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Abstract—A customized multi-objective evolutionary algorithm
(MOEA) is proposed for the flexible job shop scheduling problem
(FJSP) with three objectives: makespan, total workload, critical
workload. In general, the algorithm can be integrated with any
standard MOEA. In this paper, it has been combined with
NSGA-III to solve the state-of-the-art benchmark FJSPs, whereas
an off-the-shelf implementation of NSGA-III is not capable of
solving them. Most importantly, we use the various algorithm
adaptations to enhance the performance of our algorithm. To
be specific, it uses smart initialization approaches to enrich the
first-generation population, and proposes new crossover operator
to create a better diversity on the Pareto front approximation.
The MIP-EGO configurator is adopted to automatically tune the
mutation probabilities, which are important hyper-parameters of
the algorithm. Furthermore, different local search strategies are
employed to explore the neighborhood for better solutions. The
experimental results from the combination of these techniques
show the good performance as compared to classical evolutionary
scheduling algorithms and it requires less computing budget.
Even some previously unknown non-dominated solutions for the
BRdata benchmark problems could be discovered.

Index Terms—Flexible job shop scheduling, Multi-objective
optimization, Evolutionary algorithm.

I. INTRODUCTION

The Job shop scheduling problem (JSP) is an important
branch of production planning problems. The classical JSP
consists of a set of independent jobs to be processed on
multiple machines and each job contains a number of oper-
ations with a predetermined order. It is assumed that each
operation must be processed on a specific machine with a
specified processing time. The JSP is to determine a schedule
of jobs, meaning to sequence operations on the machines. The
flexible job shop scheduling problem (FJSP) is an important
extension of the classical JSP due to the wide employment of
multi-purpose machines in the real-world job shop. The FJSP
extends the JSP by assuming that each operation is allowed to
be processed on a machine out of a set of alternatives, rather
than one specified machine. Therefore, the FJSP is not only
to find the best sequence of operations on a machine, but also
to assign each operation to a machine out of a set of qualified
machines.

In this paper, evolutionary algorithms (EAs) have been
applied to solve a multi-objective flexible job shop scheduling

problem (MOFJSP). Due to the NP-hard nature of these
problems [1], it is hardly possible to find their true Pareto
fronts (PFs) and a basic EA can not perform well on the
MOFJSPs. Therefore, we develop some techniques and use
them together with EA to enhance the performance. Firstly,
we propose and adopt multiple initialization approaches to
produce the first-generation population based on our definition
of the chromosome representation. In this way, the algorithm
can produce a better-distributed initial population which can
increase the robustness and avoid premature convergence. Sec-
ondly, diverse genetic operators are applied to guide the search
towards offspring with a wide diversity. Moreover, to find
the best parameter setting, we use an algorithm configurator,
i.e., MIP-EGO [2], which is usually used in the region of
machine learning to optimize the hyper-parameters and neural
network architecture. In our algorithm, we apply it to tune the
operator probability. Furthermore, two levels of local search
are employed for making our algorithm converge faster to
the PF. Although it is difficult to implement a local search
in a multi-objective context, our implementation of local
search is straightforward, avoids getting stuck in local optima
and can guarantee the generation of better solutions. These
techniques can improve the algorithm individually, but when
they work together, the overall hybrid approach reveals a best
performance. The experimental results show that our algorithm
can achieve state-of-the-art results with less computing effort
when it is merged with NSGA-III [3].

The paper is organized as follows. The next section for-
mulates the MOFJSP. Section III gives necessary background
knowledge. Section IV introduces the proposed algorithm and
Section V reports the experimental results. Finally, Section VI
concludes the work and suggests future work directions.

II. PROBLEM FORMULATION

The MOFJSP addressed in this paper is described as:
1) There are n jobs J = {J1, J2, · · · , Jn} and m machines

M = {M1,M2, · · · ,Mm}.
2) Each job Ji comprises li operations for i = 1, · · · , n, the

jth operation of job Ji is represented by Oij , and the
operation sequence of job Ji is from Oi1 to Oili .

3) For each operation Oij , there is a set of machines capable
of performing it, which is represented by Mij and it is a
subset of M .978-1-7281-2547-3/20/$31.00 ©2020 IEEE
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4) The processing time of the operation Oij on machine Mk

is predefined and denoted by tijk.

At the same time, the following assumptions are made:

1) All machines and jobs are available at time 0 and assumed
to be continuously available.

