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Kerrin S. Small1, Jakob Linseisen3,12, Melanie Waldenberger2,11 and Jordana T. Bell1* 

Abstract 

Background B vitamins such as folate (B9), B6, and B12 are key in one carbon metabolism, which generates methyl 
donors for DNA methylation. Several studies have linked differential methylation to self‑reported intakes of folate 
and B12, but these estimates can be imprecise, while metabolomic biomarkers can offer an objective assessment 
of dietary intakes. We explored blood metabolomic biomarkers of folate and vitamins B6 and B12, to carry out epi‑
genome‑wide analyses across up to three European cohorts. Associations between self‑reported habitual daily B 
vitamin intakes and 756 metabolites (Metabolon Inc.) were assessed in serum samples from 1064 UK participants 
from the TwinsUK cohort. The identified B vitamin metabolomic biomarkers were then used in epigenome‑wide 
association tests with fasting blood DNA methylation levels at 430,768 sites from the Infinium HumanMethylation450 
BeadChip in blood samples from 2182 European participants from the TwinsUK and KORA cohorts. Candidate signals 
were explored for metabolite associations with gene expression levels in a subset of the TwinsUK sample (n = 297). 
Metabolomic biomarker epigenetic associations were also compared with epigenetic associations of self‑reported 
habitual B vitamin intakes in samples from 2294 European participants.

Results Eighteen metabolites were associated with B vitamin intakes after correction for multiple testing (Bonferroni‑
adj. p < 0.05), of which 7 metabolites were available in both cohorts and tested for epigenome‑wide association. Three 
metabolites — pipecolate (metabolomic biomarker of B6 and folate intakes), pyridoxate (marker of B6 and folate) 
and docosahexaenoate (DHA, marker of B6) — were associated with 10, 3 and 1 differentially methylated positions 
(DMPs), respectively. The strongest association was observed between DHA and DMP cg03440556 in the SCD gene 
(effect = 0.093 ± 0.016, p = 4.07E−09). Pyridoxate, a catabolic product of vitamin B6, was inversely associated with CpG 
methylation near the SLC1A5 gene promoter region (cg02711608 and cg22304262) and with SLC7A11 (cg06690548), 
but not with corresponding changes in gene expression levels. The self‑reported intake of folate and vitamin B6 had 
consistent but non‑significant associations with the epigenetic signals.
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Background
DNA methylation (DNAm) is an important epigenetic 
mechanism in development and over the lifecourse. In 
mammals, DNAm typically occurs through the transfer 
of methyl groups from S-adenosylmethionine (SAM) 
to cytosine residues at CpG dinucleotides. SAM is the 
product of one carbon metabolism, which includes the 
folate (B9) and methionine cycles and utilizes nutri-
ents as substrates [1, 2]. SAM and DNAm levels are 
influenced by diet and the intake of nutrients [2], par-
ticularly B vitamins. Vitamins B6 and B12 are cofac-
tors involved in the regulation of the catalytic activity 
of enzymes from the folate cycle where folate is the 
main substrate [3]. DNA methyltransferases (DNMTs) 
convert SAM into S-Adenosylhomocysteine (SAH), a 
metabolic precursor of homocysteine (hcy), and folate 
and vitamins B6 and B12 in the diet can reduce serum 
homocysteine (hcy-s) levels and promote its re-methyl-
ation to methionine [4]. In contrast, hcy accumulation 
and hyper-homocysteinemia can arise from nutritional 
deficiencies of B vitamins and lead to DNMT inhibition 
and DNA hypomethylation [5, 6].

Recently, two large-scale studies explored evidence 
for epigenome-wide association between self-reported 
B vitamin intakes and blood-based DNA methylation 
profiles. Chamberlain et  al. [7] explored differential 
methylation with dietary intakes estimated from food 
frequency questionnaires (FFQs) in 5186 adult partici-
pants from the Melbourne Collaborative Cohort Study, 
reporting one association with B2 intake. Mandaviya 
et al. [8] also explored methylation associations with B 
vitamin intakes estimated from FFQs in a meta-analy-
sis of 5841 participants across 10 European and North 
American cohorts, identifying multiple differentially 
methylated positions (DMPs) and regions associated 
with folate and B12 intakes. All but one signal showed 
an inverse correlation between folate intakes and whole 
blood DNAm levels. Overall, there is relatively modest 
overlap across the results from the two studies in adults 
[9], which may in part be attributed to differences in 
study design and methodology, or weak association 
between dietary intake of B vitamins and DNA meth-
ylation. A further study by Joubert et al. [10] reported 
associations between maternal intake of B vitamins in 
pregnancy and blood based methylation in newborns, 
but these results are not replicated in samples from 
adult participants.

FFQs are commonly used to assess habitual nutrient 
intakes in epidemiological studies due to their practical-
ity for regular assessment of diets over time [11], but they 
also have limitations. By design, FFQs include a finite list 
of food items and portion sizes, and have limited speci-
ficity on food preparation and types of food [12]. More-
over, food intake greatly depends on ethnic, social, and 
cultural background and FFQs need to be well-tailored 
to the study population [11]. FFQs also suffer from social 
desirability bias where participants omit specific foods 
and beverages, therefore misreporting can occur. Further 
imprecision in the estimation of nutrient intakes from 
FFQ derived food intake estimates originate from the 
application of food composition databases [12].

Inaccurate dietary assessments may limit our under-
standing of the impact of B vitamins on DNAm. In con-
trast, biochemical markers may provide more accurate 
measures of specific aspects of dietary intake for the time 
point of biospecimen collection [13]. Metabolomics—the 
global assessment of all metabolites present in a biologi-
cal sample—has major value for biomarker discovery in 
nutrition. Multiple cohort and intervention studies have 
identified metabolomic biomarkers of dietary patterns, 
foods and beverages such as tea, coffee, wine, cocoa, cit-
rus fruits, fish, red meat, whole-grain products and more 
[14, 15]. Recently, Posma et al. [16] showed that urinary 
metabotypes collected three weeks apart are more sta-
ble than 24h dietary recalls, and that up to 67 nutrients, 
including folate and vitamin B6, can influence the urinary 
metabotype of participants.

In this study we aimed to use blood metabolomic bio-
markers to investigate the effects of dietary B vitamins on 
blood DNAm variation. We first identified blood metab-
olomic biomarkers of folate and vitamins B6 and B12 die-
tary intakes in population-based samples from the UK, 
and subsequently explored their metabolomic-epigenetic 
associations in European cohorts. The metabolomic-
epigenetic associations were compared with epigenetic 
associations of self-reported dietary B vitamin estimates 
in the current study and from previous work.

Results
Serum metabolites related to the intake of B vitamins 
were identified for use in downstream epigenetic asso-
ciation analyses aiming to detect differentially methylated 
signals related to B vitamin intakes in > 2000 participants 
of European ancestry (Fig. 1).

Conclusion Metabolomic biomarkers are a valuable approach to investigate the effects of dietary B vitamin intake 
on the human epigenome.

Keywords DNA methylation, Metabolomics, Biomarkers, B vitamins, Folate, Diet
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B vitamin metabolomic biomarker discovery
Discovery of blood metabolomic biomarkers related to 
the intake of folate and vitamins B6 and B12 was con-
ducted in 1064 samples from the TwinsUK cohort (Addi-
tional file  1: Table  S1). Thirty-one metabolites were 
associated with the intake of one or more B vitamins 
(Bonferroni-adjusted p < 0.05; Additional file 1: Table S2). 
Of these, 18 metabolites were annotated to a known bio-
chemical compound and were explored in downstream 
analyses.

Among the 18 metabolites identified, 16, 5 and 1 
metabolites were associated with the intakes of folate 
and vitamins B6 and B12, respectively (Bonferroni-adj. 
p < 0.05; Fig.  2). Compounds 2-docosahexaenoyl-GPC 
(22:6)*, pyridoxate and pipecolate were associated with 
both folate and vitamin B6, and 1-(1-enyl-stearoyl)-
2-docosahexaenoyl-GPE (P-18:0/22:6)* was associated 
with both vitamins B6 and B12. Other compounds were 
associated with one B vitamin alone after multiple test-
ing correction. Pyridoxate and pipecolate levels were not 
correlated with the levels of other biomarkers identified 
and fatty acid molecules had varying degrees of direct 
correlation with each other (Additional file 2: Figure S1).

