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Abstract
The proportion of explained variance is an important statis-
tic in multiple regression for determining how well the out-
come variable is predicted by the predictors. Earlier research 
on 20 different estimators for the proportion of explained 
variance, including the exact Olkin–Pratt estimator and the 
Ezekiel estimator, showed that the exact Olkin–Pratt esti-
mator produced unbiased estimates, and was recommended 
as a default estimator. In the current study, the same 20 es-
timators were studied in incomplete data, with missing data 
being treated using multiple imputation. In earlier research 
on the proportion of explained variance in multiply imputed 
data sets, an estimator called R̂

2

SP

 was shown to be the pre-
ferred pooled estimator for regular R2. For each of the 20 
estimators in the current study, two pooled estimators were 
proposed: one where the estimator was the average across 
imputed data sets, and one where R̂

2

SP

 was used as input 
for the calculation of the specific estimator. Simulations 
showed that estimates based on R̂

2

SP

 performed best regard-
ing bias and accuracy, and that the Ezekiel estimator was 
generally the least biased. However, none of the estimators 
were unbiased at all times, including the exact Olkin–Pratt 
estimator based on R̂

2

SP

.
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1   |  INTRODUCTION

An important part of interpreting the results of multiple regression analysis is looking at how well the 
outcome variable Y  is predicted by the predictor variables X

1
, … ,X

p
. In a complete population, a mea-

sure that expresses this is the proportion of explained variance, denoted �2. In the population, �2 may 
be computed in the following way. Suppose that �2

Y
 is the total variance of Y  and that �2

�
 is the error 

variance of the regression model. The formula for �2 is

Various sample estimators for the proportion of explained variance exist. The most widely known 
and most widely used one is the sample proportion explained variance, denoted R2. Because R2 is an 
intrinsically biased estimator of �2, several alternative estimators have been proposed in the statistical 
literature. Of these estimators, adjusted R2, also known as the Ezekiel estimator, is the best known. Two 
less well-known variants of the Ezekiel estimator have been proposed, namely the Smith and Wherry 
estimators (Raju et al., 1997; Yin & Fan, 2001).

Besides R2 and the different variants of adjusted R2, various other estimators have been proposed 
to reduce or even completely remove the intrinsic bias of R2, namely the maximum likelihood esti-
mator (Alf & Graf,  2002), and different variants of the Olkin–Pratt estimator (Karch,  2020; Olkin 
& Pratt, 1958; Raju et al., 1997; Yin & Fan, 2001). A more extensive discussion of all of the above-
mentioned estimators will follow in Section 2.

1.1  |  Proportion of explained variance and missing data

When data sets are incomplete because not all respondents responded to all the variables, missing 
data need to be handled prior to carrying out a multiple regression analysis. The default way to deal 
with missing data in many statistical software packages is the removal of all cases with at least one 
missing value from the analysis. This method is called listwise deletion. Although listwise deletion is 
easy to apply, it comes with two major problems. Firstly, useful information is thrown away, resulting 
in a loss of power. Secondly, in order for listwise deletion to lead to unbiased results, the missing 
data on specific variables should not depend on other observed variables, on unobserved variables, 
or on the (hypothetical) values of the missing data themselves. This assumption is called the miss-
ing completely at random assumption (MCAR; Little & Rubin,  2002, p. 10). This assumption is, 
however, often not realistic.

Two methods that resolve the above-mentioned problems of listwise deletion are full information 
maximum likelihood (FIML) and multiple imputation (MI). In FIML, the likelihood function is cal-
culated for all the observed values in the data, without deleting any cases. Additionally, in FIML the 
MCAR assumption may be loosened in order for results still to be unbiased. Missing at random (MAR; 
Little & Rubin, 2002, p. 10) is a missingness mechanism where the probability of data being missing 
depends on observed variables but not on unobserved variables, or on the unobserved values of the 
missing data themselves. Under MAR, FIML will give unbiased results.

In MI, on the other hand (Rubin, 1987; Van Buuren, 2012; Van Buuren et al., 2006), the missing data 
are estimated M times using a statistical model that is suitable for the data in question. This results in 
M complete versions of the original incomplete data set. Next, the M data sets are analysed using the 
statistical analysis of interest. Finally, the M analyses or statistics are combined into one overall result. 
Like FIML, MI will give unbiased results under MAR as well.

As a side note, when the probability of data being missing depends on unobserved variables or the 
hypothetical values of the missing data themselves, missing data are said to be missing not at random 

(1)�
2

= 1 −

�2
�

�2
Y

.
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       |  3EXPLAINED VARIANCE IN MULTIPLY IMPUTED DATA SETS

(MNAR; Little & Rubin, 2002, p. 10). Under MNAR, none of the above-mentioned methods for dealing 
with missing data are guaranteed to give unbiased results. Methods for dealing with MNAR are beyond 
the scope of the current paper. The interested reader is referred to Fay (1986), Galimard et al. (2016), 
Heckman (1976), and Moustaki and Knott (2000).

In practice, FIML and MI will often give similar results (e.g., Collins et al., 2001). Consequently, 
reasons to prefer one method over the other are mostly practical. If a researcher wants to apply only sta-
tistical methods that rely on maximum likelihood estimation, FIML is preferred over MI for two main 
reasons. Firstly, it is less work than MI, since FIML is the default method in many statistical software 
packages that rely on maximum likelihood estimation. Secondly, when FIML is applied to the same 
data set repeatedly, results will always be identical, whereas repeatedly applying MI to the same data set 
will result in different imputed values each time, and consequently, slightly different results of statistical 
analyses. If, on the other hand, some of the intended analyses can be applied using FIML while others 
cannot, then MI may be preferred over FIML for all analyses, to keep results among different analyses 
comparable.

In the current study the context is a situation where the researcher prefers MI over FIML, and wants 
to obtain an estimate of �2 in multiply imputed data. Additionally, it should be noted that although it is 
technically possible to apply FIML to regression analysis using structural equation modelling, this is, in 
our experience, not frequently done by applied researchers.

1.2  |  Combination strategies for R2 in multiply imputed data

For many statistical analyses specific formulas have been developed for combining the M results of the 
M multiply imputed data sets, which we will refer to as combination strategies. For R2, several combination 
strategies have been discussed in the literature. For example, Harel (2009) proposed a procedure where, 
first, a Fisher z transformation of the 

√
R
2

m
 of each imputed data set m is calculated; next, the average of 

the M Fisher z transformations is taken; and finally, the average is transformed back to its original scale. 
The resulting pooled estimator is denoted ℜ2. Also, Van Ginkel  (2019) proposed averaging the R2

m
s 

across the M imputed data sets directly, denoted R2.

Van Ginkel  (2020) argued that both ℜ2 and R2 have some theoretical flaws. Firstly, the Fisher z 
transformation is only suitable for correlations that vary between −1 and + 1, while the square root of 
R
2 can only vary between 0 and 1. If one would like to use a transformation for the square root of R2, it 

would be better to use a logit transformation instead.
However, performing a logit transformation will not resolve another problem that both ℜ2 and 

R
2 have. Van Ginkel (2020) argued that a predictor X

j
 contributing almost nothing to �2 in the pop-

ulation will have a disproportionally large contribution to ℜ2 and R2 in the sample. This is because 
in some imputed data sets the regression coefficient of X

j
 may be slightly negative while in others 

it may be slightly positive, due to sampling fluctuation. In each imputed data set, however, the con-
tribution of X

j
 to R2

m
 will be slightly positive because the sign of the regression coefficient does not 

matter for the total contribution of X
j
 to R2

m
. Consequently, both negative and positive regression 

coefficients of X
j
 across imputed data sets will have a slightly positive contribution to ℜ2 and R2, 

while these contributions should actually almost perfectly cancel each other out in a final pooled 
estimator for �2. There is no transformation that can make up for this disproportionate contribution 
to an estimator for �2.

