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The main objective of most clinical trials is to estimate the effect of some treat-
ment compared to a control condition. We define the signal-to-noise ratio (SNR)
as the ratio of the true treatment effect to the SE of its estimate. In a previ-
ous publication in this journal, we estimated the distribution of the SNR among
the clinical trials in the Cochrane Database of Systematic Reviews (CDSR). We
found that the SNR is often low, which implies that the power against the true
effect is also low in many trials. Here we use the fact that the CDSR is a collection
of meta-analyses to quantitatively assess the consequences. Among trials that
have reached statistical significance we find considerable overoptimism of the
usual unbiased estimator and under-coverage of the associated confidence inter-
val. Previously, we have proposed a novel shrinkage estimator to address this
“winner’s curse.” We compare the performance of our shrinkage estimator to the
usual unbiased estimator in terms of the root mean squared error, the coverage
and the bias of the magnitude. We find superior performance of the shrinkage
estimator both conditionally and unconditionally on statistical significance.
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1 INTRODUCTION
The Cochrane collaboration is a global independent network that aims to gather and summarize the best
evidence—usually randomized controlled trials or RCTs—from medical research. The Cochrane Database of Systematic
Reviews (CDSR) contains the results of tens of thousands of clinical trials covering any topic relevant to health care,
including health services. While there is evidence that the database may suffer from some publication bias and dubi-
ous research practices such as p-hacking,1 it is arguably the largest, most comprehensive and most reliable collection of
evidence in medicine currently available. See Reference 2 for a detailed description of the CDSR.

From a meta-scientific point of view, the CDSR is a unique resource to study how medical research is conducted. For
example, in References 3-5 we studied the distribution of the power of the two-sided test for detecting the true effect in
studies from CDSR. We found that the median power is only about 14% across the entire CDSR. Low statistical power
against the true effect has been observed before in various domains of biomedical research,6,7 and it is actually not that sur-
prising. First of all, trials are designed to have good power against the minimal effect that is of clinical interest, not against
the true effect (which is of course unknown). Other factors that may also contribute to low power are: limited financial
resources, lack of time, difficulties with subject recruitment, or larger between-subject variation than anticipated.

The fact that the power against the true effect is often low has serious consequences for our inferences. One such con-
sequence is the well-known “winner’s curse,” which is the tendency of statistically significant effects to be overestimated
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
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while the associated confidence interval does not attain the nominal coverage. When the power is low, the winner’s curse
is especially severe.8-10 A related problem is that replication studies of the same size will often fail to reach statistical
significance.5 In this article, we present a quantitative assessment of the performance of the usual, unbiased estimator
on average across the trials in the CDSR in terms of the root mean squared error (RMSE), the coverage and the bias of
the magnitude, both conditionally and unconditionally on statistical significance. We also consider the performance of a
novel shrinkage estimator which we recently proposed in References 3 and 4.

The article is organized as follows. We describe our shrinkage estimator in Section 2; in the Appendix, we also provide
a few lines ofR code to compute it together with its SE. In our previous work, we used the CDSR merely as a large collection
of individual trials when it is actually a collection of systematic reviews. In Section 3, we use this structure to make a
synthetic “copy” of the CDSR. We then use this copy to evaluate and compare the performance of the usual unbiased
estimator and our shrinkage estimator. We find superior performance of the shrinkage estimator on average over the trials
of the synthetic CDSR both conditionally and unconditionally on statistical significance. We claim that the performance
across the synthetic CDSR gives a good indication of the performance across the real CDSR. In Section 3.3, we provide
additional direct support for the validity of this claim by means of cross-validation without simulating synthetic data.

We briefly elaborate on this cross-validation procedure. We naturally think of the unbiased and shrinkage estimators
as estimators of the effect in a particular trial. However, we can also view them as estimators of the pooled effect in any
meta-analysis that includes that trial. We can obtain a third estimator of the pooled effect by leaving out that one trial, and
repeating the meta-analysis using only the remaining trials. This third estimator is unbiased and independent of the other
two. We can now compare the unbiased and shrinkage estimators from the trial that was left out to the pooled estimator
from the remaining trials.

This cross-validation approach is reminiscent of the well-known study by Efron and Morris to predict baseball batting
averages on the basis of the first 45 at-bats.11 The individual trials from the CDSR play the role of the batting averages
over the first 45 at-bats, while the remaining studies in the same meta-analysis play the role of the batting averages over
the remainder of the season.