The strongest metabolomic associations were observed 
for vitamin B6 with 1-(1-enyl-palmitoyl)-2-doco-
sahexaenoyl-GPC (P-16:0/22:6)* (b = 0.335 ± 0.058, adj. 
p = 5.09E−06,  R2

c = 0.591), followed by 1-docosahexae-
noyl-GPC (22:6)* (b = 0.317 ± 0.058, adj. p = 4.88E−05, 
 R2

c = 0.480), 2-hydroxyoctanoate (b = − 0.313 ± 0.060, 
adj. p = 1.55E−04,  R2

c = 0.451) and pipecolate 
(b = 0.296 ± 0.059, adj. p = 4.76E−04,  R2

c = 0.489). The 
strongest association identified for folate was with 
2-docosahexaenoyl-GPC (22:6)* (b = 0.001 ± 0.0003, 
adj. p = 0.012,  R2

c = 0.400), and the only compound 
associated with B12 was 1-(1-enyl-stearoyl)-2-doco-
sahexaenoyl-GPE (P-18:0/22:6)* (b = 0.055 ± 0.013, adj. 
p = 0.030,  R2

c = 0.599). Docosahexaenoate (DHA; 22:6n3) 

was associated with vitamin B6 (b = 0.268 ± 0.057, adj. 
p = 2.53E-03,  R2

c = 0.519).
Of the 18 metabolites identified in our main analy-

sis, 11 were annotated to the lipid superpathway with 5 
of them playing a role in phospholipid metabolism and 
two belonging to the plasmalogen or lysolipid subpath-
ways (Additional file 2: Figure S2). Other metabolic path-
ways found in our results included nucleotide and amino 
acid pathways. Pyridoxate — associated with vitamin 
B6 (b = 0.290 ± 0.059, adj. p = 8.34E-04,  R2

c = 0.407) and 
to a lesser extent with folate (b = 0.0013 ± 0.0003, adj. 
p = 0.039,  R2

c = 0.388) intakes — was annotated to the 
vitamin B6 metabolism pathway.

Sensitivity analyses
Three sensitivity analyses were carried out to assess the 
specificity of the 18 blood metabolic biomarkers of B 
vitamin intakes. First, we explored whether total energy 
intake and overall diet quality, estimated using the ‘AHEI-
2010’ diet score [17], affected the biomarker results.

All 18 metabolomic associations reported in the main 
analysis remained nominally significant after adjust-
ing for diet quality and energy intake (p < 0.05) (Addi-
tional file 1: Table S3), and 10 metabolomic associations 
remained significant after multiple testing correction, 
including 1-docosahexaenoyl-GPC (22:6)*, pyridox-
ate, uridine and DHA metabolites later on used in the 
downstream epigenome-wide association analysis. New 
associations were also identified in the sensitivity analy-
sis, including folate intake associated with theanine and 
vitamin B12 associated with five other metabolites (Addi-
tional file 1: Table S3).

Second, we assessed the specificity of the 18 metabo-
lite biomarkers of B vitamin intakes, by testing their asso-
ciation with the intake of 38 other nutrients estimated 
from FFQs (see Methods). Metabolomic associations 
with other nutrients were identified (Additional file  1: 

Fig. 1 Data analysis workflow and main results from this study
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Table S4), and all B vitamin metabolomic biomarkers that 
were assessed in the downstream epigenome-wide asso-
ciation analysis below (1-docosahexaenoyl-GPC (22:6)*, 
7-methylguanine, betaine, pipecolate, pyridoxate, uri-
dine and DHA) were associated other nutrients. Pipeco-
late and DHA had the largest number of associations 
reported in this analysis with 13 and 16 other nutrient 
associations found for each metabolite at a Bonferroni-
adj. p < 0.05 threshold extrapolated from the full 756 
metabolite panel (Additional file 1: Table S5).

The final sensitivity analysis explored if the identi-
fied B vitamin intake biomarkers could be validated 
by assessing their association with the levels of folate, 
vitamin B12 and hcy in plasma, and hcy in serum (hcy-
s), which were available in sample subsets for 473–729 
individuals in the TwinsUK cohort (Additional file  1: 
Table S1). Pyridoxate and betaine were associated with 
levels of folate after multiple testing correction (Bon-
ferroni-adj. p < 0.05) and 1-(1-enyl-stearoyl)-2-doco-
sahexaenoyl-GPE (P-18:0/22:6)* was associated with 
levels of vitamin B12 nominally (p < 0.05; Additional 

file  1: Table  S6). Directions of effect for circulating 
folate and vitamin B12 matched the directions of effect 
of the main analysis (Additional file 1: Table S2 and S6).

Of the 18 metabolomic B vitamin biomarkers, 10 
were nominally associated with either hcy, hcy-s, or 
both (p < 0.05; Additional file 1: Table S6). Compounds 
1-docosahexaenoyl-GPC (22:6)*, 7-methylguanine, pyr-
idoxate and DHA, used in the downstream epigenome-
wide association analysis, were associated with both. 
7-methylguanine and DHA had the strongest associa-
tions with hcy and/or hcy-s in this sensitivity analysis 
(Bonferroni-adj. p < 0.05). As expected, all significant 
associations between homocysteine and blood metabo-
lites showed the opposite direction of association effect 
to that observed between the intake of B vitamin and 
their respective blood metabolite biomarker (e.g., DHA 
levels increase with B12 intake and hcy levels lower 
with increased DHA in blood; Additional file 1: Tables 
S1 and S6). This result was expected, because folate 
and vitamins B6 and B12 break down homocysteine to 
methionine.

B6 B9 B12
1-(1-enyl-palmitoyl)-2-docosahexaenoyl-GPC (P-16:0/22:6)* ****

1-docosahexaenoyl-GPC (22:6)* **** * p < 0.05
2-hydroxyoctanoate **** ** p < 0.01

pipecolate **** * *** p  < 0.001
1-stearoyl-2-docosahexaenoyl-GPC (18:0/22:6) **** **** p  < 0.0001

pyridoxate **** *
uridine **

docosahexaenoate (DHA; 22:6n3) ** ≤ 0.0001
1-(1-enyl-stearoyl)-2-docosahexaenoyl-GPC (P-18:0/22:6)* **

1-(1-enyl-palmitoyl)-2-docosahexaenoyl-GPE (P-16:0/22:6)* **
1-palmitoyl-2-docosahexaenoyl-GPC (16:0/22:6) *

1-oleoyl-2-docosahexaenoyl-GPC (18:1/22:6)* *
3-methylglutarylcarnitine (1) *

7-methylguanine *
1-(1-enyl-stearoyl)-2-docosahexaenoyl-GPE (P-18:0/22:6)* * *

2-docosahexaenoyl-GPC (22:6)* * * ≥ 0.1
indolepropionate

glycerate
1-docosahexaenoylglycerol (22:6)

4-allylphenol sulfate *
betaine *

pantothenate
C-glycosyltryptophan

2-linoleoylglycerol (18:2)

adj. p -value

Fig. 2 Peak metabolomic associations for folate (B9) and vitamins B6 and B12 habitual intakes in the Metabolon platform (Bonferroni‑adj. p < 0.1)
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Extending these results to a metabolome-wide analy-
sis, we observed 14, 15, 23 and 47 metabolites associated 
with the circulating levels of folate, vitamin B12, hcy and 
hcy-s, respectively (Bonferroni-adj. p < 0.05; Additional 
file  1: Table  S7). Here, strongest signals were identified 
between vitamin B12 and pantothenate (vitamin B5), 
and homocysteine (hcy/hcy-s) and pseudouridine. The 
strongest signal for folate remained pyridoxate metabo-
lome-wide (b = 0.050 ± 0.006, adj. p = 7.36E−13).