To overcome the above problems, Van Ginkel (2020) proposed two alternative combination strate-
gies for R2 in multiply imputed data. He denoted the resulting estimators R̂

2

PS
 and R̂

2

SP
. In a simulation 

study, Van Ginkel (2020) showed that R̂
2

PS
 and R̂

2

SP
 were closer to the R2 that would be obtained if no 

data were missing than ℜ2 and R2. In the remainder of this paper, ℜ2 is not further considered because 
of its theoretical flaws, but the suboptimal R2 is still used for reasons explained later.
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4  |      van GINKEL and KARCH

In Van Ginkel's (2020) study it was found that R̂
2

PS
 and R̂

2

SP
 hardly differed in terms of bias and 

efficiency. However, he argued that R̂
2

SP
 had a better theoretical justification, and showed that rela-

tions between R2 and other statistics that are present when data are complete, are mostly maintained 
for R̂

2

SP
 and not for R̂

2

PS
. For this reason, he recommended using R̂

2

SP
 as a pooled version of R2 in 

multiply imputed data sets. For the current paper, we will follow this recommendation and continue 
with R̂

2

SP
.

1.3  |  Aim of the current study

Although combination strategies for R2 in multiply imputed data have been proposed (Van Ginkel, 2020), 
the same is not the case for the alternative estimators of �2 mentioned so far (e.g., the Ezekiel estimator 
variants and the Olkin–Pratt estimator variants), at least not to our knowledge. Consequently, research-
ers who prefer using these estimators in a multiply imputed data set currently have no way to do that. 
For these researchers it is important that pooled versions of these estimators in multiply imputed data 
become available as well.

Furthermore, once available, it is important to study their statistical properties to see whether the 
pooled estimators behave similarly to their complete-data counterparts. Thus, the goal of this study is 
twofold: to propose combination strategies for all of the above-mentioned alternative estimators for 
�2; and to study the statistical properties of these estimators. Karch (2020) studied the bias and mean 
squared error (MSE) in all of the estimators for �2 in complete data discussed so far. The current simu-
lation study follows up on the study by Karch (2020) by studying all the estimators for �2 from his study, 
but now in incomplete data where the missing data have been treated using MI.

In Section 2, the formulas for the different estimators of �2 in complete data are given. Then pooled 
versions of the estimators in multiply imputed data are presented, along with their reasoning behind 
them. After discussing the estimators and pooled estimators, the setup of the simulation study is out-
lined. In Section 3, the results of the study are discussed. Finally, in Section 4, a conclusion will be 
drawn on whether properties of the pooled estimators of �2 are preserved in multiply imputed data, and 
a general recommendation on whether to use averaging across imputed data sets or using R̂

2

SP
 as input 

for the estimation of the specific estimator is given.

2  |  METHOD

2.1  |  Estimators of the proportion of explained variance in multiple 
regression

The most widely used estimator for �2, R2, may be computed in several ways, all of which are equiva-
lent. One way that is in accordance with how �2 is computed in Equation (1) is to replace �2

Y
 and 

�2
�
 with their (biased) maximum likelihood (ML) estimates in Equation (1). Using the total sum of 

squares of variable Y , denoted SS
T

, and the total sum of squares of the error, SS
e
, the ML estimates 

of �2
Y

 and �2
�
 are �̂2

Y
= SS

T
∕N  and �̂2

�
= SS

e
∕N , respectively. Substituting these estimators into 

Equation (1) gives

One property of R2 is that it is a positively biased estimator of �2 (Fisher, 1928). The Ezekiel estima-
tor, better known as adjusted R2, attempts to reduce this bias by using the unbiased estimators of �2

Y
 

and �2
�
, namely S2

Y
= SS

T
∕(N − 1) and S2

e
= SS

e
∕

(
N − p − 1

)
, respectively. The resulting estimator is

(2)R
2

= 1 −
SS
e

SS
T

.
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       |  5EXPLAINED VARIANCE IN MULTIPLY IMPUTED DATA SETS

Two variants of R2
E

 have been proposed, which are all aimed at reducing the intrinsic bias that R2 has. 
One of these is the Smith estimator, which is computed as

The other is the Wherry estimator, computed as

For a more extensive explanation of both estimators, we refer to Raju et al. (1997) and Yin and Fan (2001).
A disadvantage of the above corrections is that they can sometimes lead to negative values, which 

is conceptually nonsensical (a negative proportion of explained variance is not possible). Alf and 
Graf (2002) suggested using the maximum likelihood estimator of �2 under the assumption that both 
the predictors and the outcome variable are multivariate normally distributed. We denote this estima-
tor R2

ML
. An advantage of R2

ML

 is that it is on average closer to �2 than R2, and does not give negative 
values. R2

ML

 is not easily expressed in closed form, so for technical details we only refer to Alf and 
Graf (2002).

Although all of the above estimators attempt to reduce bias in R2 in different ways, none of them 
are exactly unbiased. Olkin and Pratt (1958) introduced an estimator of �2 that is unbiased under the 
assumption of multivariate normality of the predictors and the outcome variable, called the Olkin–Pratt 
estimator. This estimator uses the hypergeometric function 2F

1
=

(
a, b; c ; z

)
. The Olkin–Pratt estimator 

is given by

In the past it was considered difficult to implement R2
OP

 in statistical software packages because of the 
inclusion of the hypergeometric function (Shieh, 2008). However, Karch (2020) showed that there were 
closed-form solutions to the hypergeometric function for all possible inputs required for the Olkin–Pratt 
estimator. Using this closed-form solution, the Olkin–Pratt estimator can easily be computed.

Since it was once considered difficult to compute the Olkin–Pratt estimator, some easier-to-compute 
approximations were introduced. One family of approximations uses only the first K + 1 addends of 
the infinite series of the hypergeometric function. Suppose t

k
 is the kth addend of the hypergeometric 

series. This family of approximations can be expressed as

Besides the above family of approximations, there are two other approximations, which are dis-
cussed by Raju et al. (1997) and Yin and Fan (2001). These variants use the R2

OP1

 approximation as a 
starting point and correct for the omitted addends. The first variant is one by Pratt:

(3)R
2

E

= 1 −
N − 1

N − p − 1

(
1 − R

2

)
.

(4)R
2

S

= 1 −
N

N − p

(
1 − R

2

)
.

(5)R
2

W

= 1 −
N − 1

N − p

(
1 − R

2

)
.

(6)R
2

OP

= 1 −
N − 3

N − p − 1

(
1 − R

2

)
2

F
1

(

1, 1;

N − p + 1

2

; 1 − R
2

)

(7)R
2

OPK
= 1 −

N − 3

N − p − 1

(
1 − R

2

) K∑

k=0

t
k
.

(8)R
2

P

= 1 −
N − 3

N − p − 1

(
1 − R

2

)
(

1 +

2

(
1 − R

2

)

N − p − 2.3

)

.
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6  |      van GINKEL and KARCH

The second variant is one by Claudy:

(both formulas were first given in Claudy, 1978).
Like adjusted R2, all of the above variants of the Olkin–Pratt estimator can be less than 0. To make 

up for negative values, the estimators can be modified by setting their values to 0 when the initial value 
drops below 0. Shieh (2008) called these estimators positive-part estimators.

