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Zebrafish Embryos and Larvae: A New
Generation of Disease Models and Drug Screens

Shaukat Ali, Danielle L. Champagne, Herman P. Spaink
and Michael K. Richardson*

Technological innovation has helped the zebrafish embryo gain ground
as a disease model and an assay system for drug screening. Here, we
review the use of zebrafish embryos and early larvae in applied biomed-
ical research, using selected cases. We look at the use of zebrafish
embryos as disease models, taking fetal alcohol syndrome and tubercu-
losis as examples. We discuss advances in imaging, in culture techni-
ques (including microfluidics), and in drug delivery (including new tech-
niques for the robotic injection of compounds into the egg). The use of
zebrafish embryos in early stages of drug safety-screening is discussed.
So too are the new behavioral assays that are being adapted from
rodent research for use in zebrafish embryos, and which may become
relevant in validating the effects of neuroactive compounds such as anx-
iolytics and antidepressants. Readouts, such as morphological screening
and cardiac function, are examined. There are several drawbacks in the
zebrafish model. One is its very rapid development, which means that
screening with zebrafish is analogous to ‘‘screening on a run-away
train.’’ Therefore, we argue that zebrafish embryos need to be precisely
staged when used in acute assays, so as to ensure a consistent window
of developmental exposure. We believe that zebrafish embryo screens
can be used in the pre-regulatory phases of drug development, although
more validation studies are needed to overcome industry scepticism.
Finally, the zebrafish poses no challenge to the position of rodent mod-
els: it is complementary to them, especially in early stages of
drug research. Birth Defects Research (Part C) 93:115–133,
2011. VC 2011 Wiley-Liss, Inc.
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THE ZEBRAFISH EMBRYO IN

DRUG SCREENING

The zebrafish (Danio rerio) is
small, cheap to keep, fast to
develop, and has high fecundity
(Dahm and Geisler, 2006). Its
early-stage embryos have a
transparent body, making it rel-
atively easy to collect numerous
data points using high-quality
imaging (including fluorescent

imaging of transgenic lines).
Annual maintenance costs for
adult zebrafish are somewhat
lower than those for rodents.
However, this cost advantage is
hugely multiplied when the test
animal is a zebrafish embryo,
because a female zebrafish can
lay as many as 10,000 eggs
per annum (Dahm and Geisler,
2006).

For these and other reasons,
zebrafish embryos have been pro-
posed as an in vitro animal model
which could bridge the gap
between simple assays based on
cell or tissue culture, and biological
validation in whole animals such
as rodents (for reviews see Van
den Belt et al., 2000; Shin and
Fishman, 2002; Rubinstein, 2003;
Goldsmith, 2004; Hill et al., 2005;
Zon and Peterson, 2005; Dahm
and Geisler, 2006; Reimers et al.,
2006; Kari et al., 2007; Lieschke
and Currie, 2007; Parng et al.,
2007; Barros et al., 2008; Brittijn
et al., 2009; Tsang, 2010).
The zebrafish embryo may be

able to address the unmet need in
biomedical research for low-cost,
high-throughput whole-animal
assays and models (Bull and
Levin, 2000; Lieschke and Currie,
2007). In vitro assays offer the
advantages of low cost, of being
less prone to legal and ethical
restrictions, and of having the
ability to be scaled-up. By con-
trast, whole-animal assays provide
data that are more easily extrapo-
lated to humans and allow com-
plex organismal functions (e.g.,
behavior and development) to be
studied (Barnes, 1986).
After scaling up, it is possible, in

principle, to reach high throughput
(1000–10,000 assays per day;
Verkman, 2004) or even ultra-
high throughput (100,000 assays

R
E
V
IE

W

VC 2011 Wiley-Liss, Inc.

Birth Defects Research (Part C) 93:115–133 (2011)

Shaukat Ali, Danielle L. Champagne, and Michael K. Richardson are from Institute of Biology, Leiden University, Sylvius Labo-
ratory, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
Danielle L. Champagne is from Department of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Einsteinweg
55, 2333CC Leiden, The Netherlands
Herman P. Spaink is from Institute of Biology, Leiden University, Gorlaeus Laboratory, Einsteinweg 55 2333 CC Leiden, The Netherlands

*Correspondence to: M.K. Richardson. E-mail: m.k.richardson@biology.leidenuniv.nl

View this article online at wileyonlinelibrary.com. DOI: 10.1002/bdrc.20206



per day; Dove, 1999). Such
large numbers of replicates
increase the reliability of the sta-
tistics and allow rare (idiosyn-
cratic) responses to be identified.
Rare responses are most readily
detected using ‘‘wild type’’ (pet
shop) zebrafish with high genetic
variability. Several zebrafish
embryo assays can help to predict
drug safety in humans (Berghmans
et al., 2008; Redfern et al., 2008),
and therefore zebrafish disease
models have been developed (Flinn
et al., 2008; Tanguay and Reimers,
2008; Brittijn et al., 2009).
We argue in this review that

zebrafish embryos and early larvae
can serve as invaluable screening
tools in the pre-regulatory, preclin-
ical phase of drug discovery. They
can be used as a kind of filter that
reduces the number of compounds
passing through to testing on the
much more expensive rodent mod-
els (Fig. 1). The zebrafish can
never replace rodents in the later
phases of drug discovery but may
be complementary to rodent or
cell-based assays at earlier stages.
For a summary of some advan-
tages and disadvantages of the
zebrafish model, see Table 1.

What is a Zebrafish ‘‘Embryo’’?

Strictly speaking, the fish
embryo becomes a larva at hatch-
ing or when it begins exogenous
feeding. It is then called a ‘‘larva’’
until it undergoes metamorphosis
into a juvenile, finally being
termed an ‘‘adult’’ when it is sexu-
ally mature (Falk-Petersen, 2005).
In the zebrafish, hatching takes
place between 48 and 72 hr post-
fertilization (hpf). By convention,
the zebrafish embryo takes the
name of ‘‘larva’’ at 72 hpf, regard-
less of whether or not it has
hatched (Kimmel et al., 1995). It
remains a larva until the 30th day
(Nüsslein-Volhard, 2002), when it
undergoes metamorphosis and
becomes a juvenile. At 3 to 4
months, it becomes sexually
mature (Dahm and Geisler, 2006).
In this review, we concentrate on
embryos and few days old young
larvae.

EMBRYO CULTURE

PROTOCOLS

Zebrafish culture and breeding of
zebrafish are discussed by Wester-
field (2000); commonly used pro-

tocols are given online at http://
zfin.org. In our laboratory, we
keep adults at a maximum density
of 100 individuals in glass recircu-
lation aquaria (L 80 cm; H 50 cm,
W 46 cm) on a 14-hr light : 10-hr
dark cycle (lights on at 8:00 AM).
Water and air are temperature
controlled (2860.58C and 238C,
respectively). We feed adults twice
daily with ‘‘Sprirulina’’ brand flake
food (O.S.L. Marine Laboratory,
and Burlingame, USA) and twice a
week with frozen invertebrate lar-
vae (Dutch Select Food, Aquadistri
BV, The Netherlands).