B vitamin metabolomic biomarker epigenome‑wide 
meta‑analysis
The 18 metabolomic biomarkers identified for folate 
and vitamins B6 and B12 intakes were explored for asso-
ciations with blood DNAm levels at 430,768 autosomal 
probes in the TwinsUK and KORA F4 cohorts (n = 2182; 
Additional file  1: Table  S8). The KORA F4 dataset 
included 7 of the 18 metabolites under investigation, 
therefore subsequent analyses focused on the 7 common 
metabolomic biomarkers of B vitamin intakes: 1-doc-
osahexaenoyl-GPC (22:6)*, 7-methylguanine, betaine, 
pipecolate, pyridoxate, uridine and DHA. Epigenetic 
analyses were carried out within each cohort, taking into 
account cohort-specific confounders, and results were 
meta-analysed.

Three of the 7 metabolites in the epigenome-wide 
association meta-analysis showed significant differential 
DNAm levels in whole blood (Fig.  3). Pipecolate, pyri-
doxate and DHA were associated with 10, 3 and 1 DMPs 

each, respectively (Bonferroni-adj. p < 0.05, HetISq < 75% 
and HetPval ≥ 0.05). Pipecolate and pyridoxate are poten-
tial biomarkers of vitamin B6 and folate, while DHA is 
a potential metabolite biomarker of vitamin B6 intake 
alone, although they also show associations with other 
nutrient intakes.

Thirteen of the 14 DMPs identified in the meta-analysis 
had inverse directions of effect with DNAm (Table 1), that 
is, decreased DNAm levels with increased metabolite bio-
marker levels in blood. The strongest meta-analysis sig-
nals were observed for pipecolate and DMPs cg20732160 
in the body of the PFKFB4 gene (b = − 0.029 ± 0.004, 
p = 1.68E−11), and cg10589813 located 751 bp upstream 
from CEBPB (b = − 0.029 ± 0.004, p = 3.49E−11). Pyri-
doxate was inversely associated with increased DNAm 
in SLC1A5 (cg02711608 and cg22304262) and SLC7A11 
(cg06690548), with the strongest signal observed for 
DMP cg02711608 (b = − 0.038 ± 0.006, p = 1.63E−09) and 
the strongest effect size observed for DMP cg06690548 
(b = − 0.073 ± 0.013, p = 1.65E−08). The association 
between DHA and DMP cg03440556 in the SCD gene 
was the one direct (positive) association identified in 
our analysis and had the strongest effect size overall 
(b = 0.093 ± 0.016, p = 4.07E−09).

Cg03523740 (TXLNA) and cg27180443 (SCARB1) are 
located in the gene promoter (TSS1500) and were asso-
ciated with pipecolate (Table  1). The pyridoxate-asso-
ciated DMPs in SLC1A5 (cg02711608 and cg22304262) 
are in the upstream (5’) shelf of the same CpG island 

Table 1 B vitamin metabolomic biomarker results from the TwinsUK and KORA F4 epigenetic association meta‑analysis (Bonferroni‑
adj. p < 0.05, HetISq < 75 and HetPVal ≥ 0.05; n = 2182)

Location: ~ gene body, ^ TSS1500, $ 3’UTR, # 5’UTR, % 1st exon, @ intergenic region

*Directions of effect in TwinsUK and KORA, respectively

DMP UCSC gene(s)
(± 10 kb)

Compound
name

Effect size SE p value Direction* HetISq HetPVal

cg20732160 ( ~) PFKFB4/UCN2 Pipecolate − 2.91E−02 4.32 E−03 1.68 E−11 – – 0.00 0.945

cg10589813 (@) CEBPB Pipecolate − 2.93 E−02 4.43 E−03 3.49 E−11 – – 0.00 0.825

cg18120259 ( ~) LOC100132354 Pipecolate − 2.67 E−02 4.36 E−03 9.18 E−10 – – 0.00 0.510

cg11800635 ( ~) LOXL3/DOK1/M1AP Pipecolate − 3.26 E−02 5.61 E−03 6.35 E−09 – – 0.00 0.385

cg08616943 (@) LOC646329/MIR29A/
MIR29B1

Pipecolate − 2.18 E−02 3.76 E−03 6.94 E−09 – – 0.00 0.942

cg03523740 (^) KPNA6/TXLNA Pipecolate − 1.69 E−02 2.97 E−03 1.14 E−08 – – 0.00 0.708

cg12054453 ( ~) VMP1/MIR21/
DM119512/U6

Pipecolate − 6.60 E−02 1.18 E−02 2.26 E−08 – – 46.60 0.171

cg26841068 ($) PRELP/OPTC Pipecolate − 2.26 E−02 4.17 E−03 5.66 E−08 – – 0.00 0.587

cg13442969 (~ , #) DYRK2 Pipecolate − 2.87 E−02 5.34 E−03 7.84 E−08 – – 57.50 0.125

cg27180443 (^) SCARB1 Pipecolate − 1.72 E−02 3.23 E−03 1.05 E−07 – – 0.00 0.570

cg02711608 (~ , #, %) SLC1A5 Pyridoxate − 3.76 E−02 6.23 E−03 1.63 E−09 – – 2.30 0.312

cg06690548 ( ~) SLC7A11 Pyridoxate − 7.33 E−02 1.30 E−02 1.65 E−08 – – 71.50 0.061

cg22304262 (~ , #) SLC1A5 Pyridoxate − 4.10 E−02 7.64 E−03 8.27 E−08 – – 0.00 0.444

cg03440556 ( ~) SCD DHA 9.25 E−02 1.57 E−02 4.07 E−09  +  + 0.00 0.366
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(chr19:47290585-47291983; Additional file  1: Table  S9). 
Relative to SLC1A5, cg02711608 and cg22304262 are 
located on the 5’UTR, body or  1st exon of the gene 
depending on splicing.

In the individual cohort epigenome-wide analyses 
the three metabolite biomarkers associated with DMPs 
in the meta-analysis also displayed consistent direc-
tion of association, and further signals were detected 
albeit in smaller subsamples. In the KORA sample alone 
(n = 1673), pipecolate, pyridoxate and DHA were respec-
tively associated with 9, 4 and 1 DMPs (Bonferroni-adj. 
p < 0.05; Additional file  1: Table  S10). These include the 
three DMPs identified with pyridoxate in the meta-
analysis (cg06690548, cg02711608, cg22304262), the 1 
DMP associated with DHA (cg03440556), and 4 of the 
10 DMPs associated with pipecolate (Additional file  1: 
Table S9). In the TwinsUK sample (n = 509), associations 
did not surpass epigenome-wide multiple testing cor-
rection (Bonferroni-adj. p < 0.05). However, at a more 
relaxed threshold (FDR = 10%) the individual cohort 
analyses also detected 15 DMPs for betaine in TwinsUK 
(lowest p = 4.76E−07 for cg08960352 in the body of the 
DYRK2 gene; Additional file 1: Table S11), and 126 DMPs 
for pipecolate in the KORA sample (lowest p = 5.85E−15 
for cg06690548; data not shown).

If meta-analysis results were not filtered for heteroge-
neity among samples, pipecolate and DHA associated 
respectively with 3 and 1 further DMPs each (Additional 
file  1: Table  S9; Fig.  3). Two of the high-heterogeneity 
DMPs associated with pipecolate included cg02711608 
and cg06690548 identified for pyridoxate in the main 
results of our meta-analysis (Table 1).

