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Abstract
Familial adult myoclonus epilepsy (FAME) results from the same pathogenic 
TTTTA/TTTCA pentanucleotide repeat expansion in six distinct genes encod-
ing proteins with different subcellular localizations and very different functions, 
which poses the issue of what causes the neurobiological disturbances that lead 
to the clinical phenotype. Postmortem and electrophysiological studies have 
pointed to cortical hyperexcitability as well as dysfunction and neurodegenera-
tion of both the cortex and cerebellum of FAME subjects. FAME expansions, con-
trary to the same expansion in DAB1 causing spinocerebellar ataxia type 37, seem 
to have no or limited impact on their recipient gene expression, which suggests a 
pathophysiological mechanism independent of the gene and its function. Current 
hypotheses include toxicity of the RNA molecules carrying UUUCA repeats, or 
toxicity of polypeptides encoded by the repeats, a mechanism known as repeat-
associated non-AUG translation. The analysis of postmortem brains of FAME1 
expansion (in SAMD12) carriers has revealed the presence of RNA foci that could 
be formed by the aggregation of RNA molecules with abnormal UUUCA repeats, 
but evidence is still lacking for other FAME subtypes. Even when the expansion 
is located in a gene ubiquitously expressed, expression of repeats remains un-
detectable in peripheral tissues (blood, skin). Therefore, the development of ap-
propriate cellular models (induced pluripotent stem cell-derived neurons) or the 
study of affected tissues in patients is required to elucidate how FAME repeat 
expansions located in unrelated genes lead to disease.
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1   |   INTRODUCTION: 
CHARACTERISTICS OF 
PATHOGENIC PENTANUCLEOTIDE 
REPEAT EXPANSIONS CAUSING 
FAMILIAL ADULT MYOCLONUS 
EPILEPSY

Familial adult myoclonus epilepsy (FAME) is a rare au-
tosomal dominant disorder characterized by the associa-
tion of cortical tremor, cortical myoclonus, and epileptic 
seizures, either comanifesting in a single individual or 
occurring in different combinations in members of the 
same family. This clinically variable but well-defined con-
dition has been described using different acronyms such 
as benign adult familial myoclonic epilepsy (BAFME),1 
autosomal dominant cortical myoclonus and epilepsy 
(ADCME),2 or familial cortical myoclonic tremor with 
epilepsy (FCMTE).3 Early genetic investigations demon-
strated locus heterogeneity with possible genetic causes 
mapped on different chromosomes.4 Recent evidence, 
however, has revealed that the underlying pathogenic 
variants correspond to the same pentanucleotide repeat 
expansion in introns of six different genes: SAMD12 on 
chromosome 8q24.1 (FAME1/BAFME),5 STARD7 on chro-
mosome 2q11.2 (FAME2/ADCME/BAFME),6 MARCHF6 
on chromosome 5p15.2 (FAME3/FCMTE),7 YEATS2 on 
chromosome 3q27.1 (FAME4),8 TNRC6A on chromosome 
16q12.1 (FAME6/BAFME6),5 and RAPGEF2 on chromo-
some 4q32.1 (FAME7/BAFME7).5 In all six genes, FAME 
expansions occur at a polymorphic short tandem repeat 
originally composed of TTTTA repeats, usually adjacent 
to one or more Alu repeats. Contrary to nonpathogenic 
repeats, pathogenic expansions are invariably composed 
of two different motifs: a TTTTA repeat stretch, which is 
expanded compared to the reference sequence, associated 
with TTTCA repeats that are never observed at any FAME 
locus in healthy populations and therefore considered 
genomic insertions. The size of pathogenic repeat expan-
sions varies between 2.2 and 18.4 kb on average (i.e., 440 
and 3600 repeats) including both motifs.5–7 Furthermore, 
these expansions are unstable in a length-dependent man-
ner with the largest expansions manifesting the highest 
degree of somatic variability.7

