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In brief

High-levelMET amplification (METamp) is

a primary driver in �1%–2% of non-small

cell lung cancers (NSCLCs). Le et al.

report that tepotinib provides antitumor

activity in patients with high-level

METamp NSCLC in VISION trial Cohort B.

Tepotinib is a promising option for these

patients, who urgently require new

treatments.
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SUMMARY
High-level MET amplification (METamp) is a primary driver in �1%–2% of non-small cell lung cancers
(NSCLCs). Cohort B of the phase 2 VISION trial evaluates tepotinib, an oral MET inhibitor, in patients with
advanced NSCLC with high-level METamp who were enrolled by liquid biopsy. While the study was halted
before the enrollment of the planned 60 patients, the results of 24 enrolled patients are presented here.
The objective response rate (ORR) is 41.7% (95% confidence interval [CI], 22.1–63.4), and the median dura-
tion of response is 14.3 months (95% CI, 2.8–not estimable). In exploratory biomarker analyses, focal
METamp,RB1wild-type,MYC diploidy, low circulating tumor DNA (ctDNA) burden at baseline, and early mo-
lecular response are associated with better outcomes. Adverse events include edema (composite term; any
grade: 58.3%; grade 3: 12.5%) and constipation (any grade: 41.7%; grade 3: 4.2%). Tepotinib provides anti-
tumor activity in high-level METamp NSCLC (ClinicalTrials.gov: NCT02864992).
Cell Reports Medicine 4, 101280, November 21, 2023 ª 2023 The Authors. 1
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION

In non-small cell lung cancers (NSCLCs), up to 5% of the tumors

harbor MET amplification.1–3 Depending on the methods and

cutoff values used, high-level MET amplification can be defined

as aMET:CEP7 ratioR2.0 orR2.2, or as aMET gene copy num-

ber (GCN) R6 or R10, as identified by fluorescence in situ hy-

bridization (FISH) or next-generation sequencing (NGS) on tissue

biopsies.4–8 Studies have shown that the stringent criterion of

MET GCN R10 on tissue biopsy selects �1%–2% of NSCLCs,

which rarely harbor other oncogenic drivers.6–9 Furthermore,

treatment with anti-MET therapies in those patients with high-

level MET amplification NSCLC induced clinical response,10

indicating that high-level MET amplification is a primary onco-

genic driver for these NSCLCs.1–3

MET amplification is an independent poor prognostic

factor,6,11–14 which defines an aggressive, treatment-resistant

malignancy with a very short median overall survival (OS) of

4 months6,9 Despite expression (R1%) of programmed

death-ligand 1 (PD-L1) in 85% of lung adenocarcinomas with

MET amplification,15 outcomes with immunotherapies are

poor.9,16,17 Therefore, patients with high-levelMET amplification

NSCLC have an unmet need for better treatment options.

Although no targeted therapy is approved specifically for met-

astatic NSCLC with high-level MET amplification, MET tyrosine

kinase inhibitors (TKIs) have demonstrated promising effi-

cacy3,10,18 and are recommended in the NCCN Clinical Practice

Guidelines in Oncology (NCCN Guidelines).19 Tepotinib, a highly

selective and potentMET TKI,20 is approved inmultiple countries

for treatment of MET exon 14 (METex14) skipping NSCLC21

based on the clinical activity demonstrated in the phase 2

VISION trial.22,23 In preclinical models of NSCLCwithMET ampli-

fication, tepotinib induced complete regression of cell-line- and

patient-derived xenografts, including after orthotopic implanta-

tion in the brain.24,25 In addition, antitumor activity has also

been observed with tepotinib plus gefitinib or osimertinib in pa-

tients with epidermal growth factor receptor (EGFR)-mutant

NSCLC and MET amplification.26–28

Cohort B of the phase 2 VISION trial evaluated tepotinib in pa-

tients with advanced NSCLC with high-level MET amplification

as detected by a liquid biopsy assay. The MET GCN cutoff in

liquid biopsy was chosen to be R2.5, which selects �1.5%–

2% of NSCLCs, corresponding to the same fraction of patients

with high-level MET amplification identified using a MET GCN

cutoff of R10 in tissue biopsies.8,9,29 Tumors with EGFR, ALK,

or METex14 skipping oncogenic alterations were excluded,

further ensuring the enrollment of a population with MET ampli-

fication as the primary driver. Clinical efficacy, safety, and

exploratory biomarker analyses were performed.