B vitamin intake epigenome‑wide meta‑analysis
Pipecolate, pyridoxate and DHA were identified as 
potential metabolomic biomarkers of folate and vitamin 
B6 (Fig. 2) and showed evidence for association with 14 
DNAm signals (Fig. 3). As a follow-up validation analy-
sis, these 14 DMPs identified in our main analysis were 
also tested for association with diet FFQ-derived intakes 
of folate and vitamin B6 in the TwinsUK, KORA FF4 and 
LLS cohorts (n = 2294; Additional file  1: Table  S12). Of 
the 14 DMPs, only cg10589813, upstream the CEBPB 
gene and associated with pipecolate, reached border-
line nominal significance with habitual vitamin B6 
intake (b = − 0.023 ± 0.013, p = 0.06). The directions of 
association, while not always consistent across cohorts, 
were often overall consistent with the results from 
the biomarker EWAS meta-analysis (Additional file  1: 
Table  S13). Of the 10 DMPs associated with pipecolate, 

Fig. 3 Circular Manhattan plot of the B vitamin metabolomic biomarker results from the TwinsUK and KORA F4 epigenetic association 
meta‑analysis (n = 2182)
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6 and 7 had respective consistent inverse directions of 
effect with habitual vitamin B6 and folate. Of the 3 DMPs 
associated with pyridoxate, 2 and 1 had inverse directions 
of effect with B6 and folate. The main DMP result coming 
from DHA had a consistent positive direction of effect 
with dietary B6. Although the metabolomic biomarkers 
with DMPs were associated only with folate and vita-
min B6 (Figs. 1 and 2), we tested if any of the 14 DMPs 
were significantly associated with vitamin B12 intake as 
well. Only cg20732160, located in the PFKFB4 gene and 
previously associated with pipecolate (a marker of folate 
and vitamin B6), was borderline significant with B12 
(b = − 0.004 ± 0.002, p = 0.06). Nine of the 14 DMPs under 
study had consistent directions of effect between B12 
intake and the three metabolites under study despite the 
metabolites marking only folate and vitamin B6 (Fig. 1).

Furthermore, an epigenome-wide association meta-
analysis of FFQ-derived B vitamin intakes was performed 
across altogether 393,223 autosomal probes in the Twin-
sUK, KORA FF4 and LLS cohorts. No significant results 
were identified for vitamin B6 (lowest p = 2.68E−06) and 
folate (lowest p = 5.13E−06) and only 1 borderline sig-
nificant result was found for vitamin B12: cg03473640 
in the body of the MYO5A gene (b = − 0.013 ± 0.002, 
p = 1.30E−07), after multiple testing correction (Bonfer-
roni-adj. p = 0.051).

Associated gene expression results
Using previously-published results from the BIOS con-
sortium [18] we explored whether there were expres-
sion quantitative trait methylation signals among the 
14 DMPs (Table  1). Overall, methylation levels at three 
DMPs—cg11800635, cg12054453 and cg02711608—
were associated with the expression of genes annotated 
to them (Additional file 1: Table S14). Methylation levels 
at cg11800635 and cg12054453 were inversely associated 
with the expression of LOXL3/DOK1/M1AP and VMP1 
genes, and methylation at cg02711608 was directly asso-
ciated with the expression of SLC1A5 in a BIOS subsam-
ple of 2101 individuals.

The 14 DMPs identified in this study were in or 
within 10kb of 23 genes, of which 15 genes had whole 
blood gene expression data in a sample from the Twin-
sUK cohort (n = 297; mean age = 63.59 ± 7.59 and mean 
BMI = 25.96 ± 4.63 kg/m2). These included SLC1A5 and 
SLC7A11 genes (associated with pyridoxate in EWAS), 
SCD gene (associated with DHA in EWAS), and 12 
genes with DMPs for pipecolate. Using the 15 can-
didate genes identified, we explored the association 
between gene expression and metabolomic biomarker 
levels. We observed one nominally significant asso-
ciation between TXLNA expression and pipecolate in 
blood (b = − 0.136 ± 0.108, p = 0.015; Additional file  1: 

Table  S15), but no signals surpassed multiple testing 
correction.

Discussion
Our study identified 18 blood metabolite biomarkers of 
habitual folate and vitamins B6 and B12 intakes. Of these, 
three metabolomic biomarkers of folate and vitamin 
B6 showed a blood based epigenetic signature includ-
ing signals in amino acid transporter genes SLC1A5 and 
SLC7A11, and in the stearoyl-CoA desaturase gene SCD. 
These signals may give insights into mechanisms involved 
in B vitamin uptake and regulation within the one-car-
bon metabolism pathway.

The B vitamins pyridoxine (B6), folate (B9) and cobala-
min (B12) are essential soluble micronutrients that influ-
ence metabolism, physiology, immunity and development 
in living organisms through their roles in the one-carbon 
metabolism pathway—a biochemical network, which 
produces methyl groups for DNA synthesis and meth-
ylation. B6 and B12 function as enzymatic cofactors that 
facilitate reactions in the folate and methionine cycles 
in one-carbon metabolism; folate feeds into one-carbon 
metabolism as the principal substrate in the folate cycle. 
The conversion of hcy to methionine is particularly 
important as circulating hcy levels have been linked to 
several conditions, specifically, cardiovascular disease, 
diabetes, cancer and cognitive function. The B vitamins 
are proposed to have protective effects on human health 
through their influences on DNAm and levels of circulat-
ing hcy [19–22].

In this study we aimed to identify metabolomic bio-
markers of folate and vitamins B6 and B12 to explore 
in downstream epigenome-wide association analy-
sis towards identifying DNAm signatures of B vitamin 
intakes. Eighteen metabolites were identified as potential 
biomarkers of folate and vitamins B6 and B12, with one 
of the profiled metabolites—pyridoxate—acting within 
the vitamin B6 metabolic pathway. Sensitivity analyses 
showed that metabolite associations were non-specific. 
The non-specificity was expected since foods are com-
posed of different nutrients and there will be a correlation 
of intakes according to an individual’s dietary choices. 
However, diet quality and total energy intake were not 
major confounders of our analysis. In line with our 
results, Posma et  al. (2020) also identified associations 
between intakes of B vitamins with levels of betaines and 
fatty acids in urine [16]. Posma et  al. identified direct 
correlations between folate, B6 and proline betaine/4-
hydroxyproline betaine, and inverse correlations between 
folate, B6 and C5-C10 fatty acids in general [16]. Here, we 
identified direct correlations between folate and betaine, 
but the fatty acids identified had distinct directions of 
effect in blood depending on the molecule under study.
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Metabolomic biomarker findings for intakes of folate 
and vitamin B12 were confirmed against their corre-
sponding circulating levels in plasma, where direction 
of effect matched results based on self-assessed habitual 
dietary data and nominal significance was achieved for 
4/6 metabolomic biomarkers. Hcy and hcy-s levels were 
both nominally associated with 8/18 metabolomic bio-
markers identified for folate, and vitamins B6 and B12. 
Biomarkers with positive direction of association with 
folate and vitamins B6 and B12 had negative directions 
of association with circulating hcy levels in blood, and 
vice-versa. This matches current knowledge that plasma 
concentrations of hcy are inversely related to the intake 
of folate, B6 and B12, and nongenetic determinants of 
hcy concentrations in blood include inadequate concen-
trations of B vitamins [5, 6, 19–22].

Using epigenetic and metabolomic data from the Twin-
sUK and KORA F4 cohorts we were able to meta-analyse 
epigenome-wide associations for 7/18 metabolite bio-
markers identified. Pipecolate (a marker of folate and 
vitamin B6), pyridoxate (a marker of folate and vitamin 
B6) and DHA (a marker of vitamin B6) were respectively 
associated with 10, 3 and 1 DMPs.

Of the 3 blood metabolomic biomarkers identified with 
DMPs epigenome-wide, pyridoxate has the most imme-
diate link to B vitamins. Pyridoxate, or 4-pyridoxic acid, 
is the main catabolic product of vitamin B6 metabolism, 
and is formed from pyridoxal in the liver [23]. Pyridox-
ate is excreted into urine and its concentration in plasma 
is directly correlated with vitamin B6 intake [24]. Its use 
as a biomarker of vitamin B6 had mixed results in pre-
vious studies, however, and other forms of vitamin B6 
have been encouraged in clinic [24]. In this study, we 
observed a strong positive correlation between the intake 
of dietary vitamin B6 and pyridoxate measured using 
Metabolon Inc. Pyridoxate was the only metabolite of the 
subpathway of vitamin B6 metabolism in our Metabolon 
panel of 756 metabolites, and therefore we suggest its use 
as a potential biomarker of vitamin B6 intake.

