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Abstract
Aims/hypothesis  The inflammatory milieu characteristic of insulitis affects translation fidelity and generates defective 
ribosomal products (DRiPs) that participate in autoimmune beta cell destruction in type 1 diabetes. Here, we studied the 
role of early innate cytokines (IFNα) and late immune adaptive events (IFNɣ) in insulin DRiP-derived peptide presentation 
to diabetogenic CD8+ T cells.
Methods  Single-cell transcriptomics of human pancreatic islets was used to study the composition of the (immuno)protea-
some. Specific inhibition of the immunoproteasome catalytic subunits was achieved using siRNA, and antigenic peptide 
presentation at the cell surface of the human beta cell line EndoC-βH1 was monitored using peptide-specific CD8 T cells.
Results  We found that IFNγ induces the expression of the PSMB10 transcript encoding the β2i catalytic subunit of the 
immunoproteasome in endocrine beta cells, revealing a critical role in insulin DRiP-derived peptide presentation to T cells. 
Moreover, we showed that PSMB10 is upregulated in a beta cell subset that is preferentially destroyed in the pancreases of 
individuals with type 1 diabetes.
Conclusions/interpretation  Our data highlight the role of the degradation machinery in beta cell immunogenicity and 
emphasise the need for evaluation of targeted immunoproteasome inhibitors to limit beta cell destruction in type 1 diabetes.
Data availability  The single-cell RNA-seq dataset is available from the Gene Expression Omnibus (GEO) using the acces-
sion number GSE218316 (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE21​8316).

Keywords  Autoantigens · Degradation · Inflammation · Proteasome · Type 1 diabetes

Abbreviations
AAb+	� Autoantibody-positive
CTL	� Cytotoxic T lymphocyte
DRiP	� Defective ribosomal product
EF1α	� Elongation factor 1α
FC	� Fold change
IMDM	� Iscove's modified Dulbecco's medium
INS-DRiP	� Insulin-derived defective ribosomal product
LMP2	� Low-molecular mass polypeptide
MECL-1	� Multicatalytic endopeptidase complex-like-1

MIP-1β	� Macrophage inflammatory protein-1 beta
PBMC	� Peripheral blood mononuclear cells
PPI	� Preproinsulin

Introduction

Type 1 diabetes is characterised by the progressive 
destruction of insulin-producing beta cells by CD8+ T 
cells [1]. While impaired central and peripheral immuno-
logical tolerance in combination with low-affinity T cells 
have been suspected to play a role in the immune attack 
[2], the demonstration that naive autoreactive T cells are 
part of the normal T cell repertoire supports the participa-
tion of beta cells and the islet microenvironment in trigger-
ing or driving disease progression [3, 4]. We have shown 
that local inflammation and the unfolded protein response 
to stress disturb the cellular equilibrium and affect trans-
lation fidelity, generating defective ribosomal products 
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(DRiPs) and alternative reading frame-encoded peptides 
that the immune system is trained to act on [5]. Although 
the molecular mechanisms leading to processing and pres-
entation of these ‘junk’ polypeptides remain unclear, the 
presence of insulin-derived defective ribosomal product 
(INS-DRiP)-specific CD8 T cells, with an effector pheno-
type in donors with type 1 diabetes, supports their poten-
tial relevance as autoimmune T cell targets [6, 7].

Upon inflammation or during cellular stress, misfolded 
proteins that have accumulated in the ER are redirected 
to the ubiquitin–proteasome system pathway for degrada-
tion to restore cellular homeostasis. Dysregulation of this 
system and inappropriate processing may lead to cytoplas-
mic aggregates and the manifestation of neurodegenera-
tive diseases [8] and type 2 diabetes [9], as well as to the 
development of autoimmunity. In proteasome-associated 
autoinflammatory syndromes, mutations within the genes 
encoding the immunoproteasome catalytic subunits are 
associated with an excessive IFN response [10]. The pro-
teasome is the main component of the antigen presenta-
tion machinery. In homeostatic conditions the proteasome 
consists of a 20S catalytic barrel and two regulatory 19S 
complexes, forming the 26S holo structure. Within the 
20S core reside the β subunits—β1 (encoded by PSMB6), 
β2 (PSMB7) and β5 (PSMB5)—which display caspase, 