2) All jobs are independent from each other.
3) Setting up times of machines and transportation times

between operations are negligible.
4) A machine can only work on one operation at a time.
5) There are no precedence constraints among the operations

of different jobs, and the order of operations for each job
cannot be modified.

6) An operation, once started, must run to completion.
7) No operation for a job can be started until the previous

operation for that job is completed.

The makespan, total workload and critical workload, which
are commonly considered in the literature on FJSP and very
practical in real-world circumstances, are minimized and used
as three objectives in our algorithm. The makespan is de-
fined as the maximum time for completion of all jobs, in
other words, the total length of the schedule. Minimizing
the makespan can facilitate the rapid response to the market
demand. The total workload represents the total working time
of all machines and the critical workload is the maximum
workload among all machines. Minimizing the total workload
can reduce the use of machines; minimizing the critical
workload can balance the workload between machines. Let
Ci denote the completion time of job Ji, Wk the sum of
processing time of all operations that are processed on machine
Mk. The three objectives can be defined as follows:

Makespan(Cmax) : f1 = max{Ci|i = 1, 2, · · · , n} (1)

Total workload(Wt) : f2 =
m∑

k=1

Wk (2)

Critical workload(Wmax) : f3 = max{Wk|k = 1, 2, · · · ,m}
(3)

TABLE I
PROCESSING TIME OF A FJSP INSTANCE

Job Operation M1 M2 M3

J1

O11 3 - 2
O12 5 7 6
O13 - - 2

J2
O21 2 4 3
O22 2 - 1

J3
O31 4 2 2
O32 3 5 -

An example of the MOFJSP is shown in Table I as an
illustration, where rows correspond to operations and columns
correspond to machines. In this example, there are three
machines: M1, M2 and M3. Each entry of the table denotes
the processing time of that operation on the corresponding
machine, and the tag “−” means that a machine cannot execute
the corresponding operation.

III. RELATED WORK

A. Algorithms for MOFJSP

According to [4], EA is the most popular non-hybrid
technique to solve the FJSP. Among all EAs for FJSP, some
are developed for the more challenging FJSP: the MOFJSP
which we formulated in Section II. [5], [6] and [7] are very
successful MOFJSP algorithms and have obtained high-quality
solutions. [5] proposes a multi-objective genetic algorithm
(MOGA) based on the immune and entropy principle. In this
MOGA, the fitness is determined by the Pareto dominance
relation and the diversity is kept by the immune and entropy
principle. In [6], a simple EA (SEA) is proposed, which
uses domain heuristics to generate the initial population and
balance the exploration and exploitation by refining duplicate
individuals with mutation operators. A memetic algorithm
(MA) is proposed in [7] and it incorporates a local search into
NSGA-II. A hierarchical strategy is adopted in the local search
to handle three objectives. In Section V, these algorithms have
been compared with our algorithm on the MOFJSP.

B. Parameter Tuning

EA involves using multiple parameters and their preset
values affect the performance of the algorithm in different
situations. These parameters are usually set to values which
are assumed to be good. For example, the mutation probability
normally is kept very low, otherwise the convergence is sup-
posed to be delayed unnecessarily. But the best way to identify
the probability would be to do a sensitivity analysis: carrying
out multiple runs of the algorithms with different mutation
probabilities and comparing the outcomes. Although there are
some self-tuning techniques for adjusting these parameters
on the go, the parameters in EA can be optimized using
techniques from machine learning.

The optimization of hyper-parameters and neural network
architectures is an essential topic in the field of machine learn-
ing due to the large number of design choices for a network
architecture and its parameters. Recently, algorithms have been
developed to accomplish this challenge automatically since it
is intractable to do it by hand. The MIP-EGO is one of these
configurators that can automatically configure convolutional
neural network architectures and the resulting optimized neural
networks have been proven to be competitive with the state-of-
the-art manually designed ones on some popular classification
tasks. Moreover, MIP-EGO allows for multiple candidate
points to be selected and evaluated in parallel, which can
speed up the automatic tuning procedure. In our paper, we
choose MIP-EGO to tune the parameter values and find the
best parameter setting.

C. NSGA-III

NSGA-III is a decomposition-based MOEA, it is an exten-
sion of the well-known NSGA-II and eliminates the drawbacks
of NSGA-II such as the lack of uniform diversity among a set
of non-dominated solutions. The basic framework of NSGA-
III is similar to the original NSGA-II, while it replaces the
crowding distance operator with a clustering operator based on
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a set of reference points. A widely-distributed set of reference
points can efficiently promote the population diversity during
the search and NSGA-III defines a set of reference points by
Das and Dennis′s method [8].