DHA is an essential omega-3 fatty acid from diet that 
needs phosphatidylcholine for circulation in the plasma 
and distribution to peripheral tissues [25]. As a conse-
quence, it takes part in one-carbon metabolism, where 
methyl groups are transferred from SAM during the con-
version of phosphatidylethanolamine-DHA to phosphati-
dylcholine-DHA [25]. Folate and vitamins B6 and B12 
concentrations in plasma have been previously associated 
with DHA in blood in a cohort of European adolescents, 
likely due to their role in the maintenance of the levels 
of SAM [26]. DHA status has itself also been associated 
with B vitamin supplementation, where individuals with 
higher levels of DHA in plasma could gain more from 
supplementing their diet with vitamin B12 and folic acid 

in order to lower their hcy levels, which are associated 
with aging cognitive decline [27]. Pipecolate, or pipecolic 
acid, is a metabolite of lysine degradation in human phys-
iological fluids, including the blood, urine and brain, with 
plasma pipecolate originating from both the bacterial 
catabolism of dietary lysine in the intestine and the direct 
dietary intake of plants with high levels of pipecolic acid 
[28, 29]. Pipecolate levels have been associated with pyr-
idoxine-dependent epilepsy, but direct association of B6 
deficiency and pipecolic acid metabolism is unlikely [30]. 
Indeed, we observed a positive correlation between B6 
intake and pipecolate measured in plasma in our study.

The directions of effect for the DMPs identified from 
pyridoxate, pipecolate and DHA were often consistent 
with results obtained directly from FFQ-derived B vita-
min intakes in the TwinsUK, KORA FF4 and LLS cohorts. 
Mandaviya et  al. [8] identified associations between 
dietary folate and 6 DMPs (cg23465990, cg11832534, 
cg03249011, cg14398883, cg00826902, cg14145338), but 
these were not among those identified for pipecolate 
and pyridoxate in our main analysis. Dietary folate was 
associated with hypomethylation at single sites in Man-
daviya et  al. [8]; we observed the same trend here for 
pipecolate and pyridoxate. Previously Petersen et al. [31] 
reported an epigenome-wide analysis of serum metabo-
lites in the KORA F4 cohort [31]. Petersen et  al. [31] 
reported that methylation at 2 CpG sites—cg16936953 
and cg12054453—was significantly negatively associated 
with pipecolate levels in blood. In line with this result, 
our meta-analysis identified DMP cg12054453 as peak 
signal for pipecolate. DMP cg16936953 was borderline 
significant (Bonferroni-adj. p = 0.052), but did not pass 
heterogeneity filters in a meta-analysis of results with 
TwinsUK. Overall, the predominantly inverse directions 
of effects identified epigenome-wide in Mandaviya et al. 
[8] for dietary folate, in Petersen et  al. [31] for pipeco-
late, and in our study for pipecolate and pyridoxate sug-
gest that population-wide differences in B vitamin intake 
within the normal reference values can affect one-carbon 
metabolism homeostasis with higher B vitamin linked to 
lower levels of methylation. This is particularly apparent 
for vitamin B6, which is a cofactor in the transsulfura-
tion pathway that converts hcy to cysteine, and lowers 
the production of methionine available for DNA meth-
ylation. In our study, pipecolate and pyridoxate were 
markers of both vitamin B6 and folate, but had stronger 
associations with vitamin B6. Moreover, vitamin B6 and 
folate intakes were highly correlated in our data (Pear-
son’s r = 0.62 for folate and B6, while r = 0.04 for folate 
and B12, and r = 0.16 for vitamins B6 and B12). It is thus 
possible that we are primarily observing the effects of 
vitamin B6 in one-carbon metabolism in the inverse 
associations reported.
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The genes annotated to the DMPs identified in our 
meta-analysis varied in function. Pipecolate was associ-
ated with decreased methylation in genes with important 
roles in cellular metabolism and homeostasis. Specifi-
cally, PFKFB4 is crucial in regulating the concentration of 
the glycolytic byproduct fructose-2,6-bisphosphate, while 
SCARB1 is a plasma membrane receptor for high-density 
lipoprotein and cholesterol trafficking between cells [32, 
33]. DNAm in the PFKFB4 gene has been previously 
associated with the regulation of glycolytic potential in 
skeletal muscle [34]. DHA was associated with increased 
DNAm in the SCD gene, which encodes the Stearoyl 
CoA Desaturase-1 enzyme that converts saturated fatty 
acids into monounsaturated fatty acids and plays a role 
in obesity and insulin resistance. Decreased promoter 
methylation of the SCD gene has been previously linked 
to obesity [35].

Pyridoxate was associated with hypomethylation in 
amino acid transporter genes SLC1A5 and SLC7A11. 
SLC7A11 encodes a cysteine/glutamate antiporter 
system, a critical modulator of intracellular redox 
balance that mediates the exchange of intracellular glu-
tamate for extracellular cystine, an essential precursor 
for glutathione synthesis [36, 37]. Vitamin B6-dependent 
enzymes also catalyse most reactions of the transsulfu-
ration pathway, which drives homocysteine to cysteine 
and further into glutathione peroxidase proteins [38]. In 
our study pipecolate (direct marker of B6) was associated 
with hypomethylation in cg06690548, suggesting that 
vitamin B6-dependent hypomethylation in SLC7A11 may 
be related to processes implicated in cysteine homeosta-
sis and oxidative stress. Hypermethylation of cg06690548 
has also recently been associated with downregulation of 
SLC7A11 in Parkinson’s disease [39].

SLC1A5 is a sodium-dependent amino acid transporter 
with broad substrate specificity and preference for glu-
tamine [40]. Consequently, SLC1A5 is expressed in highly 
proliferative cells such as inflammatory, stem and cancer 
cells to meet their augmented glutamine demand. Differ-
ential methylation of cg02711608 (located in the 5’UTR 
region of SLC1A5) has been linked to alcohol consump-
tion and BMI [41–43]. Hypomethylation of cg02711608 
and cg22304262 (also in the 5’UTR region of SLC1A5) 
has been linked to higher blood pressure [44]. A puta-
tive causal effect has further been demonstrated for 
DMP cg22304262 in the context of incident coronary 
heart disease [45], as recently reviewed by us [46]. Folate 
intake and supplementation have been associated with 
improved endothelial function [47], lower systolic and 
diastolic blood pressure [47, 48], and overall lower risk 
of incident hypertension [49]. DNAm could thus fulfil 
a mechanistic role in the mediation of B vitamin intake 
and determinants of cardiovascular risk. Pyridoxate 

was a stronger marker of B6 than folate in our results 
(Fig.  2, Additional file  1: Table  S2). This could partially 
explain why pyridoxate-associated hypomethylation of 
cg02711608 and cg22304262 (Table  1)—linked to high 
blood pressure [44]—was found in the context of this 
study. Cg22304262 was hypermethylated with the intake 
of folate measured directly from FFQs (Additional file 1: 
Table  S13), but diet cohort results were heterogeneous 
and lacked the consistency of the metabolomic results.

The functional relevance of our main results was 
explored in the BIOS consortium and in a subsample 
from TwinsUK to explore methylation-expression and 
metabolomic-expression associations. Overall, meth-
ylation levels at cg11800635 (associated with pipeco-
late in EWAS), cg12054453 (associated with pipecolate 
in EWAS) and cg02711608 (associated with pyridox-
ate in EWAS) were associated with the expression levels 
of genes in the BIOS consortium. Furthermore, DMP 
cg03523740 for pipecolate is located in the promoter 
region of the TXLNA gene and in TwinsUK TXLNA 
expression changed nominally with pipecolate levels.

As metabolomic platforms become more ubiquitously 
used in cohort studies, we aimed to identify metabo-
lomic biomarkers of B vitamin intake in order to circum-
vent limitations of accuracy associated with habitual diet 
measurement. Moreover, using habitual dietary data to 
identify B vitamin-associated metabolites resulted in 
larger sample sizes and more power, in comparison to 
using folate and B12 data measured directly from plasma 
in TwinsUK (n > 1000 for habitual diet and n < 730 for 
folate and B12 in plasma).

