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Predicting the development of rheumatoid arthritis (RA) in an early stage through magnetic resonance imaging
(MRI) can initiate timely treatment and improve long-term patient outcomes. Although manual prediction
is time-consuming and requires expert knowledge, automatic RA prediction has not been fully investigated.
While standard models fail to achieve acceptable performance, we present a consistency-based deep learning
framework to classify and predict RA automatically and precisely, including an output-standardized model,
customized self-supervised pretraining and a loss function that is based on label consistency between original
and augmented inputs. For training and evaluation, we used a database, containing 5945 MRI scans of carpal,
metacarpophalangeal (MCP), and metatarsophalangeal (MTP) joints, from 2151 subjects obtained over a period
of ten years. Four (three classification- and one prediction-) tasks were defined to distinguish two patient groups
(with recent-onset arthritis and clinically suspect arthralgia) from healthy controls and RA from other arthritis
patients within the recent-onset arthritis group, and predict RA development in a period of two years within
the clinically suspect arthralgia group. The proposed method was evaluated with the area under the receiver
operating curve (AUROC) on a separate test set, achieving mean AUROCs of 83.6%, 83.3%, and 69.7% in the
three classification tasks, and 67.8% in the prediction task. This proves the existence of early signs of RA in
MRI and the potential of a consistency-based deep learning model to detect these early signs and predict RA.

1. Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune
disorder that especially affects joints in wrists, hands, and feet [1].
It can ultimately result in bone erosions and joint deformations and
only very early detection and treatment can improve the long-term
outcome [2]. Finding early signs, localizing lesions, and predicting po-
tential development into RA can help radiologists and rheumatologists
to diagnose and treat RA at an early stage. Therefore, this motivated
our study to find early RA-relevant signs through imaging. Magnetic
resonance imaging (MRI), which enables the visualization of both
anatomical information and inflammatory signs, is the most sensitive
imaging method to detect inflamed areas and has become a com-
mon imaging modality for RA research. RAMRIS (rheumatoid arthritis
magnetic resonance imaging scoring system) [3] is currently the most
widely-used imaging biomarker to quantitatively score RA for each
anatomical site [4-6]. To classify and predict early inflammatory signs,
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RAMRIS assesses bone marrow edema [5], synovitis [7], and tenosyn-
ovitis. However, scoring these biomarkers is time-consuming, requires
expert training, and depends on prior knowledge and assumptions to
detect early signs.

In previous work, automated biomarker quantification methods
were proposed and demonstrated a high correlation with expert RAM-
RIS scores [4]. These pre-defined image features may, however, not be
the optimal biomarkers to classify and predict RA. Moreover, certain
inflammatory signs may not be relevant to RA, as they also appear
in healthy individuals. Therefore, the visual scoring by RAMRIS also
compares with healthy controls. This makes it challenging to classify
and predict RA through traditional image analysis methods.

Since these tasks typically include labeling or classification, deep
learning (DL) methods are highly suitable, without relying too much
on prior assumptions or pre-defined imaging biomarkers. Despite the
success in other medical imaging labeling tasks [8-10], DL methods
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have not been fully investigated yet in the classification and prediction
of RA due to the following reasons. Firstly, the time window is narrow
for collecting images from arthralgia patients with possible early signs
of RA, complicating data acquisition and resulting in a limited dataset
size. Consequently, overfitting becomes a severe problem, and the
size of the dataset also restricts the performances of large models
with massive trainable parameters. Secondly, the variety and com-
plexity of anatomical and pathological structures in hands and feet,
and variability in positioning hands and feet, further amplifies the
difficulty of the tasks, resulting in insufficient performances of standard
models for medical images. Thirdly, artifacts caused by fat suppression
errors, movement or aliasing may significantly influence the automatic
interpretation of MRI scans. These artifacts may appear more often
in certain time periods, becoming serious confounders while splitting
the dataset for evaluation, and worsening the overfitting problem.
Finally, there are no publicly accessible datasets for similar subjects or
tasks, therefore DL models cannot benefit from transfer learning and
well-developed pre-processing methods.

To overcome these challenges and predict RA in an early stage, we
propose a so-called consistency-based training framework for a simple
deep learning model to pre- and post-process MRI scans, and predict the
development of RA in patients with recent-onset arthritis or clinically
suspect arthralgia. This consistency-based framework helps the model
to utilize the unchanged information and learn from a limited number
of samples. Specifically, we first pre-trained the model with a self-
supervised reconstruction method, based on a masked autoencoder
(MAE) [11], to let the model understand the anatomy of human hands
and feet by filling in the masked areas in MRIs from the training set.
Meanwhile, we applied an extra contrastive loss function based on
augmentation to emphasize that the disease-related information should
be invariant to spatial transformations (i.e., the output probabilities or
logits should be independent of an object’s position or orientation).