trypsin and chymotrypsin cleavage specificities, respec-
tively. Upon inflammation, these subunits are partially or 
completely substituted by the induced counter forms β1i/
low-molecular mass polypeptide (LMP)2 (encoded by 
PSMB9), β2i/multicatalytic endopeptidase complex-like-1 
(MECL1; PSMB10) and β5i/LMP7 (PSMB8), respectively, 
to generate intermediate or full immunoproteasomes [11], 
affecting proteolytic activity and producing qualitative or 
quantitative differences in the peptide ligandome presented 
by MHC class I molecules [12, 13].

In this study, we investigated the composition of the 
(immuno)proteasome in human beta cells under inflam-
matory conditions using single-cell RNA-seq analysis 
to determine the molecular mechanisms underlying the 
immunogenicity of INS-DRiP.

Methods

Cells and reagents  The human beta cell line EndoC-βH1 
(Human Cell Design, Paris, France), mycoplasma free, 
kindly provided by R. Scharfmann (Paris Descartes Univer-
sity, France) [14], was maintained in low-glucose DMEM 
supplemented with 5.5 μg/ml human transferrin, 10 mmol/l 



2077Diabetologia (2023) 66:2075–2086	

1 3

nicotinamide, 6.7 ng/ml selenite, 50 μmol/l β-mercaptoethanol, 
2% human albumin (wt/vol), 100 units/ml penicillin and 100 
μg/ml streptomycin. Cells were seeded in extracellular matrix 
(fibronectin) pre-coated culture plates. Inflammatory stress 
was induced with IFNα (PBL Bioscience, USA), IFNγ (Bio-
Techne, USA) or IL1β (Sigma-Aldrich, USA) at the con-
centrations and for the times indicated. INS-DRiP-directed 
cytotoxic T lymphocytes (CTLs) were isolated from freshly 
isolated peripheral blood mononuclear cells (PBMC) from 
a long-term HLA-A2+ individual with type 1 diabetes. As 
described previously [7], 150,000 PBMC/well were seeded 
with 10 μg/ml DRiP1–9 peptide in Iscove's modified Dulbecco's 
medium (IMDM; Life Technologies, USA) supplemented with 
10% human serum, 0.5% LeucoA, 0.1 ng/ml IL-12, 10 ng/
ml IL-7, 25 U/ml IL-2 and 5 ng/ml IL-15. After 14 days of 
culture, cells were restimulated specifically with irradiated 
DRiP1–9 peptide-pulsed JY cells (2 μg/ml peptide with 10 × 
106 cells in AIM-V medium (Life Technologies, USA) for 2 h 
at 37°C and 100,000 cells/well irradiated allogeneic PBMCs 
in IMDM supplemented with human serum and cytokines as 
described above. JY (ATCC 77441) cells, mycoplasma free, 
were maintained in IMDM supplemented with 8% FCS, 100 
U/ml penicillin and 100 μg/ml streptomycin.

Lentivirus production and transduction  The lentiviral 
vector containing HLA-A*02:01 under the elongation fac-
tor 1α (EF1α) promotor was obtained from R. J. Lebbink 
(Medical Microbiology, University Medical Center Utrecht, 
Utrecht, the Netherlands) [16] and produced as described 
previously [15]. Briefly, the EF1α-HLA-A*02:01 contain-
ing lentiviral vector and the three ‘helper’ plasmids (encod-
ing HIV-1 gag–pol, HIV-1 rev and VSV-G envelope) were 
co-transfected overnight using polyethylenimine into 293T 
cells. The medium was refreshed and viruses were harvested 
after 48 and 72 h, passed through 0.45 μm filters and stored 
at −80°C. Viral supernatants (multiplicity of infection 
[MOI]=2) were added to EndoC-βH1 cells in fresh medium 
supplemented with 8 μg/ml Polybrene (Sigma-Aldrich, 
USA) and the cells were incubated overnight.