In Section 4, we compare the estimators more finely, stratifying the trials by medical field. We end the article with a
brief discussion in Section 5.

2 DEFINING THE SHRINKAGE ESTIMATOR

We now discuss the shrinkage estimator which we proposed in References 3 and 4. For more detail, we refer to those
papers. We represent an individual trial by a set of three numbers (𝛽, b, s), where 𝛽 is the primary efficacy parameter and
b is an unbiased, normally distributed estimator with SE s, that is,

b = 𝛽 + N(0, s2). (1)

We observe only the pair (b, s). Here, we ignore the difference between the true SD of b given 𝛽 and the SE estimate s based
on the trial data. We define the z-value z = b∕s and the signal-to-noise ratio (SNR) SNR = 𝛽∕s. If the outcome is binary,
we summarize the effect as a log odds ratio; if it is numerical, we summarize the effect as a standardized mean difference
(SMD) which is the difference in the mean outcome between the groups divided by the SD among the participants.

As in References 3 and 4, we select all trials from the CDSR which we could positively identify as RCTs. From each
trial we select the comparison that was targeted at efficacy (rather than safety). When there were multiple comparisons
(multiple outcomes and/or multiple groups), we select the one that was listed first. In this way, we obtain effect estimates
with their SEs from about 20 000 unique RCTs.

We use these data to estimate the joint distribution of the z-value and the SNR. It is a pleasant surprise that this is
possible because we cannot observe the SNR directly. The details are as follows. First, we start by estimating the marginal
distribution of the z-values. To this end, we use a mixture of four zero-mean normal distributions:

z ∼
4∑

i=1
piN

(
0, 𝜎2

i
)
.

This model is equivalent to assuming that the true SNR follows a mixture of multiple mean zero normal distributions.
The variances 𝜎2

i and the mixing proportions pi, i = 1, 2, 3, 4 can be estimated using the EM algorithm. We show the
histogram of the observed z-values together with the estimated distribution in Figure 1. We verified that this analysis is
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F I G U R E 1 The histogram represents the z-values of a little over 20 000 RCTs from the CDSR. The smooth black curve is a mixture of
four zero-mean Gaussian components. The smooth gray curve is obtained by subtracting 1 from the variances of these components.

not sensitive to the number of mixing components and the result is very similar when we use 3 or 5 or 6 components
in the mixture distribution. We see that the fit is reasonably good, but not perfect. The fit would be better if we did not
restrict the components to have zero means. However, this would ultimately result in an asymmetric shrinkage estimator
which would not be acceptable in the context of clinical trials.

It follows from (1) that the z-value is the sum of the SNR and independent standard normal noise, which is the result
of randomness from observed data in individual trials and not related to SNR, that is,

z = SNR + N(0, 1).

As a side note, this observation also implies that the variances in the normal mixture distribution of z must be at least one,
that is, 𝜎2

i ≥ 1. Hence, we can obtain the marginal distribution of the SNR by removing the standard normal component
from the estimated distribution of the z-values. This process is called “deconvolution.” It is particularly easy in our case
because we are working with mixtures of normal distributions; we can simply subtract 1 from the variances of each of
the four mixture components, that is, the distribution of SNR can be estimated by

4∑

i=1
p̂iN(0, �̂�

2
i − 1),

where (p̂i, �̂�i) is the estimator for (pi, 𝜎i) from the EM algorithm. We show the resulting marginal distribution of the SNR
in Figure 1, and report the parameter estimates in Table A1.

Since we are working with a parametric model, it is not difficult to derive the conditional distribution of the SNR given
the observed z-value. It is also a mixture of normals and can be estimated by

4∑

i=1
qi(z)N(mi(z), vi),

where mi(z) = z(�̂�2
i − 1)∕�̂�2

i , vi = (�̂�2
i − 1)∕�̂�2

i are the means and variances of the components. The mixture proportions
are

qi(z) =
p̂i𝜑(z∕�̂�i)

∑4
j=1p̂j𝜑(z∕�̂�i)

, (2)

where 𝜑(⋅) is the density function of a standard normal. Now, since 𝛽 = s ⋅ SNR, we propose

𝛽 = s ⋅ Ê(SNR|z) = s ⋅
4∑

i=1
qi(z)mi(z) = b ⋅

4∑

i=1
qi(z)

�̂�
2
i − 1

�̂�
2
i

, (3)

as an alternative to b for estimating the treatment effect 𝛽, see References 3 and 4.
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The rationale for the new estimator is that by borrowing information from z-values observed in other studies, we may
be able to better estimate the SNR in the current study. It is clear from the definition (3) that |𝛽| < |b|. In other words, 𝛽
is a shrinkage estimator.

