variants
in or adjacent to forkhead box P1 (FOXP1), long intergenic non-
protein coding RNA 290 (LINC00290), general transcription factor
IIE subunit 2 (GTF2E2)-membrane bound O-acyltransferase
domain containing 4 (MBOAT4), and stromal interaction
molecule 1 (STIM1). For example, at STIM1 (locus 15), we
observed an opposite genetic effect between higher and lower
education: the minor allele C was associated with a 0.14 mmol/
L lower LDL in higher education (GradCol = 1), whereas it was
associated with a 0.09 mmol/L higher LDL in lower education
(GradCol = 0), for a combined interaction effect of −0.22 mmol/L
(Figure 2).

Among the 18 novel loci, nine were found in LDL analyses, seven in
HDL analyses, and two in TG analyses; none of the novel loci reached
genome-wide significance formore than one lipid trait. Considering the
17 novel loci that were significant in 2 DF tests, six loci were identified
considering “Graduated College” (GradCol), 10 were identified
considering “Some College” (SomeCol), and one locus was
significant for both “Graduated College” and “Some College” (locus
16). Examining the 17 loci for evidence of support for the non-
significant educational attainment exposure (Supplementary Table
S8), nine loci had at least nominal significance (p < 0.05; loci 1, 2,
3, 4, 7, 8, 11, 14, and 17), four did not have at least nominal significance
(p ≥ 0.05; loci 10, 12, 15, and 18), and three did not have data available
for the other educational attainment exposure trait (loci 5, 9, and 13)
because of failure to meet filter thresholds (i.e., ≥20 copies of the minor
allele in the exposed group).

The LocusZoom plots of these novel loci are presented in
Supplementary Figure S4.

3.2 Ancestry-specific and cross-population
analyses

Novel loci were identified through separate analyses of AFR
(nine loci), EUR (three loci), EAS (two loci), CPA (two loci), and in
both EUR and CPA (two loci). Among the 18 novel loci, two loci
were identified only through CPA, as none of the population-specific
analyses reached genome-wide significance. For example, the SNV

(rs7015, locus 11) was only nominally associated with LDL in EUR
(p = 3.04 × 10−4), HIS (p = 9.96 × 10−3), EAS (p = 1.99 × 10−2), and
AFR (p = 2.81 × 10−2). However, in cross-population analysis
combining these four populations, the association reached
genome-wide significance (p = 4.56 × 10−8). This SNV resides in
the 3’ untranslated region (UTR) of an alternatively expressed
transcript of brain protein I3 (BRI3).

3.3 Functional annotation and eQTL
evidence

To obtain functional annotations for the lead variants and
nearby variants in linkage disequilibrium (LD; r2 ≥ 0.2), we used
FUMA (Watanabe et al., 2017). Among the 18 lead variants
representing our novel loci, eight variants were intronic to coding
genes, one variant was exonic to a non-coding RNA (ncRNA), one
variant was intronic-ncRNA, one variant was in a 3′UTR, and five
variants were intergenic; two additional variants were indels without
available annotation in FUMA. Of the 1,733 annotated variants that
include both the lead variants and variants in LD (r2 > 0.2) with
available FUMA functional annotation, the majority were intergenic
(64%). Among those variants annotated to gene regions (n = 619),
72% were intronic. 8.2% were exonic, and the remaining variants
were in UTR and flanking regions (Supplementary Table S9).

Of the 1,769 LD variants, 25 had RegulomeDB scores better than
or equal to 3a (17 in AFR, three in EUR, and five in CPA loci),
suggesting at least moderate evidence for involvement in
transcription regulation (Supplementary Table S9). Sixty-five
variants have CADD scores ≥10, representing the top 10% of
predicted deleteriousness for SNVs genome-wide (35 in AFR,
22 in EUR, three in EAS, and five in CPA loci). Eight variants in
the Chromosome 11 locus including an olfactory receptor cluster
have CADD scores ranging 21.2–37.0, placing them in the top 1% of
predicted deleteriousness. Two additional variants are notable for
high CADD scores, an exonic variant in glutathione-disulfide
reductase (GSR; CADD score 25.5) and a variant in the BRI3
3′UTR region (CADD score 21.4).