Defined Embryo Buffer

Many laboratories use ‘‘egg
water’’ (Westerfield, 2000) which is
made up from Instant Ocean, a
proprietary mixture of minerals. In
some experiments, however, it
may be useful to have a defined
buffer, and in these cases we use
10% Hank’s balanced salt solution.
We make this with cell-culture
tested, powdered Hank’s salts,
without sodium bicarbonate (Sigma
Cat. No H6136-10X1L, Sigma-
Aldrich, St Louis, MO) at a concen-
tration 0.98 g/L in Milli-Q water

Figure 1. Drug discovery pipeline involving novel zebrafish models. This schematic illustrates a potential drug discovery pipeline
showing the incorporation of novel approaches using cell-based and zebrafish assays into target discovery and zebrafish behavior-
based assays into compound screen (Reproduced from Brittijn et al., 2009, with permission from UBC Press). The zebrafish model
will never replace mammalian models in the drug development pipeline, particularly at later stages when the regulatory authorities
demand studies in mammalians and clinical trials. Rather, the zebrafish model can serve as an invaluable screening tool in the pre-
clinical phase, before rodent models, in the drug pipeline.
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(resistivity 5 18.2 MX�cm), with
the addition of sodium bicarbonate
at 0.035 g/L (Cell culture tested,
Sigma Cat S5761) and adjusted to
pH 7.46. A similar medium was
previously used by Macphail et al.
(2009) and Irons et al. (2010).

Embryo Care

Eggs are obtained by random
pairwise mating of zebrafish. In

our laboratory, we place three
adult males and four adult females
together in small plastic breeding
tanks (Ehret GmbH, Emmendin-
gen, Germany) the evening before
eggs are required. The tanks (L 26
cm; H 12.5 cm, W 20 cm) have
mesh across the bottom so that
eggs will fall through and are pro-
tected from being eaten by the
adults. The eggs are harvested the
following morning and transferred

into 92-mm plastic Petri dishes
(50 eggs per dish) containing 40
ml fresh embryo buffer.
Eggs are washed four times to

remove debris. Further, unfertil-
ized, unhealthy and dead embryos
were identified under a dissecting
microscope and removed by selec-
tive aspiration with a pipette. At
3.5 hpf, embryos are again
screened and any further dead
and unhealthy embryos were

TABLE 1. Advantages and Disadvantages of the Use of Zebrafish in Biomedical Research

Feature Benefit/Drawback

Advantages
Easy maintenance Low housing costs
Year round spawning Research can run continuously
High fecundity (300–600 by single female at one time) Low cost per assay
Optical transparency of early stages Real-time (live) imaging of developmental

processes and easy selection of precise
developmental stages (in contrast to mammals)

Swimming begins at hatching (48–72 hpf) and
more complex behavior (food seeking) at 5 dpf

Behavioral studies can be made on very early
stages

Very rapid development Large number of experiments possible in short
time period

Fertilization is external Embryos accessible noninvasively, can be
continuously imaged; there is no placental
barrier or maternal compartment to influence
drug experiments

Minimal parental care Reduced epigenetic parental influence on
experimental outcome

Mutants available, genome sequenced, morpholino
knockdowns possible

Genetic basis of teratogenesis can be investigated

Animal protection laws often less stringent for
zebrafish embryos than for mammals

Fewer legal restrictions on research

Eggs develop in nonsterile, simple buffers Easy to raise and maintain embryos
Genome has important similarities to human (e.g., nearly all

mammalian genes have a zebrafish counterpart;
high conservation of key developmental
genes with the human)

Common molecular pathways can be studied

Very small size of early embryos Only very low quantities of expensive test drugs
and staining reagents needed; suitable for high
throughput screening in 96 and 384 multiwell
plates

Small egg size and external fertilization Very precise control of drug delivery and dosage
Early embryo is permeable to small compounds Suitable for drug testing

Disadvantages
Last common ancestor with humans

was 445 million years ago
Far more remote from humans than other animal

models such as rodents (which have a 96 million
year divergence time from humans)

Exothermic (cold-blooded) Physiology not identical to humans
Anatomical differences with human

(e.g., lack of heart septation,
synovial joints, cancellous bone, limbs, and lungs)

Several human ethanol disorders are difficult or
impossible to model in this species (e.g., cardiac
septation defects)

Genome duplication Many genes present as two copies, creating extra
work to determine functional roles

Presence up to 48 hpf of the chorion Interference with drug diffusion

Including information from Best et al. (2008), Tanguay and Reimers (2008), Grunwald and Eisen (2002), Gerlai et al.
(2000), Gerlai (2003); Nei et al. (2001); Kimmel et al. (1995), Dahm and Geisler (2006), and Hisaoka (1958).
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removed. Throughout all proce-
dures, the embryos and the solu-
tions are kept at 2860.58C, either
in the incubator or in a climatized
room. All incubations of embryos
are carried out in an incubator
with orbital shaking (50 rpm)
under a light cycle of 14 hr light :
10 hr dark (lights on at 8:00 AM).
The reason why we screen the

eggs so carefully is that substan-
tial numbers of embryos may die
during early stages. Such a ‘‘mor-
tality wave’’ has been reported by
Fraysse et al. (2006). In the
report of the World Health Organi-
sation/OECD on zebrafish assays
(Organization for Economic Coop-
eration and Development, 1998) it
was stated that ‘‘The mortality
rate of the eggs is highest within
the first 24 hpf. A mortality rate of
5% to 40% is often seen during
this period.’’ In our laboratory, we
find a cumulative mortality and
infertility rate of 9% and 5%
respectively at 24 hr (Ali et al.,
2011).

Culture Vessels

The containers used for the
growing-on of zebrafish embryos
for screening purposes vary widely
between laboratories. Examples
include 15-L aquaria (Gerlai et al.,
2000), 92-mm Petri dishes with 60
embryos per dish (Fernandes and
Gerlai, 2009), 96-well plates with
one to three embryos per well
(Macphail et al., 2009; Yang et al.,
2009), 8 3 6 3 2 cm3 chambers
with 10 embryos per chamber
(Lockwood et al., 2004), five-gal-
lon aquaria (Dlugos and Rabin,
2003), six-well plates with 10
embryos per well (Dlugos and
Rabin, 2007), 24-well plates with
4 to 30 embryos per well (Carvan
et al., 2004; McKinley et al.,
2005; Ton et al., 2006; Bergh-
mans et al., 2008), and glass
beakers (Kashyap et al., 2007).
We and several other laborato-

ries (Macphail et al., 2009; Peal
et al., 2011; Truong et al., 2011)
use ANSI/SBS format 96-well
microtiter plates to isolate and
track individual embryos. A single
embryo can be cultured in each
well, in a volume of 250 lL buffer.

