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Hannover, Germany, 2GeneXplain GmbH, Wolfenbüttel, Germany, 3Medizinische Hochschule Hannover,
Hannover, Germany, 4Leiden University Medical Center, Leiden, Netherlands

This case study explores the applicability of transcriptome data to characterize a
commonmechanismof actionwithin groups of short-chain aliphatic α-, β-, and γ-
diketones. Human reference in vivo data indicate that the α-diketone diacetyl
induces bronchiolitis obliterans in workers involved in the preparation of
microwave popcorn. The other three α-diketones induced inflammatory
responses in preclinical in vivo animal studies, whereas beta and gamma
diketones in addition caused neuronal effects. We investigated early
transcriptional responses in primary human bronchiolar (PBEC) cell cultures
after 24 h and 72 h of air-liquid exposure. Differentially expressed genes (DEGs)
were assessed based on transcriptome data generated with the EUToxRisk gene
panel of Temp-O-Seq

®
. For each individual substance, genes were identified

displaying a consistent differential expression across dose and exposure duration.
The log fold change values of the DEG profiles indicate that α- and β-diketones are
more active compared to γ-diketones. α-diketones in particular showed a highly
concordant expression pattern, which may serve as a first indication of the shared
mode of action. In order to gain a better mechanistic understanding, the resultant
DEGs were submitted to a pathway analysis using ConsensusPathDB. The four α-
diketones showed very similar results with regard to the number of activated and
shared pathways. Overall, the number of signaling pathways decreased from α-to
β-to γ-diketones. Additionally, we reconstructed networks of genes that interact
with one another and are associated with different adverse outcomes such as
fibrosis, inflammation or apoptosis using the TRANSPATH-database. Transcription
factor enrichment and upstream analyses with the geneXplain platform revealed
highly interacting gene products (called master regulators, MRs) per case study
compound. The mapping of the resultant MRs on the reconstructed networks,
visualized similar gene regulation with regard to fibrosis, inflammation and
apoptosis. This analysis showed that transcriptome data can strengthen the
similarity assessment of compounds, which is of particular importance, e.g., in
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read-across approaches. It is one important step towards grouping of compounds
based on biological profiles.

KEYWORDS

read across, new approach methodology, transcriptomics, TempO-seq, PBEC, protein
network analysis

1 Introduction

In Europe, human risk assessment is undergoing a paradigm
shift towards the integration of mechanistic data from primarily
human in vitro and in silico models, referred to as new approach
methodologies (NAMs). The use of mechanistic evidence, has the
potential to significantly improve risk assessment and reduce
uncertainties and, thus, seems promising in many respects. A
better understanding of the biological mechanisms causing
adverse toxicological effects will help to identify new ways of
prevention and thus risk management. NAMs such as high-
content or high-throughput data will also enable faster and more
efficient assessment, providing data that is directly relevant to
humans.

In line with animal welfare and the 3R principle, several
European agencies, such as EFSA (EFSA, 2021), EMA (European
Medicines Agency, 2021), have expressed their intention to reduce,
refine and replace animal testing as far as possible within in the next
decade by integration of NAMs. In other regulatory areas, e.g., for
cosmetics, animal testing is banned (Pistollato et al., 2021) or, as
under REACH, is only considered appropriate when all other
options have been explored (European Commission. Regulation,
2019).

A challenge for the implementation of NAMs into regulatory
decision-making lies in the development of concepts and
overarching frameworks for the interpretation and integration of
NAM data (Knight et al., 2021).

Case studies on the integration of mechanistic data, e.g., in the
context of Adverse Outcome Pathways (AOPs) or Integrated
Assessment and Evaluation (IATA), help to develop new assessment
concepts, learn about their advantages and limitations, address
uncertainties and thus advance their implementation in risk assessment.

In line with this idea, read-across is an established approach that
is well suited to evaluate the newmethods and gain more confidence
in the use of NAMs as they offer the possibility to compare the
traditional approach based on in vivo animal data with evidence
from NAM data (Escher et al., 2019).

Read-across is a well-known approach in chemical risk
assessment to estimate the toxicity of a target compound for
which substance-specific experimental data are not available. It is
of particular importance for high tier endpoints like long-term
toxicity caused by low level exposure to substances occurring at
workplace or in household products (Ball et al., 2016). The read-
across assessment framework (ECHA, 2017) provides guidance on
read-across approaches using traditional preclinical animal studies,
while similar guidance for the integration of new approach methods
such as “omic” data is missing to date.

The read-across approach assumes that substances with similar
toxicokinetic and toxicodynamic properties will cause similar
toxicological effects in an exposed organism or follow a

consistent trend (ECHA, 2017). The most challenging step in the
read-across assessment is usually to justify the similarity of the
source to the target compound(s), as often only the structural and
physicochemical properties of the target compound are known.
Many read-across assessments are therefore often not accepted
by authorities, as they fail to provide sufficient evidence on share
toxicodynamic and kinetic properties of the grouped compounds
(Ball et al., 2016).

The starting point of most read-across assessments is, therefore, an
assessment of shared structural and physicochemical properties leading
to the identification of an initial list source compounds. Subsequently,
the available in vivo endpoint data are used to conclude on shared
toxicodynamic properties within the grouped compounds. As in vivo
studies are usually descriptive and do not provide insights into the
mechanisms leading to the observed toxic effects, a shared toxicological
effect pattern can be justified but usually not a shared mode of action.
The assessment is complicated by the fact that often study results from
different laboratories need to be compared. These studies differ with
regard of study design (e.g., species tested, study size, dose selection and
dose intervals), which leads to some variability in the observed apical
findings (Ball et al., 2016; Judson et al., 2016).

A more precise assessment of shared toxicodynamic properties
within the grouped compounds, based on, e.g., the description of
their molecular mechanisms, will significantly reduce the
uncertainty in read-across assessments. Few case studies have
been published in which NAMs, like in vitro and in silico
models, are used to substantiate the assessment of shared mode
of actions in read-across approaches (Pawar et al., 2019; Grimm
et al., 2019; Escher et al., 2019).