2.2  |  Combination strategies for alternative estimators of �2 in multiply 
imputed data

In this section, we first explain the two proposed combination strategies by Van Ginkel  (2020) that 
recovered R2 best. Van Ginkel's proposed combination strategies make use of the fact that in complete 
data R2 may also be written as

where rXjY is the sample correlation between predictor X
j
 and Y , and �̂

j
 is the standardised regression co-

efficient of predictor X
j
.

Van Ginkel proposed two pooled versions of rXjY , and two pooled versions of �̂
j
 which can be sub-

stituted into Equation (10) to get two pooled versions of R2 in multiply imputed data. The first way to 
compute a pooled version of r

X
j
Y

 and of �̂
j
 is as follows. Let b̂

j ,m
 be the sample estimate of the unstan-

dardised regression coefficient of X
j ,m

 and �̂
j ,m

 be the corresponding standardised coefficient, let rXjY ,m 
be the sample correlation between X

j ,m
 and Y

m
, let s2

X
j
,m

 be the sample variance of X
j ,m

, and let s2
Y ,m

 be 

the variance of Y
m
, in imputed data set m (m = 1,…, M ).

By first pooling the regression coefficient of X
j
 and the standard deviations of X

j
 and Y , and using 

these pooled quantities for calculating a pooled standardised regression coefficient, we get:

Here, the PS in the subscript stands for pooling before standardisation because the pooling of the necessary quan-
tities takes place first, and then the standardisation.

Next, the standardised regression coefficient that is obtained when X
j
 is regressed on Y  in a simple 

regression is used as a measure for the pooled correlation, and is denoted by rXjY ,PS. Using the �̂
j ,PS

 and 
r
X
j
Y ,PS, the first pooled version of R2 proposed by Van Ginkel (2020) is

(9)R
2

C

= 1 −
N − 4

N − p − 1

(
1 − R

2

)
(

1 +

2

(
1 − R

2

)

N − p + 1

)

(10)R
2

=

p∑

j=1

r
X
j
Y
�̂
j
,

(11)

b̂
j
=
1

M

M∑

m=1

b̂
j ,m
,

s̃
X
j

=

√√√
√ 1

M

M∑

m=1

s
2

X
j
,m
,

s̃
Y
=

√√√
√ 1

M

M∑

m=1

s
2

Y ,m
,

�̂
j ,PS

=

s̃
X
j

s̃
Y

b̂
j
.
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       |  7EXPLAINED VARIANCE IN MULTIPLY IMPUTED DATA SETS

The second way to compute a pooled version of r
X
j
Y

 and of �̂
j
 is by averaging both quantities across 

the M imputed data sets:

The subscript SP in �̂
j ,SP

 stands for standardisation before pooling because the regression coefficients are stan-
dardised per imputed data set first, and next the pooling takes place by averaging these standardised regres-
sion coefficients across the imputed data sets. Using the �̂

j ,PS
 and rXjY ,PS, we can obtain the second pooled 

version of R2 by Van Ginkel (2020):

For the other estimators for �2 we propose two general combination strategies. The first strategy to 
pool the various estimators for �2 is to replace R2 in Equations (3–9) with R̂

2

SP

, leading to the following 
pooled estimators for �2:

(where tk,SP is the kth addend of the hypergeometric series with R̂
2

SP

 as input rather than R2),

(12)R̂

2

PS

=

p∑

j=1

r
X
j
Y ,PS

�̂
j ,PS
.

(13)�̂
j ,SP

=
1

M

M∑

m=1

�̂
j ,m
,

(14)r
X
j
Y
=
1

M

M∑

m=1

r
X
j
Y ,m
.

(15)R̂

2

SP

=

k∑

j=1

r
X
j
Y
�̂
j ,SP
.

(16)R̂

2

E,SP

= 1 −
N − 1

N − p − 1

(
1 − R̂

2

SP

)
,

(17)R̂

2

S,SP

= 1 −
N

N − p

(
1 − R̂

2

SP

)
,

(18)R̂

2

W,SP

= 1 −
N − 1

N − p

(
1 − R̂

2

SP

)
,

(19)R̂

2

OP,SP

= 1 −
N − 3

N − p − 1

(
1 − R̂

2

SP

)
2

F
1

(

1, 1;

N − p + 1

2

; 1 − R̂
2

SP

)

,

(20)R̂

2

OPK ,SP
= 1 −

N − 3

N − p − 1

(
1 − R̂

2

SP

) K∑

k=0

t
k,SP

(21)R̂

2

P,SP

= 1 −
N − 3

N − p − 1

�
1 − R̂

2

SP

�
⎛
⎜
⎜
⎜
⎝

1 +

2

�
1 − R̂

2

SP

�

N − p − 2.3

⎞
⎟
⎟
⎟
⎠

,
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8  |      van GINKEL and KARCH

The ML estimator based on R̂
2

SP

 cannot easily be expressed in a formula, but is referred to as R̂
2

ML,SP

. The 
above pooled estimators that may take on values below 0 can be made positive-part estimators by setting 
them to 0 whenever they are negative.

The second combination strategy is to calculate the specific estimator for each imputed data set 
separately, and average its M values across the M imputed data sets. This strategy is based on Van 
Ginkel's (2019) solution, which simply averages the R2

m
 across the imputed data sets. Using averaging as 

the basis for a combination strategy, this leads to the following pooled versions of the above-discussed 
estimators for �2 in multiply imputed data:
 

 

 

 

 

 

 

Like the pooled estimators based on R̂
2

SP

, the estimators based on averaging that may take on values below 

0 can be made positive-part estimators by setting them to 0 whenever they are negative.

(22)R̂

2

C,SP

= 1 −
N − 4

N − p − 1

�
1 − R̂

2

SP

�
⎛
⎜
⎜
⎜
⎝

1 +

2

�
1 − R̂

2

SP

�

N − p + 1

⎞
⎟
⎟
⎟
⎠

.

(23)R
2

E

= 1 −
N − 1

M

(
N − p − 1

)
M∑

m=1

(
1 − R

2

m

)
,

(24)R
2

S

= 1 −
N

M

(
N − p

)
M∑

m=1

(
1 − R

2

m

)
,

(25)R
2

W

= 1 −
N − 1

M

(
N − p

)
M∑

m=1

(
1 − R

2

m

)
,

(26)R
2

ML

=
1

M

M∑

m=1

R
2

ML,m
,

(27)R
2

OP

= 1 −
N − 3

M

(
N − p − 1

)
M∑

m=1

(
1 − R

2

m

)
2

F
1

(

1, 1;

N − p + 1

2

; 1 − R
2

m

)

,

(28)R
2

OPK
= 1 −

N − 3

M

(
N − p − 1

)
M∑

m=1

(
1 − R

2

m

) K∑

k=0

t
k,m
,

(29)R
2

P

= 1 −
N − 3

M

(
N − p − 1

)
M∑

m=1

(
1 − R

2

m

)
(

1 +

2

(
1 − R

2

m

)

N − p − 2.3

)

,

(30)R
2

C

= 1 −
N − 4

M

(
N − p − 1

)
M∑

m=1

(
1 − R

2

m

)
(

1 +

2

(
1 − R

2

m

)

N − p + 1

)