In each iteration t, an offspring population Qt of size Npop

is created from the parent population Pt of size Npop using
usual selection, crossover and mutation. Then a combined
population Rt = Pt∪Qt is formed and classified into different
layers (F1, F2, and so on ), each layer consists of mutually
non-dominated solutions. Thereafter, starting from the first
layer, points are put into a new population St. A whole
population is obtained until the first time the size of St is
equal to or larger than Npop. Suppose the last layer included
in St is the l-th layer, so far, members in St\Fl are points that
have been chosen for Pt+1 and the next step is to choose the
remaining points from Fl to make a complete Pt+1. In general
(when the size of St doesn’t equal to Npop), Npop − |St \Fl|
solutions from Fl needs to be selected for Pt+1.

When selecting individuals from Fl, first, each member
in St is associated with a reference point by searching the
shortest perpendicular distance from the member to all refer-
ence lines created by joining the ideal point with reference
points. Next, a niching strategy is employed to choose points
associated with the least reference points in Pt+1 from Fl. The
niche count for each reference point, defined as the number of
members in St\Fl that are associated with the reference point,
is computed. The member in Fl associated with the reference
point having the minimum niche count is included in Pt+1.
The niche count of that reference point is then increased by one
and the procedure is repeated to fill the remaining population
slots of Pt+1.

NSGA-III is powerful to handle problems with non-linear
characteristics as well as having many objectives. Therefore,
we decided to combine NSGA-III in our algorithm for the
MOFJSP.

IV. PROPOSED ALGORITHM

The proposed algorithm, Flexible Job Shop Problem Multi-
objective Evolutionary Algorithm (FJSP-MOEA) can in prin-
cipal be combined with any MOEA to solve the MOFJSP,
whereas the standard MOEAs cannot solve MOFJSP solely.
The algorithm follows the flow of a typical EA and generates
improved solutions by using local search. Details of the
components of the proposed FJSP-MOEA are given in the
following subsections.

A. Chromosome Encoding

The MOFJSP is a combination of assigning each operation
to a machine and ordering operations on the machines. In the
algorithm, each chromosome (individual) represents a solution
in the search space and the chromosome consists of two parts:
the operation sequence vector and the machine assignment
vector. Let N denote the number of all operations of all
jobs. The length of both vectors is equal to N . The operation
sequence vector decides the sequence of operations assigned to
each machine. For any two operations which are processed by

the same machine, the one located in front is processed earlier
than the other one. The machine assignment vector assigns the
operations to machines, in other words, it determines which
operation is processed by which machine and the machine
should be the one capable of processing the operation.

The format of representing an individual not only influences
the implementation of crossover and mutation operators, a
proper representation can also avoid the production of in-
feasible solutions and reduces the computational time. In our
algorithm, the chromosomal representation proposed by Zhang
et al. in [9] is adopted and an example is given in Table II.
In the table, the first row shows the operation sequence vector
which consists of only job indexes. For each job, the first
appearance of its index represents the first operation of that
job and the second appearance of the same index represents
the second operation of that job, and so on. The occurrence
number of an index is equal to the number of operations of
the corresponding job. The second row explains the first row
by giving the real operations. The third row is the machine
assignment vector which presents the selected machines for
operations. The operation sequence of the machine assignment
vector is fixed, which is from the first job to the last job
and from the first operation to the last operation for each job.
The fourth row indicates the fixed operation sequence of the
machine assignment vector and the fifth row shows the real
machines of the operations. Each integer value in the machine
assignment vector is the index of the machine in the set of
alternative machines of that operation. In this example, O13 is
assigned to M3 because M3 is the first (and only) machine in
the alternative machine set of O13 (Table I). The alternative
machine set of O22 is {M1,M3}, the second machine in this
set is M3, therefore, O22 is assigned to M3.

TABLE II
AN EXAMPLE OF THE CHROMOSOME REPRESENTATION

Operation sequence 111 222 333 222 111 111 333
O11 O21 O31 O22 O12 O13 O32

Machine assignment 222 111 111 333 222 222 111
O11 O12 O13 O21 O22 O31 O32

M3 M1 M3 M3 M3 M2 M1

B. Population Initialization

Our algorithm starts by creating the initial population.
The machine assignment and operation sequence vectors are
generated separately for each individual. In the literature, a
few approaches have been proposed for producing individuals,
such as global minimal workload [10]; AssignmentRule1 and
AssignmentRule2 [11]. In our algorithm, we propose Process-
ing Time Roulette Wheel (PRW) and Workload Roulette Wheel
(WRW) for initializing the machine assignment vector; we also
propose Most Remaining Machine Operations (MRMO) and
Most Remaining Machine Workload (MRMW) for initializing
the operation sequence vector.