Both the habitual diet and blood levels of B vitamins 
used in this study are within the normal ranges expected 
for humans. As such, in future a stratified analysis of the 
levels of B vitamins could reveal additional metabolic and 
epigenetic signatures of interest. Additionally, the discov-
ery phase of our study included only UK females and the 
results may not reflect biomarkers in males or in individ-
uals of non-European ancestry. Another limitation of our 
study was the small overlap between the blood metabo-
lomic data available in TwinsUK and KORA F4. We were 
only able to meta-analyse epigenome-wide results for 7 
of the 18 blood metabolomic biomarkers initially identi-
fied. It remains unknown whether, in addition to pipeco-
late, pyridoxate and DHA, other B vitamin metabolomic 
biomarkers identified in the discovery phase of our study 
have epigenome-wide effects in the DNA methylome. 
The B vitamins intake metabolomic biomarker identi-
fied with most confidence in our study was pyridoxate, 
because pyridoxate is the end product of vitamin B6 
metabolism before excretion from the body. However, 
overall the non-specificity of the metabolomic biomark-
ers identified, while expected due to the high correlation 
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of nutrients in food, also limits their application in nutri-
tional assessment.

Mandaviya et al. [8] reported 6 DMPs from a stratified 
analysis of folate intake. Unlike Mandaviya et al. we were 
unable to identify DMPs for dietary folate after correcting 
for multiple testing. This was probably due to differences 
in our approach and much lower number of samples in 
the EWASs of our habitual diet meta-analysis (n = 2294) 
compared to Mandaviya et  al. [8] (n = 5841). Instead, 
our findings identified 14 epigenome-wide signals for 
metabolomic biomarkers of B vitamins in a more modest 
sample size (n = 2182), suggesting that blood metabolites 
may offer not only an unbiased, but also more powerful 
approach over self-assessed reports of dietary intakes.

Conclusion
Using metabolomics and self-assessed dietary data we 
were able to identify blood metabolomic biomarkers of 
B vitamins with epigenome-wide association effects in 
whole blood DNAm. Pyridoxate—a catabolic product 
of the vitamin B6 metabolism—stands out as a potential 
blood metabolomic biomarker of B6 with noticeable epi-
genome-wide effects on DNAm. Significant epigenome-
wide associations were observed from metabolomics 
data that were not observed with a similar sample size 
directly from self-reported dietary data. Metabolomic 
biomarkers of B vitamins are exact tools that can unveil 
novel differentially methylated signals of dietary intakes 
in the human epigenome.

Methods
Cohort information
TwinsUK. The TwinsUK registry is ongoing since 1992 
and includes over 15,000 research volunteer twin par-
ticipants from the United Kingdom [50]. Volunteers are 
monozygotic and dizygotic same-sex twins, predomi-
nately female (82%), middle-aged (mean age of 59 years) 
and over 18 years-old. Volunteers were recruited without 
selecting for disease and are mostly of European descent. 
Information on participants has been obtained through 
numerous questionnaire responses and comprehensive 
phenotyping over the years, with the particular applica-
tion of several ’omic’ technologies for a range of sample 
types. In this study we used epigenetic, transcriptomic 
and metabolomic profiling in TwinsUK, together with 
questionnaire level data from the twins.

KORA. The KORA (Cooperative Health Research in 
the Region of Augsburg) study is an ongoing registry of 
Southern German citizens with baseline recruiting dat-
ing back to 1999 (KORA S4). Selection of citizens was 
random with equal strata by sex and age and included 
4261 subjects aged 25–74 years. Of these, KORA F4 
(2006–2008) and KORA FF4 (2013/14), respectively the 

first and second follow-up to the S4 baseline, carried out 
with 3080 and 2279 participants each [51, 52]. In this 
study participants from the F4 follow-up were selected 
to explore methylation signal changes by metabolomic 
biomarkers, and participants from the FF4 follow-up 
were selected to explore methylation signal changes in 
response to diet, according to availability of data.

LLS. The Leiden Longevity Study (LLS) is a multigen-
erational study that recruited nonagenarian siblings of 
European descent and their offspring. Altogether 944 
long-lived proband siblings (mean age of 94 years), 1671 
offspring (mean age of 60 years) and 744 controls (the 
offspring spouses, mean age of 60 years) were recruited 
at baseline (between 2002 and 2006). Members of long-
lived families are very similar to control groups with 
whom they likely share similar environment, lifestyle, 
and age, but have more favourable morbidity and mortal-
ity outcomes [53]. Members of long-lived families were 
analysed as one cohort of middle-aged people and the 
current study was restricted to unrelated individuals in 
epigenetic analyses.

Data collection and processing
Habitual B vitamin intakes
The habitual intakes of folate and vitamins B6 and B12 of 
participants was measured using food frequency ques-
tionnaires (FFQs) in the TwinsUK and LLS cohorts, and a 
blended approach comprising repeated 24h food lists and 
an FFQ in the KORA FF4 cohort.

TwinsUK. Food frequency questionnaires used in the 
TwinsUK study comprised 131 food and drink items from 
the EPIC Norfolk study [54]. Processing of these data has 
previously been described [55], and data were available 
for 3157 female twins. The daily intake of each item was 
calculated in g/day using the FETA software [56] and the 
default nutritional database based on the McCance and 
Widdowson’s The Composition of Foods (5th edition) 
[57]. The residual method was used to obtain B vitamin 
intake estimates independent of total energy intake [58]. 
In addition to B vitamins, the daily intakes of 38 other 
nutrients was estimated for use in sensitivity analysis 
of B vitamin intake associations. The 38 other nutrients 
quantified included altogether 16 macronutrients (i.e. 
total protein, total fat, total carbohydrates, starch, total 
sugars, glucose, fructose, sucrose, maltose, lactose, non‐
starch polysaccharides, saturated fats, monounsaturated 
fats, polyunsaturated fats, trans fats and cholesterol), 11 
minerals (i.e. sodium, potassium, calcium, magnesium, 
phosphorus, iron, copper, zinc, chloride, manganese and 
iodine), and 11 other vitamins/vitamin nutrient precur-
sors (i.e. retinol, carotene, vitamin C, vitamin D, vitamin 
E, thiamine, riboflavin, niacin, tryptophan, pantothen-
ate and biotin). The overall diet quality of the TwinsUK 
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participants was calculated using the Alternate Healthy 
Eating Index 2010 (AHEI-2010) diet score [17], which 
ranges 0–10 and scores positively the intake of healthy 
foods (e.g., whole grains and healthy fats) and scores 
negatively the intake of unhealthy foods (e.g., red and 
processed meats). The AHEI-2010 accounts for the par-
ticipants alcohol intake and was calculated here for the 
sensitivity of overall diet quality.

KORA FF4. Repeated 246-item 24-h food lists derived 
from the NAKO Health study [59] and 148-item FFQs 
adapted from the German version of the multilingual 
European Food Propensity Questionnaire [60] were used 
in the KORA FF4 study. The processing of these data was 
first described elsewhere [61], and data was available 
for 1602 participants. Classification of dietary intakes 
in KORA was performed with the EPIC-Soft software 
[62] and B vitamin intake data was calculated based on 
the German food composition database Bundeslebens-
mittelschlüssel, version 3.01 [63]. Like in TwinsUK, the 
residual method was used to get B vitamin intake esti-
mates independent of energy intake in KORA FF4.

LLS. Food frequency questionnaires used in the LLS 
study included 218 items constructed from the 104-item 
VetExpress FFQ combined with the Dutch National Food 
Survey [64]. B vitamin intake data was estimated in grams 
per day using the NEVO table  2011 [65] as reference 
panel. A weighted average was calculated for the nutrient 
composition of a food item, based on the consumption of 
each NEVO product included in the food item according 
to the Dutch National Food Consumption Survey 2010. 
Dietary intake data in grams per day was collected from 
1716 individuals.

The energy-adjusted intakes of folate and vitamins B6 
and B12 were used in the discovery phase of our study 
to identify metabolomic biomarkers of B vitamins in 
participants from TwinsUK. Energy-adjusted intakes 
from TwinsUK, LLS and KORA FF4 were used for the 
epigenome-wide association meta-analysis of habitual B 
vitamin intakes. B vitamin outlier values were removed 
across analyses in similar fashion, where outliers 3 stand-
ard deviations away from the mean were excluded from 
the subsamples.

Blood levels of folate, vitamin B12 and homocysteine
Measured blood levels of folate (ng/mL) and B12 (ng/L) 
were available in the TwinsUK cohort for a subset of par-
ticipants with metabolomics data. Homocysteine levels 
(µmol/L) were also available in plasma and serum. Over-
all, and after removing outliers 3 standard deviations 
away from the mean, a total of 729, 718, 473, and 707 
individuals had circulating folate, vitamin B12, hcy and 
hcy-s levels measured within 2 years of metabolomics 
profiling, respectively.