Main contributions of this paper are: (1) This is the first MRI-based
early RA prediction framework using deep learning with promising
results; (2) A self-supervised reconstruction is applied for pre-training
to utilize the anatomical consistency of human hands and feet, thereby
replacing Transformers [12] by fully convolutional networks (FCNs)
that have far less parameters than the visual learner [11]; (3) A
contrastive loss function is defined to accelerate the training process
and force the model to focus on unchanged RA information after
augmentation.

The layout of this paper is as follows. First, we introduce our
MRI materials and the task definition. Subsequently, the preprocessing,
backbone models and the consistency-based deep learning framework
are successively explained. Thereafter, we present the overall task
performance, general improvements compared to baseline models and
ablation studies for input preprocessing, model, pretraining and pro-
posed methods. Finally, the limitations and advantages of the proposed
methods are discussed and summarized in the last two chapters.

2. Dataset and task design
2.1. Structure of materials

The models were trained and evaluated based on a database (in-
formed consent given by all patients, LUMC protocol reference number:
B19.008 and P11.210) that contained a total of 5945 MRI scans of
carpal, metacarpophalangeal (MCP), and metatarsophalangeal (MTP)
joints, from 2151 subjects obtained over a period of ten years (see
Fig. 1). This MRI dataset consists of three groups: 1247 patients with
recent-onset arthritis, called early arthritis clinic (EAC), 727 arthralgia
patients with an increased risk of developing RA, called clinical sus-
pect arthralgia (CSA), and 177 healthy controls as atlas (ATL). Study
protocols for the EAC cohort (reference number: B19.008, date: 29-
may-2009) and CSA/healthy controls(ATL) cohort (reference number:
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P11.210, date 08-feb-2012) were approved by the local Medical Ethical
Committee of the Leiden University Medical Center (LUMC).

The EAC group consists of patients with clinically confirmed arthri-
tis, of which a subgroup was diagnosed with RA within a year, whereas
the remainder was diagnosed with other arthritides (non-RA) or undif-
ferentiated arthritis (UA). According to these diagnoses after one year,
EAC patients were divided into either RA or non-RA/UA, indicated
by EAC(RA+) and EAC(RA-). The classification task was to distinguish
these two subgroups. The CSA group was followed over a period of
two years in order to establish whether they had developed RA. The
CSA group was divided into two groups CSA(RA+) and CSA(RA-),
with the task to distinguish these two subgroups, so as to predict
the development of RA. The ATL group was collected over a shorter
time period. Further details (including patients’ characteristics) of the
collected dataset can be found in [4].

In each group, the carpal, MCP, and MTP joints were scanned with a
1.5T extremity MRI scanner (GE Healthcare) using a 100-mm coil, with
contrast enhancement (T1-Gd) and frequency-selective fat saturation.
For coronal scans (3D scans with the highest resolution in the coronal
plane), the repetition time was 650 ms, echo time 17 ms, acquisition
matrix 364 x 224, echo train length 2, slice thickness 2 mm, and slice
gap 0.2 mm. For transversal (axial) scans, these parameters are: 570 ms,
7 ms, 320 x 192, 2, 3 mm, and 0.3 mm, respectively [4]. The scans
were reconstructed into [512, 512, 20+5] images, which means the
resolution in the Z direction was relatively low, leading to information
loss and thus increasing the importance of fusing information from
coronal and axial scans.

2.2. Task definition

To incrementally increase the complexity of training the CNNs, we
first defined two tasks of making a distinction between two popula-
tions (classification task): Task 1 to distinguish recent-onset arthritis
from healthy; Task 2 to distinguish CSA from healthy. Task 3 was to
distinguish RA from other arthritides and undifferentiated arthritis, as
diagnosed after one year, within the EAC group; and Task 4 was to
predict future RA development from baseline MRI scans within the CSA
group. For pre-training in Tasks 3 and 4, we used the trained encoders
from Task 1 and 2, respectively. (see Table 1).

3. Methods

3.1. Overall workflow

Fig. 2 presents the overall workflow and basic information of the
proposed methods for training the CNNs for the four tasks. The MRI
scans from different anatomical sites were processed by a unified
process. The process begins with preprocessing to standardize the
output, removing background noise and artifacts, resizing the anatom-
ical structures in the images into a fixed size, slice-by-slice intensity
normalization and selecting the central slices for axial scans to increase
the information density. This is followed by a simple model pre-trained
through self-supervised reconstruction as the feature extractor to obtain
RA-related features for DL interpretation. Trained by comparing with
the true label and the so-called ‘label consistency’ between the original
and augmented image, the classification or prediction result for a
specific task is produced as output.

