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Abstract

Background: Facioscapulohumeral dystrophy (FSHD) is a progressive muscle dystrophy disorder leading to significant disability.
Currently, FSHD symptom severity is assessed by clinical assessments such as the FSHD clinical score and the Timed Up-and-Go
test. These assessments are limited in their ability to capture changes continuously and the full impact of the disease on patients’
quality of life. Real-world data related to physical activity, sleep, and social behavior could potentially provide additional insight
into the impact of the disease and might be useful in assessing treatment effects on aspects that are important contributors to the
functioning and well-being of patients with FSHD.

Objective: This study investigated the feasibility of using smartphones and wearables to capture symptoms related to FSHD
based on a continuous collection of multiple features, such as the number of steps, sleep, and app use. We also identified features
that can be used to differentiate between patients with FSHD and non-FSHD controls.

Methods: In this exploratory noninterventional study, 58 participants (n=38, 66%, patients with FSHD and n=20, 34%, non-FSHD
controls) were monitored using a smartphone monitoring app for 6 weeks. On the first and last day of the study period, clinicians
assessed the participants’ FSHD clinical score and Timed Up-and-Go test time. Participants installed the app on their Android
smartphones, were given a smartwatch, and were instructed to measure their weight and blood pressure on a weekly basis using
a scale and blood pressure monitor. The user experience and perceived burden of the app on participants’ smartphones were
assessed at 6 weeks using a questionnaire. With the data collected, we sought to identify the behavioral features that were most
salient in distinguishing the 2 groups (patients with FSHD and non-FSHD controls) and the optimal time window to perform the
classification.

Results: Overall, the participants stated that the app was well tolerated, but 67% (39/58) noticed a difference in battery life
using all 6 weeks of data, we classified patients with FSHD and non-FSHD controls with 93% accuracy, 100% sensitivity, and
80% specificity. We found that the optimal time window for the classification is the first day of data collection and the first week
of data collection, which yielded an accuracy, sensitivity, and specificity of 95.8%, 100%, and 94.4%, respectively. Features
relating to smartphone acceleration, app use, location, physical activity, sleep, and call behavior were the most salient features
for the classification.
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Conclusions: Remotely monitored data collection allowed for the collection of daily activity data in patients with FSHD and
non-FSHD controls for 6 weeks. We demonstrated the initial ability to detect differences in features in patients with FSHD and
non-FSHD controls using smartphones and wearables, mainly based on data related to physical and social activity.

Trial Registration: ClinicalTrials.gov NCT04999735; https://www.clinicaltrials.gov/ct2/show/NCT04999735

(JMIR Form Res 2022;6(9):e31775) doi: 10.2196/31775
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Introduction

Background
A recent Dutch population study on facioscapulohumeral
dystrophy (FSHD) estimated that approximately 2000 people
in the Netherlands and approximately 800,000 people worldwide
are living with FSHD [1]. Often, early symptoms include
difficulty whistling, smiling, and closing the eyelids while
asleep. Weakening of the facial muscles is generally followed
by scapular winging. This abnormal positioning of the shoulder
bone impairs the movement of the shoulders and arms. Further
weakening of the muscles is commonly observed in the upper
arms and may progress to the hip girdle and lower legs in severe
cases. Less visible symptoms of FSHD are chronic pain and
fatigue [2]. In addition to the physical symptoms the diagnosis
of FSHD comes with an emotional and social burden. The highly
variable and unpredictable progression of the disease can have
a strong impact on the quality of life [3,4]: 90% of the affected
individuals have visible symptoms by the age of 20 years and
1 in 5 patients with FSHD eventually becomes wheelchair
dependent [5].

No therapy is currently available that stops the progression of
FSHD [6-9]. Patients thus have to rely on symptomatic treatment
such as medical devices or surgical intervention [2]. The
development of novel treatment options to delay or halt disease
progression is currently under investigation. However,
measuring the effect of such new treatments is complicated
because disease progression is slow and no objective surrogate
end points, predictive for clinical benefit, have been established.
App-based technologies may help to more closely monitor
FSHD symptom progression and evaluate potential treatment
effects on a continuous basis.

