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Abstract

Trimethylamine N‐oxide (TMAO) is a circulating microbiome‐derived metabo-

lite implicated in the development of atherosclerosis and cardiovascular disease

(CVD). We investigated whether plasma levels of TMAO, its precursors

(betaine, carnitine, deoxycarnitine, choline), and TMAO‐to‐precursor ratios are
associated with clinical outcomes, including CVD and mortality. This was

followed by an in‐depth analysis of their genetic, gut microbial, and dietary

determinants. The analyses were conducted in five Dutch prospective cohort

studies including 7834 individuals. To further investigate association results,

Mendelian Randomization (MR) was also explored. We found only plasma

choline levels (hazard ratio [HR] 1.17, [95% CI 1.07; 1.28]) and not TMAO to be

associated with CVD risk. Our association analyses uncovered 10 genome‐wide
significant loci, including novel genomic regions for betaine (6p21.1, 6q25.3),

choline (2q34, 5q31.1), and deoxycarnitine (10q21.2, 11p14.2) comprising several

metabolic gene associations, for example, CPS1 or PEMT. Furthermore, our

analyses uncovered 68 gut microbiota associations, mainly related to TMAO‐to‐
precursors ratios and the Ruminococcaceae family, and 16 associations of food

groups and metabolites including fish‐TMAO, meat‐carnitine, and plant‐based
food‐betaine associations. No significant association was identified by the MR

approach. Our analyses provide novel insights into the TMAO pathway, its

determinants, and pathophysiological impact on the general population.

iMeta. 2024;e183. wileyonlinelibrary.com/journal/imeta | 1 of 22
https://doi.org/10.1002/imt2.183

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2024 The Authors. iMeta published by John Wiley & Sons Australia, Ltd on behalf of iMeta Science.

Jingyuan Fu and Dina Vojinovic contributed equally to this article and share senior authorship.

http://orcid.org/0000-0002-3503-9971
https://orcid.org/0000-0002-8658-3790
https://orcid.org/0000-0003-2541-5627
https://orcid.org/0000-0003-0585-6206
https://orcid.org/0000-0002-9476-7143
https://orcid.org/0000-0003-0372-8585
https://orcid.org/0000-0001-5976-6519
https://orcid.org/0000-0003-2830-6813
https://orcid.org/0000-0003-0416-999X
https://orcid.org/0000-0003-2421-6052
https://orcid.org/0000-0001-9197-8124
https://orcid.org/0000-0002-4574-0841
https://orcid.org/0000-0003-2518-737X
https://orcid.org/0000-0002-2875-4723
https://orcid.org/0000-0001-5578-1236
https://orcid.org/0000-0001-5744-0232
https://onlinelibrary.wiley.com/journal/2770596x
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fimt2.183&domain=pdf&date_stamp=2024-03-30


8Department of Internal Medicine,
Erasmus University Medical Center,
Rotterdam, The Netherlands
9European Institute for the Biology of
Ageing, University Medical Center
Groningen, University of Groningen,
Groningen, The Netherlands
10Nuffield Department of Population
Health, University of Oxford, Oxford, UK

Correspondence
Dina Vojinovic
Email: dina.vojinovic@iqvia.com

Jingyuan Fu
Email: j.fu@umcg.nl

Funding information
Netherlands Heart Foundation,
Grant/Award Number: IN‐CONTROL
CVON grant 2012‐03 and 2018‐27

KEYWORD S

diet, genetics, gut microbiome, meta‐analysis, population cohort, TMAO

Highlights

• Exploration of microbiome‐related metabolites (trimethylamine N‐oxide
[TMAO], choline, betaine, L‐carnitine, and deoxycarnitine) in 7834

participants from five population cohorts.

• Cardiovascular risk was associated with elevated choline concentrations,

but not with TMAO concentrations.

• Characterization of the genetic architecture behind metabolite concentra-

tion variability.

• Identification of gut microbial taxonomic abundance associated with

metabolite's plasma concentration levels.

• Fish intake is the major dietary driver of TMAO concentrations, and betaine

is related to grains and vegetable intake.

INTRODUCTION

There is a growing interest in the role of gut microbiome‐
related metabolites in cardiovascular disease (CVD)
[1, 2]. Trimethylamine N‐oxide (TMAO), in particular,
has received a lot of attention as a potential promoter of
CVD and atherosclerosis [1]. Elevated fasting plasma
levels of TMAO have been associated with increased risk
for CVD and mortality independently of traditional risk
factors in clinical studies [3–8]. However, investigations
on TMAO have mainly been conducted in individuals
with a high risk of CVD, existing disease, or multi-
morbidity while studies on the general population are
comparatively scarcer [9–12]. Proposed mechanisms
through which TMAO may promote the development
of atherosclerosis and CVD include vascular inflamma-
tion, activation of platelets, disturbance of bile acid
metabolism, and inhibition of reverse cholesterol trans-
port [13]. Yet, the actual mode of action in disease
development may be context‐dependent.

Variation in circulating levels of TMAO is driven by a
complex interplay of multiple determinants, such as host
genetics, gut microbiome, diet, and kidney function [14].
TMAO can be acquired directly from the diet from fish
but it is mainly produced by gut microbiota from the
dietary precursors such as choline, L‐carnitine, the
carnitine‐derived metabolite, deoxycarnitine (also known
as γ‐butyrobetaine), and betaine [15]. Gut microbiota
converts these ubiquitous dietary components into
trimethylamine (TMA) which is subsequently absorbed
from the intestine, transported to the liver, and oxidized
into TMAO by hepatic flavin monooxygenases (FMOs),
followed by its distribution to different tissues or kidney

clearance [16]. However, the extent to which consump-
tion of different animal‐based foods may affect plasma
TMAO levels is debated [17–19], and TMA producers in
the human gut microbiome have not been well‐
characterized. Association studies point to several
genera; however, published results are, in most cases,
heterogeneous among studies [15, 20–22]. At the same
time, human genetic variation also contributes to TMAO
variability. Rare genetic mutations in the FMO type 3
gene (FMO3) have been shown to affect the oxidation of
TMA to TMAO [23]. However, the role of common
genetic variation in TMAO homeostasis remains to be
elucidated. As identifying potential drivers for alterations
in circulating TMAO levels could have preventive and
therapeutic implications for CVD [24], a number of
studies have explored determinants of TMAO [15, 21].
However, these cross‐sectional multiomics studies lack
sample sizes and are often limited to exploring TMAO
variability while overlooking its precursors. The physio-
logical impact of choline and betaine associations with
CVD risk remains controversial [25–28]. Importantly, the
major sources of intraindividual variability of these
metabolites, together with carnitine and deoxycarnitine,
remain unknown.

In addition, CVD risk has often been regarded as a
sex‐related disease, with clear prevalence differences
between males and females [29]. However, sex differ-
ences in the effect of TMAO metabolites on CVD risk
remain understudied.