.
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       |  9EXPLAINED VARIANCE IN MULTIPLY IMPUTED DATA SETS

2.3  |  Critical discussion of both combination strategies

The combination strategies for the estimators of �2 using R̂
2

SP

 as input (Equations 16–22, and R̂
2

ML,SP

 ) 

lack a solid statistical theory. However, since R̂
2

SP

 has been shown to be an estimator that comes very 
close to the R2 that would be obtained without missing data, it seems reasonable to assume that using 
R̂

2

SP

 as an input will lead to better estimates of �2 than simply averaging (Equations 23–30) will give.
The estimators based on averaging (Equations 23–30) are not based on a solid statistical theory ei-

ther, other than that in Rubin's (1987) general MI framework an overall point estimate of an estimator is 
also obtained by averaging the M estimates across imputed data sets. However, some of the estimators 
(the different variants of the Olkin–Pratt estimator) are assumed to be unbiased in complete data under 
specific assumptions. Now suppose that the imputation process does not introduce any bias to an unbi-
ased estimator in imputed data set m (m = 1,…, M ). Then the average of the M unbiased estimators will 
also be unbiased. The same is not necessarily true for the estimators of Equations (19) and (20), as the 
estimator R̂

2

SP

 is a complex function of several pooled quantities from the regression analysis.
However, it has not been said that the imputation process will not introduce any bias to an unbiased 

estimator of �2 in imputed data set m. Rubin's idea of averaging parameter estimates across imputed 
data sets relied on the assumption that in complete data the estimator in question has a normal sam-
pling distribution and a confidence interval based on a z- or t-distribution. The pooled estimators 
in Equations (23–30) do not fit into that framework, so the question is to what extent they preserve 
the statistical properties of their complete-data counterparts. It is, for example, not clear whether the 
Olkin–Pratt estimator will still be unbiased when it is computed for each of the M imputed data sets and 
the average is used as an overall estimator.

Additionally, as already argued, predictors with regression coefficients close to 0 make a disproportion-
ally large contribution to R2. Similar problems may occur for the estimators of Equations (23–30). This is 
why the estimator R̂

2

SP

 was introduced by Van Ginkel (2020) in the first place – to overcome this problem.
In short, because both general pooling strategies lack a solid statistical theory, it is difficult to predict 

which of the two methods will produce the least bias in the estimators of �2. A simulation study will 
have to show which of these two strategies is the preferred one. In the next subsection, the design of 
this simulation study will be discussed.

2.4  |  Design of the simulation study

2.4.1  |  Fixed design characteristics

The general model for simulating data was the following regression model:

with

(31)Y = b
0
+

p∑

j=1

b
j
X
j
+ �

X ∼MVN

(
0
p
�
p

)
,

�
p
=

⎡
⎢
⎢
⎢
⎢
⎣

1

.3 ⋱

⋮ ⋱ ⋱

.3 ⋯ .3 1

⎤
⎥
⎥
⎥
⎥
⎦

,

 20448317, 0, D
ow

nloaded from
 https://bpspsychub.onlinelibrary.w

iley.com
/doi/10.1111/bm

sp.12344 by U
niversity O

f L
eiden, W

iley O
nline L

ibrary on [07/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10  |      van GINKEL and KARCH

Using this model, data were simulated under various values of �2, numbers of predictors p, and sample sizes 
N (all to be discussed later on). For each specific combination of �2, p, and N, D = 1000 replicated data sets 
were drawn. We did not vary the covariance matrix of the predictors since this does not influence the dis-
tribution of R2 and thus the performance of the estimators. From the complete data sets, incomplete data 
were created by removing various percentages of data points from the data, using two different missingness 
mechanisms (both to be discussed in Section 2.4.2).

Finally, once incomplete data sets were created they were multiply imputed. MI was done using the using 
the mice package (Van Buuren & Groothuis-Oudshoorn, 2011) in R (R Core Team, 2021). The method of im-
putation was fully conditional specification (FCS; Van Buuren, 2012, pp. 108–116; Van Buuren et al., 2006) 
where for each variable the imputation model was a normal linear regression model with the other variables 
as predictors. In the mice package this option can be found in the mice.impute.norm function. Twenty 
iterations were used for the FCS algorithm, and the number of imputations was M = 25.

2.4.2  |  Independent variables

Sample size
The sample sizes studied were N = 50, 100, 250, 500. These values cover typical samples sizes as ob-
tained in psychology (Marszalek et al., 2011). We did not investigate very low sample sizes as this oc-
casionally led to situations where some predictors were removed from the imputation model because of 
logged events (Van Buuren, 2012, p. 130).

Population proportion of explained variance
Values of �2 that were studied were �2 = 0, .2, .5, .75, and .90. Although Shieh (2008) studied more values 
of �2 than are studied here, the range of values for �2 is the same as in his study.

Number of predictors
The number of predictors was varied to be p = 2, 4, and 6. Although Karch (2020) also studied a situa-
tion of 10 predictors, this was infeasible for higher percentages of missingness, as this resulted in logged 
events in small sample sizes.

Missingness mechanism
Incomplete data were created according to two missingness mechanisms, namely MCAR and MAR. 
Here we focus on the MCAR results. The MAR results are only briefly discussed in the Appendix, 
where we also describe our procedure for generating MAR data.

The reason for focusing on MCAR in the main text is that MAR generally does not introduce 
any (additional) bias to statistics when missing data are handled using MI (Schafer, 1997, pp. 23–26). 
Consequently, it is largely irrelevant which of the two mechanisms, MCAR or MAR, is used for simulat-
ing missing data when bias is the outcome of interest. There are exceptions to this. For example, Seaman 
et  al.  (2012) showed that a particular MI procedure produced unbiased results only under MCAR. 
However, since we do not have any reason to presume a priori that MAR will introduce additional bias 
to the estimators in our study, we will not discuss MAR in the main text, in order not to make the dis-
cussion of the results any more extensive than it already is.

� ∼ N (0, 10),

b
0
= 100,

b
j
=

10

(
1

1−�2
− 1

)

√
p + .3p

(
p − 1

) .
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       |  11EXPLAINED VARIANCE IN MULTIPLY IMPUTED DATA SETS

The reason for not considering MNAR is that there are an infinite number of ways in which data can 
be MNAR, so if MNAR is simulated in one particular way, that does not say anything about how the re-
sults will generalize to other MNAR mechanisms. Thus, to get some impression of the effect of MNAR, 
it would make sense to include at least a few different MNAR mechanisms. However, this would make 
the study design substantially larger, while also allowing it to drift too far from the goal of the study.

Percentage of missingness
Percentages of missing data of 6.25%, 12.5%, and 25% were studied, based on Van Ginkel (2019, 2020).

Estimator of �2
A total of 20 estimators of �2 were studied, namely R2, R2

E

, R2
S

, R2
W

, R2
ML

, R2
OP

, R2
OP1

, R2
OP2

, R2
OP5

, R2
P

, R2
C

 , 
R
2

E+
, R2
S+

, R2
W+

, R2
OP+

, R2
OP1+

, R2
OP2+

, R2
OP5+

, R2
P+

, and R2
C+

, where the “+” sign stands for the positive-

part variant. The choice of K = 1, 2, 5 in R2
OPK

 was based on Karch (2020).