PRW and WRW are proposed to assign the operation to the
machine with less processing time or accumulated workload,
at the same time, maintain the freedom of exploring the
entire search space. MRMO and MRMW are proposed to give
priority to both the machine and the job with the most number
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of remaining operations and the longest remaining processing
time. These new approaches have been used together with
some commonly used dispatching rules in initializing indi-
viduals on the purpose of enriching the initial population.
The complete initialization methods used in our algorithm
are introduced in the following lists. When generating a new
individual in our algorithm, two initialization methods are
randomly picked: one for the machine assignment vector and
one for the operation sequence vector.
Initialization methods for machine assignment

1) Random assignment (Random): an operation is assigned to
an eligible machine randomly.

2) Processing time Roulette Wheel (PRW): for each operation,
the roulette wheel selection is adopted to select a machine
from its machine set based on the processing times of these
capable machines. The machine with the shorter processing
time is more likely to be selected.

3) Workload Roulette Wheel (WRW): for each operation, the
roulette wheel selection is used to select a machine from
its machine set based on the current workloads plus the
processing times of these capable machines. The machine
with lower sum of the workload and processing time is more
likely to be selected.

Initialization methods for operation sequence

1) Random permutation (Random): starting from a fixed se-
quence: all job indexes of J1 (the number of J1 job indexes
is the number of operations of J1), followed by all job
indexes of J2, and so on. Then the array with the fixed
sequence is permuted and a random order is generated.

2) Most Work Remaining (MWR): operations are placed one
by one into the operation sequence vector. Before selecting
an operation, the remaining processing times of all jobs are
calculated respectively, the first optional operation of the job
with the longest remaining processing time is placed into
the chromosome.

3) Most number of Operations Remaining (MOR): operations
are placed one by one into the operation sequence vector.
Before selecting an operation, the number of succeeding op-
erations of all jobs is counted respectively, the first optional
operation of the job with the most remaining operations is
placed into the chromosome.

4) Long Processing Time (LPT) [12]: operations are placed one
by one into the operation sequence vector, each time, the
operation with maximal processing time is selected without
breaking the order of jobs.

5) Most Remaining Machine Operations (MRMO): operations
are placed into the operation sequence vector according to
both the number of subsequent operations on machines and
the number of subsequent operations of jobs. MRMO is a
hierarchical method and takes the machine assignment into
consideration. First, the machine with the most subsequent
operations is selected. After that, the optional operations
in the subsequent operations on that machine are found
based on the already placed operations. For example, if
O11 → O12 → O21 are placed operations, the current

optional operation can only be chosen from O13, O22, and
O31. In these optional operations, those which are assigned
to the selected machine are picked and the one that belongs
to the job with the most subsequent operations is placed
into the chromosome. In this example, O31 will be chosen
if it is assigned to the selected machine because there are
two subsequent operations for J3 and only one subsequent
operation for J1 and J2. Note that it is possible that no
operation is available on that machine, in that case, the
machine with the second biggest number of subsequent
operations will be selected, and so forth.

6) Most Remaining Machine Workload (MRMW): operations
are placed into the operation sequence vector according
to the remaining processing times of machines and the
remaining processing times of jobs. MRMW is a hierarchi-
cal method similar to MRMO. After finding the machine
with the longest remaining process time and the optional
operations on that machine, the operation which belongs to
the job with the longest remaining process time is placed
into the chromosome. Again, if no operation is available
on that machine, the machine with the second longest
remaining processing time will be selected, and so forth.

C. Crossover

Crossover is a matter of replacing some of the genes in one
parent with the corresponding genes of the other (Glover and
Kochenberger [13]). Since our representation of chromosomes
has two parts, crossover operators applied to these two parts of
chromosomes are implemented separately as well. We propose
the new crossover operator for operation sequence, Precedence
Preserving Two Points Crossover (PPTP), and used it together
with several other operators from literature. When execut-
ing the crossover operation in the proposed algorithm, one
crossover operator for machine assignment and one operator
for the operation sequence, are randomly chosen from the
following two lists to generate the offspring.