2   |   INSIGHTS FROM ELECT​
ROP​HYS​IOL​OGICAL AND 
POSTMORTEM STUDIES

Electrophysiological investigations, including electroen-
cephalography, electromyography, and somatosensory 
evoked potentials, have convincingly shown that cortical 
myoclonus results from abnormal electrical discharges in 

the cerebral cortex. FAME clinical manifestations seem to 
represent a continuum encompassing spontaneous cor-
tical tremor/myoclonus, cortical reflex myoclonus (i.e., 
cortical myoclonus provoked by sensory stimuli), and 
generalized epilepsy, the latter being characterized by a 
more widespread abnormal cortical activity than cortical 
myoclonus alone.3,9,10 This overall suggests that FAME 
is the result of cortical hyperexcitability. However, the 
pathophysiological mechanisms at play could also in-
volve dysfunction and/or progressive neurodegeneration 
of other brain structures, particularly the cerebellum, as 
well as alterations of cerebellothalamocortical circuits.11 
Morphologic changes and mild and diffuse loss of Purkinje 
cells in postmortem brain studies of FAME patients have 
been observed. Moreover, halolike amorphous materials 
immunopositive for calbindin were observed in the cyto-
plasm of Purkinje cells of a subject with a homozygous 
repeat expansion in SAMD12,5 a finding reminiscent of in-
clusions observed in other repeat expansion disorders.12,13 
Nevertheless, it is not clear whether these relatively mild 
morphological changes occur at an early or late stage of 
disease progression and, therefore, correspond to primary 
or secondary processes in FAME pathogenesis.

3   |   GENES IN WHICH FAME 
REPEAT EXPANSIONS OCCUR ARE 
UNRELATED

The six genes harboring FAME-associated repeat expan-
sions encode proteins with very different subcellular lo-
calizations and functions. SAMD12 (sterile alpha motif 
domain-containing 12) encodes a small protein (22 kDa) 
of unknown function localized at the cytoplasmic side of 
the plasma membrane (source: UniProt). STARD7 (StAR-
related lipid transfer domain-containing 7) encodes a 

Key Points

•	 Repeat expansions in six genes encoding pro-
teins involved in different pathways cause 
FAME

•	 FAME pathogenesis appears to be independent 
of the gene where the repeats are located or its 
function

•	 FAME likely results from cortical hyperexcit-
ability and dysfunction or neurodegeneration 
of the cortex and cerebellum

•	 Possible pathomechanisms include toxicity of 
UUUCA repeats at the RNA level and repeat-
associated non-AUG translation

 15281167, 2023, S1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/epi.17504 by L

eiden U
niversity L

ibraries, W
iley O

nline L
ibrary on [15/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



      |  S33DEPIENNE et al.

mitochondrial protein involved in lipid transport and 
metabolism.14 MARCHF6 (membrane-associated ring-
CH-type finger 6) encodes an E3 ubiquitin ligase that 
mediates the degradation of misfolded or damaged pro-
teins in the endoplasmic reticulum.15,16 YEATS2 (YEATS 
domain-containing 2) codes for a subunit of the nuclear 
ADA2A-containing histone acetyltransferase complex.17 
RAPGEF2 (Rap guanine nucleotide exchange factor 2) 
encodes a guanine nucleotide exchange factor transiting 
between the cytoplasm, endosomes, and the plasma mem-
brane, and regulating the Ras-Raf-MEK-ERK signal trans-
duction pathway.18,19 Finally, TNRC6A (trinucleotide 
repeat-containing gene 6A protein, also called glycine/
tryptophane repeat protein GW182) encodes a component 
of a cytoplasmic ribonucleoprotein complex involved in 
regulating mRNA silencing, stability, and translation.20 
The expression profiles of these six genes are also different; 
some are predominantly expressed in the central nervous 
system (including neurons, e.g., RAPGEF2), whereas oth-
ers are ubiquitously expressed.21 Genes with FAME repeat 
expansions therefore have no obvious common character-
istics and belong to different biological pathways.

Contrary to other repeat expansion disorders, such as 
fragile X syndrome or Friedreich ataxia, where expansions 
lead to an epigenetic loss of function of the corresponding 
gene, current evidence suggests that FAME expansions 
do not significantly alter expression, splicing, and overall 
function of the gene in which they reside. Therefore, the 
most logical scenario implies that the underlying patho-
logical mechanisms are independent of the gene itself or 
its function. This hypothesis is further supported by an ab-
sence of change in expression or splicing of STARD7 and 
MARCHF6 in blood cells and fibroblasts of FAME2 and 
FAME3 patients, where these genes are relatively highly 
expressed.6,7 However, the real impact of repeat expan-
sions on gene expression in affected tissues deserves fur-
ther study, as it may also reveal subtle differences between 
FAME subtypes. The study of SAMD12 expression in post-
mortem brains of FAME1 expansion carriers, for instance, 
suggests that transcription may terminate at the site of the 
expansion. This finding was associated with a slight but 
significant reduction of SAMD12 protein expression.5