RESULTS

Patients
Among all patients prescreened using the Guardant360 liquid bi-

opsy assay (Guardant Health, Redwood City, CA, USA) for mo-

lecular eligibility, 70/3,205 (2.2%) (with evaluable test results)

were positive for high-level MET amplification and negative for

METex14 skipping (Figure S1). Baseline tissue samples were
2 Cell Reports Medicine 4, 101280, November 21, 2023
not mandatory and were only available in six patients, of which

four indicated the absence of METex14 skipping alteration and

two were not evaluable. Thirty-two patients were further

screened for enrollment, and 24 were treated between

September 2018 and January 2020.

The median age was 63.4 years (Table 1). Most patients were

male (87.5%), current/former smokers (87.5%), and had Eastern

Cooperative Oncology Group performance status (ECOG PS) 1

(87.5%). Tepotinib was administered as first-, second-, and

third-line treatment in seven (29.2%), 11 (45.8%), and six

(25.0%) patients, respectively. Ten patients (41.7%) had prior

immunotherapy, with a best response of partial response (PR)

in only one patient (10.0%).

The study was halted early before the enrollment of the

planned number of 60 patients because of the high rate of early

progression (during the first 3 months of tepotinib treatment) in

eight out of the 24 enrolled patients. These early progressions

likely reflected the patients’ poor prognosis and the aggressive

nature of the disease. However, the halting of the study was to

allow for the full analysis of the 24 patients to best identify those

patients whowere potentially most likely to benefit from tepotinib

and to minimize risks.

Efficacy in the overall population
Objective response rate (ORR) by independent review commit-

tee (IRC) was 41.7% (95% confidence interval [CI], 22.1–63.4),

and the clinical benefit rate (CBR; defined as complete response

[CR] + PR + stable disease [SD]) was 45.8% (95% CI, 25.6–67.2)

(Table 2). The best overall response by IRCwasCR in one patient

(4.2%), PR in nine patients (37.5%), SD in one patient (4.2%), and

progressive disease (PD) in five patients (20.8%). Of eight pa-

tients (33.3%) with a best response of not evaluable (NE), four

discontinued before the response was confirmed due to investi-

gator-assessed PD, three discontinued due to unrelated adverse

events (AEs), and one discontinued due to consent withdrawal.

Tumor shrinkage was attained in 16 patients (66.7%;

Figures 1A and 1B). Responses were rapid: median time to

response was 1.4 months (range, 1.3–11.1), and 7/10 responses

occurred by the first assessment.

Median follow-up was 26.8 months (95% CI, 20.4–not esti-

mable [ne]).Median duration of response (DOR)was 14.3months

(95% CI, 2.8–ne) (Figure 2A), and median progression-free sur-

vival (PFS) was 4.2 months (95% CI, 1.4–15.6). PFS events

were recorded for 14 patients (58.3%), of whom nine (37.5%)

had early progression/death during the first 3 months. At the

data cutoff, 18 patients (75.0%) had died, and median OS was

7.5 months (95% CI, 4.0–15.6) (Figure S2A).

Median duration of tepotinib treatment was 3.6months (range,

0.1–26.8). Treatment duration was R12 months in five patients

(20.8%) and R24 months in two patients (8.3%), both of whom

had treatment ongoing at the data cutoff (August 20, 2021;

Figure S3). One of these patients is still receiving tepotinib as

of June 2023. The other patient discontinued tepotinib due to

edema, after which the edema resolved, and the patient’s tumor

continues to respond, without additional treatment. Six patients

(25.0%) received post-study anticancer therapy, including

chemotherapy (n = 6; 25.0%) and immunotherapy (n = 3;

12.5%), specifically chemotherapy (carboplatin, cisplatin,



Table 1. Baseline characteristics

Characteristic Overall (n = 24)

By line of therapy

First line (n = 7) Second line (n = 11) Third line (n = 6)

Male, n (%) 21 (87.5) 7 (100.0) 10 (90.9) 4 (66.7)

Median age, years (range) 63.4 (38–73) 66.8 (59–71) 60.5 (38–73) 64.2 (61–70)

Race, n (%)

White 17 (70.8) 5 (71.4) 7 (63.6) 5 (83.3)

Asian 7 (29.2) 2 (28.6) 4 (36.4) 1 (16.7)

Current/former smoker, n (%) 21 (87.5) 6 (85.7) 10 (90.9) 5 (83.3)

ECOG PS, n (%)

0 3 (12.5) 1 (14.3) 2 (18.2) 0 (0)

1 21 (87.5) 6 (85.7) 9 (81.8) 6 (100)

Median tumor load of target lesionsa

(IRC), mm (range)

95.6 (26.9–231.9) 55.0 (26.9–168.8) 99.6 (66.5–231.9) 102.1 (31.4–160.3)