The 15-core chromatin state (ChromHMM) was assessed for
127 epigenomes in the 16 lead variants available in FUMA
(Supplementary Table S9). Of the lead variants, two had histone
chromatin markers consistent with active or flanking active
transcription start sites, and three were in regions associated with
strong transcription in relevant tissues including brain, adipose
tissue, and liver. Among all 1,769 LD variants, 91 had histone
chromatin markers characteristic of active or flanking active
transcription start sites, 218 had markers consistent with strong
transcription, and 57 were in enhancer regions. Among the LD
variants, those in five loci were identified as being highly significant
cis-acting expression trait loci (eQTLs) in the GTEx V8 database:
65 variants in BRI3 (including index rs7015 SNV in locus 11)
expressed in liver [false discovery rate (FDR) p-values 2.27 ×
10−24], subcutaneous adipose tissue (FDR p-values 9.46 × 10−50),
and brain (FDR p-values range 3.75 × 10−18 to 5.82 × 10−19); eight
SNVs in interleukin 18 receptor 1 (IL18R1; including index SNV
rs7567133 in locus 2) expressed in brain (FDR p-values range 8.30 ×
10−20 to 5.89 × 10−36) and subcutaneous adipose tissue (FDR p-values
4.48 × 10−7); one SNV in RBPMS antisense RNA 1 (RBPMS-AS1;
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locus 12) expressed in subcutaneous adipose tissue (FDR p-value
5.71 × 10−28); seven SNVs in ribonucleotide reductase catalytic
subunit M1 (RRM1; locus 15) expressed in subcutaneous adipose
tissue (FDR p-values 1.36 × 10−44), and three SNVs in LIM
homeobox 4 (LHX4; locus 1) expressed in brain (FDR p-values
8.73 × 10−10) and subcutaneous adipose tissue (FDR p-values range
1.36 × 10−9 to 4.50 × 10−13).

3.4 Druggability targets

The potential druggability of the identified gene targets was
investigated using an integrative approach as previously described
(Kavousi et al., 2022). We queried high- and medium-priority
candidate gene targets using the Drug-Gene Interaction database
(DGIdb), which identified 17 genes annotated as clinically actionable
or members of the druggable genome (Supplementary Table S10). We
identified eight genes with reported drug interactions and an additional
four genes with active ligand interactions in the ChEMBL database.
Among these, five gene targets were shown to interact with drugs
approved by the Food and Drug Administration (FDA) that have been
evaluated in late-stage clinical trials using DrugBank and ClinicalTrials.
gov databases (Supplementary Table S11). Among drug targets
identified, RRM1 and GSR are both involved in glutathione
metabolism and are targets of drugs used to treat various
neoplasms; glutamate ionotropic receptor NMDA type subunit 2B
(GRIN2B) is involved in long-term neuronal potentiation; and
guanylate cyclase 2C (GUCY2C) modulates gut cyclic GMP
signaling. GRIN2B, which encodes a N-methyl D-aspartate (NMDA)
receptor GluN2B subunit, is a target of memantine, used to treat
moderate to severe dementia in patients with Alzheimer’s disease.
These results suggest that there are potential drug repurposing
opportunities as novel therapies for lipid management.

4 Discussion

4.1 Overview

This study reports a genome-wide meta-analysis of data from up to
226,315 individuals from five population groups. In this study,
educational attainment was used as a multidimensional surrogate of
SES reflective of a variety of environmental factors such as occupation,
wealth, access to quality healthcare, diet, lifestyle, and physical activity.
We identified 18 novel loci for LDL, HDL, and TG at genome-wide
significance when accounting for gene-educational attainment
interactions. The majority of novel loci (nine of 18 loci) were
identified in AFR, likely reflecting a lack of population diversity in
prior large-scale genome-wide studies. Many of these novel loci include
genes with biologic roles in adipose, brain, and hepatic tissue.