Combination strateg y for �2
Two combination strategies for estimators of �2 were studied: averaging across M imputed data sets, and 
using R̂

2

SP

 in the formula for the specific estimator. The resulting pooled statistics based on inserting 

R̂

2

SP

, are R̂
2

SP

 itself, R̂
2

E,SP

, R̂
2

S,SP

, R̂
2

W,SP

, R̂
2

ML,SP

, R̂
2

OP,SP

, R̂
2

OP1,SP

, R̂
2

OP2,SP

, R̂
2

OP5,SP

, R̂
2

P,SP

, R̂
2

C,SP

, R̂
2

E+,SP
, 

R̂

2

S+,SP
, R̂
2

W+,SP
, R̂
2

OP+,SP
, R̂
2

OP1+,SP
, R̂
2

OP2+,SP
, R̂
2

OP5+,SP
, R̂
2

P+,SP
, and R̂

2

C+,SP
; the pooled statistics based on 

averaging are R2, R2
E

, R2
S

, R2
W

, R2
ML

, R2
OP

, R2
OP1

, R2
OP2

, R2
OP5

, R2
P

, R2
C

, R2
E+

, R2
S+

, R2
W+

, R2
OP+

, R2
OP1+

 , 

R
2

OP2+
, R2

OP5+
, R2

P+
, and R2

C+
. Note that R2 is not recommended on the basis of the results by Van 

Ginkel (2020). However, including R2 makes it possible to study a possible interaction between an esti-
mator of �2 and a combination strategy for �2.

The above factors resulted in a design with 4 (sample size) × 5 (population proportion of explained 
variance) × 3 (number of predictors) × 3 (percentage of missingness) × 20 (estimator) × 2 (combination strat-
egy) = 7200 cells. Within each combination of sample size, population proportion of explained variance, 
and number of predictors, different seed values were used for the generation of the replicated data sets. 
Consequently, these factors were independent factors. Within each of these replicated data sets, different 
percentages of missing data were simulated, and the two variants of each of the 20 estimators were calcu-
lated. Consequently, percentage of missingness, estimator and combination strategy were dependent factors.

2.4.3  |  Dependent variables

Difference between the estimator of �2 and �2
Suppose �̂2

d
 is an estimate of �2 of replicated data set d (d = 1,…, D) in a specific design cell. One depend-

ent variable was the difference between ̂�2
d
 and �2. This difference averaged across D replications defines 

the estimated bias in �2 for the specific design cell:

Squared difference between the estimator of �2 and �2
Although bias quantifies how close on average an estimator is to �2, it does not tell us how accurately �2 
is estimated across replications within a specific design cell. To get an impression of the accuracy of the 
estimators, another dependent variable was studied, namely the squared difference between �̂2

d
 and �2. 

When this squared difference is averaged across D replications, this defines the estimated mean squared 
error of �2 for a specific design cell:

(32)B̂

(
�
2

)
=
1

D

D∑

d=1

(
�̂
2

d
− �

2

)
.
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12  |      van GINKEL and KARCH

2.5  |  Statistical analyses

2.5.1  |  One- and two-sample t-tests for initial selection of estimators

Because of the large design, a selection of results to discuss had to be made. In making this selection, a 
number of steps were taken. Firstly, to select only the estimators with the smallest bias, Cohen's d of a 
one-sample t-test (reference value 0) was determined for each design cell. Next, for each of the 20 esti-
mators of �2, Cohen's d was averaged across all design cells. Only the estimators with ||d || < .20 (a small 
effect according to Cohen, 1988) were considered to have a sufficiently small bias to further explore 
them in a subsequent analysis with �̂2

d
− �2 as the dependent variable.

For the selection of methods with the smallest MSE, a reference point of 0 does not make any 
sense as MSE cannot be 0. Instead, in order to make a selection of methods with the smallest MSE 
to submit to further analysis with 

(
�̂
2

d
−�2

)
2

 as the dependent variable, a different reference point 

was chosen: if the combination strategy was averaging, then the MSE of R2 was used as a reference 
value; if the combination strategy was based on standardisation before pooling, then R̂

2

SP

 was used 
as a reference value. The reasoning behind these reference points is that R2 is considered a lower 
benchmark, so preferably you would want an estimator of �2 to have a substantially smaller MSE 
than that of R2. Using these reference points, for each design cell the MSE of the specific estimator 
was compared with the MSE of R2∕ R̂

2

SP

 using a two-sample t-test. The Cohen's d values of each of 
these t-tests were averaged for each estimator across design cells. Estimators with ||d || > .80 (\ large 
effect according to Cohen, 1988) were considered to sufficiently deviate from the lower benchmark 
to submit them to further analyses.

It should be noted that the selection criteria of ||d || < .20 for bias and ||d || > .80 for MSE are somewhat 
arbitrary. However, the goal of using these criteria was to filter out as many estimators for the subse-
quent analyses, such that it would be easier to report.

2.5.2  |  Effect sizes of ANOVA

The methods that met the earlier described criteria were submitted to two ANOVAs, one with �̂2
d
− �2 

as the dependent variable, and one with 
(
�̂
2

d
−�2

)
2

 as the dependent variable. In both ANOVAs the 

independent variables were sample size, value of �2, number of predictors, estimator, and combination 
strategy. Since many significant main effects and higher-order interaction effects were expected, neither 
the significant F-tests nor the corresponding means that were tested were reported. Instead, partial η2 
was computed for each effect in the ANOVAs. Next, the bias, MSE, and their standard deviations were 
reported in tables, for all combinations of factors that were part of main or interaction effects with par-
tial η2 > .13 (a large effect according to Cohen,  1988), aggregated across the remaining factors. The 
numbers in the tables were visually inspected and interpreted.

2.5.3  |  Two-sample t-tests testing bias of imputed data against complete data

For each design cell, it was tested whether the bias of the imputed data differed significantly from the 
bias of the corresponding data sets without missing data. For each estimator, and for all combinations 
of factors that were part of main or interaction effects with partial η2 > .13 (a large effect according to 

(33)M̂SE

(
�
2

)
=
1

D

D∑

d=1

(
�̂
2

d
−�

2

)
2

.
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       |  13EXPLAINED VARIANCE IN MULTIPLY IMPUTED DATA SETS
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14  |      van GINKEL and KARCH

Cohen, 1988) in the ANOVA, the mean Cohen's d across the remaining factors was reported. The same 
was done for MSE.

3  |  R ESULTS

Table 1 shows the average Cohen's d values for bias and MSE for each estimator, along with the mean 
values of bias and MSE. The table shows that there are 10 estimators with an average Cohen's d for bias 
lower than .20, namely R2

E
, R2

S
, R2

OP
, R2

OP5
, R2

P
, R2

OP2
, R2

OP1
, R2

E+
, R2

S+
, and R2

ML
. These estimators were 

submitted to the ANOVA with �̂2
d
− �2 as the dependent variable. Of the 10 methods with ||d || > .20 for 

bias, seven were positive-part estimators (see Table 1, first column).
As discussed in Section 2, it was originally decided for MSE to submit only the estimators with 

||d || > .80 (a large effect according to Cohen, 1988) into a subsequent analysis. However, as can be seen 
in Table 1, none of the estimators met this criterion. Additionally, the average Cohen's d values varied 
little around d = .20 (small effect) across the estimators. A similar finding was reported by Shieh (2008, 
p. 599) for complete-data estimators �2, who concluded with regard to MSE that results for different 
estimators were inconclusive. Because both earlier research and the current study found inconclusive 
results regarding MSE it was decided to not further look into the MSE results, and only focus on bias 
in the subsequent analyses.