The next four subsections will successively introduce the prepro-
cessing, the backbone model, the self-supervised pretraining, based on
the anatomical consistency, and the contrastive loss function, based on
label consistency of the same samples.
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Fig. 1. Dataset composition, task definition, and evaluation design. The dataset consists of three major groups: patients with recent-onset arthritis (EAC), clinically suspect arthralgia
(CSA) and healthy controls (ATL). The EAC group was divided into EAC(RA+) and EAC(RA-), while the CSA group was divided into CSA(RA+) and CSA(RA-), where “RA+”/ “RA-"
indicates the RA status one or two years after the baseline. Each group contains MRI scans collected from the carpal (wrist), metacarpophalangeal (MCP), and metatarsophalangeal
(MTP) joints. The dataset was collected between 2010 and 2021, while the ATL group was collected over a shorter time period (between 2010 and 2014).

Table 1

Description of the four tasks.
Task Materials
1. Classification into recent-onset arthritis and healthy EAC, ATL
2. Classification into clinically suspect arthralgia and healthy CSA, ATL

3. Classification into RA and non-RA/UA, as diagnosed after 1 year
4. RA prediction in clinically suspect arthralgia patients
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CSA(RA+), CSA(RA-)
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Fig. 2. Overall workflow. The training framework includes three main steps: (a) Preprocessing; (b) Model and its self-supervised pretraining; and (c) a self-contrastive loss function.
COR: coronal; TRA: transversal (axial); MSE: mean squared error; Conv: convolutional layer. The value N, which represents the number of slices, is set to be five for TRA scans
and twenty for COR scans to improve the information density based on our previous study [13,14].

3.2. Preprocessing

The variety and complexity of anatomical and pathological struc-
tures and spatial placement of hands and feet amplify the overfitting
of deep learning models in these RA-related applications. To overcome
these challenges, images were first preprocessed by background re-
moval, resizing and intensity normalization. In addition, central slices
were selected from the 3D axial (TRA) scans as the input to improve
the efficiency of model training and increase the density of RA-related
information, as the proportion of background (air) to foreground (hand
or foot) on the top and bottom of each scan is generally high.

Images were first thresholded at 10% of the maximum intensity
value in the image and processed through morphological opening and
closing operations [15] to obtain the masks of targeted foreground ob-
jects [16]. The threshold was fixed according to a small subgroup of this
dataset, and visually checked on the training set. Some thresholding
algorithms such as OTSU might improve the thresholding process and
help to generalize the preprocessing to other datasets as some studies
stated the OTSU outperforms fixed thresholding [17]. However, in
this study, fixed thresholding outperformed OTSU in distinguishing the
foreground and background in most cases. The automatic thresholding
methods could cause information loss due to over-thresholding in the
targeted anatomical structures (some examples were presented in the
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supplementary materials). In the cases, where the fixed threshold-
ing fails, the main challenge is that some irregular gradient intensity
changes blur the anatomical borders of the wrists, MCPs and especially
the MTPs. In this situation, the definition of the anatomical borders
that have intensities equal to the backgrounds becomes the primary
problem. Some more advanced or customized thresholding algorithms
could solve this problem for more general use, which requires further
investigation.

After the thresholding to exclude the backgrounds, the images were
resized to similar sizes without changing the aspect ratio, to minimize
the variety of foreground object sizes. Subsequently, these images
were normalized individually and slice-by-slice to zero mean and unit
variance, with a 95% clipping to avoid over-normalization caused by
the extremely high values from inflamed areas.

Moreover, the size and foreground-to-background ratio of 3D MRI
scans reduced the efficiency and amplified the difficulty of model
training. Therefore, based on previous work [13], and the observation
that the foreground-to-background ratio decreases significantly with
increasing distance from the central slice, the central five slices were
selected as input instead of the whole 3D scans. Here, the central five
slices were defined as the slices with the largest sum of non-zero mask
area in the previous masking process. The number of central slices (N
in Fig. 2) was determined based on pre-experiments from our previous
study [14], in which five central slices could perform as well as using
all 3D scans in TRA. For the coronal (COR) scans, the variety of spatial
placements and the irregular gradient intensity change in the scans
make it difficult to select the central slices automatically. Therefore,
in this study, the N for TRA scans is set to five and for COR is set to
twenty.

3.3. Backbone model

Because the COR and TRA scans describe the same anatomical sites
(carpal, MCP, and/or MTP joints), but with different resolutions in each
direction, the model architecture was designed to adapt different sizes
of images from TRA and COR scans and then output the extracted
features in a fixed shape. Considering the limited number of samples
and different task complexities, we implemented a model transferred
from the basic U-Net [18] encoder as the backbone, for potential
pretraining and transfer learning. The model architecture contains two
main parts: (1) an encoder that contains both 2D and 3D convolutional
(Conv) layers to output features of a same size for different scans; and
(2) a standard dense layer as a classifier.