Crossover operators for machine assignment

1) No crossover
2) One point crossover: a cutting point is picked randomly

and genes after the cutting point are swapped between two
parents.

3) Two points crossover: two cutting points are picked ran-
domly and genes between the two points are swapped
between two parents.

4) Job-based crossover (JX):
a A vector with the size of the jobs is generated, which

consists of random values 0 and 1.
b For the job corresponding to value 0, the assigned ma-

chines of its operations are preserved.
c For the job corresponding to value 1, the machines of its

operations are swapped between two parents.
5) Multi-point preservative crossover (MPX) [14]:

a A vector with the size of all operations is generated,
which consists of random values 0 and 1.
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b For the operations corresponding to value 0, their ma-
chines (genes) are preserved.

c For the operations corresponding to value 1, their ma-
chines (genes) are swapped between the two parents.

Crossover operators for operation sequence

1) No crossover
2) Precedence preserving one point crossover (PPOP) [16]:

a A cutting point is picked randomly, genes to the left are
preserved and copied from parent1 to child1 and from
parent2 to child2.

b The remaining operations in parent1 are reallocated in
the order they appear in parent2.

c The remaining operations in parent2 are reallocated in
the order they appear in parent1.

An example of PPOP is shown in Figure 1 and the cutting
point is between the third and fourth operation. Red num-
bers in parent2 are the genes on the right side of the cutting
point in parent1 and they are copied to child1 with their
own sequence following the genes on the left side of the
cutting point in parent1, and vice versa.

Fig. 1. The process of PPOP

3) Precedence Preserving Two Points Crossover (PPTP):
a Two cutting points are picked randomly, genes except for

those between the two points are preserved and copied
from parent1 to child1 and from parent2 to child2.

b Operations between the two cutting points in parent1 are
reallocated in the order they appear in parent2.

c Operations between the two cutting points in parent2 are
reallocated in the order they appear in parent1.

4) Improved precedence operation crossover (IPOX) [15]:
IPOX divides the job set into two complementary and non-
empty subsets randomly. The operations of one job subset
are preserved, while the operations of another job subset are
copied from another parent.

5) Uniform Preservative crossover (UPX):
a A vector with the size of all operations is generated,

which consists of random values 0 and 1.
b For the operations corresponding to value 0, the genes

are preserved and copied from parent1 to child1 and from
parent2 to child2.

c For the operations corresponding to value 1, the genes
in parent1 are found in parent2 and copied from parent2
with the sequence in parent2, and vice versa.

D. Mutation
The mutation operator flips the gene values at selected loca-

tions. In our algorithm, insertion mutation and swap mutation
(including one point swap and two points swap) are proposed
to generate a new individual by the following procedures:

Insertion Mutation Operator:
a Two random numbers i and j (1 ≤ i ≤ N , 1 ≤ j ≤ N )

are selected.
b For the operation sequence vector, the operation on

position j is inserted in front of the operation on i.
c For the machine assignment vector, a machine is ran-

domly selected for both the operations on i and on j
respectively. If the processing time on the newly selected
machine is lower than that on the current machine, the
current machine is replaced by the new machine. If the
processing time on the new machine is longer than that
on the old machine, there is only a 20% probability that
the new machine replaces the old machine.

Swap Mutation Operator:
a One random number i (1 ≤ i ≤ N ) is selected or two

random numbers i and j (1 ≤ i ≤ N , 1 ≤ j ≤ N ) are
selected.

b For the operation sequence vector, with only one swap
point i, the operation on the swap point is swapped with
its neighbour; with two swap points, the operations on
position i and j are swapped.

c For the machine assignment vector, the machine on
position i is replaced with a new machine by the same
rule used in the insertion mutation operator. (For two
swap points, both machines are replaced.)

It is worth mentioning that the new solutions (offspring)
generated by our crossover and mutation operators are always
feasible because these operators are designed based on the
adopted definition of the chromosome representation.

E. Decoding and Local Search

Decoding a chromosome is to convert an individual into
a feasible schedule to calculate the objective values which
represent the relative superiority of a solution. In this process,
the operations are picked one by one from the operation
sequence vector and placed on the machines from the machine
assignment vector to form the schedule. When placing each
operation to its machine, local search (in the sense of heuristic
rules to improve solution) is involved to refine an individual
in order to obtain an improved schedule in the proposed
algorithm. We know that idle times may exist between oper-
ations on each machine due to precedence constraints among
operations of each job. The following two levels of local search
are applied to allocate each operation to an idle time slot on
its machine and they utilize idle times in different degrees.