siRNA transfection  Transfection of siRNAs (SMARTpool) 
was performed using the Dharmacon transfection reagent 
(Dharmafect1) according to the manufacturer’s instructions 
(Horizon Discovery, USA). EndoC-βH1 cells were trans-
fected in 12-well plates for 72 h, using a final concentration 
of 5 nmol/l total siRNA pool mix.

RT‑PCR  Total RNA was extracted from EndoC-βH1 cells 
using the NucleoSpin Kit (740609.50S, Bioke, the Nether-
lands). Approximately 0.5 µg of RNA was used for reverse 
transcription. Oligo (dT) primers were used in the reactions. 
Expression of the transcript of interest was detected using 
primers listed in ESM Table 1.

Western blot analyses  EndoC-βH1 cells were lysed in 
RIPA buffer supplemented with a protease inhibitor cock-
tail (Roche Applied Science, Germany). Protein quanti-
fication was performed using the BCA protein assay kit 
(Thermo Fisher Scientific, USA). A total of 25 µg of 
protein was subjected to electrophoresis on 12% acryla-
mide/bis acrylamide SDS page gels. After electrophore-
sis, proteins were transferred onto nitrocellulose mem-
branes (GE Healthcare, USA). Membranes were stained 
with primary antibodies overnight at 4°C and secondary 
HRP-conjugated antibodies (Santa Cruz Biotechnology, 
USA) for 1h at room temperature. Primary antibodies were 
from Enzo Life Sciences (Switzerland) and were used 
at a dilution of 1:1000 (β1i: BML-PW8345; β5i: BML-
PW8355; β2i: BML-PW8350). The loading control was 
β-actin (MAB1501, EMD Millipore, USA) and was used 
at 1:1000 dilution. Secondary antibodies were anti-mouse 
(#G21040) or anti-rabbit (#sc-2004) antibodies from Santa 
Cruz Biotechnology and were used at a dilution of 1:5000. 
Western ECL substrate was used for imaging (1705062, 
BioRad, USA).

Pancreatic islet treatment  Pancreatic islets used in the T 
cell co-culture assays were obtained from a human organ 
donor. Research consent was obtained according to national 
law and regulations. The islets were isolated in the GMP 
(good manufacturing practice) facility of Leiden University 
Medical Center according to a previously reported protocol 
[17]. For experimental use, human islets were maintained in 
ultra-low attachment plates (Corning, USA) in low-glucose 
DMEM supplemented with 10% FBS, 100 U/ml penicil-
lin and 100 μg/ml streptomycin. Dispersed islet cells were 
treated with 1000 U/ml IFNγ or 2000 U/ml IFNα for 24 h. 
All methods were performed in accordance with relevant 
guidelines and regulations.

Human islets used in single-cell RNA-seq were provided 
through the Integrated Islet Distribution Program (IIDP). 
Pancreatic islets, isolated from three healthy donors, with 
a purity of at least 90%, were cultured on receipt in regular 
CMRL 1066 medium (5.5 mmol/l glucose) supplemented 
with 10% FCS, 20 mg/ml ciprofloxacin, 50 mg/ml genta-
mycin, 2 mmol/l l-glutamine, 10 mmol/l HEPES and 1.2 
mg/ml nicotinamide. Islets were maintained in culture at 
37°C in a 5% CO2 humidified atmosphere and medium was 
refreshed on receipt and every 2 days thereafter. Intact islets 
were treated with the following cytokines: 2000 U/ml IFNα 
and a combination of 1 ng/ml IL1β and 1000 U/ml IFNγ 
(R&D Systems, USA). After treatments, islets were dis-
persed into single cells using 0.025% trypsin (Gibco, USA) 
and 10 mg/ml Dnase (Pulmozyme, Genentech, USA). Single 
cells were then processed for single-cell RNA-seq following 
the standard 10x Genomics 3’ V3 chemistry protocol (10x 
Genomics, USA).
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RNA‑seq data processing and analysis  Single-cell RNA-
seq output was processed and analysed following the Seu-
rat pipeline (version 4.0; https://​cran.r-​proje​ct.​org/​packa​
ge=​Seurat). Clustered cells were labelled and sorted into 