We can also compute the SD 𝜎 of 𝛽 and use the interval 𝛽 ± 1.96 𝜎 instead of the usual confidence interval b ± 1.96 s.
Here, 𝜎 is s times the SD of the conditional distribution SNR given z. That is,

s ⋅

√√√√√
4∑

i=1
qi(z)(vi +mi(z)2) −

( 4∑

i=1
qi(z)mi(z)

)2

, (4)

yielding a narrower confidence interval for 𝛽. All calculations are quite straightforward, and we provide R code in the
Appendix.

As we will demonstrate in Section 3, the shrinkage estimator has a substantially better average performance than
the conventional counterpart. On the other hand, this improvement may not be realized for each individual trial. The
shrinkage in estimating the treatment effect in a study is induced by borrowed information from other studies. When
other studies are similar to the study of interest and we have a good idea about the likely SNR value of other studies based
on their observed z scores, a bigger improvement can be expected. On the other hand, if (some) other studies are very
different from the study of interest in key characteristics, then the advantage of shrinkage may be limited and even vanish
completely. Therefore, we may consider to adopt specific shrinkage schemes for a subgroup of more “homogeneous”
trials so that a bigger gain of shrinkage can be realized in a larger proportion of trials. For example, one may expect that
the distribution of SNR in trials in a disease without any known effective treatment is more concentrated at the mass
zero than the average. Consequently, more shrinkage should be applied to such a trial. Operationally, one may consider
appropriate grouping of trials of interest based on certain trial characteristics (eg, medical specialty and/or study phase),
and apply the proposed adjustment procedure for each subgroup of trials separately. More discussion and analysis can be
found in Section 4.

3 EVALUATION OF THE PERFORMANCE OF THE CONVENTIONAL AND
SHRINKAGE ESTIMATORS

3.1 Setup

In our previous work we have used the primary efficacy results of roughly 20 000 RCTs from the CDSR, while
ignoring the fact that the CDSR is actually a collection of systematic reviews. Here we will use this structure to
evaluate and compare the performance of the usual estimator b and the shrinkage estimator 𝛽 on average across
the CDSR.

To this end, we selected all reviews from the CDSR with at least five individual studies. We used the same
selection criteria for the individual trials as before, except that we dropped the requirement that a trial must
be positively identified as an RCT. Thus we collected the primary efficacy results of 18 226 unique trials from
1625 systematic reviews. We consider the following hierarchical model which is customary for random effects
meta-analysis, for example, Reference 12. For the jth individual study in the ith meta-analysis consisting of ni studies,
we assume

𝛽ij = 𝜇i + uij, (5)
bij = 𝛽ij + 𝜀ij, (6)

where j = 1, … ,ni, uij has the normal distribution with mean zero and variance 𝜏2
i , and 𝜀ij has the normal distribution

with mean zero and variance s2
ij. Moreover, all the uij and 𝜀ij are assumed to be independent.

We observe the pairs (bij, sij) and define the z-values zij = bij∕sij. We also compute the shrinkage estimators 𝛽 ij and
their SEs 𝜎ij using the R code provided in the Appendix. In the following, we will present analyses to compare the average
performance of the usual and shrinkage estimators.
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VAN ZWET et al. 859

3.2 Comparison based on synthetic data

In the first comparison, we generate the synthetic copies of CDSR. Since the true treatment effect for each study is known
in generating synthetic CDSR, we may directly evaluate the performance of the two estimators. To construct a synthetic
copy of the CDSR, we first conducted standard random effects meta-analyses to obtain estimates �̂�i and 𝜏 i. We use the
function rma() from the R package metafor12 with default settings. The estimate �̂�i is just a weighted average of the
individual estimates

�̂�i =

∑ni
j=1wijbij
∑ni

j=1wij
, (7)

where wij = 1∕(𝜏2
i + s2

ij), ni is the number of individual trials in the ith meta-analysis and 𝜏2
i is the restricted maximum

likelihood estimator of the between study variation. The selection of the estimation method for the meta-analysis is not
particularly important for us as the purpose is merely to obtain model parameters which can be used to generate observed
data (b, s) whose distribution is similar to its observed counterpart. Next, we perform the following two sampling steps:

1. Sample 𝛽∗ij (j = 1, 2, … ,ni) from the normal distribution with mean �̂�i and SD 𝜏 i.
2. Sample b∗ij from the normal distribution with mean 𝛽∗ij and SD sij. Set z∗ij = b∗ij∕sij.