Currently, FSHD symptom severity is assessed by clinical
scoring of symptoms such as the FSHD clinical score or mobility
performance tests such as the Timed Up-and-Go test (TUG)
and Reachable Workspace assessment [10-12]. These clinical
severity and functional scores have several drawbacks. Scores
change very slowly over time [13], are assessed in a clinic at 1
specific moment, and do not cover the implications of the
disease on social and physical activity during daily life. The
progressive muscle weakness characterizing FSHD leads to
massive changes in the way people live their lives, affecting
how they get around, how they complete daily activities, and
whether they can work or care for children. Therefore, assessing
disease severity may be improved by not only measuring muscle
function but also evaluating social and physical activity data.
This study aimed to address this by first classifying disease

using a smartphone app and wearables to continuously remotely
monitor features relating to biometric, physical, and social
activities of patients with FSHD in comparison with those of
non-FSHD controls. Subsequently, we performed a second
analysis in which we aimed to assess disease severity. This
analysis will be described in a different paper.

Objectives
We investigated the feasibility of remotely monitoring multiple
features such as step count, sleep, app use, and location tracking
in patients with FSHD and non-FSHD controls. First, we
evaluated the participants’ tolerability of these devices. We then
characterized the patients with FSHD and non-FSHD controls
in terms of composites of social, physical, and biometric
activities. We sought to (1) distinguish patients with FSHD
from non-FSHD controls using a classification machine learning
model and determine the minimum monitoring window needed
to perform the classification and (2) identify which of the
remotely monitored features were most salient in differentiating
between the 2 groups.

Methods

Study Overview
We conducted a cross-sectional, noninterventional study in
patients with FSHD and non-FSHD controls. A total of 58
participants (n=38, 66%, patients with genetically confirmed
FSHD and n=20, 34%, non-FSHD controls) were included in
this study at the Centre for Human Drug Research (CHDR) in
Leiden, The Netherlands, between April 2019 and October 2019.
Patients were recruited from The Netherlands and Belgium.

Ethics Approval
This study was performed in compliance with International
Council for Harmonisation Good Clinical Practice and approved
by the Stichting Beoordeling Ethiek Biomedisch Onderzoek
Medical Ethics Committee (Assen, The Netherlands; CCMO
number NL69288.056.19) according to Wet
medisch-wetenschappelijk onderzoek met mensen (Dutch law
on medical-scientific research with humans).

Patient Population
To represent the clinical FSHD spectrum based on symptom
severity and age, up to 40 patients with FSHD (and also 20
control participants) were deemed sufficient. As this study was
exploratory, sample size was not based on power calculations.

Eligible patients with FSHD were aged >16 years, had
genetically confirmed FSHD (FSHD1 or FSHD2), were
symptomatic as demonstrated by the FSHD clinical score of
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>0, and had an Android phone that they used as their main phone
or were willing to use one for the duration of the study period.
Patients with any comorbidity, expected to affect the
measurements, were excluded. Eligible control participants were
included using the same inclusion and exclusion criteria that
were used to recruit the patients, except they did not have a
diagnosis or symptoms of FSHD.

Data Collection

Clinical Assessments
On the first and last days of the study period, the FSHD clinical
score assessment was performed in the group consisting of
patients with FSHD, whereas the TUG was performed in both
groups. On day 42 in both groups the user experience was
assessed and the perceived burden questionnaire (Multimedia
Appendix 1) administered.

The FSHD clinical score is a standardized clinical score that
quantifies muscle weakness by combining the functional
evaluations of the 6 muscle groups affected in FSHD. The scale

is divided into 6 independent sections that assess the strength
and the functionality of facial muscles, scapular girdle muscles,
upper limb muscles, distal leg muscles, pelvic girdle muscles,
and abdominal muscles [11]. The TUG assesses mobility and
balance by measuring the time it takes for a participant to stand
up from a seated position in a chair, walk 3 meters, turn around,
walk back 3 meters, and sit down again [12]. The user
experience and perceived burden questionnaire was developed
by the CHDR to measure the impact of remote monitoring of
apps on smartphone performance. The questions are based on
the overall experience of CHDR with mobile apps.