Histology, n (%)

Adenocarcinoma 16 (66.7) 6 (85.7) 7 (63.6) 3 (50.0)

NOSb 4 (16.7) 1 (14.3) 3 (27.3) 0 (0)

Neuroendocrine carcinomac 3 (12.5) 0 (0) 1 (9.1) 2 (33.3)

Squamous cell carcinoma 1 (4.2) 0 (0) 0 (0) 1 (16.7)

Median time since initial diagnosis,

months (range)

5.5 (0.1–62.6) 0.8 (0.1–7.1) 6.2 (0.2–62.6) 8.3 (1.0–29.4)

Brain metastases at baseline, n (%)d 2 (8.3) 0 (0) 2 (18.2) 0 (0)

MET GCN, median (range) 2.9 (2.5–26.9) 3.6 (2.5–10.2) 2.8 (2.5–26.9) 2.9 (2.5–4.0)

ECOG PS, Eastern Cooperative Oncology Group performance status; GCN, gene copy number; IRC, independent review committee; NOS, not other-

wise specified; NSCLC, non-small cell lung cancer.
aSum of longest diameters for non-nodal lesions and short axes for nodal lesions.
bComprising NOS (n = 2), NSCLC (n = 1), and non-squamous NSCLC (n = 1).
cComprising large-cell neuroendocrine carcinoma (n = 2) and carcinoma with neuroendocrine morphology (n = 1).
dBrain metastases were non-target lesions.
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docetaxel, paclitaxel, pemetrexed, or tegafur), immunotherapy

(atezolizumab, nivolumab, pembrolizumab), and antiangiogenic

therapy (ramucirumab, bevacizumab).

Efficacy according to therapy line
Patients treated with tepotinib in the first-line setting attained an

ORR by IRC of 71.4% (5/7 patients; 95%CI, 29.0–96.3; Table 2),

a median (95% CI) DOR of 14.3 months (2.8–ne; Figure 2B), and

a median (95% CI) OS of 14.3 months (4.0–ne; Figure 1C). In

second and third lines, respectively, the ORRs were 27.3% (3/

11 patients; 95% CI, 6.0–61.0) and 33.3% (2/6 patients; 95%

CI, 4.3–77.7), the median DOR was not estimable due to the

low number of patients (events recorded in 0/3 and 1/2 patients),

and themedianOSs (95%CI) were 7.5 (1.9–24.0) and 2.6months

(0.6–ne; Figure 1C).

Safety
Treatment-emergent AEs (TEAEs; Table 3) were reported at any

grade in 23 patients (95.8%), with gradeR3 in 16 (66.7%). Treat-

ment-related AEs (TRAEs) were reported in 17 (70.8%) patients,

with grade R3 in seven (29.2%). TEAEs led to dose reduction in

five patients (20.8%), treatment interruption in 12 patients

(50.0%), and permanent discontinuation in five patients

(20.8%; none were TR; Table S1). Serious TEAEs were reported

in 13 patients (54.2%; TR, n = 2 [8.3%]) (Table S1). Seven pa-
tients had fatal TEAEs, including disease progression recorded

as an AE (n = 3, 12.5%) and respiratory failure (n = 2; 8.3%),

none of which were TR.

HRQoL
Health-related quality of life (HRQoL) was evaluated using the

European Organisation for Research and Treatment of Cancer

Quality of Life Questionnaire Core-30 and Lung Cancer-13

(EORTC QLQ-C30 and QLQ-LC13) and EuroQol 5-dimension

5-level (EQ-5D-5L) questionnaires, which had high completion

rates (Table S2). EQ-5D-5L visual analog scale and EORTC

QLQ-C30 global health scores showed stability of overall HRQoL

(Figures S4A and S4B; Table S3). EORTC QLQ-LC13 symptom

scores indicated early improvement in chest pain and stability

of dyspnea and cough (Figure S4C).

Exploratory analysis of clinical characteristics
associated with clinical benefit
Exploratory analyses were conducted to identify baseline char-

acteristics (Figure S5) and biomarkers (Figure 3; Table 4) associ-

ated with clinical benefit.