The construction provides us with a simulated set (𝛽∗ij , b
∗
ij, sij)with a similar structure as the original CDSR (𝛽ij, bij, sij).

In Figure 2, we compare the distributions of observed bij and zij to the those of simulated b∗ij and z∗ij, and note the close agree-
ment between them. We conclude that we not only succeeded in faithfully reproducing the distribution of the estimates
bij but also the relation between the bij and the SEs sij.

Finally, we used the R code in the Appendix to compute the shrinkage estimators 𝛽∗ij and their SE estimates 𝜎∗ij from
the pairs (b∗ij, sij).

We repeated this data generation and subsequent shrinkage adjustment steps 100 times to reduce the Monte Carlo
variation in our final results. This data generation method is essentially a version of the parametric bootstrap based on
the random effects models (5) for 1625 meta analyses with all model parameters being their estimators based on original
CDSR.
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F I G U R E 2 Comparison of the distributions of the observed bij (left) and zij = bij∕sij (right) to the simulated b∗ij and z∗ij = b∗ij∕sij.
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860 VAN ZWET et al.

We can now proceed to evaluate and compare the performance of the usual, unbiased estimators b∗ij and the shrinkage
estimators 𝛽∗ij on average across the synthetic CDSR, in which the true effect 𝛽∗ij is known. With N denoting the total
number of individual studies, we define the RMSE, the coverage and the bias of the magnitude as follows.

• RMSE:
√

1
N

∑
ij

(
b∗ij − 𝛽

∗
ij

)2
and

√
1
N

∑
ij

(
𝛽
∗
ij − 𝛽∗ij

)2
.

• Coverage:

1
N
∑

ij
1
{
|b∗ij − 𝛽

∗
ij| < 1.96sij

}
and 1

N
∑

ij
1
{
|𝛽∗ij − 𝛽∗ij| < 1.96𝜎∗ij

}
.

• Bias of the magnitude: 1
N

∑
ij

(
|b∗ij| − |𝛽∗ij|

)
and 1

N

∑
ij

(
|𝛽∗ij| − |𝛽∗ij|

)
.

We report these performance measures in Table 1 and note the superior performance of the shrinkage estimator.
The RMSE is reduced from 0.73 to 0.54, which implies a relative gain in efficiency of (0.732 − 0.542)∕0.732 = 0.45. So,
in a sense, this improvement corresponds to almost doubling the sample size. Moreover, the shrinkage does not lead
to severe downward bias. In fact, on average over the CDSR the unbiased estimator tends to severely overestimate the
magnitude of the effect. This is to be expected from Jensen’s inequality, which in our case states that E(|bij|) > |E(bij)| =
|𝛽ij|. The bias is large when the absolute value of the SNR is small. This is often the case among the trials in the CDSR
and therefore, on average over the CDSR, the bias of the magnitude is substantial. The shrinkage effectively corrects this.
Finally, the slight undercoverage of the interval around the shrinkage estimator is due to the fact that we use a normal
approximation to the conditional distribution of the SNR given the z-value. In Section 4, we break this table down by
medical specialty.

We decided not to report the average bias of the two estimators in Table 1. The average bias of the unbiased estimator
is of course zero. Now, as can be seen from Figure 1, the distribution of the observed z-values is nearly symmetric around
zero. Since the shrinkage estimator shrinks towards zero, its bias on average over the CDSR will necessarily also be close
to zero. Thus, the average bias is not useful for comparing the performance of the two estimators.

In Table 2, we report the performance measures conditional on statistical significance at the 5% level by restricting
the averages to the cases where |z∗ij| > 1.96. We note that the bias in the magnitude of the usual estimator has become
even larger due to the winner’s curse. Also note the substantial undercoverage of the usual confidence interval. As can
be seen from its definition (3), the shrinkage estimator is computed conditionally on the observed z-value. Therefore it is
not affected by the winner’s curse.

3.3 Comparison based on cross-validation

In generating the synthetic CDSR, the true treatment effect for each study is known allowing direct evaluation of the
performance of relevant estimators. The evaluation, however, depends on the model and parameters used to generate the

T A B L E 1 Performance of the estimators.