Whole blood metabolome
Blood metabolites used in this study were profiled in the 
TwinsUK and KORA F4 cohorts using the Metabolon 
platform. Metabolon is a chromatography mass spec-
trometry platform that produces semiquantitative data 
where standards are used to determine the retention time 
and relative intensity of metabolites.

TwinsUK. Fasting blood serum samples were collected 
from female participants and profiled using the Metabo-
lon platform (Metabolon, Inc., Durham, NC). The pro-
cessing of samples has previously been described [66]. 
Metabolomic data were median-normalised by divid-
ing metabolite concentrations by the day median of that 
metabolite and then rank inverse-normalised. Metabo-
lites with more than 20% of missing values were excluded 
and minimum run day measures were imputed to the 
missing values. A total of 756 metabolites were kept for 
analysis from a total of 6196 samples taken from 2069 
female twins spanning several years. Of the 756 metab-
olites, 591 (78%) are annotated and fall into the broad 
metabolic groups of amino acids, carbohydrates, cofac-
tors and vitamins, energy, lipid, nucleotide, peptide, and 
xenobiotics. One of the profiled metabolites, pyridoxate, 
is known to act within the vitamin B6 metabolic pathway. 
A subset of 1063 (for folate and vitamin B6) and 1064 (for 
vitamin B12) female twins had a blood metabolomic pro-
file within 2 years of FFQ. These twins were used for bio-
marker discovery in the TwinsUK sample.

KORA F4. Fasting blood serum samples were collected 
from participants of the KORA F4 (Cooperative Health 
Research in the Region of Augsburg) study population 
and profiled using the Metabolon platform (Metabolon, 
Inc., Durham, NC). The processing of samples was previ-
ously described [67, 68]. Like in TwinsUK, metabolomics 
data in KORA F4 was median-normalised by dividing 
metabolite concentrations by the day median due to fluc-
tuations in the data caused by instrument maintenances 
that are day-dependent. Then in KORA each metabolite 
data was multiplied with their overall median values and 
log transformed. To match the TwinsUK outcome vari-
ables and for the purpose of meta-analysis, KORA data 
was normalised by rank-based inverse normal transfor-
mation in this study. Overall, and after quality control, 
276 metabolites in human serum were profiled from 1768 
participants of the KORA F4 population.

Whole blood DNA methylation
TwinsUK. Fasting whole blood DNAm of 990 individu-
als was profiled using the Infinium HumanMethyla-
tion450 BeadChip (Illumina Inc, San Diego, CA). DNAm 
was assessed at > 450,000 sites and processing of meth-
ylation signals was performed with R Bioconductor soft-
ware [69]. Briefly, the ENmix package [70] was used for 
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quality control of the data, and the minfi package [71] 
was used to exclude samples with median methylated 
and unmethylated signal ratio < 10.5. Background cor-
rection, dye bias correction and quantile normalization 
were performed with ENmix as previously described 
[72]. Underperforming probes and outlier samples were 
identified using standard parameter values and signals 
with detP > 0.000001 and nbead < 3 were excluded from 
the analysis. Maximum probe and sample missingness 
were set to 5%. Methylation beta-values (ranging 0–1 
for un- to fully-methylated) were estimated with ENmix 
while adjusting for array probe type bias with the Regres-
sion on Correlated Probes (RCP) method [73]. Methyla-
tion beta-values were converted to methylation M-values 
with the lumi package [74] prior to downstream analysis 
for better statistical validity of the models. A total of 487 
and 509 females had DNAm measures within 2 years of 
FFQ and 5 years of metabolomic profiling, respectively. 
The two subsamples were used in downstream analyses.

KORA. Fasting whole blood DNAm was available 
in the KORA F4 and FF4 waves used in this study for 
metabolomic and habitual diet intake analysis, respec-
tively. KORA F4. Whole blood DNAm was measured 
with the HumanMethylation450 BeadChip and pro-
cessing of data was previously described [75]. Briefly, 
the methylation data was extracted through Illumina’s 
Genome Studio (version 2011.1) methylation module 
(v1.9.0) and processed with the CPACOR pipeline [76]. 
Background correction was performed with minfi [71] 
and bad signals were excluded if detP > 0.01. Maximum 
sample missingness was set to 5% and methylation beta-
values were estimated after quantile normalisation of the 
data. KORA FF4. Whole blood DNAm was measured 
with the Infinium MethylationEPIC BeadChip, which 
assesses methylation at > 850,000 sites of the human 
genome. Quality control of this data was previously 
described [77] and processed in similar fashion to DNAm 
in the KORA F4 population (i.e. following the CPACOR 
pipeline). KORA F4 and FF4 methylation data was con-
verted to M-values prior to analysis in this study. A total 
of 1673 and 1322 participants respectively of KORA F4 
and FF4 had a metabolomic profile and FFQ collected in 
the same wave as whole blood DNAm and were used in 
downstream analysis.

LLS. Fasting whole blood DNAm was available for 732 
individuals of the LLS cohort. Processing and normaliza-
tion of the data were done as described in the DNAmAr-
ray workflow (https:// molepi. github. io/ DNAmA rray_ 
workfl ow/). Briefly, methylation data was extracted using 
the minfi package [71] and sample-level quality control 
was performed using MethylAid [78]. Signal exclusion 
was performed based on detP > 0.01, nbead < 3 and zero 
values for intensity. Functional normalization of the data 

was performed using five principal components extracted 
using the control probes. Maximum sample missingness 
was set to 5% and methylation beta-values were con-
verted to M-values to match other cohorts in this study. 
A total of 485 long-lived participants of the LLS study 
had DNAm and FFQ and were used in this study for the 
habitual B vitamin intake epigenetic meta-analysis.

Across cohorts, only autosomal probes were kept for 
analysis in this study. Polymorphic or probes that mapped 
to multiple locations in the genome were also removed. 
Altogether a total of 430,768 and 393,223 probes were 
identified in TwinsUK/KORA F4 and TwinsUK/KORA 
FF4/LLS cohort groups, respectively, and kept for the 
biomarker and habitual diet epigenetic meta-analyses.

Whole blood gene expression
Gene expression data used in this study was profiled in 
the TwinsUK cohort. Fasting whole blood transcrip-
tomic data was obtained using Illumina RNA-Seq tech-
nologies (Illumina, Inc., San Diego, CA). There data and 
processing have previously been described [79]. Briefly, 
the STAR software v2.4.0.1 [80] was used to align reads 
to the hg19 reference genome and only uniquely mapped 
properly paired reads were kept after alignment. GEN-
CODE annotation v19 gene counts were obtained with 
featurecounts [81], and then standardised with trimmed 
mean of M-values (TMM)-adjusted counts per million 
(CPMs) and inverse-normalised prior to downstream 
analysis. Only genes with at least 0.5 CPM expressed in 
90% of samples were kept in the original data. A total of 
23 genes were manually annotated to the 14 DMPs iden-
tified using the UCSC genome browser (hg19) selecting 
for genes ± 10 kb away from the CpG site. Fifteen out of 
the 23 genes from our main analysis were present in the 
data. A total of 297 female twins had gene expression 
data profiled within 5 years of metabolomic profiling. 
The 15 genes and 297 female twins identified were used 
for follow-up gene expression analysis in the TwinsUK 
cohort.