Adipose tissue serves a critical role in sequestering circulating free
fatty acids as inert triglycerides lipid droplets. Processes that limit the
differentiation or subsequent function of adipocytes may contribute to
abnormal lipid metabolism. Adipose tissue is also an active endocrine
organ that elaborates a variety of adipokines (Ahima, 2006), such as
tissue necrosis factor-alpha (TNFα), interleukins (IL)-6, IL-1, leptin,
adiponectin, and others. Dysfunctional adipose tissue and pro-
inflammatory adipokines can trigger ectopic deposition of fatty

acids in other tissues, such as skeletal muscle and liver (Jung and
Choi, 2014; Shulman, 2014), which can lead to a variety of metabolic
disorders such as insulin resistance, type 2 diabetes, non-alcohol fatty
liver disease, and dyslipidemia (Franssen et al., 2011; Jung and Choi,
2014). Increased hepatic fatty acid uptake stimulates synthesis of TG-
rich very low-density lipoprotein (VLDL) cholesterol particles that are
converted in the bloodstream to small-dense LDL particles through a
process that also lowers circulating HDL (Bays et al., 2013). Whereas
most of the LDL cholesterol is taken up again by the liver, a small
fraction is removed from circulation by endocytosis via LDL receptors
located in extrahepatic tissues, including the brain. Brain-adipose-
liver communication pathways help maintain homeostasis by
integrating peripheral metabolic signals; (Franssen et al., 2011;
Gliozzi et al., 2021); miscommunication leads to central
dysregulation and metabolic disorders (Yi and Tschop, 2012). For
example, in rodents, insulin acts in the brain to enhance hepatic TG
secretion via VLDL synthesis (Scherer et al., 2016). There is additional
evidence to suggest that circulating plasma cholesterol concentration
may play a role in neurodegeneration in susceptible individuals
(Dietschy and Turley, 2001). A high-fat, high-cholesterol diet has
also been associated with impaired cognition and memory (Ledreux
et al., 2016) through mechanisms that may involve brain
inflammation (Pistell et al., 2010).

4.2 Novel lipid loci include genes expressed
in adipose tissue

Given the important role played by adipose tissue in
regulating lipid metabolism, it is notable that two novel loci
were identified that include genes with known roles in
adipocyte differentiation and/or function. For example,
syntaxin 6 (STX6; Table 1, locus 1, TG locus in AFR) has been
shown to play a role in mediating insulin-stimulated translocation
of the glucose transporter-4 (Glut4) in adipose tissue (Perera
et al., 2003). After feeding, transgenic mice that overexpress Glut4
in adipose tissue show reduced activity of lipoprotein lipase
(Gnudi et al., 1996), the rate-limiting step for clearing plasma
TG (Wang and Eckel, 2009). S-phase kinase associated protein 2
(SKP2; locus 8, LDL locus in EUR) plays a role in adipocyte
differentiation (Okada et al., 2009); transgenic Skp2 knock-out
mice have a 50% reduction in both subcutaneous and visceral
adipocyte numbers (Cooke et al., 2007).