Estimator RMSE Bias of the magnitude Coverage Ave. width of the CI

Unbiased 0.73 0.21 0.95 2.34

Shrinkage 0.54 −0.05 0.94 1.92

T A B L E 2 Performance of the estimators conditional on statistical significance, that is, |b∗ij∕sij| > 1.96.

Estimator RMSE Bias of the magnitude Coverage Ave. width of the CI

Unbiased 0.79 0.37 0.90 1.65

Shrinkage 0.55 0.05 0.95 1.62
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VAN ZWET et al. 861

true treatment effect and synthetic CDSR. The close agreement of the original and simulated data in Figure 2 provides
partial support that the observed gain of the shrinkage estimators in synthetic the CDSR is likely to be real in practice. In
this section, we provide additional support without simulating synthetic the CDSR.

We naturally think of both bij and 𝛽 ij as estimators of 𝛽ij. However, since the 𝛽ij are normally distributed with mean 𝜇i,
we can also view both bij and 𝛽 ij as estimators of 𝜇i. As such, we can compare their performance by their mean squared
estimation errors,

MSEb =
1
N
∑

ij

(
bij − 𝜇i

)2 and MSE𝛽 =
1
N
∑

ij

(
𝛽 ij − 𝜇i

)2
. (8)

Since bij is an unbiased estimator of 𝜇i, it follows that

E
[
(bij − 𝜇i)2|𝜇i

]
= s2

ij + 𝜏
2
i . (9)

So, we can estimate the mean squared error of the bij directly as

1
N
∑

ij

(
s2

ij + 𝜏
2
i

)
= 0.74. (10)

Since the 𝛽 ij are not unbiased estimators of the 𝜇i, we cannot estimate the mean squared error of the 𝛽 ij in a similar way.
We will therefore use a different approach by focusing on the difference in mean squared errors,

MSEb −MSE𝛽 =
1
N
∑

ij

[
(bij − 𝜇i)2 − (𝛽 ij − 𝜇i)2

]
. (11)

The 𝜇i are not observed, but, remarkably, there is a direct way to estimate this difference. We start by constructing a third
estimator of 𝜇i which is unbiased and independent of both bij and 𝛽 ij. We leave out study j from meta-analysis i and re-run
the random effects meta-analysis on the remaining ni − 1 studies to obtain an estimate �̂�(−j)

i of the average effect 𝜇i. The
estimate �̂�(−j)

i is a weighted average of the ni − 1 estimates from the individual studies without the jth one,

�̂�
(−j)
i =

∑
k≠j wikbik
∑

k≠j wik
, (12)

where wik = 1∕
(
𝜏

2
i(−j) + s2

ik

)
and 𝜏2

i(−j) is an estimator of 𝜏2
i based on ni − 1 studies excluding the jth study. This estimator

is unbiased for 𝜇i because the individual study estimates are. Moreover, it is independent of both bij and 𝛽 ij because it is
based on a different set of studies. (To be very precise, the amount of shrinkage is derived from all the RCTs in the CDSR,
so in that sense 𝛽 ij does depend a little bit on the other studies in the ith meta-analysis. But this dependence is very slight
and can be safely ignored.)

The unbiasedness of the �̂�(−j)
i and their independence of bij and 𝛽 ij imply the following equality

E
[
(bij − 𝜇i)2 − (𝛽 ij − 𝜇i)2

]
= E

[(
bij − �̂�(−j)

i

)2
−
(
𝛽 ij − �̂�

(−j)
i

)2
]
, (13)

which implies that

1
N
∑

ij

[
(bij − 𝜇i)2 − (𝛽 ij − 𝜇i)2

]
≈ 1

N
∑

ij

[(
bij − �̂�(−j)

i

)2
−
(
𝛽 ij − �̂�

(−j)
i

)2
]

for large N. We provide a proof of this equality in the Appendix. Therefore, the right-hand side is directly observable from
the original CDSR and can be viewed as a leave-one-out cross-validation estimate of the left-hand side of the equality,
which coincides with (11). Based on our data, this leave-one-out cross validation estimate turns out to be 0.33. Recall-
ing that we estimated MSEb = 0.74, we can now estimate MSE𝛽 = 0.74 − 0.33 = 0.41. This shows that on average, the
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862 VAN ZWET et al.

shrinkage estimator provides a relative efficiency gain over the unbiased estimator of 55% for estimating the 𝜇i. Similar
to the improvement in estimating the true effect of individual studies, this improvement also corresponds to more than
doubling the sample size.