Remote Monitoring Platform
All participants were remotely monitored using the CHDR
Monitoring Remotely (CHDR MORE) platform for 42 days.
CHDR MORE is a highly customizable platform that allows
remote monitoring of participants using smartphones and
wearables. The infrastructure used includes an Android app to
collect data from smartphone sensors and a connection to the
Withings Health (Withings) web-based platform to collect
wearable data. All collected features are described in Table 1.

Table 1. Overview of all smartphone and wearable sensors used in this study and their respective extracted features.

FeaturesDevice and sensor

Smartphone

Maximum magnitude of the acceleration: 98%Accelerometer

Number of times an app is opened; amount of time app is open in foregroundApps

Total kilometers traveled per day; average kilometers traveled per trip; 95% maximum distance from homeGPS

Number of unique places visited; time spent at each unique locationGoogle Places

Number of outgoing, incoming, and missed calls; number of calls from known and unknown contactsCalls

Percentage of time a human voice is presentMicrophone

Wearables (Withings)

Total step count; mean steps per minute; mean steps per hour; maximum steps per hourWatch step count

Heart rate: 5%, 50%, and 95% ranges and SD of heart rate percentage of time spent in resting heart rateWatch heart rate

Awake as well as light and deep sleep duration (minutes); number of awake as well as light and deep sleep
periods; time to fall asleep (minutes)

Watch sleep

Soft, moderate, and hard activity durationWatch physical activity

Systolic and diastolic blood pressureBlood pressure monitor

Weight (kg); muscle mass (kg); bone mass (kg); body fat (%); body water (%)Scale

Smartwatch, Smart Scale, and Blood Pressure Monitor
In total, three commercially available Withings devices were
used: (1) heart rate, step count, and sleep patterns were assessed
by the Withings Steel HR smartwatch; (2) weight, BMI, and
skeletal muscle mass were assessed by the Withings Body+
scale; and (3) systolic blood pressure and diastolic blood
pressure were assessed by the Withings blood pressure monitor.
Data from the Withings devices were collected on the phone
using Bluetooth and sent to the Withings storage servers before
being transferred to a CHDR server. Participants were instructed
to wear the Withings Steel HR smartwatch continuously for the
duration of the study, and they measured their weight and blood
pressure themselves weekly using the Withings Body+ scale
and Withings blood pressure monitor, respectively.

Privacy
The data collection as part of this study may raise privacy and
data safety concerns. Therefore, during development of the
CHDR MORE app, we addressed these concerns by building
in several measures to maximize privacy for all participants.
First, all data sources such as SMS text messaging logs, phone
calls, and microphone activation only report summative
outcomes. These sources cannot send the content of messages
or whole recordings to the CHDR servers. In addition, location
data only report relative location instead of absolute GPS
coordinates. Furthermore, all calculations such as human voice
detection are performed on the Android phone itself and
removed afterward and all personal data are coded and safely
stored on certified CHDR servers.
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Statistical Analysis

Data Preprocessing
The data preprocessing and analysis pipelines were developed
using Python (version 3.6.0; Python Software Foundation). The
Python library scikit-learn was used for the feature extraction
and the development of the machine learning models [14]. All
data were manually and visually inspected for missing data and
outlier data. The identified outliers (eg, traveling 10,000
kilometers in a single day) were subsequently removed from
the analysis. Missing or excluded data points were not imputed.

Feature Extraction
As disease progression in FSHD is gradual, the FSHD clinical
scores and TUG scores were expected to remain stable during
the 6-week period. The daily features were therefore averaged
across a defined time window (see the Identification of Optimal
Time Window section for more information). Table 1 provides
a simplified overview of the features that were extracted from
the CHDR MORE app and Withings sensors.

Feature Selection
Before fitting the classification models to the data set, features
were excluded using manual and automated feature selection.
The authors (AZ, RJD, AC, EvB, GJG, and JDM) of this paper
manually excluded features based on the degree of missing data
and the clinical relevance of the feature (eg, time spent on home
and house apps were deemed clinically irrelevant). For the
automated feature selection, variance inflation factor and
stepwise regression were used to exclude multi-collinear features
or features that did not provide additive information,
respectively.