Next, the 10 estimators with average Cohen's d values below .20 for bias were submitted to the 
ANOVA. Table 2 shows the effect sizes of the main and interaction effects with partial η2 > .13. Since 
the focus of this study is on how well the different estimators perform in multiply imputed data sets, 
the two most important factors in this table are estimator and combination strategy. The table shows 
that the factors that have large interaction effects with combination strategy are sample size, value of 
population coefficient of determination, percentage of missing data, and number of predictors. Factors 
that have large interaction effects with estimator are sample size and value of population coefficient of 
determination. No substantial interaction effects that included both combination strategy and estimator 
were found. Thus, we present two tables: one showing the results for the combination of factors that had 
substantial interaction effects with combination strategy, and one showing the results for the combina-
tion of factors that had substantial interaction effects with estimator.

Table 3 shows the results for combination strategy. For comparison, the results of the original data 
are shown as well. To save space, the results of sample sizes N = 100 and N = 250 are not shown in the 
table. For each combination of sample size, number of predictors, �2, and percentage of missingness, the 
combination strategy with the least bias is printed in bold.

It can be seen from the table that the results for the original data (0% missing data) usually have a 
smaller bias than the results for the multiply imputed data. Furthermore, in general, for low �2 (0, .20, 
and mostly .50) pooled estimators based on standardisation before pooling have lower bias than estima-
tors based on averaging. For the higher values of �2 (.75 and .9) this is reversed. However, for higher �2 
the differences in bias between both combination strategies are smaller than for low �2. In other words, 
on average, estimators based on standardisation before pooling have smaller bias.

As for the other factors in Table 3, firstly, sample size has a substantial influence on the bias. In 
going from N = 50 to N = 500, the bias seems to drop by almost a factor of 10, on average. For exam-
ple, compare �2 = 0, p = 6, 25% missing data, method SP, and N = 50 (M = .124, SD = .139) with �2 = 0 , 
p = 6, 25% missing data, method SP, and N = 500 (M = .011, SD = .013). Furthermore, for the imputed 
data, bias seems to increase when the number of predictors increases. The same cannot be found in the 
complete data. This increase becomes larger as �2 drops (�2 = 0, �2 = .2), the sample becomes smaller 
(N = 50), and the percentage of missingness increases (25%).

The results for estimator can be found in Table 4. It becomes clear from the table that for �2 = 0 there 
is on average a substantial difference between the bias of the original data and the bias of the imputed data 
(medium effect according to ||d ||), for all estimators. As �2 increases, the difference in bias between original 
data and imputed data decreases. With the exception of �2 = .2 when N < 500, for all the other values 
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       |  15EXPLAINED VARIANCE IN MULTIPLY IMPUTED DATA SETS

of �2 the difference in bias between original data and imputed data is on average smaller than a small 
effect. The results for N = 100 and N = 250 are not shown, but for these sample sizes, the difference in 
bias between the original data and imputed data does not meet the criterion for a small effect size either.

Furthermore, the results for estimator do not show a clear best-performing estimator regarding bias. 
For �2 = 0 and �2 = .2,R2

ML
 usually has the largest bias whereas R2

E
 has the smallest bias. For �2 = .5, 

�2 = .75, and �2 = .9, the differences between methods are less clear. In general, for these values of �2 
the bias is close to 0.

Finally, it should be noted that for some combinations of sample size, estimator, and �2 (especially 
for �2 = 0) there is a difference in bias between the original data and the imputed data with a medium 
effect size. This result shows that occasionally MI introduces some (additional) bias to the estimators. 
As the results in Table 4 are aggregations across combination strategy as well, it cannot be seen whether 
this additional bias occurs both for estimators based on averaging and estimators based on standardi-
sation before pooling. However, inspection of effect sizes for combination strategy separately revealed 
that occasionally, both combination strategies introduced additional bias to the estimators, although 
standardisation before pooling did so to a smaller degree (results not shown).

4  |  DISCUSSION

In this study pooled versions of different estimators of �2 in multiply imputed data sets were proposed, 
for which previously no solutions were available. In a simulation study the statistical properties of these 
proposed estimators were studied. Two quality measures were studied, namely bias and MSE. Regarding 
MSE the results were inconclusive, as was found in earlier research as well (Shieh, 2008). For this reason 
we mainly focus on bias in this discussion. Although in a design with this many factors (some of which 
having up to 20 levels) it may be difficult to detect clear trends, some general conclusions may still be 
drawn about the current study. These conclusions are discussed below.

T A B L E  2   Effect sizes of the ANOVA with bias as the dependent variable of the large effects (partial η2 > .13) according 
to Cohen (1988).

Effect Partial η2

Method .815

Method × n .775

Method × ρ2 .631

Method × p .568

Method × Percent .542

Method × n × ρ2 .553

Method × n × p .501

Method × n × Percent .491

Method × ρ2 × p .290

Method × ρ2 × Percent .297

Method × p × Percent .295

Method × n × ρ2 × p .222

Method × n × ρ2 × Percent .237

Method × n × p × Percent .237

Estimator .314

Estimator × n .220

Estimator × ρ2 .472

Estimator × n × ρ2 .330
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16  |      van GINKEL and KARCH

4.1  |  Additional bias introduced by sample size and number of predictors

Before getting into the conclusions regarding the effects of MI, the combination strategies, and the 
estimators, it should first be noted that sample size substantially influenced the bias. For N = 50, the 
bias could occasionally be a factor of 10 higher than for N = 500. Additionally, the higher the number 
of predictors, the more bias was found in the estimators, while this was not true for the complete data. 

T A B L E  3   Bias (standard deviations in parentheses) × 103 for all combinations of sample size, population coefficient of 
determination, number of predictors, percentage of missingness, and combination method, aggregated across estimators of 
the coefficient of determination.

N ρ2 p

Percentage of missingness

0% 6.25% 12.5% 25%

Method

Mean SP Mean SP Mean SP

50 0 2 6 (39) 17 (42) 12 (42) 31 (53) 19 (53) 58 (66) 32 (65)

4 10 (58) 32 (64) 20 (64) 64 (75) 36 (76) 149 (101) 80 (106)

6 9 (74) 49 (84) 29 (85) 97 (98) 52 (100) 242 (128) 124 (139)

.2 2 −3 (107) 4 (111) 0 (111) 8 (116) −1 (118) 24 (124) 4 (128)

4 −3 (112) 14 (115) 4 (117) 35 (122) 12 (125) 100 (133) 42 (146)

6 −2 (120) 26 (124) 9 (127) 61 (129) 23 (135) 171 (139) 74 (158)

.5 2 1 (100) 1 (105) −1 (106) 2 (114) −3 (115) 5 (123) −6 (127)

4 −2 (109) 5 (112) 0 (113) 12 (116) −2 (120) 43 (128) 7 (139)

6 −1 (109) 11 (110) 1 (113) 31 (114) 7 (119) 90 (122) 26 (140)

.75 2 −7 (65) −9 (68) −9 (69) −9 (73) −11 (74) −12 (83) −17 (86)

4 −4 (67) −2 (71) −5 (72) −2 (75) −9 (77) 5 (86) −14 (94)

6 −1 (64) 3 (67) −2 (69) 6 (71) −6 (74) 32 (83) −3 (97)

.9 2 −2 (28) −2 (30) −2 (30) −4 (32) −5 (32) −6 (38) −8 (39)

4 −1 (29) −3 (32) −4 (33) −3 (36) −5 (36) −7 (48) −15 (52)

6 −1 (28) −2 (31) −4 (32) −1 (34) −6 (36) 5 (47) −12 (55)

500 0 2 0 (4) 2 (5) 1 (5) 3 (5) 2 (5) 3 (5) 2 (5)