subsets based on the expression of canonical cell markers: 
insulin (beta cells), glucagon (alpha cells), somatostatin 
(delta cells), pancreatic polypeptide (pancreatic polypep-
tide/gamma cells), human cationic trypsinogen (acinar 

Fig. 1   IFNα and IFNγ dif-
ferentially regulate INS-DRiP 
presentation in human islets. (a) 
Schematic of the islet cells/INS-
DRiP-specific CTLs co-culture 
experiment in the presence of 
2000 U/ml IFNα or 1000 U/ml 
IFNγ. Created with BioRender.
com. (b) MIP-1β secretion by 
INS-DRiP-specific CTLs after 
co-culture with HLA-A2+ pri-
mary human islet cells treated 
with IFNα or IFNγ for 24 h 
(n=3). NT, non-treated
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Fig. 2   Cytokines differentially regulate immunoproteasome cata-
lytic subunit expression in primary human endocrine cells. (a) Violin 
plots showing the expression levels of HLA-A after IFNα or IFNγ/
IL1β treatment of endocrine cells. (b) Schematic representation of 
the composition of the proteasome and immunoproteasome. (c) Vio-
lin plots showing the expression levels of the mRNAs encoding the 

constitutive (PSMB5, PSMB6 and PSMB7) and induced (PSMB8, 
PSMB9 and PSMB10) catalytic subunits of the (immuno)protea-
some. Expression levels correspond to log2 normalised counts/cell, 
as obtained in single-cell RNA-seq of human islets treated with IFNα 
(2000 U/ml) or IFNγ (1000 U/ml)+IL1β (2 ng/ml) for 24 h. NT, non-
treated

https://cran.r-project.org/package=Seurat
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cells) and keratin 19 (duct cells). Differential gene expres-
sion analysis was performed using the Wilcoxon rank sum 
test to analyse gene expression differences between treated 
and untreated cell groups. The output of this analysis shows 
genes that are expressed in at least 25% of the cells in any 
group (treated or untreated). Bonferroni correction was 
applied to adjust the p values. Up-/downregulated genes 
(log fold change [FC] >0.5 and <–0.5 respectively) with 
an adjusted p value of <0.05 were considered to be signifi-
cantly altered by the treatment.

Analyses of the pseudobulk differential expression of the 
endocrine cells was performed by clusterProfiler using the 
enrichPathway classification (https://​bioco​nduct​or.​org/​packa​
ges/​relea​se/​bioc/​html/​React​omePA.​html) [18].

T cell activation assays  Target cells were harvested 
and co-cultured with CTLs specific for INS-DRiP1–9 
(MLYQHLLPL) [7] or preproinsulin (PPI)15–24 (ALWGP-
DPAAA) [19] at an effector/target ratio of 2:1. Co-cultures 
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were incubated at 37°C for 4 h in IMDM supplemented with 
10% human albumin and 40 U/ml IL-2 (Novartis, Switzer-
land). The supernatant was used for detection of macrophage 

inflammatory protein-1 beta (MIP-1β) production by T cells, 
using the MIP-1β ELISA kit (88–7034–22, Thermo Fisher 
Scientific), according to the manufacturer’s protocol.
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Statistical analysis  Data are presented as means ± SEM. 
Calculations were performed using GraphPad Prism 7 
(GraphPad Software, USA). Unpaired t tests were carried 
out for all comparisons.