Although transcriptome data provide information on the
perturbation of gene activities (Escher et al., 2019), it is still a
challenge to infer the associated cellular processes and mechanisms
that may finally result in the development of diseases or adverse
outcomes (Sebastian-Leon et al., 2014). These data are, therefore, to
date seldomly used in regulatory decision making (Karahalil, 2016). In
addition, several analytical and technical challenges have been reported,
including a large variety of alternative analysis strategies and the
complexity of the data. Also, conceptual frameworks for the
integration of omic data into regulatory hazard assessment are
lacking, as there is no consensus to date on the approach to assess
pathways and adverse effects, derive benchmark doses for gene
perturbations and pathway analyses, and quantify uncertainties. Case
studies with relevant regulatory problem formulations can serve as a
tool to gain more confidence into new approaches such as omic
supported hazard assessments and by this help to close these
conceptual data gaps.

The read-across case study presented here investigates the use of
transcriptome data for the evaluation of (dis)similar mechanism of
action between grouped compounds. For this purpose, a group four
α-diketones is analysed, of which three compounds are suspected to
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induce pulmonary fibrosis (bronchiolitis obliterans) in rodents
(Brass and Palmer, 2017). In addition to these structurally very
similar α-diketones, one structurally related β- and one γ-diketone
are included into the assessment to identify potential (dis)
similarities between these volatile diketone compounds. One
compound with an entirely different mode of action,
tunicamycin, is tested to be able to identify to some extent
normal adaptive cellular responses. Two ketones, butanone, and
acetone, are tested as negative compounds because both compounds
did not induce any adverse effect in preclinical rodent studies with
repeated exposure (Chen and Hee, 1995).

2 Materials and methods

2.1 Chemicals

Chemicals were purchased at the highest purity available. α-
diketones: 2,3-Butandione (diacetyl, purity 99.5%, Lot No.
SHBG3507V, Sigma B85307-100ML), 2,3-Pentanedione (purity
97.1%, Lot No. MKBB7504V, Sigma 241962-25G), 2,3-Hexanedione
(purity 96.0%, Lot No. MKBV4849V, Sigma W255807-250G-K), and
3,4-Hexanedione (purity 96.7%, Lot No. STBF5886V, Sigma 306932-
25G), one β-diketone: acetylacetone (2,4-Pentanedione, purity 99.8%,
Lot No. STBF8568V, Sigma 10916-1 KG), one γ-diketone:
acetonylacetone (2.5-Hexanedione, purity 99.7%, Lot No.
WXBC2583V, Sigma 165131-25G), butanone (purity 99.9%, Lot
No. MKBV9520V, Sigma W217012-100G-K) and acetone (purity
99.9%, Lot No. MKBR5795V, Sigma W332615-100G), tunicamycin
(purity ≥98.0%, Lot No. 037M4047V, Sigma T7765-1 MG).

2.2 Exposure of primary human epithelial
cells (PBECs) via ALI application

PBECs were isolated from tumor-free resected lung tissue from
4 donors by enzymatic digestion, cells were expanded in keratinocyte
serum-free medium (KSFM, Gibco) and stored until usage as
previously described in Van Wetering et al. (2000). PBECs were
cultured as described in Boei et al. (2017). Briefly, cells were seeded
after the first passage on coated transwell tissue culture inserts
(Corning Costar, 0.4 µm pore size, 1.12 cm2 surface) to grow under
submerged conditions for 6 days at 37°C, 5% CO2 using a 1:1 mixture
of DMEM (Life Technologies, Bleiswijk, the Netherlands) and
‘bronchial epithelial growth medium’ (Lonza, Verviers, Belgium)
(B/D medium) with supplementation of BEGM BulletKit
singlequots (0.4% [w/v] bovine pituitary extract, 1 mM
hydrocortisone, 0.5 μg/ml human hEGF, 0.5 μg/ml epinephrine,
10 μg/ml transferrin and 5 μg/ml insulin, T3 (Lonza) and
additional 1 mM HEPES (Lonza), 1 μg/ml BSA (Sigma-Aldrich),
100 U/ml penicillin and 100 μg/ml streptomycin (Lonza) and
15 ng/ml retinoic acid (Sigma-Aldrich). Subsequently, the medium
on the cell surface (apical side) was removed to culture the PBECs at
the air-liquid interface (ALI), which was maintained up to 28 days at
37°C, 5% CO2 with exchange of the ‘bronchial epithelial growth
medium’ every 2-3 days followed by apical washing with 100 µL
PBS to remove accumulated mucus. Mucociliary epithelial cells
differentiation occurs during the maintenance under ALI conditions.

PBECs were exposed to the selected test chemicals under ALI
conditions using the P.R.I.T.® ExpoCube® device for 1 h once
(acute exposure) or repeatedly on 3 consecutive days (repeated
exposure). Supplementary Figure S1 provides an illustration of the
exposure setup. Exposures were conducted using a volume flow of
350 ml/min as primary flow for transporting the gas through the
exposure device (inline) to the FT-IR monitor. From this primary
flow sampling for cell exposure was done using exposure flows of
3 ml/min for each culture. For a detailed description of the
P.R.I.T.® ExpoCube® workflow see Ritter and Knebel (2014).
Briefly, PBECs cultivated on inserts of a 12-well plate (Corning
Costar) included three exposure test lines simultaneously:
Exposure to (1) the test chemical, (2) to clean air (negative
control) or (3) no exposure (non-exposure control). The test
atmosphere was generated by conducting clean air over the
surface of the chemical inside a gas washing bottle at 25°C. The
resulting atmosphere was diluted with clean air to achieve the
desired concentrations for each chemical respectively (see Table 1).
The analysis of chemicals during exposure was performed by
online measurement using a FT-IR spectroscopy (GASMET,
Ansyco, Germany). PBECs were exposed to each chemical in 4-
5 concentrations according to pre-experiments. The background of
the dose selection is described in detail in supplemental material
(SM1). Cellular viability was measured by LDH-leakage and
barrier function by measuring the transepithelial electrical
resistance (TEER) 24 h after the final exposure (Results in
Supplementary Figure S2). At the same timepoint, lysis of
PBEC-ALI models for TempO-Seq analysis at BioSpyder was
performed. Deviating from this, the non-volatile compound
tunicamycin was added to the medium for 24 h, directly
followed by lysis. The highest concentration without cytotoxic
effect was selected for further omics testing. 500 μL lysis buffer
(BioSpyder) was added to the apical side of the PBEC-ALI models,
incubated at RT for 10-15 min and transferred to a 96-well plate,
this procedure was carried out based on (Yeakley et al., 2017).
Samples were stored at −80°C and subsequently shipped on dry ice
to BioSpyder technologies (Bioclavis, United Kingdom) for
sequencing. All data is from 4 donors as replicates, three of the
donors are male and one donor is female.