4   |   STRUCTURES OF REPEAT 
EXPANSIONS POINT TO 
PATHOGENICITY OF TTTCA 
REPEATS

Various observations suggest that TTTCA and not TTTTA 
repeats constitute the pathogenic part of the expansion. 
First, expanded TTTTA repeats (>500 bp) in SAMD12 
are present in 6% of healthy subjects in the Japanese 

population, indicating that pure TTTTA expansions are 
nonpathogenic.5,22 Second, there is an inverse correla-
tion existing between the age at onset and the length of 
FAME3 expansions, mainly driven by the size of TTTCA 
repeats.7 TTTCA repeats are usually located at the 3′ end 
of the expansion, that is, 5′-(TTTTA)exp(TTTCA)exp-3′, but 
TTTCA repeats have also been, although rarely, described 
in between two expanded TTTTA expanded stretches (5′-
[TTTTA]exp[TTTCA]exp[TTTTA]exp-3′).

The existence of pathogenic motifs other than 
TTTCA was suggested by the identification of a 
5′-(TTTTA)exp(TTTGA)exp-3 expansion segregating with 
FAME in a large Chinese pedigree.23 However, other find-
ings have shown that pathogenic expansions may contain 
not one but two or more inserted motifs (e.g., TTTCA and 
TTTGA repeats),24 and because of the high degree of so-
matic mosaicism, it may be difficult to have a full overview 
of all possible repeat structures existing in cells of one 
individual, especially because genetic analyses currently 
performed usually assess only a few alleles, or include 
biases linked to amplification or selection of alleles that 
can effectively be sequenced. The pathogenicity threshold 
for the number of TTTCA repeats remains unclear, but 
the smallest number of TTTCA repeats contained within 
larger TTTTA expansions described in FAME patients so 
far is 14.24

5   |   REPEAT EXPRESSION, RNA 
TOXICITY, AND RNA FOCI

Although pathogenic expansions seem independent of the 
gene they are located in, they are consistently located in 
introns of genes expressed in FAME-affected brain struc-
tures (i.e., cortex and cerebellum) and not in intergenic 
regions (Figure  1A). This suggests that the location of 
repeats in transcriptionally active regions of the genome 
is required for pathogenesis. Transcription of RNA mol-
ecules encompassing the repeats is likely a key event in 
the disease process, and the genes may hence serve as a 
vehicle for repeat expression.

Nevertheless, conflicting data exist regarding the tran-
scription of RNA-containing repeats. On the one hand, 
reads filled with UUUUA/UUUCA repeats were detected 
in the liver, lymphoblastic cells, and postmortem brains 
of FAME1 patients. RNA foci were also detected in cor-
tical neurons and Purkinje cells of the same brains by 
RNA fluorescence in situ hybridization using a Cy3-
(TGAAA)12 probe targeting UUUCA repeats.5 On the 
other hand, no reads filled with UUUUA/UUUCA repeats 
were detectable in blood and fibroblasts of FAME2 and 
FAME3 patients,6,7 although STARD7 and MARCHF6 are 
highly expressed in these tissues. This may suggest that 
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persistence or accumulation of RNA molecules contain-
ing UUUCA repeats is brain-specific and does not occur 
in peripheral tissues.

Observations from FAME1 postmortem brains strongly 
suggest that transcribed RNA molecules with pathological 
repeats can accumulate, aggregate, and form RNA foci. 
This process is reminiscent of the mechanism described in 
myotonic dystrophy type 1 (DM1) and DM2, respectively 
caused by CTG repeat expansions in the 3’-untranslated 
region of DMPK25 and intronic CCTG repeat expansions 
in CNBP.26 RNA molecules with these repeats adopt sta-
ble secondary structures (e.g., hairpins) recognized by 
specific RNA-binding proteins, including muscle-blind-
like (MBNL1) proteins. These proteins are sequestered 
in nuclear aggregates formed by RNA foci, which subse-
quently leads to their loss of function and accumulation 
of tissue-specific splicing defects.27–30 In this context, it 
is possible that FAME could also result from the abnor-
mal accumulation of RNA molecules recruiting UUUCA-
binding proteins expressed in a neuron-specific manner 
(Figure  1C). If true, an abnormal expression or splicing 
of genes targeted by these RNA-binding proteins should 
also be observed. The RNA toxicity hypothesis is further 
supported by the observation of RNA foci forming when 
UUUCA repeats are overexpressed in HEK293T cells and 
both developmental defects and increased lethality as a 
result of the overexpression of UUUCA but not UUUUA 
repeats in zebrafish.31 Nonetheless, the existence of RNA 
with UUUCA repeats and RNA foci needs further confir-
mation in other FAME subtypes.