Results

Type II but not type I IFN enhances INS‑DRiP‑derived peptide 
presentation to specific CTLs  Although we previously pro-
vided evidence for a role of INS-DRiP-directed T cells in 
beta cell destruction in type 1 diabetes [7], the contribution 
of the islet microenvironment that is characteristic of the 
early disease phase (the presence of type I IFN as a possi-
ble consequence of exposure to microorganisms, disturbed 
metabolism and tissue stress) or later disease phases (the 
presence of type II IFN resulting from activation of the adap-
tive immune response) remains unknown [20].

To dissect whether and when INS-DRiP-derived pep-
tide recognition is altered in the course of disease progres-
sion, we co-cultured dispersed HLA-A2+ human islets 
treated with IFNα (type I) or IFNɣ (type II) with an HLA-
A2-specific CD8+ T cell clone, isolated from an indi-
vidual with type 1 diabetes and directed against the N-ter-
minal part of the INS-DRiP polypeptide (INS-DRiP1–9) 
[7] (Fig. 1a). Under these standardised conditions, previ-
ously described to mimic the islet inflammatory milieu 
[21–25], although IFNα did not trigger additional T cell 
activation compared with untreated islets, IFNɣ treat-
ment caused an increase in MIP-1β secretion, indicating 
enhanced INS-DRiP peptide presentation (Fig. 1b). To 
validate the assay and confirm the correlation between 
the amount of peptide presented at the cell surface and 
the increase in MIP-1β secretion by T cells, we pulsed JY 
cells (HLA-A2+) with increasing titres of cognate peptide 
derived from INS-DRiP1–9 or HLA-A2 peptide derived 
from native PPI15–24. As expected, INS-DRiP CTLs were 
highly specific and the level of activation was propor-
tional to the peptide concentration (ESM Fig. 1).

Considering that HLA class I is the most important vari-
able involved in antigen presentation to CD8 T cells, we 
used a single-cell RNA-seq dataset of human islets exposed 
to IFNα or IFNγ/IL1β (ESM Fig. 2) and evaluated the effect 
of both treatments on HLA-A expression in endocrine cells. 
As expected, both cytokines upregulated HLA-A expres-
sion to similar levels (Fig. 2a), suggesting that additional 
mechanisms are involved during protein processing after 
IFNɣ treatment to increase INS-DRiP-derived peptide 
presentation.

In our previous proteogenomic study [5], we dem-
onstrated that IFNγ/IL1β treatment did not increase INS 
transcript expression nor favour ribosome docking to the 
DRiP start codon (as determined by long RNA-seq and 
ribosome profiling of EndoC-βH1 cells), suggesting that 
DRiP is produced equally in normal and inflamed condi-
tions. Therefore, we reasoned that a difference in the protein 
degradation machinery may provide a rational explanation 
for the observed increase in INS-DRiP presentation after 
IFNɣ treatment. Using single-cell RNA-seq, we analysed 
the effect of IFNα and IFNγ/IL1β on the expression of the 
mRNAs encoding the constitutive catalytic subunits of the 
proteasome (β1 [encoded by PSMB6], β2 [PSMB7], β5 
[PSMB5]) and the induced catalytic subunits of the immu-
noproteasome (β1i [encoded by PSMB9], β2i [PSMB10], 
β5i [PSMB8]) (Fig. 2b). While the constitutive subunits 
were not significantly affected by treatment, PSMB8 and 
PSMB9 mRNAs were upregulated by both IFNα and IFNɣ/
IL1β in all endocrine and exocrine cell types (Fig. 2c and 
ESM Fig. 3). In contrast, the expression of PSMB10 was 
significantly increased in endocrine alpha and beta cells 
after IFNɣ/IL1β treatment but not in delta or exocrine cells 
(ESM Table 2).