The encoder is formed by sequentially stacking 2D (kernel size:[1,
3, 3]) and 3D (kernel size:[3, 3, 3]) Conv layers, with the same hyper-
parameters as the basic U-Net. Inspired by the resampling process in
nnU-Net [16] that standardizes the input size at the image level, the
number of 2D and 3D Conv layers is set to accommodate samples with
different input sizes and output a fixed number of features to perform a
feature-level standardization. The reasons for using the U-Net encoder,
with a few changes, as the backbone of 2D Conv parts are: (1) Most
advanced model architectures and functional modules require a large
amount of training data, which is not available; (2) U-Net encoders
are simple to be implemented and reproduced for both researchers and
users; (3) U-Net encoders, which have been widely used in both natural
(known as the VGG encoder) and medical imaging field (encoder part
of a U-Net), is naturally convenient for pretraining through transfer
learning or self-supervised training (see next section).

The encoder produces features as input for a subsequent classifier
by simply stacking an adaptive pooling layer and three dense layers.
The configuration of the whole model architecture and training can be
found in the supplementary materials.
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3.4. Anatomical consistency and self-supervised pretraining

For the objects (wrist, MCPs or MTPs), MRI scans from different
subjects (patients) share similar anatomical structures and their spatial
placement (e.g., carpal bones, ulna, radius) with only a few variations
caused by individual anatomical and pathological differences. These
similar structures and spatial placements are called “anatomically con-
sistent” information in the whole dataset, which is common knowledge
for clinicians, yet not fully utilized in a DL model as labels usually do
not contain this prior information.

To pre-train the model when samples are limited, a self-supervised
method called masked auto-encoder (MAE) [11] was employed. Com-
pared to natural images analyzed by self-supervised methods, our
number of samples is limited, yet the structures of human hands and
feet are anatomically consistent, which could be learned by models
and used as prior knowledge. For example, the number of bones
or the existence of inflammation around tendons in the wrist could
be a hint to finding bone marrow edema and tenosynovitis, respec-
tively, that are related to RA. In a previous study, a self-supervised
pretraining strategy was explored in medical imaging by [19] with
a series of augmentation methods, proving the potential of applying
self-supervised reconstruction as pretraining to ‘warm up’ the model
with a similar task. Compared to the method of Zhou, which requires
models to reconstruct original images through differently-augmented
images, the training strategy of MAE is simpler, and more efficient by
reconstructing original images from randomly-masked images. Since
valid results with good generalization ability have been achieved by
MAE in natural imaging fields, we extended it from a process based
on Transformers [12] to a process based on the U-Net that contains
less parameters, which is more suitable for medical imaging, but with
the same principle of reconstruction from masked images to learn
underlying semantics.

Fig. 3 presents the basic idea of building a self-supervised pre-
training process on the U-Net encoder. To define the reconstruction
task, 70% of the input image was masked by patches (16 x 16 pix-
els), which were distributed randomly. Using skip connections in this
reconstruction-based pre-training would introduce a risk of having the
model not learn the underlying patterns or anatomical structures at
a high level, but copy and paste over the epochs to get the recon-
struction in the corresponding areas. Therefore, we expected that the
encoder would learn more underlying patterns of anatomical struc-
tures of human hands and feet, if skip connections are removed, to
avoid information leakage through these shortcuts. Although models
with skip connections could performed quite well on the training
set, pre-experiments [14] showed that they failed to achieve good
reconstructions in validation sets that are not involved in the training
process.

Compared to Transformers-based MAE, CNN-based MAE encoun-
ters more quality problems because patches contain both masked and
unmasked pixels, which makes it difficult to reconstruct high-quality
images. Therefore, in addition to the pixel-to-pixel mean squared error
(MSE) loss of the reconstruction and original images and the MSE loss
based on the frequency domain was combined to improve the recon-
struction results. The loss is given by: loss = alphax M S E(output, GT)+
(1 — alpha) x M SE(freq(output), freq(GT)), where output refers to the
prediction of the models, and GT refers to the ground truths. The hyper-
parameter alpha was set to 0.8 for maximum convergence speed in this
work, and more details for the relationship between the loss function,
epochs required for convergence and the alpha can be found in the
supplementary materials.

3.5. Label-consistency loss function
Similar to other DL methods in medical imaging, basic data augmen-

tation was applied to overcome overfitting. Besides classical ways of
augmentation, we took a different approach to use data augmentation,
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Fig. 3. The workflow of the self-supervised reconstruction. The mean squared error (MSE) loss contains two parts, the MSE loss of spatial domain and frequency domain.

inspired by contrastive learning [20-22], to maximize the value of
the shared information in the original image and the augmented one.
This could help model training to focus on the unchanged RA-related
information, by excluding the impact of spatial placement and added
noise more efficiently.