2.3 Identification of differentially expressed
genes

Transcriptome analyses were carried out with the human
TempO-Seq S1500+ assay, which comprises 3,565 genes (Mav
et al., 2018). These 3,565 genes were selected by the
EUTOXTISK consortium because they are particularly frequently
differentially expressed in toxicological experiments, and care was
taken to ensure that the selected gene panel covers well-annotated
pathways (Mav et al., 2018).

The RNA sequences per probe were mapped against the human
ensemble transcriptome (hg38 aka GRCh38v100) to obtain
ensemble gene IDs.

Counts were normalized by counts per million. Within quality
control, samples with low read counts corresponding to a library
size <500 k and genes with an overall variance of 1 were discarded.
The controls were grouped by time point and compound. A batch
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correction was carried out according to gender. The differentially gene
expression analysis was done with DESeq2 in R (version 1.32.0) (Love
et al., 2014), considering an adjusted p-value of <0.05 (Benjamini-
Hochberg method) and an absolute log2FoldChange of 1 or higher.

2.4 Pathway analysis

A pathway analysis was carried out taking into account the six
databases fromConsensusPathDB (Version 35, Barel andHerwig, 2018).
2,603 signaling pathways were considered, these signaling pathways
included at least four genes of the TempO-Seq S1500+ gene panel.

The preselection of the most responsive genes interferes with
pathway enrichment analysis, that is normally performed, as it uses
statistical significance tests such as the Fisher exact test to
distinguish a random finding from a specific activation (García-
Campos et al., 2015).

In this study, we therefore used an approach recently described
by (Barel and Herwig, 2018). Differentially expressed genes (g) were
weighted for the analysis of pathways by calculating a gene score (S)
for each condition (c). A condition is the combination of time point,
compound, and concentration. Gene scores take into account the
significance (adjusted p-value) and the observed absolute log2fold
change of the differentially expressed genes.

Sgc � abs log 2FoldChange( )*abs log 10 p − value( )( )

Thereafter, a pathway score (M) for each pathway (l) was
calculated for each condition (c) using the gene scores. For this
purpose, the scores of all DEGs are summed and divided by the
number of genes (m) included in the pathway and measured in the
S1500+-panel.

Mcl � 1
m

∑
gi∈M

Sgc

In order to be able to compare the results obtained, a normalization
over all pathways for a condition was carried out (RPR).

RPRl � log2(Mcl/median(Mc))

Pathways with a RPR greater than two were considered as
activated.

2.5 Upstream analysis

Upstream Analysis is an integrated promoter–pathway analysis.
Upstream analyses were performed on gene sets of

300 differentially expressed genes per time point and substance
and group using the geneXplain platform (Stegmaier et al., 2017).

In addition, a group specific DEG profile was developed for the
α-diketones. To determine the most representative genes being
affected by α-diketone exposure, DEGs commonly observed
following exposure to all α-diketones (in at least one
concentration group tested) were selected. For the substance
profiles, the top 300 DEGs were selected based on the average
absolute highest log2 fold change.

To obtain information about potentially involved transcription
factors, promoters of the differentially regulated genes are retrieved
and analyzed for potential transcription factor (TF) binding sites in a
first step. From these binding sites, a set of postulated TFs is
identified that potentially have regulated the found DEGs.

The search for enriched transcription factor binding sites
(TFBSs) from promoters of DEGs per substance, time point and
concentration and for the groups and substance profiles was
performed using the geneXplain platform (Kolpakov et al., 2011)
and the corresponding ‘Identify enriched motifs in promoters
(TRANSFAC®)’ workflow (Koschmann et al., 2015). Gene
promoters with a range from −1000bp to +100bp from
transcriptional start sites were screened for potential TFBSs based
on known motifs in the TRANSFAC® database, which is a collection
of positional weight matrices (PWMs) of binding sites and
corresponding transcription factors. A total number of
394 matrices were used whose associated transcription factors are
known to be expressed in lung tissue (TRANSFAC® database
version 2021.1. The algorithm estimates an enrichment analysis
for binding sites that occur more frequently compared to a

TABLE 1 Chemical exposure concentrations (conc. [ppm]).

Chemical α-diketone β-diketone γ-diketone Negative substances Positive
substance

Diacetyl 2,3-
Pentanedione

2,3-
Hexanedione

3,4-
Hexanedione

2,4-
Pentanedione

2,5-
Hexanedione

Butanone Acetone Tunicamycin

CAS 431-03-8 600-14-6 3,848-24-6 4437-51-8 123-54-6 110-13-4 78-93-3 67-64-1 11089-65-9

Dose level Concentration [ppm]

1 102 48 h 49 50 49 50 5000 4997 0,00084495

2 135 200 100 206 197 100 10068 9981 0,0084495

3 277 506 400 509 990 199 15114 15016 0,02788335

4 323 1005 1000a 984a 3,053 521 20053 20051 0,084495

5 1834a 5034a 4043a 5104a 4537 25244 25071 0,2788335

6 0,84495

7 8,4495

aConcentrations that were not included in the further omic analyzes due to their cytotoxicity.
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background set, which was a random set of 900 genes and
corresponding promoters that are expressed in human lung
tissue (source: HumanPSD database). The result is a list of the
binding and the associated set of human transcription factors that
are likely responsible for the differential regulation of the observed
set of DEGs.