The objectives of this study are twofold: First, we aim to
explore the relationships between plasma levels of TMAO
and its precursors (betaine, carnitine, deoxycarnitine,
choline) and various clinical outcomes, encompassing
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CVD and mortality. In contrast to much of the existing
research conducted within clinical cohorts, our approach
involves the utilization of population data derived from
7834 participants enrolled in five prospective Dutch
cohorts. By doing so, we aim to shed light on whether
elevated concentrations of these metabolites pose a risk to
the general population. Second, we attempt to unravel the
sources of interindividual variability in these metabolites
within the general population. To achieve this, we harness
host genetic information, gut microbiome composition, and
dietary patterns obtained from distinct subsets of partici-
pants within the same five prospective studies.

RESULTS

Characteristics of the study population

An overview of the study design is depicted in Figure 1.
Our study population included 7834 participants from
five Dutch prospective cohort studies including the
Rotterdam Study I‐4, Rotterdam Study III‐2, Leiden
Longevity Study (LLS), LifeLines‐DEEP (LLD), and 300‐
Obese cohort (300‐OB). A description of the contributing
cohorts is provided in Supplementary Material and
descriptive characteristics of the study participants are

shown in Table 1. The mean age of study participants
ranged from 43.4 years (standard deviation [sd] = 14.2) in
the LLD to 75.1 years (sd = 6.1) in the Rotterdam Study I‐
4. The sex ratio of participants was roughly balanced,
with slightly more females in most of the participating
studies (up to 58%), with the exception of 300‐OB in
which the majority of participants were males (55%).
Detailed information on clinical outcomes such as CVD
and mortality, host genetics, gut microbiome composi-
tion, and diet was available (Figure 1).

Incident clinical outcomes are associated
with TMAO precursors but not with TMA

Plasma levels of TMAO and its precursors betaine,
carnitine, deoxycarnitine, and choline were measured
in all participating cohorts (Supporting Information S2:
Table S1). We observed weak correlations between
TMAO and its precursors (|r| ≤ 0.20) and moderate
correlations between precursors (0.30 ≤ |r| ≤ 0.44) (Sup-
porting Information S1: Figure S1).

To assess the relationship between metabolites and
incident clinical outcomes including CVD and mortality,
Cox proportional hazards regression models with age as a
time scale were used. In total, 571 incident CVD events

FIGURE 1 Overview of study design and performed analyses. The study population included participants from Rotterdam Study I‐4
(RSI‐4), Rotterdam Study III‐2 (RSIII‐2), Leiden Longevity Study (LLS), LifeLines‐DEEP (LLD), and 300‐Obese cohort (300‐OB).
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and 1440 mortality events were observed among up to
5011 participants with available covariates from Rotter-
dam Study I‐4, Rotterdam Study III‐2, and LLS (Support-
ing Information S2: Tables S2 and S3). A statistically
significant association was observed between higher levels
of choline and risk of CVD (hazard ratio [HR] 1.17, [95%
CI 1.07; 1.28]) after adjusting for sex, body mass index
(BMI), hypertension, diabetes, cholesterol in low‐density
lipoproteins (LDLC) and high‐density lipoproteins
(HDLC), serum triglycerides (TGs), use of lipid‐lowering
medication, current smoking, fasting status (if appropri-
ate) (model 1), and multiple testing. The association did
not change after further adjustment for the estimated
glomerular filtration rate (eGFR) (model 2). The direction
of effect size was concordant among the cohorts and no
differences were observed between men and women
(Supporting Information S2: Table S2). Additionally, a
nominal significant association was observed between
betaine and risk of CVD (HR 1.10; 95% CI 1.00; 1.21). This
association was driven by a strong association in men (HR
1.23; 95% CI 1.07; 1.43). TMAO was associated neither
with CVD risk nor mortality. Additional analyses were
repeated using concentration quartiles, identifying no
significant TMAO association.

To assess the potential causal effect, we performed a
Mendelian Randomization (MR) analysis. The results did
not provide evidence for any causal effect of TMAO or its
precursor metabolites on CVD (Supporting Information
S2: Table S4).

Drivers of variation in gut microbiome‐
related metabolite levels

We next investigated the sources of variability of each of
the measured metabolites. The combined effect of host
genetics, gut microbiome, and dietary variation in
explaining the variability of plasma metabolite levels
and ratios was evaluated by fitting linear regularized
additive models (elastic net) on a train set and by
estimating the determination coefficient (R2) on a test set
(see details in 5 section). We trained two models, using
LLD or Rotterdam Study III‐2 as the train set and the left‐
out cohort as the test set, respectively (Figure 2). Genetic
contributions to metabolite variability were large for
TMAO precursors but small for TMAO and TMAO‐to‐
precursor ratios, although it showed low replicability
in the testing cohort. We observed a similar pattern

TABLE 1 Descriptive characteristics of the study population.

Rotterdam Study
I‐4

Rotterdam Study
III‐2 LLS LLD 300‐OB

N 2556 1377 2158 1650 302

Age (years), mean (sd) 75.14 (6.08) 62.68 (5.82) 59.12 (6.71) 43.94 (14.15) 67.05 (5.39)

Women, N (%) 1486 (58.14) 748 (54.32) 1208 (55.98) 833 (57.52) 167 (55.29)

Smoking, N (%) 301 (12.05) 238 (17.32) 241 (11.17) 289 (19.63) 26 (8.63)

Diabetes, N (%) 346 (13.61) 123 (8.94) 90 (4.17) 28 (1.7) 37 (12.25)

Hypertension, N (%) 2182 (85.60) 752 (54.77) 159 (7.37) 321 (19.47%) 175 (57.94)

LDLC (mmol/L), mean (sd) 1.63 (0.44) 1.76 (0.51) 1.60 (0.47) 3.14 (0.91) 4.13 (0.96)

HDLC (mmol/L), mean (sd) 1.40 (0.28) 1.37 (0.35) 1.49 (0.33) 1.52 (0.40) 1.33 (0.31)

Serum triglycerides (mmol/L), mean (sd) 1.38 (0.57) 1.33 (0.62) 1.55 (0.82) 1.16 (0.86) 1.83 (1.02)

Lipid‐lowering medication, N (%) 583 (22.90) 362 (26.51) 207 (9.59) 29 (2.55) 83 (27.48)

BMI (kg/m2), mean (sd) 27.43 (4.13) 27.44 (4.50) 25.43 (3.57) 25.30 (4.22) 30.73 (3.48)

eGFRaa 79.41 (13.10) 95.31 (9.29) 94.88 (11.60) 73.13 (12.6) 80.4 (15.68)

Incident cardiovascular disease 544 9 85 23 —

Follow‐up time cardiovascular disease,
mean (years)

8.62 (3.49) 2.48 10.7 (1.77) — —

Incident mortality events 1295 37 209 — —

Follow‐up time mortality, mean (years) 10.15 (3.88) 2.48 (1.17) 12.74 (2.22) — —

Abbreviations: 300‐OB, 300‐Obese cohort; BMI, body mass index; eGFR, estimated glomerular filtration rate; HDLC, high‐density lipoproteins; LDLC,
cholesterol in low‐density lipoproteins; LLD, LifeLines‐DEEP; LLS, Leiden Longevity Study; sd, standard deviation.
aeGFR—calculated using the Chronic Kidney Disease Epidemiology Collaboration equation (CKD‐EPI).
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regarding microbial features. For both LLD and Rotter-
dam Study III‐2‐trained models, a large proportion of
TMAO and TMAO ratio variability could be explained by
the microbiome in the training set. However, this effect
was lost in the test sets. On the other hand, diet showed
small but consistent effects between cohorts, while
anthropometric effects seemed to be larger in LLD, both
in the Rotterdam Study III‐2‐trained and LLD‐trained
models.