Eleven patients had clinical benefit, as defined by best overall

response by IRC of SD or better (i.e., CR + PR + SD). These pa-

tients attained a median OS of 24.0 months (95% CI, 8.3–ne)

(Figure S2B) and clinically meaningful chest pain improvement
Cell Reports Medicine 4, 101280, November 21, 2023 3



Table 2. Efficacy outcomes in the overall population and according to line of therapy

Outcomea Overall (n = 24)

By line of therapy

First line (n = 7) Second line (n = 11) Third line (n = 6)

Best overall response rate, n (%) – – – –

CR 1 (4.2) 1 (14.3) 0 (0) 0 (0)

PR 9 (37.5) 4 (57.1) 3 (27.3) 2 (33.3)

SD 1 (4.2) 0 (0) 1 (9.1) 0 (0)

PD 5 (20.8) 1 (14.3) 3 (27.3) 1 (16.7)

NE 8 (33.3) 1 (14.3) 4 (36.4) 3 (50.0)

ORR, n (%) [95% CI] 10 (41.7) [22.1–63.4] 5 (71.4) [29.0–96.3] 3 (27.3) [6.0–61.0] 2 (33.3) [4.3–77.7]

CBR, n (%) [95% CI] 11 (45.8) [25.6–67.2] 5 (71.4) [29.0–96.3] 4 (36.4) [10.9–69.2] 2 (33.3) [4.3–77.7]

DOR, median (95% CI), months 14.3 (2.8–ne) 14.3 (2.8–ne) ne (ne–ne) ne (3.2–ne)

OS, median (95% CI), months 7.5 (4.0–15.6) 14.3 (4.0–ne) 7.5 (1.9–24.0) 2.6 (0.6–ne)

CBR, clinical benefit rate; CI, confidence interval; CR, complete response; DOR, duration of response; IRC, independent review committee; ne, not

estimable; NE, not evaluable; ORR, objective response rate; OS, overall survival; PD, progressive disease; PR, partial response; SD, stable disease.
aBest overall response, ORR, CBR, and DOR are per IRC assessment.
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(Table S3). Clinical benefit was reported in 52.4% (11/21) of male

patients, 50% (7/14) of younger patients (<65 years), 57.1% (4/7)

of Asian patients, and 62.5% (10/16) of patients with adenocar-

cinoma (Figure S5). The median tumor load (defined as the sum

of lesion diameters by IRC) in the overall population was 95.6mm

(Table 1) but was numerically lower in patients with clinical

benefit than patients without clinical benefit (91.6 versus

103.7 mm) (Figure 3).

Exploratory biomarker analyses
In this trial, circulating tumor DNA (ctDNA) was collected at

baseline, week 6, and end of treatment and analyzed using the

Guardant360 assay. We evaluated associations between clinical

outcomesandbaselinebiomarkers andon-treatment earlymolec-

ular response, along with potential resistancemechanisms. Base-

line biomarker profiles, including co-occurring mutations and

co-amplified genes, were available for all patients (Figure 3). Five

patients had other MET mutations (G1144A, G1280R, Q1067fs,

D414_R417delinsG, and N680H), none of which were known to

cause oncogenic MET activation or resistance to MET inhibitors.

Focal MET amplification was defined by a co-amplification %1

of three other chromosome 7 genes (EGFR, BRAF, and CDK6). A

total of 14 patients (58.3%) had focal MET amplification, which

waspotentially associatedwith betterORRandOS than non-focal

MET amplification (Figure 3; Table 4). Analysis comparing the fre-

quency of baseline biomarker alterations between patients with or

without benefit from tepotinib also identifiedRB1 andMYC as bio-

markers, although patient numbers are small (Figure S6). Out-

comes were better in patients with RB1 wild-type (n = 19) versus

mutant (n = 5) status and in patients with MYC diploidy (n = 18)

versus amplification (n = 6) (Table 4).

Median baseline ctDNA burden, defined by the maximum

baseline variant allele fraction of any cancer-specific alteration,

was 10.7% (interquartile range [IQR], 7.5–26.0). Low ctDNA

burden (whether defined as %median or %third quartile [Q3])
4 Cell Reports Medicine 4, 101280, November 21, 2023
was associated with greater efficacy (Table 4). Due to the sample

size, statistical significance was not assessed for ORR or OS for

the biomarker subset analysis.

Eighteen patients had matched baseline and on-treatment

samples, of whom 14 (77.8%) attained an early molecular

response, as defined by undetectable MET amplification 6–

8 weeks after tepotinib first dose. Patients with early molecular

response had a high clinical response rate (ORR, 71.4% [5/7]),

whereas those with MET amplification persistence in ctDNA at

6–8 weeks showed a lack of clinical response. Of nine patients

with available end-of-treatment biomarker profiles, two

(22.2%) showed emergence of MET kinase domain mutations

(D1228H/N/Y, Y1230C/H, and D1231N in one patient, and

D1213N, D1228N/H, and Y1230H in the other). Both patients at-

tained PR, with PFS >4 months, and showed re-emergence of

MET amplification at the end of treatment.