Classification Models
We used 4 categories of data sets for the classification of patients
with FSHD and non-FSHD controls. These categories include
the composite data (all features), social data (smartphone
features relating to social location, social and communication
app use, and phone calls), physical activity data (smartwatch
features), and biometric data (scale and blood pressure monitor
features). We compared the performance of the logistic
regression, random forest, and support vector machine
classification models (Multimedia Appendix 2 [15-22]). The
performance of these classification models was evaluated by
the accuracy, sensitivity, specificity, and Matthews correlation
coefficient (MCC). A grid search was performed to find the
optimal hyperparameters (the parameters that determine the
model’s structure) that would yield the highest sensitivity and

specificity for each model. Furthermore, we performed a 5-fold
stratified cross-validation. Cross-validation is a resampling
method used to evaluate the prediction performance of the
classification models. The data were divided into 5 equal
subsets, with the same FSHD-to–non-FSHD ratio within each
subset; the model was trained on 4 (80%) partitions of the data
and tested on 1 (20%) partition. This procedure was repeated 5
times, with each partition serving as a test set once. The
performance of each model validation was then averaged.

Identification of Optimal Time Window
In total, 6 weeks of data were collected for this study. As
continuous and periodic data collection for long periods of time
can be expensive and increase the risk of data loss, we
investigated the minimum time window needed for reliable
classification. First, we used an incrementally increasing time
window to train the classification model, starting from day 1
and adding 1 day until we included all 42 days of data. We
examined which time window would yield the highest overall
accuracy, sensitivity, and specificity. We compared the
performances of 3 classification algorithms (least absolute
shrinkage and selection operator [LASSO]-penalized logistic
regression, random forest, and support vector machine) to
classify patients with FSHD and non-FSHD controls using the
incremental time windows. Second, we used the optimal time
window to train the classification model and evaluated how
stable the classification performance would be for the remaining
5 weeks of data. Here, we evaluated the stability of the algorithm
based on the generalization error of the trained classification
model [23].

Results

Data Collected
In total, 58 participants (n=38, 66%, patients with FSHD and
n=20, 34%, non-FSHD controls) participated in the study. We
did not meet our goal of 40 patients because of difficulties in
recruiting patients in an acceptable time span.

The female-to-male ratio was the same in both populations;
however, the median age of the control participants without
FSHD was lower than that of their counterparts with FSHD.
Table 2 illustrates the demographic and disease characteristics
of the participants enrolled in this study. The FSHD clinical
scores and TUG scores remained relatively stable during the
6-week period (with a maximum intraparticipant change of 1
point for the FSHD score and 0.63 seconds for the TUG score).
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Table 2. Demographics of patients with facioscapulohumeral dystrophy (FSHD) and controls without FSHD (N=58).

Non-FSHD controlsPatients with FSHDDemographics

Sex, n (%)

11 (55)23 (61)Female

9 (45)15 (39)Male

33 (12; 23-69)45 (14.5; 18-64)Age (years), mean (SD; range)

78 (18; 56-129)80 (16; 52-130)Weight (kg), mean (SD; range)

25 (5; 19-35)26 (4; 20-44)BMI (kg/m2), mean (SD; range)

0 (0; 0-0)5 (3; 1-13)FSHD clinical score, mean (SD; range)

7.8 (1.55; 6-12.09)8.8 (35; 5-15.81)Timed Up-and-Go test (seconds), mean (SD; range)

Perceived Burden and Data Loss
As shown in Figure 1, overall, 3% (2/58) of the participants
found the app on their phone to be annoying. Furthermore, 67%
(39/58) of the participants agreed that there was a noticeable
difference in battery life, 43% (25/58) agreed that the constant
presence of the app was noticeable on their smartphone, 28%
(16/58) rated the constant visible notification as annoying, and
26% (15/58) of the participants noted a difference in the speed
of their smartphone.