The first level local search: let Sij be the starting time of
Oij and Cij the completion time of Oij , an example of the
first level local search is shown in Figure 2. Because Omn

needs to be processed after the completion of Omn−1, an idle
time interval between the completion of Oab and the starting of
Omn appeared on machine Mk. Oij is assigned to Mk and we
assume that Omn is the last operation on Mk before handling
Oij , therefore the starting time of Oij is max{Cmn, Cij−1},
which in this example is Cmn and it is later than Cij−1,
thus, there is an opportunity that Oij can be processed earlier.
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When checking the idle time on Mk, the idle time interval
[Cab, Smn] is found available for Oij because the idle time
span [Cij−1, Smn], which is part of [Cab, Smn], is enough to
process Oij or longer than tijk.

Let Sd
k be the starting time of the dth idle time interval on

Mk and Cd
k be the completion time. Oij can be transferred

to an earliest possible idle time interval of its machine which
satisfies the following equation:

max{Sd
k , Cij−1}+ tijk ≤ Cd

k , (Cij = 0, if j = 1) (4)

After using the idle time interval, the starting time of Oij is
max{Sd

k , Cij−1} and the idle interval is updated based on the
starting and completion time of Oij : (1) the idle time interval
is removed; (2) the starting or completion time of the idle time
interval is modified; (3) the idle time interval is replaced by
two new shorter idle time intervals, like in Figure 2.

Fig. 2. First level local search

After decoding a chromosome, the operation sequence vec-
tor of the chromosome is updated according to new starting
times of operations. The first level local search only finds for
each operation the available idle time interval on its assigned
machine. After generating the corresponding schedule with
the first level search method, it is possible that there are
still operations that can be allocated to available idle time
intervals to benefit the fitness value. To achieve this, decoding
the chromosome which has been updated with the first level
local search is performed with the second level local search,
and again operations are moved to available idle time intervals.

The second level local search: this search not only checks
the idle time intervals on the assigned machine, but also the
idle time intervals on alternative machines. An example of
making use of the idle time interval on another machine is
shown in Figure 3. Let Sijk be the starting time and Cijk be
the completion time of Oij on Mk. In this example, Oij is
assigned to Mk in the initial chromosome, we assume that Oij

can also be performed by Me. Under the condition that the
starting time of Oij on Mk is later than the completion time
of Oij−1, the idle time intervals on all alternative machines
which can process Oij are checked. An idle time interval on
Me could be a choice and Oij can be reallocated to Me. In

this example, the processing time of Oij on Me is even shorter
then the processing time on Mk, therefore, this reallocation
can at least benefit the total workload.

Fig. 3. Second level local search

With the second level local search, all available idle time
intervals of an operation are checked one by one until the
first “really” available idle time interval is found and then the
operation is moved to that idle time interval. Any idle time
interval on an alternative machine which can satisfy Equation
4 is an available idle time interval, while it must meet at least
one of the following conditions to become a “really” available
idle time interval.

1. The processing time of the operation on the new machine
is shorter than that on the initially assigned machine if
the available idle time interval is on a different machine;

2. The operation can be moved from the machine with the
maximal makespan to another machine.

3. The operation can be moved from the machine with the
maximal workload to another machine.

The total workload can be improved directly by the first
condition; the motive of the second condition is to decrease
the maximal makespan and the third condition can benefit the
critical workload. After the reallocation of the operations with
the second level local search, the corresponding schedule is
obtained and objective values are calculated. While, instead
of updating the chromosome immediately, the new objective
values are compared with the previous objective values first,
the chromosome can be updated only when at least one
objective is better than its old value. This is to make sure that
the new schedule is at least not worse than the old schedule
(The new solution is not dominated by the old solution).
Another difference between the first and second level local
search is that the first level local search is performed once
on every evaluation, and after the first level local search, the
second level local search is performed once but only with a
30% probability to avoid local optima.

V. EXPERIMENTS AND RESULTS

The experiments are implemented on the MOEA Frame-
work (available from http://www.moeaframework.org). The
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algorithms are tested on two sets of well-known FJSP bench-
mark instances: 4 Kacem instances (ka4x5, ka10x7, ka10x10,
ka15x10) and 10 BRdata instances (Mk01-Mk10). Table III
gives the scale of these instances. The first column is the
name of each instance; the second column shows the size of
the instance, in which n stands for the number of jobs and
m the number of machines; the third column represents the
number of operations; the fourth column lists the flexibility of
each instance, which means the average number of alternative
machines for each operation in the problem.