Starting from this, a further step of upstream analysis was
performed to search for master regulators (MR) that are known to
activate the identified potential TFs. Master regulators are viewed as
those regulation units showing a potential key functionality of several
underlying biological and toxicological processes. A molecular network
analysis tool called “regulator search” was used to identify MRs (Kel
et al., 2006). The principle of the regulator search can be briefly
summarized as follows: the TRANSPATH database (version 2021.1)
comprises a large directed protein network, where the nodes are
proteins and the edges are reactions in different pathways. The
postulated TFs are represented as nodes in this network.

Asmentioned above the analysis started from the identified TFs, the
algorithm searches for up to 10 upstream nodes and postulates MRs,
which represent highly interconnected proteins (by a score >0.2) and
specific proteins for theDEG input set (by a z score>1) (Kel et al., 2006).

2.6 Reconstructed signaling protein
networks

The reconstructed networks were developed to visualize a
connection to the Mechanism of Action and the MRs. The
reconstructed networks connect genes that could be assigned to a
specific mode of action and the MRs were then mapped onto this
network in order to obtain comparability between the MRs of the
different group/substance profiles.

Protein lists were obtained by multiple queries from different
databases such as HumanPSD™ KEGG, Wikipathways (Wingender
et al., 2007), which contain disease and signaling network
information observed in humans for three adverse outcomes,
namely, “pulmonary fibrosis,” “inflammation” and “apoptosis.”
With the obtained three protein lists a clustering algorithm
within the geneXplain platform was used to reconstruct signaling
protein networks based on evidence of protein-protein interactions
from the TRANSPATH® database (Krull et al., 2006). In the
TRANSPATH® database protein-protein interactions occurring in
humans manual curated from peer-reviewed publications and
assigned evidence levels and reliability scores for protein
reactions obtained from experiments for proteins existing in vivo
are represented. Inside the procedure for a reconstruction of protein
networks we allowed a maximum of three predicted protein
reactions apart from the input protein list. Cytoscape (version
3.8.2) was used for the visualization of all reconstructed protein
networks (Kohl et al., 2011).

3 Results

3.1 Substance characterization

The read-across case study investigates nine compounds, which
are grouped into five groups based on their structural as well as

toxicological properties (Figure 1, grouping indicated by coloured
boxes). One group contains four α-diketones, whose structure differs
in the length of the hydrocarbon side chains (purple box). The α-
diketone Diacetyl is known to cause bronchiolitis obliterans in
employees who made butter-flavored microwave popcorn. Its
mechanism of action has been well studied in vivo (Zaccone
et al., 2013). It is also known from preclinical in vivo studies in
rats that the two other α-diketone 2,3-pentanedione and 2,3-
hexanedione have the same mode of action (Zaccone et al.,
2013). The observed progression of toxicological findings of both
compounds proceeds from injuries to the epithelial tissue via
immune processes to bronchial epithelial scarring (Gwinn et al.,
2017). The toxicological properties of 3,4-hexanedione are largely
unknown. 3,4-Hexanedione was tested in a subchronic study in rats
wherein no effect was observed up to a single oral dose of
17 mg/kg bw/day (Posternak et al., 1969). An inhalation study is
not available.

Two structurally slightly different diketone compounds, 2,4-
pentanedione (β-diketone, yellow box) and 2,5-hexanedione (γ-
diketone, red box) were also included into the assessment. 2,4-
Pentanedione causes inflammation in the upper airways of rats
(DODD et al., 1986) whereas 2,5-hexanedione induce peripheral
neuropathy after subcutaneous injection (Spencer and Schaumburg,
1975; Ichihara et al., 2019).

In addition, two ketones, acetone and butanone, were selected as
negative substances (green box), as both substances did not provoke
any adverse effect after repeated inhalation exposure in preclinical
studies (Bruckner, 1981; Cavender et al., 1983).

Also the structurally very different compound tunicamycin was
chosen because of its well-known mode of action, which is not
related to pulmonary inflammation and fibrosis. Tunicamycin
blocks protein folding of glycoproteins by inhibiting
N-glycosylation (Wang et al., 2015), resulting in induction of the
unfolded protein response. This is under the control of three sensors,
namely, PERK, IRE1a and ATF6, each activating different signaling
cascades (Yang et al., 2020).

3.2 Concentration dependency and impact
of exposure duration on transcriptome data
and pathways analysis

The impact of exposure time on the resulting transcriptome data
was evaluated using the α-diketone Diacetyl as an example. In
parallel the concentration dependent effects of diacetyl on the
transcriptome were analyzed. Overall, Diacetyl shows an
increasing number of DEGs with increasing concentration levels
(Figure 2A). Acute exposure led to 10 downregulated DEGs at the
lowest concentration. At the highest concentration 257 up- and
271 downregulated DEGs could be shown whereas repeated
application over 3 days resulted overall in more DEGs, with
551 up- and 668 downregulated genes at the highest
concentration (Figure 2A).

The heat map shows that the DEGs have a common expression
pattern, i.e., they are up- or downregulated together, both within the
single and repeated exposure, as well as considering the two
exposure times. The absolute log2FoldChange of the observed
DEGs revealed a concentration dependent increase (Figure 2B).
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DEGs obtained from acute and repeated exposure show a high
concordance with regard to their up- and downregulation
(Figure 2C, colored in red). The same trend is observed for the
majority of differentially expressed genes after repeated exposure
(colored in blue) and for the few DEGs from acute exposure
(Figure 2C, colored in green).