DISCUSSION

In this study, tepotinib provided antitumor activity in patients with

NSCLC with high-level MET amplification detected by liquid bi-

opsy: ORR was 41.7%, CBR was 45.8%, and median DOR

was 14.3 months. The Cohort B data provided further evidence

to support that high-level MET amplification is an actionable

driver in NSCLC. Tepotinib safety was manageable, with mostly

mild/moderate AEs and no discontinuations due to TRAEs, and

consistent with that seen in patients with METex14 skip-

ping,22,23,30 with no new safety signals.

Eight patients with high-level MET amplification NSCLC had

rapid progression, underlying that it is an independent poor

prognostic factor. The planned sample size for Cohort B of the

VISION trial was 60 patients. However, Cohort Bwas halted early

due to the high rate of early progression in these eight patients,

leading to the early stopping of enrollment at 24 patients. In

Cohort B, 13 molecularly eligible patients had clinical
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Figure 1. Objective response and OS by IRC

(A) Waterfall plot showing percent change in sum of

longest diameters between baseline and best post-

baseline assessment in the overall population. La-

bels indicate BOR. Three patients were excluded

due to lack of post-baseline assessments, and five

patients had a BOR of NE due to treatment

discontinuation before response was confirmed.

(B) Spider plot showing percentage of change in

sum of longest diameters at each assessment in the

overall population. Solid lines connect on-treatment

assessments; dotted lines connect the last

on-treatment assessment, with the cross indicating

treatment discontinuation as well as any post-

treatment assessments. Three patients were

excluded due to lack of post-baseline assessments.

(C) Kaplan-Meier plot of OS according to line of

therapy.

BOR, best overall response; CI, confidence interval;

CR, complete response; IRC, independent review

committee; ne, not estimable; NE, not evaluable;

OS, overall survival; PD, progressive disease; PR,

partial response; SD, stable disease.
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deterioration that prevented enrollment (Figure S1), and 8 of the

24 enrolled patients discontinued treatment due to PD during the

first 3months of treatment. This high rate of early progression led

to the decision of halting enrollment at N = 24 for full analysis to

identify patients who can potentially derive the most benefit from

tepotinib. This early progression observation is most likely re-

flecting the underlying aggressive nature of MET amplification

NSCLC, as similar results were reported in crizotinib and capma-

tinib studies.3,10 Our liquid biopsy ctDNA and tumor load ana-
Cell Report
lyses confirmed that VISION Cohort B pa-

tients (MET amplification) had poorer

baseline prognostic factors than VISION

Cohort A and C patients (METex14 skip-

ping, ctDNA cohort only), with higher me-

dian tumor load (95.6 versus 68.0 mm)

and greater prevalence of ECOG PS 1

(88% versus 76%).31 Tumor load and

ctDNA burden were also higher relative to

other advanced lung cancer studies.32–34

Lower tumor load and ctDNA burden

were associated with better outcomes.

Due to the poor prognosis of patients with

this disease, it is important that an effective

treatment is given in the first-line setting. In

VISION Cohort B, efficacy appeared most

pronounced in the first-line setting, with a

notably high ORR of 71.4% (5/7) and a

long median DOR (14.3 months). The pre-

sent analysis further supports the National

Comprehensive Cancer Network (NCCN)

recommendation of tepotinib as a treat-

ment option for patients with high-level

MET amplification metastatic NSCLC,19

which was based on the analysis of this

cohort.35
The VISION Cohort B was enrolled solely based on liquid bi-

opsy for detecting MET amplification. As the copy number gain

of MET gene is a continuous variable, the choice of cutoff is

particularly important to identify the appropriate patient popula-

tion most likely to respond to a MET inhibitor. Using liquid bi-

opsies with a MET GCN R2.5, high-level MET amplification

was detected in 2.2% (70/3,205) of the patients with NSCLC

who were prescreened for VISION Cohort B. This finding corre-

sponds to the reported high-levelMET amplification occurrence
s Medicine 4, 101280, November 21, 2023 5
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Figure 2. DOR by independent review committee

(A and B) Kaplan-Meier plots showing DOR in the overall population (A) and

DOR according to line of therapy (B). CI, confidence interval; DOR, duration of

response; ne, not estimable.
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of �1%–2% of NSCLCs using tissue biopsies with a MET GCN

R10.7,9 In VISION Cohort B, tepotinib was an effective treat-

ment, which further supports our current knowledge that high-

level MET amplification is an actionable driver in NSCLC and

that those tumors respond to a MET inhibitor.