4.3 Novel lipid loci include genes expressed
in the brain

Nine novel lipid loci have been identified that include genes
responsible for vital functions in the central nervous system. For
example, the gene products of lemur tyrosine kinase 2 (LMTK2;
locus 11, LDL locus in CPA) and myosin VI (MYO6; locus 10, HDL
locus in AFR) both bind with kinesin-1 light chain in neurons to
mediate axonal transportation of a wide variety of cargo including
mitochondria and neurotransmitter-containing vesicles, and
participate in glutamate receptor endocytosis on the pre-
synaptic membrane (Li et al., 2020). Genes with similar
functions are often clustered along chromosomes where shared
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regulatory domains mediate coexpression (Semon and Duret,
2006). Such may be the case for the locus on chromosome 6
(locus 10, HDL locus in AFR) where a series of genes are expressed
in the hippocampus of the brain [transmembrane protein 30A
(TMEM30A) (Xu et al., 2012), filamin A interacting protein 1
(FILIP1), (LoTurco and Bai, 2006), SUMO specific peptidase 6
(SENP6), (Loriol et al., 2013), and MYO6 (Tamaki et al., 2008)].
The hippocampus is responsible for consolidating short-term into
long-term memory; modeling of interactions with educational
attainment may have facilitated the detection of this novel
locus. In murine models, knock-down of TMEM30A by small
interfering RNAs (siRNAs) reduced neurite outgrowth in the
hippocampus (Xu et al., 2012). The expression of FILIP1, which
produces a negative regulator of filamin A, is required for
appropriate neocortical cell migration (LoTurco and Bai, 2006).
An LDL locus in EAS (locus 3) includes SLIT-ROBO Rho GTPase
activating protein 3 (SRGAP3), a SLIT-ROBO activating protein
that guides the growth of dendritic spines on cortical neurons
(Blockus and Chedotal, 2014). Limited data from a candidate-gene
association study also suggest that this locus is associated with total
cholesterol, HDL, and apolipoprotein A1 in Maonan Chinese
(Miao et al., 2017).

GRIN2B (locus 17, TG locus in AFR), which encodes aN-methyl
D-aspartate (NMDA) receptor subunit, is highly expressed in the
hippocampus where it plays critical roles in memory consolidation.
Murine models of aging show that transgenic overexpression of
Grin2b improves learning and memory function (Cao et al., 2007).
Notably, individuals with missense mutations in GRIN2B develop
rare autosomal dominant forms of encephalopathy characterize by
intellectual disability, impaired learning, and behavior phenotypes
(Swanger et al., 2016; Fedele et al., 2018). Further preclinical and
translational studies are warranted to determine the mechanisms by
which interactions with educational attainment may modulate lipid
levels in humans.

Some novel loci include several genes that are differentially
expressed under a variety of conditions that may relate to altered
environmental exposures in humans. For example, MYO6
(Tamaki et al., 2008) (locus 8, LDL locus in EUR) expression
is upregulated in animal models of stress; and transmembrane
protein 167A (TMEM167A; locus 9, LDL locus in AFR) is
differentially expressed in the hippocampus of depressed
murine models (Zhang et al., 2018). Of additional interest is
the long non-coding RNA (lncRNA) LINC00290 (locus 6, HDL in
CPA) which has been proposed as a “human-accelerated
element” contributing to primate evolutionary shifts that lead
to higher-order human capabilities such as complex language,
advanced learning, and long-term planning (Kamm et al., 2013).
Given evidence for expression in brain tissues, it is notable that
the LINC00290 locus was only identified through interaction
analyses with educational attainment.

4.4 Novel lipid loci include genes with roles
in both adipose and brain tissues

There are four additional loci containing genes that have
plausible biologic roles in both adipocyte function and in the
brain. For example, in locus 12 (LDL locus in AFR), MBOAT4

has been called a “master switch” for the ghrelin system (Romero
et al., 2010). Ghrelin, which is secreted by gastric endocrine cells, is
made biologically active when acylated by MBOAT4. In addition to
playing critical roles in adipogenesis, lipogenesis, and glucose
homeostasis, ghrelin also stimulates food intake through actions
in the brain (Pradhan et al., 2013). In locus 15 (LDL locus in EUR),
the expression of stromal interaction molecule 1 (STIM1) negatively
regulates adipocyte differentiation, impairing their ability to
accumulate lipids (Graham et al., 2009). Stim1 is also a calcium
sensor that plays a critical role in the formation of dendritic spines in
developing murine hippocampal cells (Kushnireva et al., 2020). In
transgenic mice, overexpression of Stim1 leads to improved
contextual learning and decreased depression- and anxiety-like
behaviors (Majewski et al., 2017). solute carrier family 1 member
3 (SLC1A3; locus 8, LDL locus in EUR) encodes a high-affinity
glutamate reuptake channel in brain astrocytes that terminates
excitatory neurotransmission; Slc1a3 knock-out mice have
abnormal sociability (Zhou and Danbolt, 2014). SLC1A3 is also
expressed in adipocytes, although its role in this tissue is not well
understood (Krycer et al., 2017).