In principle, the embryo can sur-
vive at least 5 days without buffer
refreshment. The 96-well format is
also ideal for use in Viewpoint
(France) and Noldus (The Nether-
lands) behavior analysis systems.

Microfluidic Devices

In microtiter plates, the buffer is
refreshed periodically (‘‘static
renewal’’) or not at all (‘‘static
non-renewal’’; see United States
Environmental Protection Agency,
2002). It is not known what effect
periodic aspiration and replace-
ment of the buffer has on zebra-
fish larvae; it is conceivable that it
causes stress to the young fish,
although this has not been proven.
Static replacement regimes may
not be ideal for the zebrafish, a
species which normally breeds in
slow-flowing waters (Spence
et al., 2008). For these and other
reasons, microfluidic culture sys-
tems are being investigated.
One example is the static nonre-

newal culture of zebrafish embryos
inside Teflon tubing, each embryo
being isolated in a drop of buffer
(Funfak et al., 2007). Chronic ex-
posure to drugs is possible in such
a system, but the embryo is not ac-
cessible during the experiment.
Furthermore, culture in Teflon tub-
ing involves distortion of the image
because of the curved surfaces and
does not provide continuous buffer
refreshment.
Another approach to the micro-

fluidic culture of zebrafish embryos
was developed by a student team
and reported in an educational-
themed issue of the journal Zebra-
fish. Unfortunately, no biological
data were given in that paper,
although the authors claimed that
the zebrafish could survive for a
few days in their single-well polydi-
methylsiloxane open Petri dish
setup (Shen et al., 2009).
We have shown using a custom-

designed lab-on-a-chip made of
glass, in which zebrafish embryos
can be cultured in a continuous
flow-through (‘‘dynamic renewal’’)
of pressurized buffer (Wielhouwer
et al., 2011). In such a system, the
embryos are continuously accessi-
ble and isolated in parallel arrays

to prevent cross-contamination. In
our chip, the volume of each well
was only 9 lL and we could conduct
real-time imaging of the embryo at
all stages. A buffer flow of 2 lL/
(well min) was found to be optimal
for zebrafish embryos (Wielhouwer
et al., 2011).

COMPOUND DELIVERY TO

THE EMBRYO

Until the embryo hatches at 48 to
72 hpf (Kimmel et al., 1995;
Dahm and Geisler, 2006) it is sur-
rounded by the chorion, which
represents a barrier that can
reduce drug diffusion (Mizell and
Romig, 1997; Braunbeck et al.,
2005). Therefore, if stages before
hatching are to be treated with
drugs, special consideration must
be taken of the chorion.

Penetration of Drugs Through
the Chorion

The chorion, which envelopes the
embryo until hatching, substan-
tially slows down the diffusion of
small molecules into the embryo. It
is perforated by ‘‘chorion pore
canals’’ of around 0.5 to 0.7 lm di-
ameter, and spaced at 1.5 to 2.5
lm intervals (center-to-center; Lee
et al., 2007). The chorion pore
canal has a viscosity 263 higher
than egg water, and this has been
shown the limit the diffusion of
nanoparticles, (Lee et al., 2007).
Small molecules such as ethanol
can diffuse slowly through the cho-
rion, especially if a high concentra-
tion is applied externally; they can
then be quite rapidly cleared away
if the embryo is washed several
times with buffer (Fig. 2).
One way to overcome the barrier

provided by the chorion is to digest
it away with Pronase (www.zfin.
org). An alternative is perivitelline
injection (Mizell and Romig, 1997)
which involves delivering the drug
through the chorion into the under-
lying perivitelline space (i.e., the
gap between the yolk sac/embryo,
and the chorion). Perivitelline
injection of volumes of drug as low
as 40 nL can produce marked
biological effects in zebrafish
embryos (Mizell and Romig, 1997).
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A technique for robotically microin-
jecting compounds into the embry-
onic tissue has also been devel-
oped (Wang et al., 2007).

Duration and Stage of
Administration

In chronic exposure assays, it
may be sufficient to add the test
compound to the embryo buffer
and leave it without replacement
for the duration of the assay. In
acute exposure regimes, however,
the drug will have to be rinsed
away after the exposure. Zebra-
fish develop very rapidly, and so
screening with zebrafish embryo is
a bit like ‘‘screening on a run-
away train,’’ as a colleague of ours
has so vividly described it. In
other words, it may be necessary
to choose a very precisely defined
time window for the drug exposure
to ensure that all embryos are at
the same stage of development.
Unless this is done, errors arising
from staging differences may be
introduced into the data.
There is variation in the time at

which embryos reach a particular
stage (Kimmel et al., 1995).
Therefore, adding a compound at
a certain number of days or hours
postfertilization is not guaranteed
to produce a standardized stage of
exposure. Because age is a poor
guide to developmental maturity,
it is much better to standardize
the maturity of embryos using a
developmental staging system,
such as that reported by Kimmel
et al. (1995). Unlike mammalian
models, zebrafish embryos are
easily staged because fertilization
is external; they develop entirely
outside the mother’s body and are
transparent (Table 1).

READOUTS AND READOUT

TECHNOLOGIES

Readouts are the various types of
data collected during, or at the
end, of the assay. We give here a
small selection of behavioral, fluo-
rescent, morphological, and car-
diac readouts and their associated
technologies.

Figure 2. The chorion as a barrier to drug entry. HR-MAS 1H MRS spectra of intact
embryos treated with 10% ethanol for 1 hr and then spectra were measured (A) with-
out subsequent washing, the ethanol level in the embryos had risen to 0.86% (B) after
washing three times with buffer, the ethanol concentration in the embryos had fallen
to 0.0003%. Spectrum in the inset of (B) is enlarged 30 times in y axis (C) after wash-
ing three times with buffer and subsequently allowed to grow for another 1 hr. the
ethanol concentration in the embryos had fallen to 0.0% (Ali et al., 2011).
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Behavioral Readouts