We propose a loss function, called the ‘label-consistency’ loss func-
tion, to take advantage of the fact that the properly-augmented and
original input data share the same label and disease severity, which is
the so-called “label consistency” of RA information. The assumption for
this loss function is that the RA-related information remains unchanged
during the augmentation, as a defined spatial transformation and added
Gaussian noise will not remove any lesions or anatomical structures.
To comply with this assumption, the augmentation is limited to avoid
large transitions or extensive cropping, and a margin (0.05) for the
loss between the output is set to leave some space for accidental
cut-offs by augmentation. The consistency loss function is aiming at
minimizing the differences in the output logits between the input and
augmented image, in one training epoch, while the cross-entropy loss
function is trying to maximize the differences between different classes.
To stabilize the training process, an epoch-dependent weight is added
to minimize the impact of this extra loss function at the early stage
of training and increase the impact at a later stage. The consistency
loss function is given by: loss = CrossEntropy(output,GT) + i X w X
M argin(M S E(output, output,)). The cross-entropy part of the equation
is the same as in standard classification tasks, where outpur represents
the output logit of the model, and GT refers to the ground truths.
The second part represents the consistency loss, where i refers to the
index of the training epoch in the range from zero to the maximum
number of epochs-1; and w is a hyper-parameter used to control the
weight of consistency loss. At the last epoch, the product of i and w
will reach 1.0 to gain an equal effect as the cross-entropy loss. This
gradually rising weight is to avoid affecting the direction of model
learning in the early stages of training and enabling the model to
converge. In our experiments, the range of w was set from 0.005 to
0.01 as the total number of epochs varies from 100 to 200 because
of task differences; output and output, refer to the output logits of the
model with as input the original image and its augmented version,
respectively. The Margin() function leaves space for small values of
MSE loss that might be caused by accidental occlusion of information
by augmentation. Fig. 4 presents the workflow after adding the loss
function.

3.6. Class activation mapping

The class activation mapping (CAM) technique [23-25] is one of the
most common techniques to open the deep learning black box. Since in
our case, classification mainly applies to the center of the images, we
applied the pixel-to-pixel calculation of the original gradients instead
of the average gradients in Grad CAM. Moreover, to fully reflect the
model’s judgment criteria, we retained the negative parts, which are
usually removed in standard CAM methods, in which only the positive
regions are presumed to represent objects appearing in the background.
As the regions with negative values in saliency maps can represent
normal objects that decrease the confidence of reporting early RA,
we preserved them, resulting in activation values in the background
(air) greater than zero, but still representing “no contribution”. Conse-
quently, regions with activation values lower than that of air represent
a negative contribution to the targeted label. The results of CAMs can
be found in the next section, which illustrates the focus of the models
for RA classification/prediction.

4. Results

4.1. Evaluation principles

The area under the receiver operating characteristic curve (AUROC)
was employed as an evaluation metric for 5-fold cross-validation and
during testing, calculated from the datasets with the labels of EAC,
CSA and healthy controls for the first two tasks and the labels of
RA and non-RA in the third and fourth tasks. The standard deviation
(SD) of a given AUROC was calculated during 5-fold stratified cross-
validation, as presented in the following tables. Moreover, to avoid
AUROC being overly optimistic due to data imbalance, the number of
samples for each class in the test- and validation-set was kept similar.
All experiments were executed on an RTX6000 GPU from Nvidia,
with PyTorch 1.12 https://pytorch.org/ on Python 3.9 https://www.
python.org/ and SciPy 1.7 https://scipy.org/. All experiments were
executed ten times with random seeds, and the results of the models
with median performance were presented. Details on the configurations
used for self-supervised pre-training and fine-tuning can be found in the
configurations-section in the supplement.
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https://www.python.org/
https://www.python.org/
https://scipy.org/

Y. Li et al.

Biomedical Signal Processing and Control 91 (2024) 105990

s A
Image — Model p Features pP| Predictions Labels
3 I 1
v
Next image in Update
theiapoch Cross Entropy Loss
Augmentation —* Model P Features P Predictions Labels
. . | 1
Next image in ¥
date
the epoch Lp Cross Entropy Loss
Augmentation o (a) Normal procedure
> X
Image — Model p{ Features p| Predictions Labels
l I | |
Augmentation —* Model P Features P Predictions Labels
) ITI [ ]
Update —
— o001EpecyxConsistency Loss 4| Cross Entropy Loss
Nextimage i
the epoch
Image (b) Proposed procedure
\_ LI S

Fig. 4. (a) The normal procedure of using augmentation and (b) the procedure when the consistency loss function is added to the training process.