TABLE III
THE SCALE OF BENCHMARK INSTANCES

Instance n → m #Opr Flex.
ka4x5 4 → 5 12 5

ka10x7 10 → 7 29 7
ka10x10 10 → 10 30 10
ka15x10 15 → 10 56 10

Mk01 10 → 6 55 2
Mk02 10 → 6 58 3.5
Mk03 15 → 8 150 3
Mk04 15 → 8 90 2
Mk05 15 → 4 106 1.5
Mk06 10 → 15 150 3
Mk07 20 → 5 100 3
Mk08 20 → 10 225 1.5
Mk09 20 → 10 240 3
Mk10 20 → 15 240 3

All experiments are performed with a population size of
100, each run of the algorithm stops based on a predefined
number of evaluations, which is 10, 000 for Kacem instances
and 150, 000 for BRdata instances. For each instance, the pro-
posed algorithm is independently run 30 times. The resulting
solution set of an instance is formed by merging all non-
dominated solutions from 30 runs. The comparison between
these sets is commonly adopted in the region of FJSP due to
the difficulty of finding the complete non-dominated solutions.

The search space of the FJSP instances is complicated,
therefore, the crossover probability is set to 1 and two
random crossover operators are chosen each time (one for
operation sequence and one for machine assignment). For
Kacem instances, the mutation probabilities are set to 0.6.
For BRdata instances, which include larger-scale and more
complex problems, the MIP-EGO configurator is adopted to
tune both insertion and swap mutation probabilities to find a
proper setting for each problem because the parameters depend
on the specific problem. The hypervolume of the solution set
has been used in MIP-EGO as the objective value to tune
mutation probabilities. Although the true PF for test instances
are unknown, [7] provides the reference sets for Kacem and
BRdata instances, which are formed by gathering all non-
dominated solutions found by all implemented algorithms in
[7] and also non-dominated solutions from other state-of-the-
art MOFJSP algorithms. We define the reference point for
calculating the hypervolume value based on the largest value
in this reference set. To be specific, each objective value of
the reference point is: 1.1 × largest objective value of the
respective dimension in the reference set. The origin is used as
the ideal point. The other basic settings of MIP-EGO include

using a 200 evaluation budget, random forest surrogate model,
MIES as internal optimizer and ordinal search space.

Table IV shows the percentage of the evaluations which
can achieve the largest hypervolume value (or the best PF)
by MIP-EGO. It can be observed for Mk05 and Mk08 that
all evaluations have obtained the largest hypervolume value.
It means that all parameter values of mutation probabilities
in MIP-EGO can achieve the best PF for them. We know that
both problems have a low flexibility value which is the average
number of alternative machines for each operation in the
problem. On the contrary, for Mk06, Mk09 and Mk10, these
problems have a large operation number and high flexibility.
It seems that they are difficult to solve because there is only
one best parameter setting for the mutation probabilities.

TABLE IV
PROBABILITY OF FINDING BEST CONFIGURATION

Mk01 Mk02 Mk03 Mk04 Mk05
73% 60% 95% 1% 100%
Mk06 Mk07 Mk08 Mk09 Mk10
0.5% 4.5% 100% 0.5% 0.5%

With the best parameter setting of the mutation probabilities
for BRdata instances, we compared our experimental results
with the reference set in [7]. Our algorithm can achieve the
same Pareto optimal solutions as in the reference set for all
BRdata instances except for Mk06, Mk09 and Mk10. At the
same time, for Mk06 and Mk10, our algorithm can find new
non-dominated solutions. Table V is the list of new non-
dominated solutions obtained by our algorithm, each row of
an instance is a solution with three objectives: makespan, total
workload, and critical workload.