Despite obvious differences
between zebrafish and humans,
the zebrafish possesses a series of
qualities that make it complemen-
tary to the mammalian models
currently used in the behavioral sci-
ences. This is because zebrafish
share extensive homologies to
other vertebrate species (including
rodents and humans) in terms of
their genome, brain patterning, and
the structure and function of sev-
eral neural and physiological sys-
tems, including the stress-regulat-
ing axis (Postlethwait et al., 2000;
Rodriguez et al., 2002; Tropepe
and Sive, 2003; Guo, 2004; Sison
et al., 2006; Lieschke and Currie,
2007; Schaaf et al., 2008; Veldman
and Lin, 2008; Guo, 2009; Morris,
2009; Pogoda and Hammersch-
midt, 2009; Steenbergen et al.,
2010; Burne et al., 2011).
Larval zebrafish are also partic-

ularly well suited for behavioral
testing because of their maturity
in terms of swimming capacity,
and functionality of the motor,
sensory, and stress-regulating
systems, and ability to perform
simple motor tasks and perceive
relevant cues for the environment
(Drapeau et al., 2002; Guo,
2004; Lockwood et al., 2004;
Best and Alderton, 2008; Best
et al., 2008; Emran et al., 2008;
Kokel and Peterson, 2008; Guo,
2009; Irons et al., 2010; Kokel
et al., 2010). These features
make the zebrafish of interest for
drug discovery in psychiatry
where the discovery of new medi-
cines is lagging behind relative to
other clinical disciplines (Agid
et al., 2007).
It is clear that zebrafish embryos

will never develop a full range of
complex, human-like disorders.
However, they can be used to
study certain biological markers
(endophenotypes) of these disor-
ders. A good example is dysfunc-
tion of the stress-regulating
system referred to in humans as
the hypothalamic-pituitary-adrenal
axis. Dysfunction of this system
plays an important role in the
onset of several physiological dis-
orders (e.g., hypertension) and

also provides biological markers of
depression (Holsboer, 2000; Par-
iante, 2003; Hasler et al., 2004).
Dysfunctions of the stress-regu-

lating system are typically stud-
ied in rodent models using assays
for stress/anxiety responses and
cognition (Heim et al., 2004,
2008; Champagne et al., 2009;
Meaney, 2010). Recently, the
zebrafish has been used as an al-
ternative model (Steenbergen
et al., 2010), and several of the
traditional rodent behavioral
assays have been successfully
adapted and pharmacologically
validated for use in zebrafish
(Gerlai et al., 2000; Lockwood
et al., 2004; Levin et al., 2007;
Best et al., 2008; Emran et al.,
2008; Lopez-Patino et al., 2008;
Guo, 2009; Cachat et al.,
2010a,b; Champagne et al.,
2010; Gerlai, 2010a, 2010b;
Maximino et al., 2010a,b, 2011;
Steenbergen et al., 2010; Stew-
art et al., 2010; Stephenson
et al., 2011). Recent studies
have also shown the feasibility of
using larval zebrafish for high
throughput behavioral-based drug
screening (Kokel and Peterson,
2008; Kokel et al., 2010; Rihel
et al., 2010). It is noteworthy
that recent evidence also sup-
ports the feasibility and useful-
ness of adult zebrafish for me-
dium throughput screening
(Pather and Gerlai, 2009; Gerlai
2010a, 2010b).
Behavioral assays customized

for zebrafish larvae often use mul-
tiwell plates (Gutman and Nemer-
off, 2003; Muto et al., 2005;
Berghmans et al., 2007; Burgess
and Granato, 2007; Kokel and
Peterson, 2008; Gerlai 2010a;
Kokel et al., 2010; Rihel et al.,
2010). Examples of customized
behavioral (locomotor) assays for
larval zebrafish conducted in mul-
tiwell plates include the acoustic
startle test (Best et al., 2008), sei-
zure liability test (Berghmans
et al., 2007; Winter et al., 2008),
visual safety assay (Richards
et al., 2008), and the visual motor
response test as discussed (see
below; Emran et al., 2008; Mac-
phail et al., 2009; Irons et al.,
2010; Rihel et al., 2010).

Anxiety Assays

Light/dark preference test

The light/dark box and open field
tests are well suited for zebrafish
research as they are relatively sim-
ple, painless, and unconditioned
tests that can readily assess spon-
taneous/natural tendency of an
animal to explore or avoid a novel
environment depending on the
degree of aversiveness (Sousa
et al., 2006). The light/dark box
test is based on the innate aversion
of brightly lit environments in
rodents (Hascoet et al., 2001;
Bourin and Hascoet, 2003). Several
studies using rodent models have
shown that the amount of time
spent in the dark compartment rep-
resents a measure of light aversion
(Hascoet et al., 2001; Bourin and
Hascoet, 2003). Clinically effective
antianxiety drugs (e.g. diazepam)
can attenuate such avoidance
behavior supporting a link between
light-aversion behavior and anxiety
in this paradigm (Hascoet et al.,
2001; Bourin and Hascoet, 2003).
A similar version of the light/dark

box test has been previously
adapted for adult and larval zebra-
fish and shows that, if given a choice
between bright and dark environ-
ments, both larval and adult zebra-
fish (Steenbergen et al., 2010) dis-
play dark-avoidance behavior and a
significant preference for the bright
area (Fig. 3). These results are in
agreement with the natural ecology
of this species. Thus, dark-avoid-
ance behavior has been proposed to
be an adaptive response for diurnal
species like zebrafish, as they rely
on vision and lit environments to
capture prey and avoid predators in
nature (Burgess and Granato,
2007; Emran et al., 2008; Macphail
et al., 2009).
We have shown that treatment

with antianxiety drugs reduces
dark-avoidance behaviors in larval
zebrafish in a manner similar to
that observed in other species (Fig.
4). These findings support the
hypothesis that dark-avoidance
behaviors in zebrafish are part of
a repertoire of anxiety-like
behaviors; this validates the use of
the light/dark preference test as a
valid test for drug screening
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(Steenbergen et al., 2010). While
our findings are in agreement with
some previous observations (Gerlai
et al., 2000), they are in disagree-
ment with others (Guo, 2004;
Serra et al., 1999; Blaser et al.,
2010; Grossman et al., 2010; Max-
imino et al., 2010a, 2010b, 2011).
The reason for this discrepancy has
not been yet resolved.

The open field test

This test measures the reactions
of an individual to novel, large
spaces. The individual faces a di-
lemma between finding food,
mates, and other advantages in
the space or being confronted with
a danger (Prut and Belzung, 2003;
Sousa et al., 2006). The aversive
properties of the novel environ-
ment may inhibit or reduce explor-
atory behavior and promote thig-
motaxis (wall-hugging or wall-fol-
lowing behavior; Treit and
Fundytus, 1988; SharMa et al.,
2009). Thigmotaxis has been seen
in a wide range of species, includ-
ing fish (SharMa et al., 2009).
We recently customized the

open field test for use in both
adult and larval zebrafish using a
24-well plate as an open field ap-
paratus. Similar to adult zebrafish,
we showed that larval zebrafish
also exhibit thigmotaxis (Steen-

bergen et al., 2010) in response to
a sudden transition from light to
dark. Importantly, such behavior
could be significantly attenuated
with the anxiolytic drug diazepam
(data not shown) in a manner sim-
ilar to that which is observed in
other species (Treit and Fundytus,
1988).
The pattern of exploratory

behaviors reported above, which
includes locomotor activity pat-
terns, thigmotaxis, and habitua-
tion learning when facing a novel
environment are not only well con-
served between species, including
rodents (Treit and Fundytus,
1988; Simon et al., 1994; Choleris
et al., 2001; Sousa et al., 2006),
fish (Lockwood et al., 2004; Lopez
Patino et al., 2008; SharMa et al.,
2009; Champagne et al., 2010),
and humans (Kallai et al., 2005,
2007; Henry et al., 2010) but also
emerge early in life and serve as a
good predictor of adult patterns of
behavior (Henry et al., 2010; Kav-
sek and Bornstein, 2010; Wong
et al., 2010). The open field test
has proven to be a good animal-
to-man translational system
(Perry et al., 2009; Henry et al.,
2010). In humans, the open field
test is referred to as the human
behavior pattern monitor test and
is successfully used in humans to
discriminate between different

psychiatric conditions, such as
bipolar disorder, unipolar depres-
sion, and schizophrenia (Perry
et al., 2009; Henry et al., 2010).