Remark. Circling back to our random effects model in Section 3.2, we can simulate multiple synthetic copies
of CDSR from the model, and compute the corresponding mean squared errors

1
N
∑

ij

(
b∗ij − �̂�i

)2
and 1

N
∑

ij

(
𝛽
∗
ij − �̂�i

)2
. (14)

These turns out to be 0.74 and 0.42, respectively, which is in close agreement to the results obtained above
from the leave-one-out analysis. This strengthens our confidence in both the synthetic CDSR model and the
leave-one-out cross validation analysis.

3.4 A visual explanation

In this article, we have used the terms “bias,” “RMSE,” and “coverage” not in the usual (frequentist) sense where we fix
a particular value for the true effect 𝛽. Instead, we average over the effects that occur in the CDSR. Tables 1 and 2 clearly
show that the shrinkage estimator performs much better than the usual unbiased estimator on average across the CDSR.
The reason for this superiority is that the shrinkage estimator uses shared information between the trials. This is the
well-known “Stein effect.”13-15

We illustrate the Stein effect in Figure 3 where we note superior performance of the shrinkage estimator (top panel)
at the most common values of the true effect (bottom panel). We also see that the estimator shrinks too much when the
true effect is very large. Fortunately, very large effects are rare as can be seen in the bottom panel.

Figure 3 may appear to suggest that the shrinkage estimator is likely to overshrink when the estimated effect is large,
but that is no so. In fact, the shrinkage is particularly effective in that case. In Figure 4, we plot the (synthetic) estimated

effects b∗ij versus the difference of the squared errors of the two estimators, that is,
(

b∗ij − 𝛽
∗
ij

)2
−
(
𝛽
∗
ij − 𝛽∗ij

)2
. The “loess”

regression curve represents the conditional expectation of this difference given the estimated effect.16 We see that this is
always in favor of the shrinkage estimator, but especially when the observed effect is large.

s=0.28

s=0.46

s=0.78

−0.2

−0.1

0.0

0.1

0.2

0.3

−6 −3 0 3 6

d
if
fe

re
n
c
e
 i
n
 R

M
S

E

0.00

0.25

0.50

0.75

−6 −3 0 3 6

beta (true effect)

d
e
n
s
it
y

F I G U R E 3 Top panel: The difference in RMSE between the unbiased estimator and the shrinkage estimator as a function of the true
effect 𝛽 when the SE s of the unbiased estimator is set to its quartiles across the CDSR (0.28, 0.46, and 0.78). A positive difference indicates
superior performance of the shrinkage estimator. Bottom panel: The distribution of the true effect 𝛽 in a generated synthetic copy of CDSR.
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F I G U R E 4 The estimated effects vs the difference of the squared errors of the unbiased estimator and the shrinkage estimator from a
synthetic copy of CDSR. The smooth curve is the loess regression. Positive values favor the shrinkage estimator.

The “price to pay” for the Stein effect is that the shrinkage estimator 𝛽 is biased in the frequentist sense, that is, for
any fixed value of the true parameter 𝛽. Specifically, the shrinkage towards zero causes the magnitude of the estimator
to be systematically too small. However, we have already seen in Tables 1 and 2 that when we average over the 𝛽ij in the
CDSR, the bias of the magnitude of the shrinkage estimator is actually much less than that of the usual estimator. So, we
obtain a reduction of both the variance and the bias of the magnitude of the effect on average across the CDSR.

Of course, superior performance on average over the CDSR does not guarantee superior performance in any particular
trial. We can see in Figure 4 that the shrinkage estimator is sometimes further from the truth than the unbiased estimator.
From Figure 3 we know that the shrinkage estimator will perform poorly when the true effect 𝛽 is very large. Very large
effects are rare, but even more importantly, we do not know if the true effect is large. This is the crux: clearly, we should
use the unbiased estimator if we can somehow recognize that it will perform best. Otherwise, it seems sensible to prefer
the shrinkage estimator because it may be expected to perform better, as we can see in Figure 4.

4 STRATIFICATION BY MEDICAL FIELD

It is not obvious that the superior performance of the shrinkage estimator on average across the CDSR is relevant for the
inference about a particular trial. For any particular trial there will be additional information that sets it apart from all
the other trials, such as the trial design, the medical field, the outcome, whether it was run by a pharmaceutical company
or a university hospital and so on and so forth.