TABLE V
NEWLY ACHIEVED NON-DOMINATED SOLUTIONS

Mk06 Mk10
61 427 53 218 1973 195
63 428 52 218 1991 194
63 435 51 219 1965 195
65 453 49 220 1984 191
66 451 49 225 1979 194
66 457 48 226 1954 196

226 1974 194
226 1979 192
228 1973 194
235 1938 199
236 1978 193

Another comparison is between our algorithm (FJSP-
MOEA) and MOGA [5], SEA [6] and MA1, MA2 [7]. In
[7], there are several variants of the proposed algorithm with
different strategies in the local search. We pick MA1 and MA2
as compared algorithms because they perform equally well or
superior to other algorithms on almost all problems. Table VI
displays the hypervolume values of the PF approximations
from all algorithms and the new reference set which is formed
by combining all solutions from the PF by all algorithms. The
highest hypervolume value on each problem in all algorithms
has been highlighted in bold. We observed that FJSP-MOEA
and MA1, MA2 show the best and similar performance, and
MOGA behaves the best for three of the BRdata instances. The
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good performance of MOGA on three instances is interesting.
MOGA has an entropy-based mechanism to maintain decision
space diversity which might be beneficial for solving these
problem instances. When using one best parameter setting,
we also give the mean hypervolume and standard deviation
from 30 runs on each problem in Table VII, the data shows
the stable behaviour of our proposed FJSP-MOEA.

TABLE VI
HYPERVOLUME VALUES OF THE PF APPROXIMATIONS

Probs MOGA SEA MA1 MA2 FJSP-
MOEA Ref

Mk01 0.00426 0.00508 0.00512 0.00512 0.00512 0.00512
Mk02 0.01261 0.01206 0.01294 0.01294 0.01294 0.01294
Mk03 0.02460 0.02165 0.02165 0.02165 0.02165 0.02809
Mk04 0.06906 0.06820 0.06901 0.06901 0.06901 0.07274
Mk05 0.00626 0.00635 0.00655 0.00655 0.00655 0.00655
Mk06 0.05841 0.06173 0.06585 0.06692 0.06709 0.07065
Mk07 0.02244 0.02132 0.02269 0.02269 0.02269 0.02288
Mk08 0.00418 0.00356 0.00361 0.00361 0.00361 0.00428
Mk09 0.01547 0.01755 0.01788 0.01789 0.01785 0.01789
Mk10 0.01637 0.01778 0.02145 0.02196 0.02081 0.02249

TABLE VII
MEAN HYPERVOLUME AND STD WITH THE BEST PARAMETER SETTING

Problem Mk01 Mk02 Mk03 Mk04 Mk05
Mean HV 0.0050 0.0122 0.0216 0.0672 0.0064

Std 0 0.0003 0.0001 0.0004 0.0001

Problem Mk06 Mk07 Mk08 Mk09 Mk10
Mean HV 0.0598 0.0222 0.0036 0.0174 0.0186

Std 0.0019 0.0003 0 0.0002 0.0006

For Kacem instances and with fixed mutation probabilities,
our obtained non-dominated solutions are the same as the PF
in the reference set. MA1 and MA2 also achieved the best
PF for all Kacem instances, but our algorithm uses far less
computational resources. The proposed FJSP-MOEA uses only
a population size of 100 whereas the population size of MA
algorithms is 300. FJSP-MOEA uses only 10, 000 objective
function evaluations, whereas MA uses 150, 000 evaluations.
In terms of computational resources, the proposed FJSP-
MOEA can therefore be used on smaller computer systems,
entailing broader applicability, and possibly also in real-time
algorithm implementations such as dynamic optimization.

VI. CONCLUSIONS
A novel multi-objective evolutionary algorithm for the

MOFJSP is proposed. It uses multiple initialization approaches
to enrich the first-generation population, and various crossover
operators to create better diversity for offspring. The reason of
using multiple approaches and operators is not only because
any one of them cannot achieve good performance, also to
simplify the algorithm procedure. To determine the optimal
mutation probabilities, the MIP-EGO configurator is adopted
to replace a sensitivity analysis to automatically generate
proper parameter settings. Besides, local search is employed
with different neighborhood sizes levels to aid more accurate
convergence. The proposed customization approach in princi-
ple can be combined with almost all MOEAs. In this paper, we
incorporate it with one state-of-the-art MOEA, namely NSGA-
III, to solve the MOFJSP, and the new algorithm can find all

Pareto optimal solutions in literature for most problems, and
even new Pareto optimal solutions for the large scale instances.

In this paper, we show the ability of MIP-EGO in finding the
optimal mutation probabilities. There is more potential of the
automated parameter configuration domain to benefit EA, for
example, tuning the initialization and crossover configuration,
the population size, and so on; also, other configurators can
be involved. However, so far the efficiency of the existing
tuning framework is limited when it comes to a larger number
of parameters. It would therefore be a good topic of future
research to find more efficient implementations of these.
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