The visual motor response test

This test consists of frequent
alternations between periods of
light and dark (each period lasting
10–30 min) and results in behav-
ioral patterns characterized by low
(basal) locomotor activity under
light exposure and transient but
robust behavioral hyperactivity on
sudden transition to dark (Burgess
and Granato, 2007; Emran et al.,
2008; Macphail et al., 2009; Irons
et al., 2010; Rihel et al., 2010).
Sudden transition to dark induces
a visual startle response charac-
terized by a sharp spike of fast-
swimming activity (�20 cm/sec)
lasting under 2 sec (Burgess and
Granato, 2007; Emran et al.,
2008; Macphail et al., 2009; Irons
et al., 2010; Rihel et al., 2010).
Locomotor activity (total distance
moved) is elevated for the first 2
to 4 min and then gradually
returns to baseline after 10 min.
Sudden transition to light also

causes larval zebrafish to display a
brief spike of fast-swimming activ-
ity of �20 cm/sec — less than that
induced by sudden dark (Burgess
and Granato, 2007; Emran et al.,

Figure 3. Light/dark preference test adapted for adult and larval zebrafish. Both adult (A) and larval (B) zebrafish display strong
dark-avoidance behavior and show preference for the bright/white area in the light/dark preference test. Note that preference for
the bright compartment is well above the 50% chance level for both adult and larval zebrafish. Statistical icons: ***p\ 0.001. A is
reproduced from Champagne et al., 2010 with permission from Elsevier B.V. B is reproduced from Steenbergen et al., 2011 with
permission from Elsevier B.V.
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2008; Macphail et al., 2009; Irons
et al., 2010; Rihel et al., 2010).
Return to basal activity is attained
within 1 min of light exposure. An
intact visual system is required to
perform this test as larvae of
chokh mutant zebrafish (which
lack eyes and therefore are blind)
do not respond to light–dark tran-
sitions (Emran et al., 2008).
The visual motor response test

has already been proven to be
highly effective in the assessment
of drug effects on relatively simple
locomotor behaviors, which pro-
vided the first proof-of-concept for
high-throughput screening in
zebrafish larvae (Emran et al.,
2008; Macphail et al., 2009; Irons
et al., 2010; Rihel et al., 2010).
We also show that this test can be
used to assess the integrity of the
nervous system in a zebrafish
model of fetal alcohol syndrome
(FAS; Fig. 5).

Fluorescent Readout
Technologies

Owing to its small size and opti-
cally transparent embryos, the
zebrafish is excellently suited for
fluorescent imaging. In Figure 6,
we give an example of how fluores-
cent screens can be incorporated
into a drug development pipeline.
In adult zebrafish, fluorescence
imaging is facilitated by using
albino mutants, the most popular
being the Casper mutant (Pugach
et al., 2009). The relative ease of
making transgenic zebrafish using
the Tol2 transposon technology
(Suster et al., 2009) has led to
many lines that express promoters
fused to green fluorescent protein
(GFP) variants. The most used GFP
variant is enhanced GFP. However,
with the availability of many new
genes encoding color-shifted GFP
variants and red-shifted fluores-
cent proteins from corals with
higher quantum yields, many new
transgenic zebrafish lines will be
constructed in the near future.
For instance, the newly devel-

oped MTurquouise (Goedhart et al.,
2010) is highly suited to be com-
bined with SYFP2 (Kremers et al.,
2006), MCherry (Shu et al., 2006),
and the near infrared E2-Crimson

Figure 4. Impact of drug treatments on zone preference in the light/dark preference
test in larval zebrafish. Analysis of the effects of anxiolytic drug treatments on the per-
centage of time spent in the dark compartment revealed that diazepam (A), buspirone
(B), and ethanol (C) all exerted an anxiolytic effect in the light/dark preference test by
significantly increasing the percentage of time spent in the dark compartment of the
testing apparatus. Note that the organic solvent DMSO did not exert any significant
effects on zone preference relative to control (egg water). Statistical icon: **p \ 0.01
relative to control (egg water), ***p \ 0.001 relative to control (egg water), and
#p\ 0.05 relative to DMSO. Abbreviations: DMSO 5 dimethyl sulfoxide. Adapted from
Steenbergen et al., 2011 with permission from Elsevier B.V.
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(Strack et al., 2009), providing the
opportunity to simultaneously
monitor four colors. In addition to
autofluorescent protein genes,
research in zebrafish also makes
use of small molecular fluorescent
probes. For instance, common use
is made of Alexa dyes (Life Tech-
nologies) for whole mount in situ
fluorescence hybridization (Clay
and Ramakrishnan, 2005; Welten
et al., 2006; Brend and Holley,
2009) or immunohistochemistry
(Campos et al., 2011).
For analysis of the factors that

influence drug administration, it
has been shown that zebrafish
embryos can directly take up arti-
ficial antisense DNA molecules, la-
beled with rhodamine, and added
to the swimming water. These
molecules could even been tar-
geted to the nucleus (Spaink and
Bagowski, 2009).
For the detection of fluorescent

molecules, use can be made of con-
focal laser scanning microscopy
(CLSM) and of camera systems with
spectral unmixing (Kaijzel et al.,
2007). The high quantum yield of
some of the autofluorescent proteins
even makes imaging at the single
molecule level possible (Schaaf
et al., 2009). For high throughput
imaging, use can be made of micro-
titer plate CLSMs such as the Becton
Dickinson (BD) Pathway analysis
system (Becton, Dickinson and
Company). Rapid advances in new
imaging technologies will facilitate
fast, high-resolution imaging meth-
ods such as sheet illumination, for
which the zebrafish embryos are
ideally suited (Keller et al., 2008,
2010).
Using two-photon fluorescence

imaging using second or third har-
monic generation technology, it is
also possible to image directly ma-
trix components, such as collagen,
without the need of prior labeling
(Campagnola et al., 2001; Bian-
chini and Diaspro, 2008; Hsieh
et al., 2008). This enables direct
imaging of processes such as
remodeling of the extracellular
matrix in a living embryo. In
future research, we expect that
fluorescence detection tools will be
complemented by luminescence
measurements. Standards for