The fact that we have additional information about a particular trial does not mean that the shrinkage estimator is not
useful. On the contrary, such information can be used to improve the shrinkage estimator when appropriately used. For
example, the trials in the CDSR are classified into 19 medical specialties. We can construct shrinkage estimators within
each of these specialties. Specifically, for each medical specialty separately, we can re-estimate the joint distribution of the
z-value and SNR and computed shrinkage estimators and their SEs. We refer these new shrinkage estimators as “local”
shrinkage estimators. The resulting shrinkage would be different for trials in different medical specialties due to different
estimates for the conditional distribution of SNR given z. We can then evaluate and compare the performance of the usual
estimator, the shrinkage estimator based on entire CDSR, and “local” shrinkage estimators within these specialties. We
show the results of this stratification in Figure 5 where we sorted the specialties by the number of trials, see also Table C1
in the Appendix. We find that there is very little difference between the performance of local and global shrinkage.

With information on additional trial characteristics, we may construct even more “local” shrinkage estimators within
smaller subgroup of trials sharing the same characteristics, such as trials from the same pharmaceutical company with an
excellent track record in conducting successful trials. The estimated shrinkage is expected to be more tuned to individual
trials in that subgroup and might bring bigger improvement in estimation accuracy. In particular, the shrinkage may be
more flexible and is not always towards zero, since the components of the mixture distribution for SNR may not be mean
zero. However, there is a practical limitation of this approach, since sufficient number of trials is needed to construct a
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F I G U R E 5 Root mean squared error of the three different estimators, compare Table C1.

good enough estimate for the joint distribution of z and SNR. Otherwise, the gain of the shrinkage may be offset by the
inaccuracy in estimating the conditional expectation E(SNR|z).

Besides the practical issue of the availability of sufficient relevant information, there is also the conceptual issue of
deciding which information should be used, and, ultimately, which studies are relevant for estimating the distribution of
SNR. This is essentially a subjective choice, which could jeopardize the validity of the inference by opening the door to
the “garden of forking paths.”17

5 DISCUSSION

We can represent “the essence” of a clinical trial by a set of three numbers (𝛽, b, s), where 𝛽 is the primary efficacy param-
eter and b is an unbiased, normally distributed estimator with SE s. In Reference 3 we estimated the joint distribution of
the z-value z = b∕s and the SNR SNR = 𝛽∕s across approximately 20 000 trials from the Cochrane database (CDSR). In
References 3 and 4, we proposed a shrinkage estimator 𝛽 = s ⋅ Ê(SNR|z) as an alternative to the unbiased estimator b. We
expect that the new shrinkage estimator is more accurate than its unbiased counterpart from the study alone and might
be used for future study design to avoid insufficient sample size due to overoptimistic hypothesis on the treatment effect.

It is likely that the empirical Bayes estimator Ê(𝛽|b, s)would be a better estimator than 𝛽 because there is more infor-
mation in the pair (b, s) than in their ratio z. However, to compute Ê(𝛽|b, s), we would need the full joint distribution of
(𝛽, b, s), which is much more difficult to estimate than the joint distribution of z-value and the SNR.

The goal of this article is to evaluate the performance of 𝛽, and compare it to the usual, unbiased estimator. We find
that, on average across the CDSR, the shrinkage estimator is much superior to the unbiased estimator in terms of mean
squared error, exaggeration and coverage. The improvement is considerable, and continues to hold when we stratify by
medical specialty.

The question remains: Is the performance “on average across the CDSR” relevant? Clearly, the CDSR is not a random
sample from the population of all clinical trials. However, all trials have in common that they try to obtain a sufficiently
precise estimate of the treatment effect within the constraints of time, money, and the availability of subjects. By compar-
ing the shrinkage estimator to the unbiased estimator across the CDSR, we see the performance gain under these shared
circumstances. An even more difficult follow-up question is: Is the performance on average across the CDSR relevant for
the inference about a particular trial? We believe it is! It is well-known that trials tend to have low SNR (they are often
“underpowered”) and it would be irresponsible to ignore that.