The pathway enrichment analysis resulted in a total of
296 pathways for diacetyl. 173 pathways were obtained after
acute exposure, 212 after repeated exposure, with 89 shared
pathways for both time points. The ten top regulated pathways,
defined by the highest pathways score, were compared in more detail
per time point. There are no overlaps between the pathways for these
top 10 pathways per time point, but all pathways that were already
active in the case of a single exposure also appear in the case of
repeated exposure, and only two pathways are not active in the case
of the single exposure. Despite this high qualitative concordance,
repeated exposure tends to induce more pathways at overall lower
concentrations compared to acute exposure conditions.

Pathways are colored according to their MoA (Figure 3D;
Table 1). All three pathways associated with fibrosis are observed
after single and repeated exposure (Figure 2D, purple).

These results indicate that under the exposure conditions chosen
in this study, the exposure time has an impact on the transcriptome
response. Repeated exposure led to more pronounced responses
regarding the number and the fold change of differentially expressed
genes and the thereof resulting number of enriched pathways.
Further a trend towards responses at lower dosing was observed.

Both single and repeated exposure lead however to
inflammation- and fibrosis-related signalling pathways relevant to
the presumed mode of action of diacetyl.

All other compounds in this study were tested under acute
exposure conditions for the inter- and intra-group comparisons in
order to keep the experimental approach as simple as possible, but as
complex as necessary.

3.3 Inter- and intra-group comparison

As observed for diacetyl, the other diketone compounds in this
case study also show dose-dependent responses at the transcriptome
level, indicated by an increase in the number of differentially
expressed genes and the absolute increase in log2FoldChange
(Figures 3A, B).

The highest concentration doses tested for diacetyl and the two
highest doses tested for 2,3-hexanedione and 3,4-hexanedione
resulted in greater than twenty percent cell death. Therefore,
these cytotoxic concentrations were excluded from subsequent
transcriptome analyzes as it is expected that they predominantly
exhibit DEGs and signaling pathways associated with apoptosis and
necrosis. This phenomenon is known as a cytotoxic burst (Judson
et al., 2016) and it is assumed that it does not provide relevant
information about the compound-specific mechanism of action of
the investigated compounds.

Within the α-diketones, a high correlation of up- or
downregulated DEGs is observed, as indicated by a Spearman’s
coefficient above 0.6 (Figure 3C). The β-diketone 2,4-pentanedione
shows a very similar DEG profile compared to the α-diketones such
as, e.g., visualized in the heat map of DEGs (Figure 3B) or the overall
high Spearman coefficient of >0.5 compare to the α-diketones
(Figure 3C); while the γ-diketone 2,5-hexanedione remains
inactive up to the highest dose tested in vitro. In line with the
absence of toxicity findings in vivo studies, the two negative control
compounds, butanone and acetone, are inactive and do not
induce DEGs.

Tunicamycin induces a total of 417 differentially expressed
genes in a dose dependent manner. With increasing
concentrations an increasing number of DEGs and also
increasing absolute log2FoldChanges per DEG are observed. The
DEGs expression pattern of tunicamycin differs remarkably from
the one observed for the α- and β-diketones (Figure 3C; Spearman

FIGURE 1
Chemical structures of the tested substances. Purple edges the α-diketones, orange the β-diketones, red edges the γ-diketones, the negative
substances are edged in green, and tunicamycin as a substance with a different MoA has a black edge.
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correlation score <0.4). 144 DEGs of tunicamycin are not
differentially expressed in the α- and β-diketones, whereas
137 DEGS are differentially expressed in both analyses but with
opposite log2FoldChange (Figures 3A–C). 230 DEGs, almost half of
the DEGs of tunicamycin, are in common with the DEGs seen for α-
and β-diketones and show similar up and downregulation.

The total number of pathways for the active diketones includes
861 different pathways and for tunicamycin 293 pathways. Again,
the pathways with highest pathway scores are compared between α-,
β-diketones, diacetyl and tunicamycin to better understand
similarities and differences in biological processes. A literature
review was performed to assign a mode of action to the best
pathways (Table 2 showing these 10 top regulated pathways).

Most pathways associate with α-diketones occur in at least one
concentration level in each substance, including pathways that have
been linked to inflammation, fibrosis, and drug metabolism
(Table 2). The fibrosis pathways occur within all α-diketone
substances, except for 3,4-hexanedione. A possible explanation
for the absence of fibrotic pathways in the case of 3,4-
hexanedione is that only one subcytotoxic concentration
contributed to the analysis.

The β-diketone 2,4-pentanedione shares 119 out of 688 (union)
pathways with the α-diketones, but derives overall a lower number

of active pathways (308 pathways, Figure 2D; Table 2). Also in this
case, the fibrosis pathways were not identified within the top
regulated pathways.

Of the top ten pathways for tunicamycin, seven could be
associated with protein folding, consistent with the known
mechanism of action. There is only one pathway that overlaps
with the diketone (R-HAS-1461973) and it is related to immune
responses (Bevins, 2006).

3.4 Upstream analysis

An upstream analysis for individual compounds and the group
of α-diketones investigated the regulation of the observed DEGs via
transcription factors (TFs) and master regulators (MRs) (Table 3).

Significant binding site enrichment led to comparable numbers
of postulated TFs, ranging from 33 TFs for diacetyl to 20 TFs for 2,3-
hexanedione (Table 3, TF (all)); whereas the number of MRs differ a
bit more ranging from 242 master regulators for diacetyl to 111 for
3,4-Hexandione (Table 3; MR (all)). In order to obtain more specific
TFs and MRs per group/compound, the TFs and MRs also obtained
from the negative control compounds acetone and butanone were
not taken into account. Also, TFs andMRs shared with tunicamycin,

FIGURE 2
Comparison of DEG and pathway enrichment analyses for diacetyl after single (24 h) and repeated exposure (72 h): (A)Number of DEGs for diacetyl
classified by upregulated and downregulated genes. (B) heatmap of DEGS showing similarities of log2foldchanges between single and repeated
exposure. (C) Correlation of log2fold changes of DEGs at the highest tested concentration (concentration level 4), the colour schema indicates
differentially expressed genes obtained after single (green), repeated (blue) or in both approaches (red). (D) Comparison of 10 pathways per time
point with highest pathways scores. Pathways are colored according to their knownmode of action: red—inflammation, blue - drugmetabolism, purple -
fibrosis, black—other.
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which has a different mode of action, were not considered. For the α-
diketones, the number of specific TFs and MRs decreased to 5 and
33, respectively. Diacetyl showed most specific TFs (N = 2) and MRs
(N = 64) (Table 3). Overall, a total of three different specific
transcription factors were identified (Table 3).