Statistical analyses
Discovery phase
Metabolomic data collected within 2 years of FFQ were 
used for the discovery of B vitamin metabolite biomark-
ers in the TwinsUK cohort. A total of 1063 (for folate and 
vitamin B6) and 1064 (for vitamin B12) female twins were 
included in this analysis after removing outliers. Twins 
were either monozygotic or dizygotic, and zygosity was 
included as a factor in the model to account for the level 
of shared genetic variation (i.e. MZ share approximately 
100% while DZ share 50% of genetic variation). Twins 
with their co-twin in a twin pair missing were reclassified 
as unrelated individuals. Metabolome-wide associations 

https://molepi.github.io/DNAmArray_workflow/
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between folate and vitamins B6 and B12 were separately 
undertaken for the 756 metabolites from Metabolon. 
Linear regression mixed-effects models were applied 
using the lme4 package [82]. Models were adjusted for 
the participants’ age and BMI, the time interval between 
food questionnaire and metabolomic sample collection, 
and the family and zygosity of participants as random 
effects. In this instance the energy-adjusted intake of a 
B vitamin was the predictor and the inverse-normalised 
signal of a metabolite was the outcome. Slight variations 
in final sample sizes were due to missing metabolomic 
data although each metabolite was profiled in n > 1000 in 
most cases (n < 1000 for 3 metabolites; lowest n = 976). 
Multiple testing adjustment of each B vitamin result 
was applied using Bonferroni correction (p = 0.05/756 
tests = 6.61E−05, for Bonferroni-adj. p < 0.05). Structur-
ally unidentified metabolites (unknowns) were discarded. 
Metabolites with single asterisk were annotated based on 
in silico prediction. A total of 18 metabolites were kept 
for downstream analyses.

Sensitivity analyses
Three sensitivity analyses were performed on the 18 
putative biomarker metabolites identified during the bio-
marker discovery phase.

Total energy intake and diet quality. To assess 
their putative impact on the identification of biomarker 
metabolites, the biomarker discovery model described 
immediately above was extended to further include the 
total energy intake and overall diet quality of the partici-
pants as covariates. Here, the AHEI-2010 diet score [17]
and total energy consumed (in kcal/day) were included 
as fixed effect variables. Multiple testing significance was 
presented with Bonferroni correction (p = 0.05/756 tests, 
Bonferroni-adj. p < 0.05).

Other nutrients. To determine the specificity of our 
findings, a panel of 38 other nutrients common from 
habitual diet were used in associations with the 18 bio-
marker metabolites identified in our main analysis. In 
this instance the other nutrient (e.g. glucose, iron, vita-
min C, etc.) replaced the predictor variable in the origi-
nal model, and the metabolite biomarker remained as the 
outcome. Predictor outliers were removed as previously 
described (n > 1000 in all instances). Only associations for 
the 18 metabolite biomarkers were performed per nutri-
ent, but Bonferroni thresholds used to determine the sig-
nificance of these results were set metabolome-wide as 
previously described (i.e. for each nutrient analysis adj. 
p = 0.05/756 tests).

Blood chemistry. To evaluate if B vitamin findings 
from habitual diet could be validated using the plasma 
or serum levels of B vitamins and homocysteine, asso-
ciations were performed in subsamples of 473–729 twins 

with available folate, vitamin B12, hcy and hcy-s data. 
Circulating folate, vitamin B12 and homocysteine levels 
were used as predictors and associations were performed 
for the metabolites identified as the outcome. The 5 and 
1 metabolites associated with dietary folate and vitamin 
B12 were used here in associations with folate and B12 
levels in plasma, respectively. All 18 metabolites identi-
fied overall in our main analysis were used for the hcy 
and hcy-s associations. Linear mixed effects models 
were adjusted for age, BMI, time interval between blood 
metabolomics and other blood chemistry data, and fam-
ily and zygosity of the twin sample. The significance of 
each metabolite result was determined with the Bonfer-
roni correction threshold extrapolated previously from 
the full 756 metabolite panel (p = 0.05/756 tests).

Epigenome‑wide association meta‑analyses
B vitamin metabolite biomarkers. An epigenome-wide 
association study (EWAS) was performed in the TwinsUK 
cohort for each of the 18 metabolite biomarkers identi-
fied in the discovery phase of our study. Seven of the 18 
metabolites identified in TwinsUK (i.e. 1-docosahexae-
noyl-GPC (22:6)*, 7-methylguanine, betaine, pipecolate, 
pyridoxate, uridine and DHA) were also represented in 
the KORA F4 Metabolon data and EWASs results were 
meta-analysed between TwinsUK (n = 509) and KORA 
(n = 1673; total n = 2182). Epigenome-wide association 
studies were performed using linear regression mixed 
effects models where DNAm M-values were the outcome 
and inverse-normalised metabolite levels in blood were 
predictors. Metabolite levels 3 standard deviations away 
from the mean were excluded and models were adjusted 
for age, BMI, trichotomous smoking (0: never smoker; 
1: ex-smoker; 2: current smoker), blood cell proportions 
(lymphocytes, granulocytes and monocytes), time inter-
val between blood metabolomics and methylation pro-
filing, and technical and cohort-specific variables such 
as family and zygosity in TwinsUK, and sex (0: female; 
1: male) in the KORA F4 cohort. In TwinsUK, blood cell 
proportions were estimated with the Houseman method 
[83] using Horvath’s DNA Methylation Age Calcula-
tor [84], with lymphocytes corresponding to the sum of 
CD8T, CD4T, NK and B cell type proportions. Associa-
tions were performed across 430,768 autosomal probes 
and results were meta-analysed with METAL [85]. Here, 
the effect sizes and standard errors obtained in TwinsUK 
and KORA were used to conduct a fixed-effects inverse 
variance weighted meta-analysis. The heterogeneity of 
results was analysed with METAL across the two cohorts. 
The significance of results was established based on the 
Bonferroni correction (p = 0.05/430,768 tests = 1.17E−07, 
for Bonferroni-adj. p < 0.05) and sample heterogeneity 
(HetISq < 75% and HetPval ≥ 0.05). The false discovery 
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rate method was used to explore results further in each 
cohort with q < 0.1. Genes of DMPs identified were man-
ually annotated using the UCSC genome browser (hg19) 
selecting for genes ± 10 kb away from the CpG site.

B vitamin intakes. An EWAS of the habitual intake 
of folate and vitamins B6 and B12 was performed in 
the TwinsUK (n = 487), KORA FF4 (n = 1322) and LLS 
(n = 485) cohorts and meta-analysed in this study (total 
n = 2294). Analyses were performed using methyla-
tion M-values as the outcome variable and the energy-
adjusted habitual diet intake of B vitamins as the 
predictor. B vitamin intakes 3 standard deviations away 
from the mean were excluded prior to analysis and mod-
els were adjusted for age, BMI, trichotomous smoking, 
blood cell proportions, and technical and cohort-spe-
cific variables. Meta-analysis of results was performed 
with METAL as described above (p = 0/393,223 
tests = 1.27E−07, Bonferroni-adj. p < 0.05). Pipecolate, 
pyridoxate and DHA were identified as metabolomic bio-
markers of folate and vitamin B6, and DMPs associated 
with these compounds were explored in further detail in 
context of habitual diet.

Gene expression follow‑up
Methylation-expression associations for the DMPs iden-
tified in this study were explored in previously-published 
data from the BIOS (Biobank-Based Integrative Omics 
Studies) consortium in The Netherlands [18]. Cis expres-
sion quantitative trait methylation signals captured at 
FDR = 5% across 2101 samples were extracted from the 
“2015_09_02_cis_eQTMsFDR0.05-CpGLevel.txt” file 
hosted in the BIOS QTL browser (https:// molge nis26. 
gcc. rug. nl/ downl oads/ biosq tlbro wser/).

A targeted metabolomic-gene expression follow-up 
analysis of 15 genes with DMPs was performed in the 
TwinsUK cohort (n = 297). Levels of PFKFB4, CEBPB, 
DOK1, LOXL3, M1AP, LOC646329, MIR29B1, TXLNA, 
KPNA6, VMP1, DYRK2 and SCARB1 expression were 
tested for association with levels of pipecolate. Levels of 
SLC1A5 and SLC7A11 expression were tested for asso-
ciation with pyridoxate, and SCD expression levels were 
tested in association to DHA. Linear regression mixed 
effect models were implemented where inverse-normal-
ised metabolite levels were included as the predictor and 
the inverse-normalised TMM-adjusted gene counts were 
included as the outcome. Models were adjusted for age, 
BMI, trichotomous smoking, time interval between blood 
metabolomics and gene expression profiling, and other 
technical covariates (fixed: insert-size median and mean 
GC content; random: primer index, date of sequencing 
and RNA extraction batch) used previously [86]. Family 

and zygosity were included as random effects. Multiple 
testing correction was applied as previously described.
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