It has been widely accepted that liquid biopsy is more conve-

nient and less invasive compared with tissue biopsy and that it

enables molecular testing even when tumor tissue is unavai-

lable.36 Considering quick laboratory turnaround (median of

10 days in the VISION trial)22 alongside simple operational re-

quirements for sample collection, liquid biopsy enables timely

initiation of targeted therapy for this aggressive subtype. Further-
6 Cell Reports Medicine 4, 101280, November 21, 2023
more, liquid biopsy also allows longitudinal monitoring of molec-

ular response. We observed association between early molecu-

lar response and clinical response, which adds to the growing

evidence supporting a role for liquid biopsy in serial monitoring

of response and resistance, with a view toward refining the ther-

apeutic approach to improve outcomes.37

While liquid biopsies have many merits for clinical practice,

they also present several challenges. Different thresholds

were applied in tissue- as well as liquid-biopsy-based assays

for claiming the presence of MET amplification. With the Guar-

dant360 assay, MET plasma GCNs as low as 2.2 were applied

to define MET amplification.38 In VISION Cohort B, a MET GCN

cutoff of R2.5 was used to be stringent and to select patients

with NSCLC with a high likelihood of deriving benefit from MET

inhibition. These differences in defining MET amplification need

to be considered when interpreting data from different studies

and applying the findings to clinical practice. Second, the

detection of cancer-specific alterations in liquid biopsies is

less sensitive compared with tissue-based testing.39 This is

also true for MET amplification detection rate by ctDNA versus

tissue samples, screened in the TATTON, SAVANNAH,

ORCHARD, and INSIGHT 2 studies.40–43 The positive percent-

age agreement (PPA) of MET amplification detection

between tissue and liquid biopsy can vary between 23%

and 67% depending on factors such as methods used and

the quality of the sample,41–45 and tissue biopsy should be

considered after a negative liquid biopsy result for detecting

missed alterations.43–46 Third, liquid biopsy positivity requires

adequate ctDNA shedding, which is usually associated with

larger tumor burden.47 In particular, detection of gene amplifi-

cation is dependent on a high ctDNA fraction in circulation.48,49

Therefore, ctDNA-based analysis may select a poorer

prognostic group of patients compared with tissue-based

screening. This is supported by the associations of higher

ctDNA burden with poorer outcomes and/or tumor load in our

trial as well as studies in other oncogene-driven sub-

types.31,50–52 Nonetheless, the use of liquid biopsies offers ad-

vantages over tissue biopsies in terms of convenience, acces-

sibility, and being less invasive.53,54 VISION Cohort B

confirmed that liquid biopsy can identify NSCLC with high-level

MET amplification and that those patients could benefit from

MET-targeted therapy.

The ORR and DORwith tepotinib compare favorably with data

from crizotinib and capmatinib trials in NSCLC with high-level

MET amplification by FISH.3,10 In PROFILE-1001, crizotinib pro-

vided an ORR of 38.1% and a median DOR of 5.2 months in 21

patients with aMET:CEP7 ratioR4.0, of whom three were treat-

ment naive.3 In patients with MET GCN R10 in the GEOMETRY

mono-1 trial of capmatinib, ORRwas 40% in first line (n = 15) with

amedian DORof 7.5months, and in second or later lines (n = 69),

the ORRwas 29%with amedian DORof 8.3months10 Tepotinib,

crizotinib, and capmatinib have all consistently demonstrated

benefit for this population and are recommended treatment

options for high-level MET amplification metastatic NSCLC in

NCCN Guidelines.19

With the observation that some patients progressed early and

rapidly, but some other patients sustained benefit from tepotinib,

we performed exploratory analyses integrating both a tumor’s



Table 3. TEAEs reported at any grade in R10% of patients,

irrespective of causality

TEAE

Patients, n (%) (n = 24)

All grades Grade 3a

Edema (composite term) 14 (58.3) 3 (12.5)

Peripheral edema 12 (50.0) 2 (8.3)

Generalized edema 5 (20.8) 2 (8.3)

Edema (preferred term) 5 (20.8) 1 (4.2)

Constipation 10 (41.7) 1 (4.2)

Dyspnea 7 (29.2) 1 (4.2)

Asthenia 5 (20.8) 1 (4.2)

Blood creatinine increased 5 (20.8) 0 (0)

Diarrhea 5 (20.8) 0 (0)

Hypoalbuminemia 5 (20.8) 2 (8.3)

Nausea 4 (16.7) 1 (4.2)

Abdominal pain 3 (12.5) 1 (4.2)

Alanine aminotransferase

increased

3 (12.5) 1 (4.2)

Anemia 3 (12.5) 1 (4.2)