4.2. Reconstruction examples from self-supervised pretraining

Fig. 5 provides some examples from the self-supervised pre-training
process. The first four convolutional layers, with a similar structure as
the U-Net encoder, were trained to extract features from 70% masked
images and reconstruct the original images with a decoder. As shown
in Fig. 5(a), the model can predict unseen anatomical structures in the
masked regions (highlighted by the red boxes) when 70% of the image
in the test set was masked, without any labels or prior knowledge.
When the 99%-masked images were fed into the models trained on
70%-masked images, as shown in Fig. 5(b), the model still grasped
the basic concepts and structures of carpals although it was unable to
predict the whole anatomy due to insufficiency of information. These
results prove that the pre-trained models have learned some basic
anatomical knowledge of carpals without any label.

4.3. Overall performance on the four tasks

The overall performance of the proposed method on all four tasks
can be found in Fig. 6. The details of the input and results can be
found in Table 2. The first two classification tasks served as pretraining
for the RA classification/prediction tasks. In this phase, the proposed
models were trained on the carpals, MCP and MTP, separately, and a
combination of these scans. Due to the overfitting problem of MTP-
based models, the combination of three anatomical sites failed to reach
competitive results, therefore these are not presented in Fig. 6 and
Table 2. Consequently, the models for MTP-based RA prediction were
pre-trained by the reconstruction models only.

For classification tasks that distinguish early-onset arthritis or clin-
ically suspect arthralgia from healthy controls, the models achieved
AUROCs of over 0.8 on cross-validation and close level on the held-out
test set. However, the performance dropped from around 0.65 to 0.7 for
the third classification task. This mainly originates from the difficulty
of distinguishing RA from other arthritides, as inflammatory areas may
significantly contribute to distinguishing arthritides, yet are common

Table 2
Overall performance on each task with different inputs.
Task Input AUC (+Std.) AUC (+Std.)
val test
Task 1 Carpal 0.832 (+0.058) 0.804 (+0.019)
EAC vs ATL MCP 0.870 (+£0.078) 0.776 (+0.044)
MTP 0.884 (+£0.085) 0.663 (+0.016)
Carpal + MCP 0.881 (+0.072) 0.836 (+0.032)
Task 2 Carpal 0.829 (+0.105) 0.759 (+0.045)
CSA vs ATL MCP 0.885 (+0.062) 0.724 (+0.028)
MTP 0.887 (+0.112) 0.676 (+0.059)
Carpal + MCP 0.857 (+0.110) 0.833 (+0.109)
Task 3 Carpal 0.668 (+0.031) 0.679 (+0.021)
Classify RA within EAC MCP 0.669 (+£0.055) 0.647 (+0.015)
MTP 0.637 (+£0.028) 0.664 (+0.009)

Carpal + MCP
Carpal + MCP + MTP

0.697 (+0.031)
0.695 (+0.043)

0.684 (+0.025)
0.708 (+0.017)

Task 4 Carpal 0.674 (+0.075) 0.689 (+0.039)
Predict RA within CSA MCP 0.636 (+0.031) 0.669 (+0.024)
MTP 0.618 (+0.051) 0.715 (+0.026)

Carpal + MCP
Carpal + MCP + MTP

0.678 (+0.068)
0.676 (+0.061)

0.726 (+0.037)
0.708 (+0.068)

in both RA and other arthritides. For the prediction task, which is
more challenging, the performance of the DL model is comparable to
statistical analysis on clinical variables [26] (AUROC equal to 0.74,
with different validation set.).

4.4. General improvements compared to baseline models

Because of the complexity of tasks and the many combinations of
inputs, the comparison results were given based on the best results
available on each task without considering the remaining combina-
tions of inputs. Due to the lack of related studies in this field, we
re-implemented the ResNet18/34/50/101/152 and VGG11/13/16/19
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(b) Mask rat10:99%

Ground Truth

Input Predictions

Fig. 5. Reconstruction examples from the model trained on 70% masked input, (a) test on 70% masked scans from the held-out test set. (b) test on 99% masked scans from the

held-out test set.

with or without the attention module and dense block as the baseline
for these four RA classification/prediction tasks. These models have
been the most widely used backbone architectures for DL-based medical
tasks. For example, in breast MRI [27], Alzheimer’s MRI classifica-
tion [28] and disc degenerative disease based on MRI [29], when LSTM
and some other structures or modules (e.g. attention modules [30])
were introduced because of specific data characteristics, the CNN back-
bones remained to be ResNets and VGGs. Meanwhile, the comparison
with these baseline models could more clearly prove the effectiveness
of the proposed strategies.