Figure 5. Behavioral performance in the visual motor response test. Analysis of the
total distance moved (A–E) and percentage of time spent swimming at high velocity
(F–J) were assessed in 5 dpf larvae exposed to the light–dark challenge test. The vis-
ual motor response test assesses behavioral responses to varying lighting conditions
and is divided into four phases: (1) habituation phase (2-min habituation to light) is
omitted for sake of clarity, (2) basal phase (4 min exposure to light, assesses basal ac-
tivity), (3) challenge phase (4 min exposure to sudden darkness, triggers robust be-
havioral hyperactivity), and (4) recovery phase (4 min exposure to light, assesses
return to basal activity). Behavioral analysis reveals that ethanol-treated embryos
swam significantly less (reduced total distance moved) in the challenge phase (lights
off) compared to the vehicle-treated controls only when ethanol exposure occurred at
prim-16 but not other stages (C). This finding is paralleled by a significantly reduced
ability to maintain swimming velocity at a high speed ([20 mm/sec) (H). Furthermore,
general decreases in total distance moved, regardless of the phases, are observed in
ethanol-treated embryos at stages prim-6 (B) and long-pec (E), suggesting general
hypoactivity, a finding that is also accompanied by significant reduction in the ability
to maintain swimming at high velocity for larvae ethanol-treated at stage prim-6 (G)
but not long-pec (J). Note that stages 26-somite (A) and high-pec (D) appear spared
from the impact of ethanol exposure on behavioral outcome. Each error bar represents
6SEM of N 5 37, 37, 32, 29, 27 embryos for vehicle and 39, 28, 26, 16, 28 for ethanol
treatment at 26-somite, prim-6, prim-16, high pec, and long pec respectively.
#Depicts differences within treatment group. *Depicts differences between treatment
groups. Statistical icons: ##p\ 0.01, *p\ 0.05, and **p\ 0.01.
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such applications have been set in
the mouse model for instance in
application in cancer studies
(Henriquez et al., 2007). This will
enable us to evaluate results
from high throughput studies in
embryos for their relevance
in adult fish. For instance, the
Gaussia luciferase probe (Sharma
et al., 2011) will be useful for high
throughput assays as it is secreted
and therefore has the potential to
be measurable in the swimming
water of the fish. For quanti-
fication purposes, this tool will
be useful in embryo high through-
put screening, even when a
combination with cellular imaging
is not needed, for example in

applications in infectious disease
studies (Andreu et al., 2010).

Morphological Assessment

Embryos have been examined
for a range of morphological pa-
rameters (Hisaoka, 1958; Arsla-
nova et al., 2010; Brannen et al.,
2010; Sawle et al., 2010; Yang
et al., 2010; George et al., 2011;
Hermsen et al., 2011). Large-scale
mutagenesis screens often involve
the assessment of a range of
phenotypic traits by a researcher
using a dissection microscope
(Mullins et al., 1994; Haffter
et al., 1996). In other cases, one
may simply screen for a very few

drug-specific defects. For exam-
ple, in ethanol teratogenecity
screens in zebrafish embryos,
common readouts include: devel-
opmental retardation, pericardial
and yolk-sac edema (Reimers
et al., 2004; Giles et al., 2008),
reduction in body length (Loucks
and Ahlgren, 2009), branchial
skeleton defects (Carvan et al.,
2004), abnormal eye development
(Stromland and Pinazo-Duran,
2002; Bilotta et al., 2004; Matsui
et al., 2006; Dlugos and Rabin,
2007; Kashyap et al., 2007) as
well as cognitive defects (Carvan
et al., 2004; Reimers et al., 2006)
and higher mortality (Loucks and
Carvan 2004).

Figure 6. A general screen strategy using zebrafish embryos in the context of the use of other model organisms is shown based on
the strategy used by the company, ZF-screens for discovery of new drugs against tuberculosis. Going though the figure clockwise
from the left: the zebrafish embryos are injected at high throughput with pathogenic agents (microbes or cancer cells). They are
subsequently treated with small molecular compounds, in the easiest embodiment (‘‘external’’) by adding them to the swimming
water. Coinjection of drugs (‘‘internal’’) is also feasible. The effect of the compound can be measured using the Copas device
(Carvalho et al., 2011) or at lower throughput and higher resolution using the BD pathway or CLSM. Other readouts are reverse
transcription-multiplex ligation probe amplification, microarrays, and RNA deep sequencing (‘‘RNA seq’’). Disease screening at the
protein level can make use of ELISA, peptide chips, or proteomics. Another cyprinid fish that can be used is the common carp that
yields up to 200,000 eggs per spawning. Drug leads can be tested in rodents. Hits will be subjected to further optimization, for
instance, by retesting chemical derivatives in the zebrafish. In the case of natural products, further fractions can be retested.
Finally, targets for the identified drugs can be probed with antisense morpholino technology. This could be particularly powerful if
the drug functions via upregulation of a signaling pathway; in such cases, it is expected that morpholinos can be identified that
block the effect of the drug.
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Readouts of Cardiac Function

Various methods have been
reported for assessing cardiac func-
tion in zebrafish embryos and lar-
vae. Microelectrodes can be used to
record compound action potentials
(Hassel et al., 2008). Heart rate can
be recorded manually from live
embryos or from live observation
(Mittelstadt et al., 2008; George
et al., 2011) and/or videotape re-
cording (Langheinrich et al., 2003).
Larvae can be immobilized using
anesthetics during these recordings;
MS-222 has been found to be suita-
ble (Craig et al., 2006). Electrocar-
diogram recordings can be made
noninvasively from 5 dpf embryonic
zebrafish (Forouhar et al., 2004).
For the analysis of cardiac conduc-
tion, the transgenic zebrafish line
Tg(cmlc2:gCaMP)s878 can be used
(Chi et al., 2008). This allows the
mapping of the spread of calcium
excitation in the heart during each
cardiac cycle (Chi et al., 2010).

DISEASE MODELS

There is a growing list of disease
models in the zebrafish (Table 2).
For reviews, see Kari et al. (2007),
Berghmans et al. (2005).