Data completeness is defined as having incoming data for each
day of the clinical trial, except for the blood pressure and scale
data, for which completeness is defined as having incoming
data each week. As phone and SMS text messaging data are
activity triggered and are aperiodic, it is not possible to know
whether data were missing. Table 3 provides an overview of
data completeness for the CHDR MORE app, Withings watch,
Withings scale, and Withings blood pressure monitor and their
respective sensors.

Figure 1. Feasibility and perceived burden of remote monitoring in patients with facioscapulohumeral dystrophy using smartphone-based technologies.
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Table 3. Overview of data completeness. The data completeness shows what percentage of data was collected among the participants during the 42
days of the study; hence, in total, there should be 2436 daily instances and 232 weekly instances.

Overall data completionFeatureSensor

Controls without FSHDPatients with FSHDa

Nn (%)Nn (%)

840688 (81.9)15961181 (74)Voice activationMicrophone (smartphone)

840656 (78)15961260 (78.95)Phone accelerationAccelerometer (smartphone)

840616 (73.33)15961109 (69.49)PlacesGoogle Places (smartphone)

840785 (93.45)15961373 (86.03)Relative locationGPS (smartphone)

840779 (92.74)15961404 (87.97)Use event aggregateApp use (smartphone)

840630 (75)15961452 (91.15)Blood pressure and heart rateWithings blood pressure monitor

12088 (73.33)228173 (75.88)Body compositionWithings scale

120108 (90)228205 (89.91)WeightWithings scale

840744 (88.57)15961505 (94.3)Activity durationWithings watch

840588 (70)15961181 (74)Heart rateWithings watch

840708 (84.29)15961491 (93.42)Step countWithings watch

840685 (81.55)15961408 (88.22)Sleep summaryWithings watch

aFSHD: facioscapulohumeral dystrophy.

Feature Selection
Several features were manually excluded before modeling.
Because of the number of participants missing body composition
data, we excluded all the body composition data with the
exception of weight. Furthermore, we excluded SMS text
message use features and app categories that were only used by
only 5% (3/58) of the participants.

Identification of Optimal Time Window and
Classification Performance
Using all 6 weeks of data, the optimal classification model
(LASSO-penalized logistic regression) achieved 93% accuracy,
100% sensitivity, 80% specificity, and 85% MCC. This
classification model identified 15 features that were relevant
for differentiating between patients with FSHD and non-FSHD
controls. Specifically, features such as app use, weight, location,
physical activity, and sleep were important for differentiating
between the 2 populations (Figure 2). Table 4 shows the
predictive features and their positive or negative associations
with the classification label. The predictive features indicate
that the participants in the group consisting of patients with
FSHD were less likely to engage in moderate physical activity
and spend time on recreational apps such as entertainment apps,
music and audio apps, video players and editing apps, and
games. The predictive features also showed that the participants
in the group consisting of patients with FSHD were more likely
to spend more time at home and health locations than their
non-FSHD counterparts. Table 5 provides a summary of the
number of selected features and the respective performance
metric for each of the data sets fitted to the 6-week

LASSO-penalized logistic regression model. The table illustrates
that the composite data set model outperformed the models
fitted to the social, physical activity, and biometric data sets.
The MCC is used to select the best model because it corrects
for class imbalances. The scores of the individual data sets are
included to give an overview of their performance on their own.
The MCC values of the social activity, physical activity, and
biometric logistic regression models were 52%, 38%, and −21%,
respectively.