ResNet3D in [31], which is the closest study to our task, was also
implemented. However, the input resolution and tasks were different,
making it fail to perform these tasks and cannot outperform the back-
bone (ResNet). For more advanced models, like Transformer, we were
not able to train models because they are too data-hungry. Apart from
the baseline models, we also applied the widely-used lightweight mod-
els such as MobileNet [32] and MobileViT [33] to investigate different
types of models, the results can be found in the supplementary materi-
als. Similar pre-experiments were also implemented to validate the ef-
fectiveness of other modules such as attention modules, multi-scale pro-
cessing and multi-task training. However, all these attempts presented
no statistical significance in improving the model performance.

As shown in Fig. 7, compared to all the baseline CNN models and a
ViT-B [36] model, our models present substantial increases of AUROCs
in the RA classification/prediction tasks. Especially in the CSA-related
tasks, our models achieve significant AUROC improvements over 10%
are achieved. Meanwhile, the MRI scans of carpals and MCPs appeared
to be the most informative for the RA-related tasks. More details of the
best models can be found in Table 3 and the performance of lightweight
models can be found in the supplementary materials.

4.5. Ablation study of each proposed component

Fig. 8 presents the results of ablation experiments applied on the
classification Task 1 and 2, which contain all the proposed strategies in
the training process, based on the MRI of carpals. The self-supervised
pretraining and consistency loss function contributed most to the per-
formance, especially for the CSA classification task, while the model
architecture and pre-processing also have a clear impact on the AUROC.
The contribution of each strategy varies because of the variation in
input materials, yet delivered a clear message that the performance
of deep learning models in medical fields is highly dependent on the
training strategies.
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Fig. 6. Overall performance on the four tasks. The solid bars represent the results of the test set, while the hollow bars represent the results of the cross-validation. In most tasks,
the ensemble models using the combination of carpals and MCPs obtained the highest AUROCs. The MTP-based models suffered overfitting and performed poorly on the EAC and
CSA classification tasks, because of confounders related to the stability of the MRI scanner over time, which were analyzed in the supplementary materials.

Best results on each task

1
0.9 0.836 0.833
0.732 _P N
0.8 —072Hyps —— .
0.637 \ 0.612 0.631 0.708 0.6\14
0.7 :
\ \ \\ 0.56 \ 0.57
‘ 0.547 ‘
e 0.526
\
0.5
0.4
Task 1 Task 2 Task 3 Task 4

mResNet BVGGNet OVIiT ©Our method

Fig. 7. Best results from each method applied on the test set. The blue bars present the results of ResNet34 [34] on test set in each task, while the orange bars are the results of
VGG16 [35]. The best result of Transformer-like models is presented in white bars, using a ViT [36]. These models achieved the best performance of their kinds (ResNets/VGGs)
in the four tasks. The results of the VGG models trained with the consistency-based methods (consistVGG16) are given by yellow bars.

4.6. Saliency maps generated by CAM most tasks based on datasets with pixel-level ground truth will be
turned into segmentation tasks instead of classification or prediction. It

In Fig. 9, examples were randomly selected and organized based can be found in all the figures that with the increase in confidence, the

on the output confidence of NNs, as can be seen in the axes. As the number of high-intensity pixels increases. We also applied an algorithm
segmentation ground truth of lesions on our dataset is not available, to merge the saliency maps generated from different nodes of the neural
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Fig. 8. Contribution of each proposed strategy.

Table 3
Best results available based on different models on each task.
Task Models Input AUC (+Std.)
Task 1 ResNet34 Carpal + MCP 0.721 (+0.059)
EAC vs ATL VGG16 Carpal 0.732 (+0.026)
ViT Carpal + MCP 0.660 (+0.092)
consistVGG Carpal + MCP 0.836 (+0.032)
Task 2 ResNet34 Carpal + MCP 0.637 (+0.060)
CSA vs ATL VGG16 Carpal 0.673 (+0.026)
ViT Carpal + MCP 0.612 (+0.060)
consistVGG Carpal + MCP 0.833 (+0.109)
Task 3 ResNet34 MTP 0.547 (+0.061)
Classify RA within EAC VGG16 Carpal + MCP 0.631 (+0.089)
ViT Carpal + MCP 0.612 (+0.060)
consistVGG Carpal + MCP 0.708 (+0.017)
Task 4 ResNet34 MCP 0.526 (+0.047)
Predict RA within CSA VGG16 MCP 0.614 (+0.108)
ViT Carpal + MCP 0.579 (£0.041)
consistVGG Carpal + MCP 0.726 (+0.037)

networks and normalized them to the range of 0 and 1. Therefore,
saliency maps were normalized through the max-min normalization,
while the scores of the air always represent the correlation of zero. This
leads to the high intensity of air caused by the normalization in some
images because the scans contributed very little. That is the reason for
the high values in the air in saliency maps from Task 4.