All three specific postulated TFs are known to be expressed in
the human lung according to protein atlas version 21.0 (Table 4). All
specific transcription factors were found in profiles for the alpha-
diketones. Two are associated with pulmonary fibrosis (NKX2-1 and
GATA6), another is involved in various cellular stress signaling
pathways (ATF5).

Over all profiles 145 specific master regulators were found. Due
to this high number, it was analyzed whether regulators for the well-
known mode of action can be found within the α-diketones profile
by considering master regulators that appeared in at least four gene

profiles and appeared in the α group profile or diacetyl compound
profile (Table 5). Of these six master regulators, three master
regulators are found to be associated with pulmonary fibrosis
(ERBB2, EGFR and FGFR2) and one with inflammation (FYN).
All three master regulators associated with lung fibrosis are also
included in the β-diketone compound profile.

All diketone profiles examined show that the most common
specificMRs support a commonmechanism of action, and this is the
well-known MoA.

3.5 Reconstructed networks

Another challenge in the read across assessment is the visualization
of similarities with regard to the observed mode of actions.

FIGURE 3
(A) Number of DEGs per substance and concentration. Dose groups with a cytotoxicity above 20% are indicated in red. All compounds were tested
using 5 dose levels, tunicamycin was tested with 7 dose levels. (B) Log2FoldChange of all genes that are DEG at least once per substance in increasing
concentration. The genes are arranged with hierarchical clustering. (C) Correlation matrix. The correlation scores ordered with hierarchical clustering
were determined using the Spearman coefficient of the log2FoldChange-values. (D) 30 pathways are shown, which are derived from the ten
pathways with highest pathway scores for diacetyl, α- and β-diketones and tunicamycin. Pathways listed in the table are colored according to their mode
of action, red for inflammation, blue for drug metabolism, green for protein folding and purple for fibrosis.
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In order to address this question, reconstructed protein
networks were developed for three different biological processes,
namely, lung fibrosis, inflammation, and apoptosis. Each node in the
network represents a protein which plays a role in the three MoAs.
These annotations are based on manually curated data from human
stored in the Transpath database.

213 nodes are obtained specifically for pulmonary fibrosis,
429 for inflammation and 39 for apoptosis. Other nodes belong to
more than one MoA. Seven nodes are present in all three
biological processes, whereas 42 nodes intersect between lung
fibrosis and apoptosis and seven nodes overlap between
inflammation and lung fibrosis (Figure 4).

To visualize common MoAs per group and compound
profile, the master regulators were mapped to the nodes of
the network.

The master regulators of the alpha group profile map primarily
to the nodes for inflammatory processes, but also to multiple nodes
associated with pulmonary fibrosis (Figure 4B).

Diacetyl is shown as one example representing the outcomes
of the four different alpha diketone profiles. Diacetyl show a large
number of nodes associated to inflammation and also some
associated to pulmonary fibrosis (Figure 4C). Similar results
were obtained for the three other alpha compound profiles
(data not shown). Compared to the alpha-diketone profiles,
the beta-diketone profile shows a smaller number of nodes,

which are primarily associated inflammatory processes
(Figure 4D).

4 Discussion

Even though RAx is a well-known and often used approach in
regulatory chemical risk assessment to fill a data gap and to avoid
animal testing (ECHA, 2020), it is often not accepted by regulatory
agencies. One reason for this is a lack of evidence for common
toxicodynamic properties within the grouped compounds, as in vivo
studies reveal apical findings whose underlying mechanisms are
often unknown (Ball et al., 2016).

There is therefore a need to integrate mechanistic data into read-
across assessments, to provide evidence that the grouped
compounds will cause similar toxic effects in the human
organism or a consistent trend. An open question is how
mechanistic data from omics approaches such as transcriptome
data, can support the assessment of a similar mode of action.

Similarity assessment is highly dependent on the problem
formulation. Similarity for genotoxic compounds will need other
evidence compared to compounds which inhibit specific enzymes,
like organophosphates inhibiting cholesterinesterase. The main
question is therefore, to what extent are compounds similar in
relation to which endpoint?

Similarity scores can be calculated in many different ways. This is a
well-known phenomenon, e.g., from chemical similarity assessments,
where binary data on the presence or absence of unique and common
molecular features are used to calculate scores with simple algorithms
such as Tanimoto or Dice (Willett et al., 1998). A similar simplistic
approach could be used for transcriptome data comparing the absence
of presence of unique and shared DEGs, pathways or regulated
proteins/master regulators. Similarity scores alone do, however, not
evaluate the underlying mechanisms and can therefore be probably
considered as starting point of the assessment assuming that similar
gene profiles indicate a regulation of similar biological processes. Low
similarity on the gene level, does however, not directly indicate a
dissimilar mode of action, as a pathway enrichment or upstream
analysis might reveal that same biological processes regulated.
Transcriptome data need thus other analyses strategies compared to
similarity assessment of physico-chemical parameters.

TABLE 2 Pathways to which a mode of action could be assigned.