6   |   REPEAT-ASSOCIATED  
NON-AUG TRANSLATION

Another possible pathogenic mechanism associated 
with FAME repeat expansions is repeat-associated 
non-AUG (RAN) translation.32 Originally described in 

spinocerebellar ataxia (SCA) type 8 and DM1, RAN trans-
lation is a noncanonical translation process that occurs 
at repeat expansion sites in the absence of an AUG start 
codon.33 In theory, translation of polypeptides directly 
from pathological repeats is possible in all reading frames 
on both sense and antisense DNA strands.33,34 However, 
recent studies suggest that in some expansion disorders, 
translation occurs only when the expansion creates a 
novel open reading frame initiated by an AUG or another 
possible (near-cognate) initiation codon located upstream 
of the repeats, thus leading to the expression of one main 
polypeptide from a single frame.35 The produced polypep-
tides may be toxic or prone to aggregation, as previously 
described for proteins with polyglutamine expansions.34 
The list of repeat expansion disorders in which peptides 
are translated from the expanded repeats is increasing and 
includes DM2, SCA31, fragile X-associated tremor and 
ataxia syndrome, neuronal intranuclear inclusion disease, 
C9ORF72-related frontotemporal dementia/amyotrophic 
lateral sclerosis, and also possibly oculopharyngodistal 
myopathy.12,34–36 So far, there is no evidence that RAN 
translation occurs in FAME. Only two polypeptides, 
respectively translated from TTTTA (polyFYFIL) and 
TTTCA (polyFHFIS), could theoretically be produced, 
and reading frames on the reverse strand lead to early 
termination codons (Figure  1D). Furthermore, toxic-
ity at the RNA and protein level are mutually nonexclu-
sive and could even be intimately linked during disease 
progression.37,38

7   |   INSIGHTS FROM OTHER 
NONCODING PENTANUCLEOTIDE 
EXPANSIONS

A puzzling observation is that TTTTA/TTTCA expansions, 
before being identified as the main cause of FAME, had al-
ready been described as the cause of SCA type 37 (SCA37). 

F I G U R E  1   Possible mechanisms associated with TTTCA repeat expansions in familial adult myoclonus epilepsy (FAME). (A) Summary 
of the repeat expansion disorders discussed in this review, featuring their location within genes and repeat motif (in parentheses). (B) 
Schematic representation of possible pathomechanisms associated with FAME, showing normal situation of a gene with nonpathogenic 
intronic TTTTA repeats. Transcription, splicing, and translation occur normally in tissues where the gene is expressed. (C) Abnormal 
situation with pathogenic association of TTTTA and TTTCA repeats and a possible gain of function at the RNA level. Upper graph: In 
peripheral tissues (blood, skin), UUUCA repeats do not alter gene expression, splicing, or translation. Lower graph: In the brain, UUUCA 
repeats may bind neuron-specific RNA-binding proteins and form RNA foci and intracellular aggregates. This mechanism, described 
in myotonic dystrophy type 1 (DM1) and DM2, is supported by data obtained from postmortem brains with FAME1 (SAMD12) repeat 
expansions. (D) Abnormal situation with pathogenic association of TTTTA and TTTCA repeats and a possible gain of function at the protein 
level. UUUUA/UUUCA repeats may get translated through repeat-associated non-ATG (RAN) translation and form polypeptides that 
are toxic and/or able to form intracellular aggregates. This mechanism has been shown for several repeat expansion disorders (including 
fragile X-associated tremor and ataxia syndrome [FXTAS], neuronal intranuclear inclusion disease [NIID], oculopharyngodistal myopathy 
[OPDM], DM1, DM2, spinocerebellar ataxia type 8 [SCA8], and SCA31, but not SCA10) but has not yet been demonstrated in FAME. FRAX, 
fragile X syndrome; FRDA, Friedreich ataxia; FTDALS, frontotemporal dementia/amyotrophic lateral sclerosis; UTR, untranslated region; 
7mG, 7-methylguanosine cap of mRNA
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SCA37 is due to TTTTA/TTTCA repeat expansion in DAB1, 
a gene on chromosome 1p32.2 encoding a downstream ef-
fector of the reelin signaling pathway.31 SCA37 is an adult 
onset, progressive neurodegenerative condition character-
ized by gait and limb ataxia, dysmetria, dysarthria, and nys-
tagmus. So far, none of the individuals with this disorder 
has been reported to have cortical tremor, myoclonus, or 
epilepsy.31 This challenges all hypotheses about possible 
mechanisms that could be involved in FAME. Given the 
high expression of DAB1 in cortex and cerebellum, TTTTA/
TTTCA repeats should also be transcribed as part of DAB1 
pre-mRNA in these brain regions. Logically, mechanisms 
implying toxicity at the RNA and/or protein level should 
also apply and lead to a similar disease. One major differ-
ence, however, could reside in the impact of the repeat 
expansion on DAB1 expression; contrary to FAME repeat 
expansions, SCA37 expansions result in increased expres-
sion of DAB1 and inclusion of two exons normally absent 
from the isoforms expressed in the cerebellum in postmor-
tem brains of affected individuals.39 In addition, SCA37 
TTTCA repeats tend to be shorter in size (1–3 kb) and have 
a different structure compared to those in FAME expan-
sions, with the TTTCA stretch being located in between 
TTTTA repeats. However, as in FAME, nonpathogenic 
expansions (up to 3 kb) composed of TTTTA repeats also 
exist at the DAB1 locus, further confirming that homoge-
neous TTTTA expansions are benign independently of the 
gene. In conclusion, it is likely that FAME repeat expan-
sions lead to disease independently of the gene where the 
repeats are expanded, contrary to SCA37, in which expres-
sion of DAB1, a gene with a known function in cerebellar 
and cortex development, would be altered. However, there 
are many uncertainties remaining, in particular why the 
expression of UUUCA repeats does not lead to cortical hy-
perexcitability in SCA37.