Aspartate aminotransferase

increased

3 (12.5) 0 (0)

Cough 3 (12.5) 0 (0)

Disease progression 3 (12.5) 0 (0)

Hypoproteinemia 3 (12.5) 0 (0)

Pneumonia 3 (12.5) 1 (4.2)

Productive cough 3 (12.5) 0 (0)

Pyrexia 3 (12.5) 0 (0)

Vomiting 3 (12.5) 0 (0)

TEAE, treatment-emergent adverse event.
aFor the events shown, there were no grade 4 TEAEs, and the only grade

5 TEAEs were disease progression (n = 3; 12.5%) and pneumonia (n = 1;

4.2%), which were unrelated to treatment.
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clinical characteristics and biomarkers. While patient numbers

are small, we observed that baseline MYC diploidy and RB1

wild-type status were associated with better outcomes with te-

potinib, which is consistent with the function of MYC and RB1

as signal transducers downstream of MET.55 Prior studies

have implicated MYC alterations in primary or acquired resis-

tance to other MET inhibitors.56–59 Interestingly, RB1 loss and

MYC copy number gain were also negative clinical predictors

for EGFR-mutant NSCLC, both in the adjuvant setting59 and in

the metastatic resistant setting with an association of transfor-

mation to small cell lung cancer.60–62 Acquired MET kinase

domain mutations identified in two patients at the end of treat-

ment are known type 1 MET-inhibitor-resistance mechanisms63

and are reported here for the first time as resistancemechanisms

in MET amplification NSCLC with MET TKI treatment.

In conclusion, tepotinib demonstrated antitumor activity in

NSCLC with high-level MET amplification. Tepotinib is a prom-

ising option for patients with high-level MET amplification as a

primary driver who have exceptionally poor outcomes with cur-

rent standard-of-care therapies6 and urgently require new

treatments.
Limitations of the study
Study limitations include the halt of enrollment to investigate pre-

dictors of tepotinib benefit (which limited the sample size) and

lack of histology selection. Furthermore, exploratory biomarker

analyses were limited to ctDNA and did not include tumor tissue

assessments. Nonetheless, the analyses presented herein pro-

vide valuable insights that can inform the development of effec-

tive treatment strategies for this population.
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Figure 3. Association between response to treatment and clinical characteristics and biomarkers

Co-occurring mutations were most commonly detected in TP53,NF1, ARID1A,MET, PDGFRA, andRB1. The genesmost frequently co-amplified withMETwere

CDK6, EGFR, BRAF, CCNE1, and PDGFRA. ADC, adenocarcinoma; BOR, best overall response; CR, complete response; ctDNA, circulating tumor DNA; DOR,

duration of response; IRC, independent review committee; NE, not evaluable; NOS, not otherwise specified; PD, progressive disease; PR, partial response; Q3,

SCC, squamous cell carcinoma; SD, stable disease; SOLD, sum of target lesion diameters.
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Table 4. ORR by IRC, DOR, and OS according to MET amplification focality, RB1 mutation, MYC amplification, and ctDNA burden at

baseline, and early molecular response at 6–8 weeks

CI, confidence interval; ctDNA, circulating tumor DNA; DOR, duration of response; IRC, independent review committee; ne, not estimable; ORR, over-

all response rate, OS, overall survival; Q3, third quartile.
aA total of 18 patients were evaluable for early molecular response, defined as disappearance of MET amplification in ctDNA at 6–8 weeks.
bFive patients (adenocarcinoma, n = 3; not otherwise specified histology, n = 2) had a total of six RB1mutations (nonsense, n = 4; splice site, n = 2), all

expected to cause loss of function.
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version 9.2 or higher

SAS Institute, Cary, NC, USA RRID: SCR_008567
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Andreas

Johne (andreas.johne@emdgroup.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Subject to the healthcare business of Merck KGaA, Darmstadt, Germany, Data Sharing Policy, data reported in this paper will

be shared by the lead contact upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon

request.

EXPERIMENTAL MODELS AND STUDY PARTICIPANT DETAILS

VISION (ClinicalTrials.gov, NCT02864992) evaluated tepotinib for treatment of advanced non-small cell lung cancer (NSCLC) with

MET alterations. We report results from Cohort B, which enrolled 24 patients with high-level MET amplification. Cohorts A and C

enrolled patients withMET exon 14 (METex14) skipping, as reported elsewhere.22,23 Patients were agedR18 years and had Eastern

Cooperative Oncology Group performance status (ECOG PS) 0–1, histologically/cytologically confirmed, measurable, locally

advanced/metastatic NSCLC withMET amplification, and 0–2 prior treatment lines. Exclusion criteria were: symptomatic brain me-

tastases with neurologic instability; EGFR, ALK, or METex14 skipping alterations (other MET mutation types were allowed); unre-

solved Grade R2 toxicity; prior hepatocyte growth factor- or MET-targeted therapy; and inadequate organ function.