Human Fetal Alcohol Syndrome
(FAS)

Alcohol consumption during preg-
nancy can cause FAS in humans
(Rostand et al., 1990; Wattendorf
and Muenke, 2005; Chudley et al.,
2007; Moore et al., 2007; Spohr
et al., 2007). Among the clinical
features of this syndrome are re-
tarded growth, craniofacial defects,
and mental retardation (Jones and
Smith, 1973; Clarren and Smith,
1978; Giles et al., 2008). The cra-
niofacial defects include micro-
phthalmia (Stromland and Pinazo-
Duran, 2002) and pharyngeal arch
abnormalities (Church and Kalten-
bach, 1997). Like many teratogens,
the effects of ethanol are depend-

ent on the duration and stage of ex-
posure (Gemma et al., 2007; Giles
et al., 2008).
Zebrafish embryos have been

used in several studies of ethanol
teratogenesis, and the phenotypic
outcomes include developmental
retardation, pericardial and yolk-
sac edema (Reimers et al., 2004;
Giles et al., 2008), reduction in
body length (Loucks and Ahlgren,
2009), branchial skeleton defects
(Carvan et al., 2004), abnormal eye
development (Stromland and
Pinazo-Duran, 2002; Bilotta et al.,
2004; Matsui et al., 2006; Dlugos
and Rabin, 2007; Kashyap et al.,
2007) as well as cognitive defects
(Carvan et al., 2004; Reimers et al.,
2006) and higher mortality (Loucks
and Carvan, 2004). These pheno-
types overlap with human FAS.
Most studies of ethanol toxicity in

zebrafish use chronic exposure, of-
ten over several hours or days
(Blader and Strahle, 1998; Bilotta

TABLE 2. Selected Zebrafish Models of Human Diseases and Syndromes

Human condition Zebrafish model Zebrafish genes References

Cardiac arrhythmia: short
QT syndrome

Reggae mutant (reg) zERG Hassel et al. (2008)

Cardiac arrhythmia: QT
prolongation

Rate of atrial and ventricular
contraction

– Langheinrich et al.
(2003)

Parkinson’s disease Oxidative stress, dopamine
neuronal loss

DAT, TH, and Dj-1 McKinley et al. (2005),
Bretaud et al. (2004,
2007)

Inflammatory bowel
disease

Gut morphology, peristalsis – Fleming et al. (2010)

Epilepsy Startle response – Berghmans et al. (2007)
Cerebral cavernous

malformations
Ccm1 mutant Ccm1 Liu et al. (2011)

Polycystic kidney disease Bicaudal C and polycystic
kidney disease mutant
(Bicc1, Pkd2)

Bicc1, Pkd2, Bouvrette et al. (2010)

Ullrich congenital
muscular dystrophy

Collagen VI mutant (Col6a1) Col6a1 Telfer et al. (2010)

Polycythemia vera Janus kinase 2 mutant
(jak2a)

jak2aV581F Ma et al. (2009)

Waardenburg syndrome
type IV

Sex determining region Y
mutant (sox10)

fgf8, sox9a, sox9b,
and sox10

Dutton et al. (2009)

Variegate porphyria
(porphyrias)

Montalcino mutant ppox Dooley et al. (2008)

Cancer Transplantations of cancer
cell lines (WM-266-4,
SW620,
FG CAS/Crk, CCD-
1092Sk). Quantification of
cancer cells in zebrafish

– Haldi et al. (2006)

We do not duplicate here the disease models in zebrafish already listed by Kari et al. (2007b).

ZEBRAFISH EMBRYOS AND LARVAE 125

Birth Defects Research (Part C) 93:115–133, (2011)

 15429768, 2011, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bdrc.20206 by U

niversity O
f L

eiden, W
iley O

nline L
ibrary on [01/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



et al., 2002; Arenzana et al., 2006;
Matsui et al., 2006; Kashyap et al.,
2007; Loucks and Ahlgren, 2009).
However, a recent study from our
group used brief exposure of
staged embryos to an ethanol
pulse. This allowed us to identify
prim-6 and prim-16 as being par-
ticularly susceptible for the induc-
tion of pharyngeal defects by etha-
nol (Ali et al., 2011).

Tuberculosis

Zebrafish embryos are increas-
ingly popular as a model for infec-
tious disease. Infections by bacte-
ria can be monitored in real time
with high sensitivity. Furthermore,
there is now an extensive knowl-
edge base on the immune system
of zebrafish showing a remarkable
conservation with the immune
system of mammals (Meijer and
Spaink, 2011).The zebrafish offers
the advantage that in the embry-
onic stage a defense response can
be studied in the absence of the
adaptive immune system (which
develops later), thereby allowing
the identification of autonomous
innate immune mechanisms.
For the study of the immune

response to infection, there are
many transgenic zebrafish lines in
which particular subsets of
immune cells are labeled with GFP
color varieties. For instance, trans-
genic fish lines have been pub-
lished in which neutrophil and
macrophages can be imaged
simultaneously using dual color
detection methods (Ellett et al.,
2011; Gray et al., 2011). The
transgenic lines will be of great
use to set up high throughput
assays that monitor not only dis-
ease progression but also the
effect of antimicrobial treatments.
For various microbe infection sys-
tems, it has been shown that
injection in the yolk of early stage
embryos leads to disease systems
that can be followed for several
days after infection (Spaink and
Dirks, 2011).
In one application, the infection

with Mycobacterium tuberculosis,
it was shown that disease progres-
sion after yolk injection in pregas-
trulation stage embryos recapitu-

lates the infection phenotypes that
are observed after blood injection
in the larval stage (Carvalho et al.,
2011). This has made it possible
to design a high throughput
robotic injection system that can
be used to inject up to 2000
embryos per hour in a single setup
(Carvalho et al., 2011). This injec-
tion system was also coupled to a
flow through screening system
based on fluorescence detection,
resulting in a high throughput
pipeline that can screen for bacte-
rial loads. In this work, it was fur-
thermore shown that various anti-
biotics can be screened at high
throughput levels in zebrafish lar-
vae, even using the human patho-
gen M. tuberculosis.
The great power of this approach

is that it can be combined with
genetics approaches that are
already well established in the
zebrafish model. A good example
is given by the observation that
coinjection of antisense morpholi-
nos and microbes can completely
alter the immune response to
infection (Carvalho et al., 2011).
This will lead to the identification
of host factors that are important
to infection and the identification
and study of host factors important
for regulating the response to
drugs. Such host factors include
putative enzymes that can break
down antimicrobial compounds or
tissue properties that influence the
penetration of drugs into microbial
infection sites. It should be noted
that the screening of the results of
microbial infection will be greatly
assisted by a combination with
genetic or proteomic screening
methods (Fig. 6).