Subsequently, due to the lack of consistency found in
the cohort‐trained models, we sought to identify consist-
ent associations between individual metabolites and host
genetics, gut microbiome, or diet through meta‐analysis.

Genetic variants are underlying levels of
TMAO precursors, but not of TMAO itself

To evaluate host genetic determinants of TMAO‐related
metabolites and ratios, we performed a genome‐wide
association study (GWAS) (N= 7093) (Figure 3A). The
quantile–quantile plots indicated that any cryptic
relatedness and/or population stratification were well‐
controlled after genomic correction (λ ranged between
1.00 and 1.02) (Supporting Information S1: Figure S2,
Supporting Information S2: Table S5). Meta‐analyses
identified 55 independent genetic variants mapped to
five genomic regions for betaine, 89 independent

genetic variants mapped to three genomic regions for
carnitine, 10 mapped to three genomic regions
for choline, and 37 mapped to three genomic regions
for deoxycarnitine (Bonferroni corrected genome‐wide
significance level, p value < 8.33 × 10−9) (Supporting
Information S2: Tables S6–S8). Of these genomic
regions, two genomic regions for betaine (6p21.1,
6q25.3), two for choline (2q34, 5q31.1), and two for
deoxycarnitine concentration (10q21.2, 11p14.2) have
not been reported in previous association studies
(Supporting Information S2: Table S7). GWAS of
TMAO revealed no genetic variant associated with
TMAO concentration at a genome‐wide significant level
(Figure 3A), in line with previous studies [30–33]. As this
might suggest that genetic variants have a weak effect on
variation in TMAO levels, we combined our results with
the results from Hartiala et al. [32] to increase our sample
size and improve power. However, no difference in signal
was observed. Similarly, an exploration of genetic
common and rare variants in the FMO gene yielded no
significant associations (minimum p value > 0.1), in
contrast to previous findings [34]. On the other hand,
GWAS of TMAO‐to‐precursor ratio revealed genetic loci
associated with TMAO to betaine ratio (n= 2), TMAO to
carnitine ratio (n= 2), and TMAO to deoxycarnitine ratio
(n= 1) (p value < 8.33 × 10−9) (Figure 3B, Supporting
Information S2: Table S9), all of which are overlapping
with the precursor's findings.

(A) (B) (C) (D)

FIGURE 2 Variance explained in gut microbiome‐related metabolite levels and ratios by different data layers. The X‐axis shows the
coefficient of determinations R2 gained with each additional data layer (gray ‐ anthropometrics; red ‐ genetics; blue ‐ diet; purple ‐
microbiome). Two models were trained, using LLD (A and C) or Rotterdam Study III‐2 (named RS) (B and D) as the train set, and the left‐
out cohort as the test set respectively.
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The genetic variants found have previously been
associated with various metabolic (e.g., plasma cholesterol
and triglycerides levels, metabolite levels, liver enzyme
levels), anthropometric (e.g., height, waist circumference,
BMI), and medical traits (e.g., chronic kidney disease,
diabetes mellitus, blood pressure) (Supporting Informa-
tion S2: Table S10).

Furthermore, we performed a sex‐stratified analysis
(Nfemales = 4026, Nmales = 3067). All significant associations
observed in males and almost all significant associations
found in females were also significant in the overall
analysis (Supporting Information S1: Figure S3, Supporting
Information S2: Table S11). An exception was the intronic
variant mapped to the RP1 gene which showed a
significant association with TMAO in females (beta =
−0.29, p value = 2.63 × 10−9) but not in males (beta = 0.02,
p value = 0.78) or the overall analysis. This variant showed
heterogeneity between males and females (p value = 3.35
× 10−5). The RP1 gene has been reported to function in
photoreceptor differentiation (GeneCards Version 3: the
human gene integrator).

Gene‐based association analysis revealed 11 genes
associated with betaine, 16 with carnitine, six with
deoxycarnitine, and two with choline at the gene‐wide
significance level (p value < 4.42 × 10−7) (Supporting
Information S2: Table S12). No significant gene sets
were identified in the gene‐set analysis (Supporting
Information S2: Table S13).

Heritability estimates and genetic
correlation

Single nucleotide polymorphism (SNP)‐based heritability
of metabolites was estimated in a range from 0.16
(standard error [SE] = 0.07) for choline to 0.28 (SE= 0.08)
for betaine using linkage disequilibrium (LD) score
regression (Supporting Information S1: Figure S4a). An
overlap of lead genetic loci was observed between betaine
and choline (2q34), betaine and deoxycarnitine (12p13.33),
carnitine and deoxycarnitine (10q21.2), and carnitine and
choline (5q31.1) (Supporting Information S1: Figure S4b).
Additionally, we examined genetic overlap on a genome‐
wide level by computing genetic correlations. Evidence of
suggestive genetic overlap was observed for TMAO and
choline (ρgenetic = 0.63, p value = 2.77 × 10−2) and betaine
and choline (ρgenetic = 0.54, p value = 5.7 × 10−3), while
evidence of significant genome‐wide genetic overlap was
observed between TMAO and TMAO‐to‐precursor ratios
(Supporting Information S2: Table S14).

Microbial taxa are associated with plasma
levels of TMAO, but not with those
of its precursors

Next, we conducted a meta‐analysis between 241 relative
abundances from gut taxa and plasma metabolite

FIGURE 3 Results of genome‐wide association analyses for (A) individual metabolites and (B) TMAO‐to‐precursor ratios. Each dot
represents a genetic variant. Genetic variants surpassing the Bonferroni corrected significance threshold (p value < 8.33 × 10−9) are
highlighted in red. Genetic variants showing suggestive evidence of association (p value < 1.7 × 10−7) are highlighted in blue.
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concentrations (Figure 4A) identifying 68 associations
(Bonferroni multiple test threshold p value < 6.21 ×
10−5). Association effect sizes across cohorts were
generally concordant, with no evidence of heterogeneity
in most associations (Supporting Information S2:
Table S15). Significant associations were predominantly
seen for TMAO (11/68) and TMAO‐to‐precursor ratios
(56/68) (Supporting Information S2: Table S15). From
those, the TMAO/carnitine ratio was associated with an
abundance of 23 microbial taxa and the TMAO/choline
ratio with 15 microbial taxa. The top associated taxa
corresponded to several Ruminococcaceae genera
(NK4A21, UCG003, UCG005), which were positively
associated with TMAO abundance ratio to its precursors,
carnitine and choline. Other top associations included
the class Actinobacteria, which was consistently nega-
tively associated with TMAO‐precursor ratios. The only
significant association not directly related to TMAO was
a positive association between the genus Haemophilus
and betaine. Some members of this taxonomic group are
able to oxidize choline to generate betaine, although we
did not observe a negative association between these taxa
and plasma choline [35]. Interestingly, most of the

significant or close to significant TMAO associations
showed a different direction of effect than associations to
at least one precursor (Supporting Information S1:
Figure S5). This might highlight taxa with the potential
to metabolize TMAO precursors into TMA.