As for identifying the optimal time window for accurately
classifying the patients with FSHD and non-FSHD controls, we
found that training the random forest on the data collected on
the first day and the data collected during the first week yielded
an accuracy, sensitivity, specificity, and MCC of 95.8%, 100%,
94.4%, and 93.8% (Figure 3). This approach outperformed the
classification models that were trained on all 6 weeks of data.
We also trained classification models on the first week’s data
and fitted the data from subsequent weeks to assess the stability
of the classification performance over time (Figure 4). We found
that the random forest achieved the best overall performance,
with a mean accuracy, sensitivity, specificity, and MCC of 95%
(SD 0.9%), 97.6% (SD 3.6%), 94.1% (SD 0.9%), and 93.6%
(SD 0.1%), respectively. Figure 5 provides a Shapley additive
explanations plot that illustrates the magnitude and direction of
the effect of a feature on a prediction. Of the 20 selected
features, the top 5 (25%) most important features for the
classification were mean kilometers traveled, 95% maximum
distance from home, total kilometers traveled, 95% highest heart
rate, and intense activity duration. For each of these features,
the participants in the group consisting of patients with FSHD
had lower scores than the non-FSHD controls.
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Figure 2. Selected features for classifying patients with facioscapulohumeral dystrophy and those without facioscapulohumeral dystrophy based on
the composite data set using all 6 weeks of data and the least absolute shrinkage and selection operator–penalized logistic regression model. Unstandardized
estimated coefficients indicate the direction of the association between the feature and the classification label.

Table 4. Selected features for classifying patients with facioscapulohumeral dystrophy and controls without facioscapulohumeral dystrophy based on
the complete 6-week composite data set. Unstandardized estimated coefficients indicate the direction of the association between the feature and the
classification label.

Unstandardized estimated coefficientFeature category and feature

Activity

−0.04Moderate activity duration

App

−0.53Time spent on recreational apps

Body

−0.45Weight (kg)

Location

0.85Distance from home: 95%

Time spent at location

1.00Travel location

0.67Home location

0.53Unknown location

0.29Health location

−0.12Public location

−0.14Social location

−0.94Commercial location

Sleep

0.65Average total sleep duration

−0.35Light sleep duration

−0.61Number of awake periods during a sleep session

−0.69Maximum total sleep duration
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Table 5. Summary of number of selected features and the respective performance metric for each of the data sets used to classify the patients with
facioscapulohumeral dystrophy from the controls without facioscapulohumeral dystrophy.

MCCa (%)Specificity (%)Sensitivity (%)Accuracy (%)Number of selected featuresData set

85801009315Composite

−21089575Biometric

5260907910Social

3860787113Physical activity

aMCC: Matthews correlation coefficient.

Figure 3. Performance of the incremental classification predictions for 3 classifiers (logistic regression, random forest, and support vector machine).
The x-axis shows the time window for training the classification models starting from day 1 to day 42. The error bands represent the SD of the classification
performance for the 5-fold cross-validation.

Figure 4. Performance of 3 classifiers (logistic regression, random forest, and support vector machine) trained on the week 1 data and used to predict
the classification diagnosis of the subsequent weeks of data. The error bands represent the SD of the classification performance for the 5-fold
cross-validation.
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Figure 5. Shapley additive explanations (SHAP) summary plot based on a random forest classifier that was trained on the week 1 data. The x-axis
shows the feature importance, where features are ranked in descending order. The y-axis shows the SHAP value that illustrates the direction of the
association between the feature and facioscapulohumeral dystrophy severity. The color scheme reflects the probability of a participant being classified
as a patient with facioscapulohumeral dystrophy.

Discussion

Principal Findings
We investigated the feasibility of monitoring and characterizing
the physical, social, and biometric features of patients with
FSHD and non-FSHD controls using remote monitoring
technologies. The use of the remote monitoring platform was
well tolerated by all participants. Next, we found that a
minimum of 1 day of data and a maximum of 1 week of data
can be used to reliably classify the 2 populations. In fact, an
FSHD classification model trained on data from a shorter time
window outperformed a classification model trained on data
from the entire 6-week period. Furthermore, we illustrated that
a classification model trained on the first week’s data yielded
stable and reliable classification predictions across the remaining
5-week period.