Cohort B was introduced in protocol v5 (May 10, 2018) and used the same liquid biopsy assay and prescreening

procedures as Cohort A.22 MET amplification was centrally evaluated in circulating tumor DNA (ctDNA) from freshly

collected plasma samples using a 73-gene NGS-based assay (Guardant360; Guardant Health, Redwood City, CA, USA). Guar-

dant360 is a liquid biopsy (ctDNA) method allowing for comprehensive molecular analysis. A list of the 73 genes that Guar-

dant360 analyses is shown in Table S4, which includes analyses of point mutations, indels, amplifications and fusions. The

Guardant360 lower limit of MET gene copy number (GCN) gain was defined as R2.2. In the VISION Cohort B, criteria of

MET GCN R2.5 was used for molecular selection, which represents a highly stringent selection criterion identifying the top

1.5%–2% of MET-amplified NSCLCs.29

The study complied with the Declaration of Helsinki, International Council on Harmonisation Good Clinical Practice, local laws and

regulatory requirements. Independent Ethics Committees or Institutional Review Boards approved the protocol. Patients provided

written informed consent.
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Study procedures and endpoints
VISION is a multicohort, single-arm, phase 2 trial. Patients received tepotinib 500 mg (450 mg active moiety), orally, once daily, until

disease progression (PD), intolerable toxicity or consent withdrawal. Tumor assessments were conducted by computed tomography

or magnetic resonance imaging at baseline, every 6 weeks during the first 9 months, and every 12 weeks thereafter. Response was

evaluated by an independent review committee (IRC) and investigators according to Response Evaluation Criteria in Solid Tumors

v1.1. Objective responses were confirmed R4 weeks after response was first observed.

Health-related quality of life (HRQoL) was evaluated using the European Organisation for Research and Treatment of Cancer

Quality of Life Questionnaire Core-30 and Lung Cancer-13 (EORTC QLQ-C30 and QLQ-LC13) and EuroQol 5-dimension 5-level

(EQ-5D-5L) questionnaires. Adverse events (AEs) were assessed for severity according to the National Cancer Institute Common

Terminology Criteria for Adverse Events v4.03.

The primary endpoint was confirmed objective response by IRC. Secondary endpoints included objective disease control, duration

of response (DOR), progression-free survival (PFS), overall survival (OS), HRQoL, and safety.

Biomarker assessments
Exploratory biomarker analyses were conducted in blood samples using the Guardant360 assay. Focal MET amplification was

defined by co-amplification of %1 of three other chromosome 7 genes (EGFR, BRAF and CDK6). ctDNA burden was defined as

the maximum baseline variant allele fraction of any cancer-specific alteration among all analyzed genes in each patient and was

dichotomized at the median or third quartile (Q3) in separate analyses. Early molecular response was defined as undetectable

MET amplification after 6–8 weeks after the first dose of tepotinib (i.e., in Week 6 or, if the patient discontinued after %8 weeks,

end-of-treatment samples).

QUANTIFICATION AND STATISTICAL ANALYSIS

The trial targeted an objective response rate (ORR) by IRC of 40%–50%, with a lower limit of the corresponding 95% confidence

interval (CI) of >20% across therapy lines. Enrollment of 60 patients would provide a maximum 95% CI width of 26.4% across the

target ORR range. The protocol defined an early futility analysis requiring an ORR of R25% for continuation. While this target

was reached and the trial continued, early discontinuation in a subset of patients prompted a halt of enrollment at 24 patients and

longer follow-up to investigate predictors of tepotinib benefit.

The data cutoff was August 20, 2021. Efficacy and safety were analyzed descriptively in patients who receivedR1 tepotinib dose.

Objective response and disease control were summarized as rates with two-sided exact Clopper–Pearson 95% CIs. Time-depen-

dent endpoints were analyzed using Kaplan–Meier methods. Changes from baseline in HRQoL scores were summarized as empirical

means and, in analyses based on an earlier data cutoff (February 1, 2021), using linear mixed models including a covariate for IRC

response. Prespecified subgroup analyses were performed by therapy line. Tumor load was defined as the sum of longest diameters

for non-nodal target lesions and short axes for target nodal lesions by IRC. Exploratory analyses evaluated characteristics and out-

comes according to clinical benefit (i.e., best overall response by IRC of stable disease or better).
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