TOXICITY TESTING

The zebrafish is being increasingly
used in toxicity testing (Van den
Belt et al., 2000; Hill et al., 2005;
Reimers et al., 2006; Parng et al.,
2007), reviewed by Brittijn et al.
(2009), Hill et al. (2005), Teraoka
et al. (2003), and Kari et al.
(2007). In the context of toxicity,
the zebrafish finds application in
drug safety testing and ecotoxico-
logical screening. For further
examples, see Table 3. Chronic

exposure regimes have been used
to assess the toxicity of lead and
uranium (Labrot et al., 1999),
colchicine (Roche et al., 1994),
anilines (Zok et al., 1991), metro-
nidazole (Lanzky and Halling-Sor-
ensen, 1997), and agricultural
biocides (Kumar and Ansari,
1986; Gorge and Nagel, 1990).
Acute toxicity studies are fewer.
Although there is no strict bound-
ary between acute and chronic
exposure regimes, one standard
definition of ‘‘acute’’ toxicity, in
the context of larval-fish assays,
is 96 hr of exposure in static
renewal or flow-through systems
(United States Environmental Pro-
tection Agency, 1996). One could
argue, given the rapid develop-
ment of zebrafish, that 96 hr is in
fact a long exposure, spanning
many developmental stages.

Predictivity and Validation

The evolutionary divergence of
zebrafish and mammals is around
445 million years ago (Peterson
et al., 2004), and so it is by no
means certain that we will neces-
sarily share the same sensitivity
to toxic substances. Therefore,
there is a need for validation of
the model (McGrath and Li,
2008). By validation, we mean
evidence that drugs with specific
effects in humans can produce
similar effects in the zebrafish
embryo. Such evidence allows us
to assess the predictivity of the
zebrafish model, that is, its suc-
cess at flagging-up compounds
that might have specific effects in
humans. One study comparing
the toxicity of 18 compounds
between zebrafish and rodents
found good correlation (Parng
et al., 2002). The zebrafish
embryo system has also been
compared as a toxicology screen
with the aquatic crustacean,
Daphnia magna (Martins et al.,
2007). Such studies are an im-
portant step toward the kind of
comparative toxicity database
represented by the well-known
‘‘Registry of Cytotoxicity,’’ which
examines the predictive power of
cell assays (Halle, 2003). For fur-
ther examples, see Table 4.
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QT Prolongation

QT prolongation, a major cardio-
toxic effect of drugs in humans, is
beginning to be investigated in

zebrafish. It has been shown that
zebrafish embryos develop abnor-
mal heart beat in response to some
drugs that cause QT prolongation in

humans (Langheinrich et al., 2003;
Milan et al., 2003; Berghmans
et al., 2008; Mittelstadt et al.,
2008). The abnormalities induced

TABLE 3. Examples of Zebrafish Embryo Assays for Compound Screening

Assay Plate format Readouts
Stage of
exposure

Duration of
exposure References

QT-prolongation – Bradycardia and
arrhythmia

3 dpf 90 min Langheinrich
et al. (2003)

QT-prolongation 35 mm Petri
dish

Bradycardia and
arrhythmia

3 dpf 80 min Mittelstadt et al.
(2008)

Inflammatory
bowel disease

96-well
plates

Gut morphology,
peristalsis

3 dpf 3–8 days Fleming et al.
(2010)

Teratogenicity 24-well
plates

Survival, morphology,
cardiovascular function

4–6 hpf 5 days Brannen et al.
(2010)

Alzheimer’s
disease

96- or 384-
well plates

Dead cells detection,
gene expression,
morphology

6–24 hpf 1–6 days Arslanova et al.
(2010)

Developmental
toxicity

Finger bowls Morphology
(developmental
defects)

1–3 dpf 1–4 days Hisaoka (1958)

Angiogenesis 384-well
plates

Quantification of
angiogenic vessel
growth

1 dpf 2 days Tran et al.
(2007)

Magnetic
resonance
imaging (MRI)
signal
intensity

Agarose wells Measurement of
compound
concentration

1 dpf 1–3 days Canaple et al.
(2008)

Behavior 96-well
plates

Locomotor activity 6 dpf 1 day Berghmans
et al. (2007)

Toxicological
screening

96-well
plates

Mortality rate, hatching
rate, cardiac rate, and
morphological defects

4 hpf 5 days George et al.
(2011)

Toxicological
screening

24-well
plates

Movement, hatching rate,
heartbeat, and
morphological defects,
blood circulation

1–2 hpf 3 days Hermsen et al.
(2011)

Toxicological
screening

24-well
plates

Morphological defects 1 hr 4 days Sun et al.
(2010)

Toxicological
screening

80-mm Petri
dish

Mortality rate,
morphological
malformations, gene
expression

1.5 hr 3 days Sawle et al.
(2010)

Cytotoxicity,
genotoxicity
and
teratogenicity

24-well
plates

Mortality rate, hatching
rate, heartbeat, and
morphological
malformations

1 hr 3 days Yang et al.
(2010)

Developmental
neurotoxicity

6-, 24- and
or 48-well
plates

Mortality, heartbeat,
circulation,
pigmentation,
hatching, behavior,
morphological defects

2 hpf 8 days Selderslaghs
et al. (2010)

Developmental
toxicity

24-, 48-, and
96-well
plates

Mortality, heartbeat,
circulation,
pigmentation,
hatching, behavior,
morphological defects

2 hpf 6 days Selderslaghs
et al. (2009)

Teratogenicity 2-ml vial Mortality, morphological
defects

1 hpf 2 days Busquet et al.
(2008)

For further examples of toxicity screening see Kari et al. (2007).
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in zebrafish by these drugs include
bradycardia, arrhythmia, and dis-
sociation between atrial and ven-
tricular rates. Many drugs prolong-
ing the QT interval in humans inter-
act with the human ether-à-go-go
related gene (hERG). Zebrafish
possess the homolog zERG (Lan-
gheinrich et al., 2003), and there
appears to be a substantial degree
of functional conservation between
the human hERG and the zebrafish
zERG (Langheinrich et al., 2003;
Hassel et al., 2008; Scholz et al.,
2009).

FUTURE PROSPECTS

We have outlined in this review
a few of the biomedical models,
screens, and tools becoming
available from zebrafish embryo
research. In the coming years,
the challenge is to validate
zebrafish assays and models
against mammalian drug screens.
Such data are necessary for the
translation of results of zebrafish
testing toward applications in
human disease treatments.
Uncertainty about the predictivity
of the zebrafish model is a major
cause of scepticism, from the
pharmaceutical R&D community
and regulators.

One can argue that drug treat-
ments that are effective in zebra-
fish and rodent models will have
the greatest chance to also be
effective in the treatment of
human patients. As shown in Fig-
ure 6, we anticipate that, during
the entire screening pipeline, rapid
switches can be made from zebra-
fish to rodent models. For
instance, after discovery of lead
compounds in zebrafish, and sub-
sequent testing in rodents, we en-
visage another round of screening
of new generation drugs, again in
the zebrafish. Other fish species
can be of great use. For example
the carp, closely related to zebra-
fish, can be used when extremely
many embryos are needed. Fur-
thermore, the potential of zebra-
fish and other fish species for toxi-
cology studies can be directly
implemented in the very early
stages of screening. This could
lead to much faster and more effi-
cient drug development.
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