Sex‐stratified analyses identified four significant results
in women (Supporting Information S2: Table S16) and
four in men (Supporting Information S2: Table S17)
(Supporting Information S1: Figure S6). If we focus on
suggestive associations in one of the stratified analyses
based on sex (p value < 1.2 × 10−3) but not found to be
associated in the overall analysis (p value > 1.2 × 10−3), we
could identify 14 associations, 10 of which showed a
significant heterogeneity (p value < 0.05) between women
and men (Supporting Information S1: Figure S7). The
most noteworthy heterogeneous association is between
Coprococcus and carnitine, for which a clear negative
association is seen in males (beta =−0.0178, p value =
0.039), which does not appear in females (beta = 0.006,
p value = 0.583). This taxon has previously been linked to
be sex‐linked in mice and pigs [36, 37].

In addition, we leveraged metagenomic shotgun
sequencing data available for LLD to quantify specific

(A) (B)

FIGURE 4 Microbial associations with plasma metabolic concentrations (A) Heatmap showing results of the association analysis
between metabolites and gut microbial taxa. Displayed results are after adjustment for age, sex, BMI, and study‐specific covariates.
Metabolites are displayed on the x‐axis and gut microbial taxa are shown on the y‐axis. Red color denotes positive associations and blue color
stands for negative associations. Hash symbol (#) represents the Bonferroni significant associations (p value < 6.2 × 10–5), while star denotes
suggestive associations (p value < 1.2 × 10–3). (B) Boxplots displaying the distribution of normalized TMAO concentration per clr‐
transformed abundance quartiles from cutC, measured from metagenomic shotgun sequencing in LLD.
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gene pathways previously related to TMA metabolism
from dietary precursors. We quantified a total of 624
proteins belonging to glycine betaine/carnitine transport
cluster (gbu A, B, and C), in addition to other known
TMA metabolic genes, as choline trimethylamine‐lyase
(cutC), choline trimethylamine‐lyase activating enzyme
(cutD), the carnitine monooxygenase oxygenase subunit
(YeaW), and L‐carnitine/deoxycarnitine antiporter (caiT)
gene families. In total, we observed a positive significant
association between the abundance of cutC and TMAO
(Figure 4B) concentrations and TMAO‐to‐precursor
ratios (Supporting Information S2: Table S18). This
indicates that this gene might be the major contributor
to TMAO variability, or that the major contributors using
the other genes were not present in the UniRef90
database we used to extract the gene sequences.

To examine causality, we performed two‐sample MR
between taxa and metabolites (excluding ratios). How-
ever, we failed to find any significant association
(Supporting Information S2: Table S19).

Diet is associated with plasma levels of
TMAO and its precursors

Using 4685 samples with food frequency questionnaires
(FFQs) belonging to all but 300‐OB studies, we ran
correlations between metabolites and dietary data
categorized into 13 major food groups while adjusting
for age, sex, and BMI (Supporting Information S1:
Figure S8, Supporting Information S2: Table S20). There
were 16 correlations that surpassed the Bonferroni
corrected threshold for multiple testing (p value < 7.58 ×
10−4). Top positive correlations were observed between
TMAO or TMAO‐to‐precursor ratios and fish intake. A
significant correlation between fish and vegetable intake
led to a correlation between TMAO and vegetable intake,
which was not significant if fish intake was accounted
for. Betaine levels were positively associated with grains,
vegetables, and nuts, while carnitine levels showed a
positive association with meat, and negative correlations
were observed between cheese intake and choline, and
egg intake and deoxycarnitine. Overall, our findings are
in line with previous work [14, 26, 38].

DISCUSSION

We have performed an in‐depth study to identify the
potential relationship between plasma levels of TMAO
and its precursors (betaine, carnitine, deoxycarnitine,
and choline) and various factors including clinical
outcomes, host genetics, gut microbiota composition,

and diet in up to 7834 participants from five prospective
cohort studies mainly based on the general Dutch
population.

We observed a significant association between plasma
choline concentrations and higher CVD risk. Higher
circulating levels of choline correlated with a 17%
increase in risk for CVD events. Choline is an essential
nutrient that plays a role in various metabolic processes
such as C1 metabolism and the synthesis of phospholi-
pids. As such, choline metabolism interacts with the
pathways of insulin sensitivity, fat deposition, and energy
metabolism [39]. The relationship between dietary
choline intake and circulating levels of free choline and
its metabolites is concealed by homeostatic regulations
and rapid tissue uptake, resulting in a narrow concentra-
tion range [39]. Despite being a common dietary
compound, we did not identify a strong predictive
potential of diet in plasma choline levels. This might be
related to the fact that blood samples in our study were
mainly collected after overnight fasting. Previous studies
reported associations of circulating levels of choline with
a higher risk of CVD, mortality and with some traditional
cardiovascular risk factors including lower HDL, higher
systolic pressure, and triglycerides [4, 8, 20, 40, 41].
However, there are also studies focusing on dietary
choline intake with conflicting results. Higher dietary
intake of choline was not predictive of incident coronary
heart disease or CVD mortality [25–28]. However, a
systematic review and meta‐analysis of six prospective
studies reported an association between dietary choline
intake and incident CVD [41]. Inconsistency in findings
may be related to differences in dietary patterns, sample
sizes, follow‐up periods, and geographical location. We
also investigated the causality of our association by
means of an MR analysis, which failed to support a
causal relationship, as seen in previous work [42]. Future
studies should focus on improving the strength of the
instrumental variables for plasma levels of choline.

In contrast to circulating choline, we did not find an
association between plasma TMAO levels and CVD risk or
mortality in our population‐based cohorts. Even though a
number of studies have shown a relationship between
TMAO levels and CVD risk, these results are mostly
derived from individuals with a high risk of CVD, existing
disease, or multimorbidity [6–8, 43–46]. In line with our
results, a few population‐based studies did not identify an
association between TMAO and cardiometabolic markers,
carotid intima media thickness, CVD events including
heart attack and stroke and mortality, either [9, 21, 47, 48],
while some other studies did report significant associa-
tions [10–12]. To the best of our knowledge, no apparent
factor can explain this between‐study heterogeneity,
such as sample size, concentration levels, ethnic groups,
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follow‐up times, and employed methods. These factors
were comparable between negative and positive studies.
Taken together, we believe that the predictive value of
TMAO in CVD onset is still not robust, and further studies
need to be done to address its complex interaction with
diet and gut microbiome, to understand the existent inter‐
study heterogeneity.