Pathway ID: Pathway namea Compound-
groups

Mode of action Source

R-HSA-3371571: HSF1-dependent transactivation, R-HSA-3371568: Attenuation
phase, R-HSA-450408: AUF1 (hnRNP D0) binds and destabilizes mRNA

α- and β-diketones Inflammation Quintana and Cohen
(2005)

R-HSA-211999: CYP2E1 reactions, R-HSA-211935: Fatty acids α- and β-diketones Drug metabolism Guengerich (2006);
Gonzalez (2005)

WP3613: Photodynamic therapy-induced unfolded protein response, R-HAS-
2404192: Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R),
R-HSA-2428924: IGF1R signaling cascade, R-HSA-112399, R-HSA-109704:PI3K
Cascade

Tunicamycin Protein folding (Regulation with
IGF1 and PERK)

Weijer et al. (2015); Yang
et al. (2020)

R-HSA-331497, R-HSA-2980767: Activation of NIMA Kinases NEK9, NEK6,
NEK7

α-diketones Fibrosis Korthagen et al. (2012)

aIDs come from the databases merged into the ConsensusPathDB, in this case Reactome and Wikipathways.

TABLE 3 Number of transcription factors (TFs) and master regulators (MRs) for
different gene profiles; all-total number of identified TFs/MRs; specific -
number remaining when TFs/MRs after exclusion of TFs/MRs detected for
tunicamycin, acetone and butanone.

Profile TF (all/specific) MR (all/specific)

α-diketones 30/1 164/25

Diacetyl 33/2 242/64

2,3-Hexandione 20/0 142/65

2,3-Pentanedione 22/1 221/63

3,4-Hexandione 21/1 111/38

2,4-Pentanedione 2/0 142/26
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This case study provides further insights into the assessment of
mode of actions and similarity within grouped compounds by using
transcriptome data. We believe that case studies such as this are
necessary to develop analysis strategies and acceptance criteria, in
particular the level of evidence considered sufficient to establish
similarity.

To date, it is not known, which cellular assay is most appropriate to
investigate mechanistic data for read-across assessments. The recently
published EUTOXRISK read-across strategy recommends that the in
vivo data and potentially available AOPs shall guide and inform the
NAM testing strategy (Escher et al., 2019). For this case study on
compounds that might induce lung fibrosis, primary human lung
epithelial cells were chosen, as they are relatively close to the human
in vivo situation. A comparison to other test systems was not carried
out, but it is likely that other models like 3D cell, ex vivo or co-culture
models could also give valuable information. A systematic comparison
of test systems differing with regard to complexity could help to
distinguish between problems in which a relatively simple cell test
already provides sufficient evidence and those in which more complex
test systems are required. This was however, not in the scope of the
current case study.

In our case study, the group of four α-diketones show a highly
similar expression pattern of DEGs. A large number of shared genes
were upregulated or downregulated after both single and for diacetyl
also after repeated exposure and across different concentrations.
This DEG pattern clearly differed from those of tunicamycin, as
shown by Spearman correlation, in agreement with its different
mode of action. These data confirm the recent described hypothesis

that gene expression data, even from short term in vitro assays, can
serve as first indication of similar biological properties (Escher et al.,
2019; Vrijenhoek et al., 2022). However, despite their completely
different MoA, tunicamycin and the a-diketones has about
230 genes in common. It can be hypothesized that these DEGs
represent to a large extent adaptive cellular responses to any kind of
chemical stressor. This hypothesis has to be further investigated by
testing compounds with different MoAs and could help to distinct
unspecific from MoA-specific cellular responses.

The β-diketone caused a very similar gene expression pattern,
thus indicating that this compound has a very similar mode of action
as compared to the α-diketones. This finding is in good agreement
with the available data from preclinical studies, in which the β-
diketone also induced pulmonary fibrosis.

The γ-diketone and the two negative compounds were inactive up
to the highest in vitro tested concentration. An analysis of biological
similarity is therefore not possible based on transcriptome data. Two
hypotheses can be made to explain the observed inactivity, the
compounds might either be less potent compared to the other
diketones or has another mode of action. The latter seems to be
most probable for the γ-diketone, which induces neurotoxic effects
after oral exposure in rodent (Dorry et al., 2020) studies (Ichihara et al.,
2019). The transcriptome data did however not help to elucidate the
difference. A statement on a similar or dissimilar mechanism of action
cannot be made based on inactivity, a finding that was also recently
reported by Vrijenhoek et al. (2022).

Transcriptome data can also be used to investigate potency
difference between the grouped compounds by analyzing

TABLE 4 The specific transcription factors with expression in the lung, the profiles in which they occurred and the mode of action to which they could be assigned.

ID name Expression in lunga Profiles Mode of action Source

ENSG00000136352 NKX2-1 yes α-diketone group, Diacetyl, 2,3- Pentanedione Lung fibrosis Borie et al. (2021)

ENSG00000169136 ATF5 yes Diacetyl Cellular stress Zhou et al. (2008)

ENSG00000141448 GATA6 yes 3,4-Hexanedione Lung fibrosis Leppäranta et al. (2010)

aInformation taken from the Human Protein Atlas (https://www.proteinatlas.org).

TABLE 5 Master regulators present in at least four gene profiles and present in the diacetyl compound profile or the α group profile.

ID name Expression in
lunga

Profiles Mode of
action

Source

ENSG00000168621 GDNF Yes α, Diacetyl, 2,3-Hexanedione, 2,3-Pentanedione, 3,4-Hexanedione, 2,4-
pentanedione

No data No data

ENSG00000141736 ERBB2 Yes Lung fibrosis Schramm et al.
(2022)

ENSG00000146648 EGFR yes α, Diacetyl, 2,3-Hexanedione, 2,3-Pentanedione, 3,4-Hexanedione, 2,4-
pentanedione

Lung fibrosis Schramm et al.
(2022)

ENSG00000276023 DUSP14 yes Tuberculosis Hijikata et al.
(2016)

ENSG00000010810 FYN yes All compound profiles Inflammation Mkaddem et al.
(2017)

ENSG00000197122 SRC yes Diacetyl, 2,3-Hexanedione, 2,3-Pentanedione, 3,4-Hexanedione, 2,4-
pentanedione, 2,5-Hexandedione

Lung fibrosis Li et al. (2020)

aInformation taken from the Human Protein Atlas (https://www.proteinatlas.org).