Most (37/58, 64%) of the participants tolerated the CHDR
MORE app constantly running on their smartphone (Figure 1).
Of the 58 participants, only 2 (3%) stated that the app was
annoying. However, the results show that some of the
participants agreed that there was a noticeable difference in
smartphone speed performance (14/58, 25%), stability (8/58,
14%), and overall battery life (39/58, 67%). Therefore, the
presence of the app was noticeable for some (25/58, 43%) of

the participants. The decrease in smartphone performance (ie,
speed, stability, and battery performance) was likely due to the
continuous sampling of the sensors. As this was the first study
in this specific patient group with this platform, all smartphone
sensors were frequently sampled to capture all possible features.
With the collected data in this study, we identified the features
that are useful in differentiating between patients with FSHD
and non-FSHD controls. In future studies, noncontributing raw
data such as data from the accelerometer and gyroscope (both
sampled at 5 Hz) can be turned off to reduce the burden on the
battery performance and overall user experience. We do not
know for certain whether, and how, the noticeability of the app
affects participants’ behavior. Of the 58 participants, 6 (10%)
stated that they noticed a change in smartphone use for
themselves, which may mean that they changed their behavior.
Therefore, participants will know that they are participating in
a study and that they are being constantly monitored even if the
app is perfectly optimized. As a result, some sort of change in
behavior can be expected.

As for the user experience and perceived burden questionnaire,
we designed a questionnaire based on our own experiences with
smartphone use and the predicted effects of the CHDR MORE
app on smartphones. This questionnaire was not validated in
any other study. At the time of designing the study, there were
no validated and published smartphone app questionnaires that
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would fit our purpose. For example, the mHealth App Usability
Questionnaire [24] focuses more on active smartphone apps,
where there is interaction between the app and the participants.
The CHDR MORE app is a passive app, requiring almost no
interaction between the app and the user. Therefore, the
questions should be more focused on the indirect effects of the
app, such as more frequent crashes in other apps, subjective
loss of snappiness of the operating system, or issues with battery
performance. Although our questionnaire is not validated, it
was considered the best way to accurately capture the perceived
impact of the CHDR MORE app on smartphone use.

Feature selection is one of the most important processes for
building a classification model. The inclusion of irrelevant
features can confound the interpretability of the model because
potentially predictive features would be excluded and therefore
seem to be irrelevant. For example, because the patients with
FSHD had more text-related activity than the non-FSHD
controls, the SMS text messaging features were selected as
important classification features. Given that the SMS text
messaging features were not deemed clinically relevant because
only 55% (21/38) of the patients with FSHD and 50% (10/20)
of the non-FSHD controls actively sent outgoing SMS text
messages and the majority of the SMS text messages were
exchanged with unknown contacts, we excluded the SMS text
messages as a feature. As a result, features that were initially
not selected by the model for inclusion, such as sleep, were now
deemed important features. The SMS text messaging features
masked the relevance of other potentially predictive features.
The features that researchers manually choose to include or
exclude will influence the interpretability and stability of the
model. It should be noted that although SMS text messaging
features were excluded, features regarding instant messaging
app use were included.

Our classification models allowed for the identification of a
stable set of features that were distinctive of FSHD
symptomology. We believe that identifying which remotely
monitored features are relevant to FSHD can be a first step
toward continuous monitoring of symptom severity and disease
progression. For example, our classification model identified
sleep as a relevant feature for classifying patients with FSHD.
Other studies have found that patients with FSHD typically
experience sleep anomalies because of anxiety, respiratory
muscle dysfunction, and pain [25-27]. This illustrates that the
CHDR MORE platform is sensitive enough to detect and
monitor sleep anomalies among individuals with FSHD outside
of the clinic. Furthermore, location-related features were relevant
for differentiating between the 2 populations. In this study, the
patients with FSHD spent more time at home, in areas with
public transportation, or at health locations than the healthy
participants. Patients with FSHD face a range of physical
challenges because of the functional deterioration in the affected
muscular regions. Consequently, patients with FSHD may
become more home bound and more reliant on public
transportation for travel, as well as require more visits to their
physicians. In conclusion, the CHDR MORE platform provides
data that can be used to show differences in the daily lives of
patients with FSHD and controls without FSHD.