To confirm these results and determine the main driver 
for the upregulation of PSMB10 observed after IFNɣ/IL1β 
treatment in primary human beta cells, we exposed EndoC-
βH1cells to recombinant IFNα, IFNɣ or IL1β for increasing 
amounts of time. As expected, we noted a rapid induction 
of β1i (encoded by PSMB9) and β5i (PSMB8) after IFNα 
and IFNɣ treatment and the absence of expression of β2i 
(PSMB10) in IFNα-treated cells (Fig.  3a). The absence 
of effect of IL1β on both HLA class I surface expression 
and immunoproteasome components (ESM Fig. 4) in these 
assays suggests that the expression of PSMB10 observed 
in primary human islets on IFNɣ/IL1β treatment is mainly 
driven by type II IFN. To dissect the impact of cytokines 
on EndoC-βH1 cell immunogenicity, we generated a stable 
EndoC-βΗ1 cell line expressing HLA-A*02:01 by lentivi-
ral transduction and exposed the cells for 4, 16 or 24 h to 
IFNα or IFNγ prior to co-culture with HLA-A2-restricted 
INS-DRiP-specific CD8+ T cells. We measured HLA class 
I expression in EndoC-βΗ1 cells and T cell activation by 
MIP-1β secretion. While IFNα and IFNγ differentially 

Fig. 5   PSMB10 silencing exclusively reduces INS-DRiP-specific 
CTL activation. (a) HLA-A2 (genetically introduced) surface expres-
sion of EndoC-βΗ1-HLA-A2 cells transfected with non-targeted 
siRNA (siCTRL) and siRNAs specific for PSMB8, PSMB9 and 
PSMB10. Cells were left untreated (blue bars) or treated with 2000 
U/ml IFNα (orange bars) or 1000 U/ml IFNγ (red bars) 72 h post 
transfection for 24 h. Values are presented as mean fluorescence 
(FITC) intensity (MFI) (n=3). (b, c) MIP-1β secretion by (b) INS-
DRiP1–9-specific CTLs and (c) PPI15–24 after co-culture with EndoC-
βΗ1-HLA-A2 cells. Prior to co-culture, target cells were transfected 
with non-targeted siRNA and siRNAs specific for PSMB8, PSMB9 
and PSMB10. Cells were left untreated (blue circles) or treated with 
IFNα (orange circles) or IFNγ (red circles) 72 h post transfection for 
24 h (n=3). Statistical analyses are comparing IFNγ to IFNα treat-
ments. ***p≤0.001. NT, non-treated

◂
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affected HLA class I surface expression, both treatments 
equally upregulated the expression of the HLA-A2 transgene 
(Fig. 3b). Under these conditions, and despite similar HLA-
A2 expression levels, we observed an increase in T cell acti-
vation after IFNγ treatment, illustrating increased presenta-
tion of the DRiP-derived peptide to the specific CTLs, as 
observed for human islets (Fig. 3c).

The β2i subunit enhances INS‑DRiP presentation  To deter-
mine the effect of the different immunoproteasome subunits 
on EndoC-βH1-HLA-A2 cell recognition by the INS-DRiP 
CD8+ T cell clone, siRNAs specific for PSMB8, PSMB9 
and PSMB10 were used to selectively interfere with gene 

expression prior to IFNα and IFNγ treatment (Fig. 4a–c). 
We found that downregulation of the immunoproteasome 
catalytic subunits had no impact on HLA-A2 surface expres-
sion (Fig. 5a). To test for their immunogenicity, the modified 
beta cells were co-cultured with autoreactive T cells directed 
against INS-DRiP1–9 or PPI15–24 [26]. While activation of 
the PPI-specific T cell clone was unaltered after IFN treat-
ment and immunoproteasome subunit modulation, PSMB10 
inhibition annihilated the IFNγ effect and reduced INS-
DRiP-specific T cell reactivity to the levels seen after treat-
ment with IFNα (Fig. 5b,c). Of note, the increased epitope 
presentation in the presence of IFNα after PSMB9 knock-
down is peculiar but may be related to a higher amount of 
intact epitope, as suggested by the presence in the epitope of 
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Fig. 6   Immunoproteasome composition of beta cells from individuals 
with type 1 diabetes. (a) Gene ontology plot of transcripts upregulated 
in two distinct beta cell subsets (p<0.05 and logFC>1) in individuals 
with type 1 diabetes compared with control individuals (donors with-
out diabetes). The plot was generated with clusterProfiler using the 
enrichPathway classification. (b) Heatmap showing the logFC (p<0.05) 