Next, we aimed to understand what factors are the
most important drivers of metabolite variability in the
general population. Exploring the role of host genetics in
underlying plasma levels of TMAO and its precursors
revealed genome‐wide significant variant associations
with plasma levels of TMAO precursors but not for
TMAO itself. We confirmed some of the previously
reported associations implicated in determining plasma
levels of all TMAO precursors. The DMGDH, BHMT, and
BHMT2 genes, mapped to the 5q14.1 region, have
previously been linked to betaine concentration [49, 50].
These genes are involved in betaine metabolism which is
related to a series of interlinking metabolic pathways that
include the methionine and folate cycles [51]. Choline is
also related to this pathway and we confirmed association
with the PEMT gene (17p11.2) encoding an enzyme
critical in phosphatidylcholine synthesis [52]. Further-
more, the SLC6A13 gene, mapped to the 12p13.33 locus,
has previously been linked to deoxycarnitine levels while
the SLC16A9 gene, mapped to the 10q21.2 locus, has been
associated with carnitine levels [53]. Interestingly, we
have identified the 10q21.2 region as a novel genetic
region underlying deoxycarnitine levels. The lead variant
of this region mapped to the SLC16A9 gene which is
involved in urate metabolism. SLC16A9 encodes a
membrane transporter and is expressed in the intestine
(GTEx Analysis Release V8), which might indicate a role
in deoxycarnitine absorption. Previous studies showed
that deoxycarnitine is an intermediary metabolite pro-
duced from carnitine by gut microbiota, but it may also act
as a precursor to carnitine synthesis [54]. Interestingly, we
identified a novel genetic locus in the GWAS of
deoxycarnitine that depicts this process. More specifically,
the top lead intronic variant of the 11p14.2 locus was
mapped to the BBOX1 gene which is known to catalyze
the formation of carnitine from deoxycarnitine and is
therefore involved in the carnitine synthesis pathway.

Additionally, we identified the 6p21.1 region as a novel
region associated with betaine levels. This region has
previously been associated with stroke and type 2 diabetes
[52, 53]. Genetic variants in linkage disequilibrium
(r2 > 0.8) with our lead variant were associated with
differential expression of GNMT and PEX6 genes.
Interestingly, the GNMT gene is involved in the metabo-
lism of methionine. Among novel regions, we have also
identified the 2q34 locus underlying the plasma

concentrations of choline. The lead genetic variant of this
region is mapped to the CPS1 gene which is involved in
the urea cycle. Variants in this gene have previously been
linked to creatinine, glycine, betaine and homocysteine
levels, BMI, systolic blood pressure, and cholesterol levels
[49, 55–59].

Although we were not able to detect genetic variants
underlying plasma TMAO concentrations, we estimated
that 20% of genetic variability in TMAO concentration
could be explained by common genetic variants. To
discover genetic determinants of TMAO, future studies
should further increase sample size and focus on
complex genetic effects. Additionally, diet intervention
studies might be of help, as these could decrease the
variability attributed to gut microbiome and diet.

Microbial abundance was mainly associated with
TMAO and TMAO‐to‐precursor ratios, which may be
interpreted as a proxy for microbial conversion rates.
Dietary precursors, on the other hand, did not show
strong microbial associations. Several of the taxa we
identified have previously been linked to TMAO in
European, North American, and Asian studies. For
instance, among the taxa belonging to the positively
associated cluster, Ruminococcus or uncultured Rumino-
coccaceae have frequently been described to correlate
with TMA and/or TMAO concentrations in mice and
humans [20, 60–62]. A member of Family XIII was
associated with TMAO concentrations in mice [63].
Anaerotruncus was seen to be decreased upon resveratrol
treatment in a mouse model and has been linked to
TMAO metabolism [61]. In the same study, several
bacterial taxa were increased after resveratrol treatment,
including Bifidobacterium, Bifidobacteriaceae, and Bifido-
bacteriales, which are negatively associated with TMAO
in the present study, also in agreement with other
observations in humans [15]. Interestingly, the strongest
negative associations were found between TMAO‐to‐
precursor ratios and Pseudoflavonifractor or Granulica-
tella genera, which have not been reported before.
Conversely, other taxa that are often linked to TMAO
[64] did not show any significant association in our
study, including Clostridia or Escherichia genera. Desul-
fovibrionales, although did not pass the Bonferroni
corrected p‐value threshold, showed consistent positive
associations with TMAO.

In addition to gut microbiota, diet composition was
observed to be an important determinant of metabolite
concentrations. For instance, TMAO concentrations and
TMAO‐to‐precursor ratios showed a positive association
with fish intake. Previous studies linked TMAO concen-
trations to fish intake and this association has been
demonstrated to vary throughout populations and/or
regions [15]. Fish consumption was associated with
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TMAO concentrations in Asian countries and some
European countries, while intake of eggs and red meat
showed a stronger correlation with TMAO in the
population of the United States [17–19, 65]. In our study
population, no association was found between TMAO
and eggs or red meat. Fish and seafood are rich in TMAO
and TMA and they can be directly absorbed without
being transformed by gut microbiota [19]. As previous
studies linked TMAO to atherosclerosis and CVD, these
findings might be counterintuitive as fish is generally
accepted to be cardioprotective [66].

Overall, the large sample size, population‐based design,
and comprehensive molecular and epidemiological data of
our study helped us to investigate the sources of variation of
TMAO and its precursor metabolites in the general
population and their health‐related consequences. We were
able to study not only TMAO but also the compounds
implicated in the TMAO biosynthesis pathway. Further-
more, we were also able to improve statistical power and
internally cross‐check the findings by combining data from
five population‐based studies. However, our study also has
limitations. Microbial species genetic variation is known to
modulate bacterial‐related metabolites, thus the taxonomic
resolution of 16S might not properly reflect the metabolic
potential of the present strains [67]. Metagenomic‐shotgun
sequencing experiments will be needed to address that level
of variation. The cross‐sectional nature of our metabolomics
measurements and gut microbiota assessment in our study
only allowed us to investigate the relationship between the
two at one time point. To complement our findings and
advance our understanding, future studies should focus on
assessing longitudinal changes. For instance, a 1‐year follow‐
up study in the general population reported large variations
in plasma TMAO concentrations, which might underlie the
heterogeneous associations related to this metabolite [68].