4.5 Gene with roles in adipose, brain, and
liver tissues

Two loci contain genes with plausible biologic roles in adipose,
brain, and hepatic tissues. In the brain, BRI3 (locus 11, LDL locus in
CPA) has been implicated in neuronal survival following ischemia/
reperfusion injury (Yang et al., 2015) and may be a protective
regulator against Alzheimer disease (Matsuda et al., 2009).
Several SNVs in this locus are significant eQTLs for BRI3
expression in both the liver and subcutaneous fat. A variant in
BRI3 is notable for a CADD score predictive of being deleterious.
FOXP1 (locus 4, HDL locus in EUR) is involved in adipocyte
differentiation (Liu et al., 2019). In the brain, the transcription
factor, FOXP1, heterodimerizes with its paralog, forkhead box P2
(FOXP2), to form a transcription factor; rare mutations in FOXP2
have been reported in multiple cases of intellectual disability and
language impairment (Bacon and Rappold, 2012). In murine models
of diabetes, hepatic FOXP1 expression, a regulator of gluconeogenic
gene expression, is downregulated (Zou et al., 2015).

4.6 Limitations

Several limitations are inherent in the design of large-scale
multi-population genome-wide association studies such as this
one. First, we were unable to validate seven of the 18 novel loci
(one EUR, one EAS, and five AFR), largely due to the limited
number of non-EUR cohorts available in Stage 2 and variants/
cohorts failing to meet quality control thresholds; these loci need
further validation. Second, 16 of the 18 novel loci were notable for
having minor allele frequencies <0.10 which increases the possibility
for type 1 and type 2 errors. Third, the interpretation of educational
attainment as a proxy for SES may vary according to gender,
population, region, country, and/or birth cohort (Tyroler, 1989;
Sorel et al., 1992; Kaplan and Keil, 1993; Metcalf et al., 1998) and
dichotomization may fail to capture more nuanced population
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differences, in particular for non-minoritized populations. For
example, in developing countries where diets are becoming
progressively westernized, men and women from higher SES
strata are at higher risk for dyslipidemia (Espirito Santo et al.,
2019). Fourth, the practice of adjusting LDL concentrations for
statin use is based on a method derived from a meta-analysis of
largely European-population cohorts (Baigent et al., 2005) which
may not be appropriate for other populations. Finally, genome-
wide association studies are largely hypothesis generating in
scope; findings of association warrant validation in biological
systems. While we attempted to enhance potential relevance by
reporting of functional annotation and druggability of candidate
gene targets, biologic plausibility was extrapolated primarily from
animal and in vitro data that may not be relevant in human lipid
metabolism.

Despite these limitations, this study hasmultiple strengths such as a
sufficiently large sample size of cohorts inclusive across the lifespan and
sex and representing diverse populations, the majority which were not
selected for lipid abnormalities. Furthermore, consideration of
educational attainment is a novel strategy designed to enhance
discovery of novel lipid loci. Whereas GWAS studies traditionally
identify variants that explain only a fraction of trait variability, even
loci associated with modest changes in gene expression or protein
function may lay the groundwork for identifying novel drug targets
and/or repurposing of existing drugs for lipid management.

4.7 Conclusions

In conclusion, this multi-population meta-analysis of LDL,
HDL, and TG identified 18 novel loci by consideration of gene-
educational attainment interactions; one locus was identified only
through evidence for interaction with educational attainment.
Several of the loci include genes with known or suggested roles
in adipocyte, brain, and/or liver biology. While findings of gene-
environment interactions have generally not yet been translated to
clinical practice, the results of this study may identify novel potential
therapeutic targets for lipid management, especially those involving
central control of lipid metabolism.
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