of PSMB8, PSMB9 and PSMB10 in the beta-1 and beta-2 populations 
from individuals with type 1 diabetes compared with control donors. 
(c) Heatmap showing the logFC (p<0.05) of PSMB8, PSMB9 and 
PSMB10 in the beta-1 and beta-2 populations from individuals with 
type 1 diabetes patients compared with AAb+ individuals. This figure 
has been generated using data described in Fasolino et al, 2022 [29]
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hydrophobic residues targeted for chymotrypsin-like cleav-
age by β1i [27] (ESM Fig. 5). Accordingly, in silico analy-
sis of the INS-DRiP sequence on the Proteasome Cleavage 
Prediction Server (PCPS) [28] shows that the INS-DRiP1–9 
(MLYQHLLPL) 9-mer has a higher propensity to be pro-
cessed by the immunoproteasome complex than by the con-
stitutive proteasome. In addition, the localisation of trypsin 
digestion sites outside the 9-mer epitope region suggests that 
the β2i subunit may be involved in the processing of the INS-
DRiP polypeptide but should not destroy the MLYQHLLPL 
epitope, meaning that its integrity is maintained.

PSMB10, encoding the β2i subunit, is specifically expressed 
in a beta cell subset that is preferentially destroyed in pan‑
creases of individuals with type 1 diabetes  We next assessed 
the potential clinical relevance of our findings in the con-
text of the immunopathogenesis of type 1 diabetes using 
the single-cell multi-omics analysis launched by the Human 
Pancreas Analysis Program (HPAP) consortium [29]. This 
dataset identified two distinct beta cell clusters (beta-1 and 
beta-2) when comparing the transcriptomic profile of endo-
crine cells from donors with type 1 diabetes and endocrine 
cells from autoantibody-positive donors (AAb+). Those 
clusters are differentiated by the specific upregulation of 
apoptotic and adaptive immune system signalling in the 
beta-2 subset in AAb+, indicating that this cluster is under-
going cell death. Further examination of the pseudobulk dif-
ferential expression analysis of the endocrine cells showed 
upregulation of the apoptosis pathway specifically in the 
beta-2 (‘minor’) beta cell subset (Fig. 6a, ESM Fig. 6 and 
ESM Table 3) and pointed to differences in the composition 
of the catalytic subunits of the immunoproteasome and to the 
selective expression of PSMB10 in this subset (Fig. 6b,c). 
Altogether our data demonstrate the differential immune 
visibility of beta cells in the early and late phases of disease 
progression in type 1 diabetes and illustrate how IFNɣ can 
accelerate beta cell destruction by changing the composition 
of the immunoproteasome.

Discussion

In this study we show that IFNα and IFNγ differentially 
regulate the proteasomal composition of beta cells and 
demonstrate that INS-DRiP peptide recognition may be 
involved in later phases of type 1 diabetes pathogenesis as an 
amplificatory phenomenon of beta cell destruction. Previous 
studies have investigated the effect of IFNα and IFNγ/IL1β 
on human islets using bulk RNA-seq and shown increased 
expression of the immunoproteasome catalytic subunits 
[30, 31]. In this study we found that PSMB10 expression, 
responsible for INS-DRiP processing, represents a unique 
feature of beta cells during the late phase of type 1 diabetes, 