CONCLUSION

In conclusion, our data add up to the mounting evidence
of research showing that TMAO is not associated with an
increased risk of CVD in the general population, despite
earlier evidence suggesting this to be the case among
patient groups. However, we did show a significant
relation between plasma choline levels and higher CVD
risk. Our MR revealed no evidence of a causal link
between TMAO or its precursors with incident CVD.
Furthermore, we also identified several determinants
explaining the variability of TMAO and its precursors'
blood levels in humans. Gut microbiome was mainly
associated with TMAO‐to‐precursor ratios, although the
total variability explained of TMAO concentration remains
mild and cohort‐specific. Diet was associated with both

TMAO and its precursors but could not explain a great
proportion of their variation. Genetic contributions to
precursor concentrations were greater than to TMAO
itself, where no strong genetic effects were seen. The
biological mechanisms underlying these associations
should be the subject of further studies. Overall, our
investigation of the factors determining the interindividual
variability of the metabolite concentrations might be used
in the future to target interventions aimed at module
circulating metabolites. Diet and microbes offer an ethical
and effective intervention target that shall be further
investigated in follow‐up interventional studies.

METHODS

Study population

Our study population included 7834 participants from five
cohort studies. Detailed description of participating studies
can be found in Supporting Information and descriptive
characteristics of study participants are shown in Table 1.
Each study was approved by ethical committees (please see
Supporting Information for details). Written informed
consent was obtained from all participants.

Metabolite profiling

TMAO and its precursors betaine, carnitine, deoxycarni-
tine, and choline were quantified in plasma samples
of participants from five cohorts by using the liquid
chromatography tandem mass spectrometry (LC–MS/
MS) method. A detailed description of the method can be
found elsewhere [33]. Briefly, before introducing the
sample to the mass spectrometer, an analytic column
with a C18 stationary phase was used to realize an online
cleanup of it. The analytes were not retained by this
stationary phase but important matrix interferences were
retained, such as (phosphor–)lipids [69]. The descriptive
statistics of metabolites were coherent across the cohorts
(Supporting Information S2: Table S1). In addition to
individual metabolites, ratios of TMAO to its dietary
precursors were also calculated.

Incident clinical outcomes

The Rotterdam Study I‐4, Rotterdam Study III‐2, and LLS
cohorts had data on incident clinical outcomes including
CVD and mortality. Incident CVD events were defined as
incident stroke, myocardial infarction, angina pectoris, and
heart failure according to the codes of International
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Classification of Disease, 10th edition. Incident CVD events
were assessed continuously through an automated digital
linkage of the study database to medical records maintained
by general practitioners in the Rotterdam Study and from
general practitioner records in the LLS [70, 71]. Information
on vital status is additionally obtained from the central
registry of the municipality of the city of Rotterdam, and in
January 2021, the vital status for participants of the Leiden
Longevity Study was updated through the Personal Records
Database which is managed by the Dutch governmental
service for identity information (https://www.government.
nl/topics/personal-data/personal-records-database-brp) [72].

Baseline clinical characteristics

The baseline clinical characteristics were obtained by
means of interviews, physical examination, blood sam-
pling, or medical records from the general practitioner.
Assessment of current smoking status, weight, height,
blood pressure, glucose concentrations, total LDLC and
HDLC, serum TG, creatinine, and medication use
including lipid‐lowering medication and use of medication
indicated for the treatment of diabetes. Diabetes was
defined as fasting glucose concentrations above 7mmol/L,
nonfasting glucose concentrations above 11.1mmol/L
(only if nonfasting concentrations were unavailable), or
use of medication indicated for the treatment of diabetes
[73], or through medical records from general practition-
ers. Hypertension was defined as systolic blood pressure
≥140mmHg, diastolic blood pressure ≥90mmHg, or the
use of medication for the treatment of hypertension [73],
or through medical records from the general practitioner.
BMI was calculated as weight in kilograms divided by the
square of height in meters. Quantified creatinine was used
to calculate the eGFR using the Chronic Kidney Disease
Epidemiology Collaboration equation (CKD‐EPI) [74].

Genotyping and imputation

Details on genotyping platforms, calling methods, and
quality control (QC) procedures in participating
studies are shown in Supporting Information S2:
Table S20. Commercially available genotyping arrays
were used for genotyping. Similar QC procedures were
applied in each study before genotype imputation
(Supporting Information S2: Table S20). Genotypes in
each cohort were imputed by the Haplotype Reference
Consortium reference panel on a Michigan Imputation
Server [75].

All genomic coordinates were lifted to Human Build
GRCh37/hg19.

Microbiome processing

The Rotterdam Study III‐2 and LLD cohorts had 16S‐
amplicon sequence data available from fecal samples
matching plasma collection. Fecal sample collection and
16S sequencing was described elsewhere [76, 77]. In brief,
DNA was isolated from the fecal samples belonging to the
Rotterdam Study III‐2 cohort, and the V3 and V4 variable
regions of the 16S rRNA gene were amplified and
sequenced on the Illumina MiSeq sequencer. Similarly,
DNA was isolated from fecal samples of LLD participants
and the 16S V4 region was sequenced at the Broad Institute
using Illumina MiSeq. 16S rRNA data were processed as
previously described in a large 16S meta‐analysis including
both cohorts [78]. In brief, samples were rarified to 10,000
reads. Reads were classified to a given taxonomic level
(genus to phyla) using the RDP classifier (v2.12) [79]. Reads
below 0.8 posterior probability to belong to a given
taxonomic level were discarded. For each sample, each
taxonomic level was centered log‐ratio (clr) transformed.
Only taxa observed in above 10% of participants per cohort
were used for association resulting in 241 microbial taxa.

Dietary assessment

The Rotterdam Study cohorts, LLS and LLD had data on
dietary intake collected via a validated FFQ. Data on dietary
intake in the LLS, LLD, and Rotterdam Study cohorts were
collected via validated FFQs [80–82]. The FFQs assess the
frequency of consumption of food items and the number of
servings per day. Additionally, information on portion size,
type of food item, and preparation methods was collected.
The average daily energy and nutrient intake were calculated
using the Dutch Food Composition Database. Specific food
items were aggregated into food groups in grams per day.
The major food groups overlapping between the cohorts
were used for subsequent analysis including vegetables, fruit,
grains, nuts, eggs, fish, meat, poultry, processed meat,
cheese, milk, yogurt, and total dairy products.

Incident clinical outcomes analysis

Metabolites were transformed using rank‐based inverse
normal transformation. The relationship between metab-
olites and incident clinical outcomes was assessed using
Cox proportional hazards regression models with age as a
time scale. The analyses were adjusted for sex, BMI,
hypertension, diabetes, LDLC, HDLC, TG, lipid‐lowering
medication use, current smoking, and fasting status
(if appropriate) (model 1). Subsequently, the associations
were adjusted for eGFR (model 2). The proportional
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hazard assumption was checked using statistical tests
incorporated in the survival package. Violation of this
assumption was observed for some of the covariates and
was resolved by stratification. In the LLS, Cox‐type
random effect (frailty) regression models were used to
adjust for family relations. All analyses were performed
using R.

The summary statistics results of participating studies
were combined using inverse variance‐weighted fixed‐
effect meta‐analysis in METAL [83]. The heterogeneity of
effects was assessed by I2 which indicates the percentage
of variance in the meta‐analysis attributable to study
heterogeneity [74]. To model the correlation between
metabolites, we first used the method of Li and Ji to
calculate the number of independent tests [84]. The
Bonferroni corrected significance threshold was calcu-
lated based on the number of independent tests and set at
0.05/6 independent metabolites = 8.33 × 10−3. Addition-
ally, all analyses were stratified by sex. The same steps
were followed for the overall analysis.