4 0 (5) 3 (6) 2 (6) 5 (7) 3 (7) 12 (10) 6 (10)

6 1 (7) 4 (8) 3 (8) 8 (9) 4 (9) 20 (13) 11 (13)

.2 2 1 (32) 1 (34) 1 (34) 2 (35) 1 (35) 2 (34) 2 (34)

4 0 (33) 2 (34) 1 (34) 3 (36) 1 (36) 8 (41) 3 (41)

6 0 (31) 2 (32) 1 (32) 5 (34) 3 (35) 13 (40) 6 (40)

.5 2 −1 (34) −1 (35) −1 (35) −1 (37) −1 (37) −2 (37) −2 (37)

4 0 (33) 0 (35) 0 (35) 1 (36) 0 (36) 4 (40) 2 (40)

6 −2 (31) −1 (32) −1 (32) 0 (34) −1 (34) 5 (39) 1 (39)

.75 2 −1 (19) −2 (20) −2 (20) −2 (21) −2 (21) −2 (22) −2 (22)

4 0 (19) 0 (21) 0 (21) 0 (23) −1 (23) 0 (25) −1 (25)

6 0 (20) 0 (21) 0 (21) 0 (22) −1 (26) −2 (26) −1 (26)

.9 2 0 (9) −1 (9) −1 (9) −1 (9) −1 (9) −1 (10) −1 (10)

4 0 (9) 0 (9) 0 (9) 0 (10) −1 (10) −1 (13) −1 (13)

6 0 (9) −1 (9) −1 (9) −1 (11) −1 (11) 0 (13) −1 (13)

Note: The combination method with the least bias for a specific sample size, population coefficient of determination, number of predictors, and 
percentage of missingness is printed in bold.
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       |  17EXPLAINED VARIANCE IN MULTIPLY IMPUTED DATA SETS

T A B L E  4   Bias (standard deviations in parentheses) × 103 for all combinations of sample size, estimator, and value of ρ2, 
aggregated across the remaining design factors.

N Estimator Data sets

ρ2

0 .2 .5 .75 .9

50
R
2

E

Original 1 (61) −8 (112) −7 (106) −8 (66) −3 (29)

Imputed 57 (103)** 29 (134)* 7 (122) −8 (79) −7 (39)

R
2

S

Original 3 (61) −6 (112) −6 (106) −8 (66) −3 (29)

Imputed 59 (103)** 30 (133)* 8 (121) −7 (79) −6 (39)

R
2

OP

Original 1 (64) −2 (115) 4 (106) 0 (65) 0 (28)

Imputed 59 (106)** 36 (136)* 17 (122) 0 (78) −3 (38)

R
2

OP5

Original 1 (64) −2 (115) 4 (106) 0 (65) 0 (28)

Imputed 59 (106)** 36 (136)* 17 (122) 0 (78) −3 (38)

R
2

P

Original 1 (63) −2 (115) 3 (106) 0 (65) 0 (28)

Imputed 60 (106)** 35 (136)* 17 (122) 0 (78) −3 (38)

R
2

OP2

Original 1 (64) −1 (115) 4 (106) 0 (65) 0 (28)

Imputed 60 (106)** 36 (136)* 17 (122) 0 (78) −3 (38)

R
2

OP1

Original 4 (63) 0 (114) 4 (106) 0 (65) 0 (28)

Imputed 62 (105)** 37 (135)* 17 (121) 0 (78) −3 (38)

R
2

E+
Original 24 (44) −7 (111) −7 (106) −8 (66) −3 (29)

Imputed 70 (93)** 30 (132)* 7 (122) −8 (79) −7 (39)

R
2

S+
Original 24 (44) −6 (111) −6 (106) −8 (66) −3 (29)

Imputed 71 (93)** 31 (132)* 8 (121) −7 (79) −6 (39)

R
2

ML

Original 28 (48) 4 (110) −1 (104) −6 (65) −3 (29)

Imputed 77 (95)** 40 (131)* 13 (119) −6 (78) −6 (39)

500
R
2

E

Original 0 (6) 0 (32) −1 (33) −1 (19) −1 (9)

Imputed 5 (9)** 3 (36) 0 (36) −1 (23) −1 (10)

R
2

S

Original 0 (6) 0 (32) −1 (33) −1 (19) −1 (9)

Imputed 5 (9)** 3 (36) 0 (36) −1 (23) −1 (10)

R
2

OP

Original 0 (6) 1 (32) 0 (33) 0 (19) 0 (9)

Imputed 5 (9)** 3 (36) 1 (36) 0 (22) 0 (10)

R
2

OP5

Original 0 (6) 1 (32) 0 (33) 0 (19) 0 (9)

Imputed 5 (9)** 3 (36) 1 (36) 0 (22) 0 (10)

R
2

P

Original 0 (6) 1 (32) 0 (33) 0 (19) 0 (9)

Imputed 5 (9)** 3 (36) 1 (36) 0 (22) 0 (10)

R
2

OP2

Original 0 (6) 1 (32) 0 (33) 0 (19) 0 (9)

Imputed 5 (9)** 3 (36) 1 (36) 0 (22) 0 (10)

R
2

OP1

Original 0 (6) 1 (32) 0 (33) 0 (19) 0 (9)

Imputed 5 (9)** 3 (36) 1 (36) 0 (22) 0 (10)

R
2

E+
Original 2 (4) 0 (32) −1 (33) −1 (19) −1 (9)

Imputed 6 (9)** 3 (36) 0 (36) −1 (23) −1 (10)

R
2

S+
Original 2 (4) 0 (32) −1 (33) −1 (19) −1 (9)

Imputed 6 (9)** 3 (36) 0 (36) −1 (23) −1 (10)

R
2

ML

Original 2 (5) 1 (32) −1 (33) −1 (19) −1 (9)

Imputed 7 (9)** 4 (36) 0 (36) −1 (23) −1 (10)

*.2 ≤ ||d || < .5. **.5 ≤ ||d || < .8.
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18  |      van GINKEL and KARCH

Because this trend was seen for all estimators of �2 and for both combination strategies, this finding has 
no consequences for general advice on which combination strategy or estimator to use. It is, however, 
important to keep in mind that for low sample sizes and many predictors, on average more bias is to be 
expected when data are incomplete and handled using MI.

4.2  |  Additional bias introduced by multiple imputation

Regardless of the combination strategy and the estimator, MI generally introduced bias additional to the 
intrinsic bias of the estimator (if there was any). Especially for the (approximately) unbiased Olkin–Pratt 
estimators, this bias seems remarkable at first. To see whether this bias can be explained we must look 
at a necessary condition for an MI procedure to lead to unbiased results.

One necessary condition for an MI procedure to lead to unbiased results is that the procedure is 
proper (Rubin, 1987). Although we will not get into the technical details of what defines a proper MI 
method, one important property that is implied by its definition is that the statistic of interest has a 
normal sampling distribution in the case of complete data (e.g., Schafer, 1997, pp. 108–109). This is not 
the case for any of the estimators of �2, including the Olkin–Pratt estimators (see, for example, Olkin 
& Pratt, 1958). This might explain why MI introduces bias into the estimators, including those that are 
assumed to be (approximately) unbiased in complete data. It is, however, not clear in exactly what way 
this violation of the assumption causes bias in the estimators. According to Schafer (1997, p. 145), it is 
extremely difficult to determine whether an imputation method is proper, except in some trivial cases. 
Considering the fact that in complete data R2 is intrinsically biased, and that most of the estimators in 
the current paper are complex functions of R2, the situations studied in the current paper will almost 
certainly not qualify as trivial cases.