enhancing beta cell immunogenicity and discriminating beta 
cells that are targeted by the immune system from those that 
are protected. This observation adds to the accumulating 
evidence that the islet microenvironment acting in concert 
with beta cells controls immunoreactivity by altering anti-
gen presentation pathways [26, 32]. The composition of the 
proteasome complex in beta cells has been studied in pri-
mary human islets and rodent insulin-producing cell lines 
after cytokine stimulation [33, 34]. However, few studies 
have connected an altered catalytic core composition with 
functional differences [35]. To our knowledge, our data are 
the first showing direct evidence for the participation of the 
immunoproteasome in beta cell immunogenicity and INS-
DRiP-derived peptide presentation to CTLs.

Potential limitations of this study include the use of 
recombinant cytokines that simplify and may only par-
tially reflect the local inflammation seen during early 
and late events of type 1 diabetes progression [36]. In 
addition, the use of a transformed human beta cell line 
and the limited number of autoreactive T cell clones 
tested mean that further validation in primary human 
islets in combination with other DRiP-specific T cells, 
when available, is required to draw broader conclusions 
about β2i participation in the processing of peptides 
derived from defective ribosomal products (currently the 
MLYQHLLPL peptide, studied here, remains the only 
alternative translational product-derived peptide identi-
fied in beta cells). Of note, while HLA-A2 expression in 
the EndoC-βH1 transductants [5] may not mirror normal 
physiological behaviour, its stable expression under dif-
ferent conditions allows an unbiased comparison of INS-
DRiP peptide processing after IFNα or IFNɣ treatment. 
In addition, the selective upregulation of PSMB10 in a 
subset of vulnerable beta cells reinforces the relevance of 
our findings and points to a role of β2i in the processing 
and presentation of islet neoantigens to diabetogenic T 
cells in type 1 diabetes.

Inhibitors targeting both the standard proteasome and 
the immunoproteasome, such as bortezomib, are clini-
cally approved for the treatment of multiple myeloma 
and have been shown to have some beneficial effects in 
autoimmunity and transplantation [37–39]. However, the 
lack of specificity results in severe side effects, impairing 
their therapeutic value [40–42]. Similarly, in our analysis 
we observed that PSMB9 inhibition sensitised beta cells 
to CTL-mediated destruction, illustrating that general 
interference comes at a risk and highlighting the need for 
specific inhibitors rather than general proteasome suppres-
sion. Immunoproteasome inhibitors have been shown to 
ameliorate symptoms in preclinical models of different 
autoimmune diseases [43, 44], and KZR-616, a drug tar-
geting both PSMB8 and PSMB9, has been tested in a Phase 
II trial of systemic lupus erythematosus [45]. In each study, 
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inhibitors were used as immunosuppressants through their 
capacity to target immune cells that constitutively express 
the immunoproteasome. Some of the outcomes observed 
were decreased cytokine secretion, inhibition of T and B 
cell activation and modified macrophage polarisation [40]. 
While these effects may be beneficial in type 1 diabetes, a 
recent study showed that the use of ONX-914, a PSMB8 
inhibitor, exacerbated beta cell apoptosis during inflamma-
tion [34]. ONX-914 was later shown to have some off-target 
effects on PSMB9 [46], but whether this occurred in the 
inflamed human islets has not yet been determined. In fact, 
at least two immunoproteasome subunits should be targeted 
to obtain successful immunosuppression [40, 46]. The use 
of immunoproteasome inhibitors to alleviate non-immune 
tissue inflammation has not yet been explored. Our study 
suggests that the selective modulation of MECL1 (encoded 
by PSMB10) using selective cell-permeable inhibitors of the 
trypsin-like site [47] may be beneficial to reduce beta cell 
immunogenicity and the T cell response mounted against 
the INS-DRiP peptide to limit type 1 diabetes progression, 
shedding new light on the role of the immunoproteasome, 
rather than the constitutive proteasome, as an important 
player in beta cell immunogenicity.
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