The potential causal effect of metabolites on clinical
CVD outcomes was assessed by MR analysis using the
TwoSampleMR package. GWAS summary statistics results
were obtained from a large meta‐analysis comprising
coronary artery disease cases and controls of UK Biobank
resource and CARDIoGRAMplusC4D [85]. Genetic variants
with p value< 1× 10−5 were used as instruments. Indepen-
dent genetic variants were selected based on r2 in European
reference data. The results were kept if these were based on
at least three shared genetic variants. Causality was
estimated using various MR methods including inverse
variance weighted (IVW), MR‐Egger, Wald ratio, Weighted
median, Simple Mode, and Weighted Mode.

Estimation of determination coefficient in
different data layers

The Rotterdam Study cohorts and LLD were used to
estimate the total determination coefficient (R2) from
each of the analyzed data layers in each of the
metabolites or metabolite ratios. We used features
present in both cohorts including anthropometric cov-
ariates (age, sex, BMI), eight overlapping dietary items,
242 bacterial taxonomic abundances, and the number of
suggestive genetic variants (p value < 1 × 10−5) from a
meta‐analysis of the GWAS results from LLS and 300‐OB.
These two cohorts were used for preselecting variants
and were not used to train the model or estimate R2.
Taxa‐abundance was clr‐transformed, while metabolites
and diet were inverse‐rank normal transformed.

We trained a regularized additive linear model, elastic
net (glmnet v4.0), and selected the best combinations of

hyperparameters alpha (regularization mix) and lambda
(regularization strength) through a five‐repeated 10‐fold
cross‐validation procedure using the root mean square
error as a performance metric (caret v6.0, tunelength
= 10). We trained a model for each metabolite
(or metabolite ratio) using two different training sets, a
training set consisting of the LLD cohort (784 samples)
and a training set consisting of the Rotterdam Study III‐2
cohort (772 samples). For the test set (LLD in the
Rotterdam Study III‐2‐trained or the Rotterdam Study
III‐2 in the LLD‐trained model), the determination
coefficient (R2) was estimated in nested models. To
estimate anthropological R2, all other coefficients were
made 0. To estimate genetics R2, all nongenetics,
nonanthropological covariate coefficients were made 0.
This was followed by the addition of non‐0 diet
parameters and finally the complete model including
microbial features. Individual layer R2 was quantified by
subtracting the R2 from the nested models, for example,
microbial R2 was estimated by subtracting the complete
model R2 and the diet model.

Genome‐wide association analysis

Each participating study performed genome‐wide associ-
ation analysis under an additive model using metabolites
as a dependent variable and variant allele dosage as a
predictor. Before the analysis, metabolites were trans-
formed using rank‐based inverse normal transformation.
The association analysis was adjusted for age, sex, fasting
status if applicable, familial relatedness if appropriate,
and principal components if needed. Study‐specific
details on covariates and software used to run the
analysis are provided in Supporting Information S2:
Table S20. The QC was performed using a standardized
protocol provided by Winkler et al. [86]. Genetic variants
with minor allele count below 10 and low imputation
quality (r2 < 0.3) were excluded. The summary statistic
results were combined using fixed‐effect meta‐analysis in
METAL. To account for a small amount of population
stratification or unaccounted relatedness, genomic con-
trol was applied. After meta‐analysis, genetic variants
that were present in less than three participating studies
were filtered out. The Bonferroni corrected genome‐wide
significance threshold was set at 5 × 10−8/6 independent
metabolites = 8.33 × 10−9. Additionally, the analyses
were stratified by sex. The same QC steps were followed
for the overall analysis. The sex‐stratified summary
statistic results were combined using fixed‐effect meta‐
analysis in METAL while applying genomic control. Test
statistics of each variant were tested for heterogeneity
between males and females.
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Functional mapping, annotation, and
enrichment analysis

Functional Mapping and Annotation of genetic associa-
tions (FUMA) was used to characterize genomic loci [87].
Genetic variants that passed the Bonferroni corrected
genome‐wide significance threshold and were indepen-
dent of each other (r2 < 0.6) were defined as independent
genetic variants. Independent significant genetic variants
with r2 < 0.1 were defined as lead genetic variants.
Independent significant genetic variants with r2 ≥ 0.1 or
that were 250 bp or closer were assigned to the same
genomic risk locus. Each locus was represented by the top
lead genetic variant with a minimal p value in the locus.
Functional annotation was performed using Combined
Annotation Dependent Depletion [88], HaploReg [89],
and RegulomeDB [90] tools as implemented in FUMA.

Genome‐wide summary statistics were used to
perform gene‐based analysis using multi‐marker analysis
of genomic annotation as implemented in FUMA.
Genetic variants were assigned to the genes from
Ensembl build 85 based on genomic location. All genetic
variants mapped to the protein‐coding genes were tested
for association with metabolites using the SNP‐wide
mean model. 1000G phase 3 was used as a reference
panel to calculate LD across SNPs and genes. To account
for multiple testing, Bonferroni correction was calcu-
lated, and the gene‐wide significance threshold was set at
0.05/(18 861 tested genes × 6 independent metabolites) =
4.42 × 10−7. Subsequently, gene sets enrichment analysis
was also performed using FUMA. Hypergeometric tests
were performed to test if genes of interest are over-
represented in any of the 15,496 predefined gene sets
obtained from MsigDB. Multiple test correction was
calculated based on the total number of gene sets
(p value = 0.05/15,496 = 3.23 × 10−6).

Heritability estimates and genetic correlation

The heritability of metabolites and the genetic correla-
tion between them were estimated from GWAS results
using the LD Score Regression approach [91]. We used
precomputed LD scores for Europeans. Only genetic
variants available in HapMap3 were used.

Gut microbial taxa and metabolites association
analysis

Each of the metabolites and TMAO‐to‐precursor ratios
were rank‐based inverse normal transformed. Standard
linear regression models were carried out to associate the

transformed metabolite and taxonomy abundances while
adjusting for age, sex, BMI, and study‐specific covariates
(sample batch, time in mail, and storage time in the
Rotterdam Study III‐2). This analysis was also repro-
duced in sex‐stratified samples. Common taxonomy
associations in the Rotterdam Study III‐2 and LLD were
meta‐analyzed using a fixed‐effects, inverse‐variance
analysis (R package meta v4.12). The association's
heterogeneity was measured by Cochran's Q statistic.

To correct for multiple testing, we determined the
number of independent tests using the method of Li and
Ji [84]. There were 134 independent tests among
microbial taxa and six independent tests among metabo-
lomic measures. The Bonferroni significance threshold
was set at 0.05/(134 independent microbial taxa × 6
independent metabolites) = 6.2 × 10−5, while a suggestive
threshold was set at 1/(134 × 6) = 1.2 × 10−3.