4.3  |  Standardisation before pooling is preferred over averaging

A second conclusion we can draw from this study is that on average, the bias of the standardisation-
before-pooling combination strategy was smaller than the bias of the averaging combination strat-
egy. This smaller average bias was largely caused by the fact that for low values of �2 averaging 
produced a substantially larger positive bias than standardisation before pooling. For high values of 
�2 the biases of both combination strategies were much closer together, and in fact averaging gen-
erally had smaller bias than standardisation before pooling. However, differences in bias between 
both combination strategies for high values of �2 were so small that for practical purposes one may 
gain little by switching from standardisation before pooling to averaging when a high �2 is to be 
expected. Besides, values of �2 of .75 and .9 are extremely rare in social sciences. Thus, although 
there may be situations in which averaging is slightly preferred over standardisation before pooling, 
from a practical point of view we recommend using standardisation before pooling as a combination 
strategy at all times.

4.4  |  Bias of the estimators

The Ezekiel estimator turned out to be the estimator with the smallest bias, on average. As expected, 
R
2 had the most bias. Ten out of the 20 estimators studied had a bias with an average Cohen's d greater 

than .20. Of these estimators, seven were positive-part estimators. This leads to the conclusion that in 
general, positive-part estimators produce more bias than non-positive-part estimators, which is in line 
with results based on complete data (Karch, 2020; Shieh, 2008).

However, when in practice negative values of an estimator of �2 are found, it does not make sense 
to interpret this negative estimate, since a negative �2 is not possible. This raises the question whether 
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       |  19EXPLAINED VARIANCE IN MULTIPLY IMPUTED DATA SETS

unbiased estimators of �2 should be striven for in the first place, because in order for them to be un-
biased, estimates occasionally need to be negative. A lot can be said about the usefulness of unbiased 
estimators of �2 (see, for example, Karch, 2020). However, it was not the goal of the current study to 
start a discussion on this. The goal of the current study was to propose and investigate MI variants of 
various estimators for �2. Given that a researcher finds the reporting of an unbiased or less biased esti-
mator of �2 useful for his/her purposes, we now have more insight into how the specific estimator will 
be affected by the treatment of missing data using MI.

4.5  |  No substantial effect of missingness mechanism

The MAR results were not discussed in Section 3, but they can be found in the Appendix. Although 
effect sizes found under MAR are on average smaller than for MCAR, the conclusions remain largely 
the same. The standardisation before pooling estimators produce substantially less bias than estimators 
based on averaging, and the Ezekiel estimator is the least biased on average.

4.6  |  General conclusions and future research

To summarise, although MI may introduce some bias into each estimator, when using standardisa-
tion before pooling as a combination strategy rather than averaging, the bias remains relatively 
small. Furthermore, the Ezekiel estimator based on standardisation before pooling (R̂

2

E,SP
) generally 

produced the smallest bias. Thus, if the goal is to obtain an estimator for �2 in multiply imputed data 
with minimal bias, then R̂

2

E,SP
 is the preferred estimator. However, if the user has a different goal 

when reporting an estimator for �2 in multiply imputed data (e.g., providing one that cannot be nega-
tive), then it is mostly up to the user to decide which estimator for �2 to use. However, having de-
cided which estimator to use, the recommended way to get to a pooled version of this estimator in 
multiply imputed data is to calculate R̂

2

SP
 and insert this estimator into the function of the specific 

estimator for �2.
Finally, in this paper we only focused on missingness mechanisms MCAR and MAR. The reason 

for only studying MCAR and MAR was that we wanted to study the statistical properties of the 
pooled estimators of �2 without the interference of additional bias due to missingness mechanisms 
that were MNAR. Future research could focus on more MAR mechanisms, and possibly MNAR 
mechanisms, to see whether the results of this study may be generalized to other missingness mech-
anisms as well.
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A PPEN DI X 
In addition to the results discussed in Section 3, results were also generated under MAR. MAR was 
simulated in the following way. First, an N ×

(
p + 1

)
 matrix A with uniform random numbers ranging 

from 0 to 1 was generated. Next, the matrix W =

[
0
N
,X

1
1
�

p

−

(
min

(
X
1

)
− .01

)
×1

N
1
�

p

]
 was computed. 

Suppose c is the percentage of missing data. Then to simulate MAR, the c ×N × p highest entries in 
matrix WA were removed in matrix [X ,Y ]. In this way, X

1
 was always observed, and the probability of 

missing data on the other variables increased as the values on X
1
 increased. This way of simulating MAR 

is in accordance with Van Ginkel (2020).
The same results displayed in Table 1 for MCAR, are displayed in Table A1 but now for MAR. As can 

be seen, the order of the methods regarding effect size is the same as in Table 1, except for the fact that 
R
2

W
 is substantially less biased than in Table 1. However, R2

W
 is still more biased on average than the 10 

least biased methods in Table 1.
The estimators in Table A1 that were printed in bold were subjected to an ANOVA with the same 

factors as the ANOVA in the MCAR situation (note that in this ANOVA more estimators were included 
than for MCAR). Inspecting the effect sizes of this ANOVA (see Table A2) revealed that fewer effects 
met the criterion of partial η2 > .13 than for MCAR, but those that did also met this criterion under 
MCAR (see Table 2). Consequently, it would not be very informative to show the results from Tables 3 
and 4 for MAR, as this would largely show the same pattern.

T A B L E  A 1   Cohen's d of the bias, and bias of each estimator of ρ2, averaged across all design cells, in ascending order 
with respect to the value of d for bias, for missingness mechanism MAR.

Estimator

Average Cohen's d 
of the bias across 
design cells

Average bias across 
design cells × 103

Average Cohen's d 
of the MSE across 
design cells

Average MSE across 
design cells × 103

R
2

E

.048 3.41 .165 3.70

R
2

S

.052 3.71 .167 3.70

R
2

OP

.094 6.05 .152 3.78

R
2

OP5

.094 6.05 .152 3.78

R
2

P

.094 6.02 .153 3.77

R
2

OP2

.094 6.07 .153 3.78

R
2

OP1

.100 6.37 .158 3.78

R
2

E+
.120 4.76 .194 3.65

R
2

S+
.124 5.01 .195 3.66

R
2

ML

.153 7.05 .235 3.70

R
2

W

.162 8.42 .227 3.78

R
2

P+
.166 7.40 .185 3.73

R
2

OP+
.166 7.44 .185 3.73

R
2

OP5+
.166 7.44 .185 3.73

R
2

OP2+
.167 7.45 .185 3.73

R
2

OP1+
.169 7.66 .187 3.73

R
2

W+
.198 9.03 .239 3.77

R
2

C

.206 10.91 .209 3.89

R
2

C+
.242 11.55 .222 3.87

R
2 .470 22.44 –

Note: Rows with effect sizes for bias with ||d || < .20 are printed in bold.
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T A B L E  A 2   Effect sizes of the ANOVA with bias as the dependent variable of the large effects (partial η2 > .13) 
according to Cohen (1988) under missingness mechanism MAR.

Effect Partial η2

Method .470

Method × n .452

Method × ρ2 .241

Method × p .324

Method × Percent .163

Method × n × ρ2 .217

Method × n × p .286

Method × n × Percent .177

Method × ρ2 × p .134

Method × p × Percent .152

Method × n × p × Percent .149

Estimator .270

Estimator × n .187

Estimator × ρ2 .325

Estimator × n × ρ2 .210
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