Two other SCAs types are also caused by pentanucle-
otide repeats: SCA10, associated with an ATTCT repeat 
expansion in ATXN10,40 and SCA31, associated with 
an AATGG expansions in BEAN1.41 SCA10 expansions 
are mainly found in Latin American countries (with a 
probable founder effect originating from the Indigenous 
American population) and are associated with a clinically 
variable phenotype, either presenting as a pure cerebel-
lar ataxia or as a combination of ataxia and seizures.42 
Interruptions, that is, the presence of alternative motifs 
such as ATTGT, ATCCT, or ATTCC within the expansions, 
have been associated with an increased risk of epilepsy.43 
Recent evidence even suggests that only interrupted ex-
pansions are pathogenic, whereas pure expansions com-
posed of ATTCT repeats are either nonpathogenic or 
associated with late onset Parkinsonism, a finding remi-
niscent of pathological repeat configurations observed in 
FAME.44 RNA foci containing the AUUCU repeat have 

been described in fibroblasts of SCA10 patients and in 
an SCA10 mouse model. This model, in which AUUCU 
repeats are specifically overexpressed in the context of a 
LacZ transgene, has revealed that aggregating AUUCU 
repeats specifically recruit hnRNP K, leading to loss 
of its function through a mechanism similar to that de-
scribed for myotonic dystrophy type 1.45,46 However, the 
transgenic model and suggested mechanism do not fully 
recapitulate the human pathology and explain why only 
interrupted repeats would be pathogenic.

8   |   PERSPECTIVES:  WHICH 
MODEL(S) SHOULD BE USED 
TO STUDY FAME PATHOGENIC 
MECHANISMS?

The examples discussed above highlight the necessity 
but also the complexity of studying repeat expansions in 
their native gene context. The tandem repeats at the ori-
gin of pathological expansions are primate- or human-
specific, and the size and high A/T content of FAME 
expansions make their amplification and cloning diffi-
cult, thus limiting possibilities to develop animal mod-
els. Animal models, including mouse, drosophila,47 and 
zebrafish31 have been used with success in other repeat 
disorders, but they are usually based on massive overex-
pression of repeats, a condition that might not faithfully 
represent what happens in patients’ tissues. Disease 
mechanisms may not be observable in peripheral tissues 
(blood cells, fibroblasts) and require modeling directly in 
postmitotic noncycling neuronal cells. The reprogram-
ming of patients’ cells into induced pluripotent stem 
cells that can be differentiated into neurons or inducing 
neurons directly from fibroblasts48 may thus represent 
the best approach to model relevant disease processes. 
However, recapitulating the human pathology in any 
cellular or animal model might take decades, a condi-
tion almost impossible to achieve. One possible way to 
overcome this obstacle may be to accelerate the disease 
process by focusing on very large repeat expansions or 
artificially increasing neuron-specific repeat expression, 
but the validity of observed mechanisms would need 
independent confirmation in postmortem human brain 
samples. Understanding how FAME expansions lead 
to disease at the molecular and cellular level will be an 
important step toward the development of personalized 
medicine aimed at reversing or delaying progression of 
the disease.
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