The potential causal relation between gut microbial
taxa and metabolite levels was tested by two‐sample
MR using the TwoSampleMR package. Only taxa‐to‐
metabolite associations that surpassed our significant
thresholds (p value < 6.2 × 10−5) were considered for the
analysis. We used the GWAS summary statistics for
metabolites produced in this work, while for microbial
taxa we obtained summary statistics from a large 16S
meta‐analysis comprising 18,340 individuals from 24
cohorts including both Rotterdam Study III‐2 and LLD
[88]. Genetic variants with p value < 1 × 10−5 were
selected as instruments. Bacterial taxa with no available
instruments were removed from the analysis. Indepen-
dent genetic variants were selected as instrumental
variables based on an R2 threshold of 0.001 (1000
Genomes in the European reference population). The
number of instruments varied between 11 and 20. The
causality was estimated using various MR methods
including IVW, MR‐Egger, Wald ratio, Weighted median,
Simple Mode, and Weighted Mode. In addition, we also
assessed genetic variant heterogeneity and evidence of
horizontal pleiotropy (using Egger). Individual summary
statistics for genetic variants were estimated using Wald
ratio tests.

To investigate the correlation of distinct microbial
pathways implicated in the metabolism of TMA from
dietary precursors [92, 93], including the glycine
betaine/carnitine transport cluster (gbuA, gbuB, and
gbuC), cutC, cutD, the YeaW, and caiT, we conducted
an analysis based on 845 matching annotations
extracted from UniRef90 (June 2019). For the analysis,
we utilized the remaining UniRef90 data set as a
background universe. A database of unique oligopep-
tides was constructed using ShortBRED (v 0.9.4) [94] to
enable unambiguous mapping of reads for subsequent
quantification.
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Metagenomic shotgun sequencing data from the
LifeLines‐DEEP cohort [95] was obtained for further
analysis (EGA accesion: EGAC00001000457). Preprocessing
of shotgun data was carried out using publicly available
pipelines (https://github.com/SegataLab/preprocessing).
Specifically, we employed Trim Galore (v0.6.6) to remove
low‐quality reads (<Q20), reads with lengths <75 bp, and
those with more than two ambiguous nucleotides. Host
DNA contamination was mitigated by aligning reads to the
hg19 human genome using Bowtie2 (v2.3.4.3) [96].
Subsequently, forward and reverse reads were merged,
and gene quantification was performed using ShortBRED.
This approach yielded the quantification of 624 proteins
(caiT= 96, cutC= 81, cutD= 109, GbuA=86, GbuB= 39,
GbuC= 184, YeaW=29). Normalization of read numbers
per marker length was carried out, and the total abundance
per gene family was computed. To address data composi-
tionality, we applied the clr‐transformation. Correlation
analysis between gene family clr‐transformed abundances
and (inverse‐ranked) metabolite concentrations was per-
formed using a unique multivariable model while account-
ing for age and sex. To control for multiple testing, we
implemented the Benjamini‐Hochberg False Discovery
Rate procedure.

Diet and metabolites correlation analysis

Each food group, metabolite and TMAO‐to‐precursor ratio
were rank‐based inverse normal transformed before
analysis. Partial correlation coefficients were calculated
between each transformed food group item and metabolite
or metabolite ratio while adjusting for age, sex, and BMI.
Summary statistics results of participating studies were
combined by performing a fixed‐effect meta‐analysis in
METAL. To model the correlation between food groups,
the method of Li and Ji was used to calculate the number
of independent tests. Associations were considered
significant if they surpassed the Bonferroni corrected
significance threshold of 0.05/(11 independent food
groups × 6 independent metabolite) = 7.58 × 10−4.
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SUPPORTING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

Figure S1: Phenotypic correlation between metabolites
included in the analyses.

Figure S2: Quantile–quantile plots for genome‐wide
association meta‐analyses.

Figure S3: Results of sex‐stratified genome‐wide associ-
ation analysis for individual metabolites.

Figure S4: SNP‐based heritability and overlap of lead
genomic loci identified in the GWAS of TMAO and its
precursors.

Figure S5: Top associations of microbial taxonomy with
metabolites.

Figure S6: Results of association analysis between
metabolites and gut microbial taxa in males and females.

Figure S7: Gender‐heterogeneous associations of micro-
bial taxonomy with metabolites.

Figure S8: Results of correlation analysis between
metabolites and ratios and food groups.

Table S1: Descriptive characteristics of metabolites and
quantification method.

Table S2: Results of association analysis between
metabolites and incident cardiovascular disease events.
The analyses were performed for overall sample and
females and males separately. The associations that
surpassed significance threshold (p value < 8.33 × 10−3)
are highlighted in bold.

Table S3: Results of association analysis between
metabolites and mortality. The analyses were per-
formed for overall sample and females and males
separately. The associations that surpassed signifi-
cance threshold (p value < 8.33 × 10−3) are highlighted
in bold.

Table S4: Mendelian randomization analysis evaluat-
ing TMAO and its precursors with respect to cardio-
vascular disease. b, effect; se, standard error; pval,
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p value; nsnps, number of SNPs acting as instrumental
variables.

Table S5: Genomic inflation factor for the individual
studies.

Table S6: Genome‐wide significant results (p value <
8.33 × 10−9) for genome‐wide association study of
TMAO, its precursors betaine, carnitine, choline and
deoxycarnitine and TMAO‐to‐precursor ratios. Asso-
ciations with HetPval > 0.1 are listed in the table.

Table S7: Index of lead genetic variants and genomic loci
these variants are assigned to (novel findings highlighted).

Table S8: All genetic variants in linkage disequilibrium
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their functional annotation.

Table S9: Independent lead genetic variants and loci
these variants are mapped to in TMAO‐to‐precursor
ratio GWAS.

Table S10: Pleotropic associations for independent
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LD with these.

Table S11: Genome‐wide significant findings in sex‐
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Table S12: Results of gene‐based analysis. Listed
associations passed gene‐wide significance level
(p value < 4.42 × 10−7).

Table S13: Results of gene‐set analysis that showed
suggestive evidence of association with metabolites
(p value = 1/(15485*6) = 1.08 × 10−5).

Table S14: Results of genome‐wide genetic overlap
between metabolites and metabolite ratios. Associations

with evidence of significant genome‐wide genetic overlap
were shown in bold.

Table S15: The results of association analyses between
metabolites and gut microbial taxa.

Table S16: The results of association analysis between
metabolites and gut microbial taxa in females.

Table S17: The results of association analysis between
metabolites and gut microbial taxa in males.

Table S18: Association between TMAO metabolic path-
way abundances, using shotgun sequencing data from
LLD and metabolite concentrations.

Table S19: Mendelian randomization analysis evaluating
TMAO and its precursors with regard to gut microbiota.
b, effect; se, standard error; pval, p value; nsnps, number
of SNPs acting as instrumental variables.

Table S20: Results of correlation analyses between
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Table S21: Information on genotyping and analysis.
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