We demonstrated that there is a trade-off among the
classification accuracy, the number of sensor measurements,
and the duration of the monitoring period. Previous studies have
demonstrated that using data from multiple sensors improves
the detection of mental and physical health status compared
with using data from a single sensor [28-30]. We illustrated that
social activity, physical activity, and biometric data alone are
insufficient for the accurate classification of FSHD. Rather, the
inclusion of data from the smartphone, smartwatch, and scale
improves the performance of the FSHD classification algorithm.
Although the modeling of multi-sensor data can be
advantageous, it can lead to several practical limitations. The
inclusion of more features can increase the model’s complexity
and thus limit the model’s explainability. Furthermore, the
inclusion of more sensors and a longer monitoring period can
be more expensive, potentially limit the number of participants
enrolled in a study, and increase the risk of data loss. Future
studies will need to weigh the advantages and disadvantages of
integrating smartphones, smartwatches, scales, and monitoring
period into their remotely monitored FSHD clinical trials.

Despite the good performance of our model, this study includes
some limitations. The patients with FSHD and non-FSHD
controls were comparable except for the age demographic. The
median age of the non-FSHD controls was approximately 13
years less than that of the patients with FSHD. Generally, the
older the person, the less they tend to use their smartphone and,
in particular, the less they tend to use communication and social
apps [31]. When characterizing patients with FSHD and
non-FSHD controls based on active smartphone use, the model
may be biased because of the difference in age. However, as
seen in the results, only 1 feature of active smartphone
use—time spent on recreational apps—was included in the final
model for the characterization of patients with FSHD, which
may limit the impact of this difference. The other features used
in the composite model consist of either physical activity
features collected passively from the smartphone or biometric
data collected from the Withings devices. Therefore, we believe
that the impact of these contaminated data on the performance
of our model is low.

The objective of our study was to capture continuous sensor
data. However, these data can only be considered reliable when
participants carry their smartphone and have it turned on all the
time. During this study, all participants were instructed to do
so. However, data captured when the participant was not
carrying their smartphone could not be distinguished from data
captured when the participant was carrying the smartphone.
Therefore, all instances in which the smartphone is not carried
or turned on result in unrepresentative data. These data get
mixed in the real data because these moments cannot be filtered
out of the data with full certainty, resulting in unreliable data.
Of note, there is no easy solution to this problem. It would be
difficult to continuously check whether the participants are
carrying their smartphone using the built-in sensors. However,
adherence to this requirement is an important aspect in remote
data collection, emphasizing the need for clear instructions on
this adherence aspect to participants during training sessions
before study start.
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The level of data loss from the Withings scale indicates that
improvement is needed to gather reliable scale data (Table 3).
Data loss occurred for both the patients with FSHD and the
non-FSHD controls, indicating that the loss of data was unlikely
related to any of the FSHD symptoms. Although clear
instructions were given at the beginning of the study and all
participants received a manual with the same instructions, we
believe that the data loss was caused by improper use of the
scale by the participants. The weight measurement consisted of
two parts: (1) measurement of weight and (2) measurement of
body composition. Weight was determined first, followed by a
blinking notification on the display during the measurement of
body composition. This might have given the impression to the
participant that the measurement had been completed, causing
them to interrupt the second part of the measurement, resulting
in an incomplete measurement. For future studies, we
recommend incorporating a live training at the beginning of the
study on the correct use of the scale.

Efficient clinical testing of any FSHD intervention or of any
drug targeted at improving function of patients with FSHD or
delaying disease progression requires the availability of clinical
biomarkers that ideally change relatively rapidly over time;
correlate with, and allow for, prediction of progression of the

existing clinical severity and functional scores; and allow for
identification of fast progressors. Using data collected in a home
setting might provide a more comprehensive picture of the
evolution of a patient’s overall condition over time. This study
is a first step in the development and validation process of using
data collected by a specific remote monitoring platform for use
in patients with FSHD. The features described in this paper may
be useful in further evaluating the impact of the disease and
monitoring disease progression in patients with FSHD in the
future [13]. More extensive data from longitudinal studies are
needed to further define how social, physical, and biometric
data collected remotely can be used to monitor symptoms.

Conclusions
To conclude, this study illustrates that the collection of
smartphone data and wearable data is acceptable to patients
with FSHD and non-FSHD controls and can be used to
differentiate between the 2 populations. We showed that
remotely monitored end points can capture behavioral
differences between patients and controls. Further longitudinal
studies are warranted to study the potential of using a remote
monitoring system for detecting FSHD symptom severity and
possible drug effects.
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