Frontiers in Toxicology frontiersin.org10

Drake et al. 10.3389/ftox.2023.1155645

https://www.proteinatlas.org/
https://www.proteinatlas.org
https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2023.1155645


benchmark concentrations per DEG or signaling pathway (Phillips
et al., 2019). In this case study a quantitative assessment of potency
differences was not possible, mainly because of the non-optimal dose
selection. Some of the tested concentrations already induced
cytotoxicity and the number of remaining available
concentrations were insufficient for benchmark modelling. This
aspect needs to be further addressed in future investigations.

A pathway and an upstream analysis were carried out to investigate
the biological processes associated with the observed DEGs. The
pathway analyses, just like the DEG analysis, revealed common
most active pathways between the alpha- and beta-diketones and a
distinct demarcation from the pathways to tunicamycin. The S1500+
panel measured in this read-across case study contains a relatively small
number of genes, which are selected because of their particularly
responsiveness. A classic signaling pathway enrichment analysis was
therefore not possible due to the relatively high number of DEGs
compared to the number of genes measured. One way to deal with this
problem is to extrapolate the gene set to the entire transcriptome (Mav
et al., 2020) or set thresholds to set a minimum number of DEGs per
pathway (Ramaiahgari et al., 2019). The latter approach was followed in
this case study and was also successfully applied in the NTP and
ToxCast project (Judson et al., 2016). In this work we calculated a
pathway score based on the values for the differentially expressed genes.

The advantage of the method we have chosen is that with the
log2FoldChange and the p-value a qualitative evaluation was
included, since the pathways with a particularly high average
log2FoldChange and a small average p-value receive a higher
pathway score and thus a higher value. As part of the upstream
analysis and the subsequent visualization with the reconstructed
networks, many common postulated TFs and MRs were found for
the α− and β−diketones as well as tunicamycin compound. The
identified TFs and MRs relate to many basic cell functions,
including cell proliferation and stress responses, in addition to
specific responses leading to the mechanism of action. To
distinguish potentially non-specific adaptive cellular responses from
more specific effect responses, a filtering step was applied in which TFs
andMRs observed undermultiple conditions and test compounds were
excluded. Using this approach, a commonmode of action within the α-
and β-diketones was identified and distinctions to the tunicamycin
compound could also be made.

Further examples, exploring, e.g., groups of compounds with
more diverse mode of actions are needed to generalize this approach
and to enhance the understanding about the specific and potentially
adaptive TFs and MRs.

Also in the upstream analysis, the relatively small gene set of
the S1500+ panel was a disadvantage, since potential postulated

FIGURE 4
Reconstructed networks to visualize the obtained MRs in this read-across case study. (A) All MRs related to pulmonary fibrosis (green); inflammation
(red) and apoptosis (blue). Nodes belonging to more than one of the three MoAs are colored in yellow. The same color code is applied to visualize the
MoAs of three different profiles: (B)MRs identified in the α-diketone group, (C)MRs identified for the α-diketone diacetyl, and (D)MRs identified for the β-
diketone 2,4-pentanedione.
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TFs and MRs that indicate the mode of action might have been
missed.

Six AOPs on pulmonary fibrosis are currently described in the
AOP-Wiki. These pathways all have in common that binding to
different types of receptors lead to pulmonary fibrosis via
inflammation and collagen accumulation (Society for the
Advancement of AOPs, [2022]). Proteins associated with
inflammation were identified in the reconstructed networks after
a single exposure to the α- and β-diketones and are consistent with
the AOPs. The reconstructed networks appear to be a useful tool to
visualize mechanistic similarities and to infer an adverse outcome
such as fibrosis based on early processes in vitro cell cultures. All
active alpha- and beta-diketone substances show master regulators
that can be assigned to pulmonary fibrosis and inflammation, which
corresponds to their known mechanism of action. It is however
noted that many nodes are inactive in the reconstructed networks.
One possible explanation is that the short-term in vitro assays used
in this case study do not show the full development process of
fibrosis, like, e.g., collagen formation (Lynch, 2009). In addition,
many different signaling pathways are known to lead to
inflammation and fibrosis, such as EGFR signaling pathway,
TORC2 pathway and TGFβ pathway (Chang et al., 2014;
Schramm et al., 2022)) which do not all have to be relevant for
diketones. One limitation of the reconstructed networks is, that they
currently do not include information about the relationship between
the obtained nodes such as inhibition or activation. Further work
has to be done to include these interactions, to allow a more detailed
mechanistic interpretation and to better discriminate between the
biological processes.

5 Conclusion

Read-across assessments are always based on a read-across
hypothesis, which is derived from the available in vivo data of
data rich source compounds. For the purpose of this case study,
we can assume that only diacetyl is a data rich source compound,
and its toxicity data after repeated exposure shall be used to predict
the structurally similar α,β, and γ-diketones. The read-across
hypothesis is thus, that all structurally similar compounds will
cause pulmonary fibrosis.

Overall, there is high concordance between the in vivo and
in vitro results for the source compound diacetyl. This finding is
necessary to gain confidence that the in vitro approach is able to
address the read-across hypothesis.

This case study shows that transcriptome data can be used to
indicate a common mechanism of action for compounds that are
active at the level of gene expression. Inactive compounds cannot
be evaluated. We have shown that there are similarities within the
alpha and beta diketones at the level of gene expression and also
in the biological interpretation. It was helpful to include
tunicamycin, a compound with different mode of action, as it
allows to discriminate better the differences in the obtained gene
and pathway profiles.

The investigation of transcriptome data and their inference of an
adverse outcome can thus substantiate the assessment of similar
toxicodynamic properties with regard to a read-across hypothesis.
We therefore believe that this approach can significantly reduce the

uncertainty within read-across assessments and by this increase its
acceptability. It has however, to be investigated further which level of
similarity would be considered “acceptable” e.g., by regulatory
bodies.
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