5. Discussion

On average, our models achieved AUROCs of 83% and 70% in the
RA classification/prediction tasks with the proposed strategies.

From a clinical perspective, the DL models obtained reasonable
results in distinguishing EAC, CSA and healthy controls, indicating the
potential of applying DL models to assist in detecting the develop-
ment of arthritis and CSA. However, the performance of DL models in
distinguishing RA from other arthritides requires further investigation
and improvement to assist in arthritis identification. The difference
between the first two tasks and classification of RA demonstrates that
the models rely on inflammatory signs. The performance of the models
in RA prediction, with AUROCs of 70% on this challenging task,
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Fig. 9. Saliency maps for the four tasks. The closer the color is to red, the more the pixel contributes to the model decision for EAC, CSA or RA. Compared to the original Grad
CAM, the background in the saliency maps generated in our method has a value larger than zero (yet still represents background contribution), as the threshold of no contribution
to the targeted category, pixels with values less than this threshold have negative contributions, while the opposite ones have positive contributions to the model decision for this

category.

is comparable to the performance by statistical analysis of clinical
variables, demonstrating the potential of using DL models to search
for early RA signs. According to the saliency maps, inflammatory signs
appear to be the most contributing factor in current models, which
is consistent with clinical knowledge. However, due to the limited
dataset capacity, data imbalance and lack of other RA datasets for
general validation, clinical application requires further investigation
and validation.

From the perspective of method, the consistency-based strategies
significantly improved the overall performance of the baseline model
on all tasks (See Fig. 7). The self-supervised reconstruction, based
on the consistency of specific anatomical structures, provides a pre-
training method for CNNs when the amount of data is limited and
when there is no similar dataset available for pre-training. As far as

10

we know, our method is the first DL-based method for the detection
of early signs of RA from MRI. Most previous studies related to RA
were based on Ultrasound [37,38] or X-rays [39] and were focusing on
predicting visual scores. Moreover, most other studies for MRI-based
diagnosis are based on the combination of prior knowledge and the
variants of standard ResNets and VGGs. These backbone models have
therefore been included in our method comparison, as specific prior
knowledge in these fields cannot be transferred. Compared to other
methods, our methods focus more on learning from the information
consistency, namely unchanged anatomical structures, and labels dur-
ing processing (augmentation and DL-based feature extraction). These
strategies are transferable, as they are generally not dependent on any
specific prior knowledge. However, they are very dependent on the
reconstruction quality and augmentation methods and therefore rely
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on anatomical consistency and disease severity consistency during the
spatial transformation.

Although there is still a gap with the most experienced clinical
expert, this is already a big step toward to fully-automated prediction
of early RA, and the most advanced approach for automatic detection
of early RA so far. Meanwhile, this work also indicates the existence of
early signs of RA in MRIs without prior knowledge from rheumatolo-
gists, which could serve future studies that use this modality. Moreover,
the performance of deep learning models can be further improved as
several impactful factors can be studied. First, for preprocessing, the
augmentation methods were limited to small-scale spatial transforma-
tion and noise addition that would not change the labels. To help
models overcome some artifacts (e.g. caused by fat suppression errors),
the models can be improved if we can mimic these artifacts and use
them in augmentation for training, approaching the expert level of
robustness against image degradation. Moreover, we selected central
slices automatically based on non-zero masks, which can be sometimes
mistaken. Anatomical knowledge and advanced segmentation may play
a role here to improve it.

Meanwhile, apart from labels, deep learning models are indepen-
dent of other expert knowledge, we expect more information than
the prediction of labels. With a verified visualization method that
can test the reliability of models, the deep learning models can also
serve as a way of exploring inflammatory signs of RA that have not
been considered by clinical observers but could still be relevant to RA
development (i.e., hypothesis-free interpretation). Combined with the
current visualization methods, as shown in Fig. 9, the saliency maps
can already illustrate some potential regions where some early signs of
RA exist. With our ongoing studies on improving visualization methods,
it has become feasible to generate saliency maps and find early signs
of RA. This may give a different perspective for studying RA or finding
potential image biomarkers for early RA.

6. Conclusion

As far as we know, our method is the first DL-based method for
detecting the early signs of RA from MRI. Our models, based on the
proposed consistency-based strategies, succeeded in all four RA clas-
sification/prediction tasks. This indicates the existence of early signs
of RA in MRIs and it demonstrates the potential of DL models in RA-
related research. The proposed model could serve as an initial DL
benchmark in RA prediction based on MRI and indicates the ability of
DL to assist RA analysis and finding early signs of RA in MRI scans with
the visualization method, contributing to both technical and clinical RA
studies in the future.
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