While the unbiased estimator and its SE (or confidence interval) should always be reported, we would argue that the
shrinkage estimator is also important to aid the interpretation and to guard against exaggeration. So, we suggest that the
primary result of a trial is reported as follows (the numbers are taken from an example in Reference 3):

The hazard ratio was estimated at 0.75 with 95% confidence interval of (0.55, 1.02). However, it has been
established that many trials have a low signal-to-noise ratio, which can lead to upward bias in the estimate
of the hazard ratio. If we apply this general information to our particular trial, the hazard ratio estimate
becomes 0.84 with interval (0.62, 1.07).
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VAN ZWET et al. 865

Finally, after demonstrating the superior performance of the proposed shrinkage estimation procedure, we stress that
it is neither a complete replacement of the trial-specific analysis, nor of a well-conducted meta-analysis of a collection
of high-quality studies examining the same treatment effect. Furthermore, if feasible, it is also desirable to examine the
treatment effect estimates from a group of “similar” studies. Even simple summary such as the range of observed treatment
effects from similar studies may provide additional insight to the true treatment effect in the current study.
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APPENDIX A. COMPUTING THE SHRINKAGE ESTIMATOR

In Reference 3, we estimated the distribution of the SNR 𝛽∕s as a normal mixture of four zero-mean components which
we specify in Table A1.

We compute the shrinkage estimator 𝛽 and its SD 𝜎 from the unbiased estimator b and its SD s with the following R
code:
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T A B L E A1 Estimated 4-part zero-mean normal mixture distributions of the SNR, from Reference 3.

comp.1 comp.2 comp.3 comp.4

Proportions 0.32 0.31 0.30 0.07

Means 0 0 0 0

Std. devs. 0.61 1.42 2.16 5.64

shrinkage <- function(b,s) {
z <- b/s
p <- c(0.32,0.31,0.3,0.07) # from Table 3
sigma <- c(0.61,1.42,2.16,5.64)
sigma2 <- sigma^2
q <- p*dnorm(z,0,sqrt(sigma2+1))
q <- q/sum(q) # conditional mixing probs
pm <- b*sigma2/(sigma2+1) # conditional means
pv <- s^2*sigma2/(sigma2+1) # conditional variances
data.frame(q,pm,pv)

}

For example, if we observe b = 0.4 and s = 0.3 then the usual 95% confidence interval is −0.2 to 1.0. We can compute
the shrinkage estimator as follows:

shrink <- shrinkage(b=0.4,s=0.3)
betahat <- sum(shrink$q * shrink$pm)

We find 𝛽 = 0.23. We can compute SD 𝜎 of the mixture distribution as follows

pm2 <- sum(shrink$q * shrink$pm^2)
ps2 <- sum(shrink$q * shrink$pv)
sigma <- sqrt(ps2 + pm2 - betahat^2)

We find 𝜎 = 0.25, so the 95% interval is −0.25 to 0.72.

APPENDIX B. EQUATION (13)

We can motivate Equation (13) with the following proposition.

Proposition 1. Consider three estimators T0, T1, and T2 of a parameter 𝜃. Suppose that, conditionally on 𝜃, T0
is unbiased and independent of T1 and T2. Then

E(T1 − T0)2 − E(T2 − T0)2 = E(T1 − 𝜃)2 − E(T2 − 𝜃)2, (B1)

where the expectations are with respect to arbitrary distributions of T0, T1, T2, and 𝜃 (as long as the expectations
are well-defined and finite).

Proof.

E(T1 − T0)2 = E(E((T1 − T0)2|𝜃))
= E[E((T1 − 𝜃)2|𝜃) − 2E((T1 − 𝜃)(T0 − 𝜃)|𝜃) + E((T0 − 𝜃)2|𝜃)].

 10970258, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9992 by C
ochrane N

etherlands, W
iley O

nline L
ibrary on [29/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



VAN ZWET et al. 867

Conditionally on 𝜃, T0 is unbiased and independent of T1.Therefore the cross term is zero and hence

E(T1 − T0)2 = E(T1 − 𝜃)2 + E(T0 − 𝜃)2.

The same argument holds with T2 instead of T1, and the claim follows. ▪

Equation (13) follows from the proposition by taking T0 = �̂�−j
i , T1 = bij, T2 = 𝛽 ij, and 𝜃 = 𝜇i.

APPENDIX C. STRATIFICATION BY MEDICAL FIELD

T A B L E C1 Performance of the estimators.

Specialty n Estimator RMSE
Bias of the
magnitude Coverage

Width of the
full CI

Psych 2609 Unbiased 0.62 0.16 0.95 1.98

Psych 2609 Shrinkage 0.48 −0.08 0.94 1.64

Psych 2609 Shrinkage local 0.49 −0.03 0.95 1.71

Pain 1757 Unbiased 0.78 0.17 0.95 2.55

Pain 1757 Shrinkage 0.61 −0.13 0.93 2.14

Pain 1757 Shrinkage local 0.64 −0.03 0.95 2.27

Heart 1558 Unbiased 0.82 0.29 0.95 2.59

Heart 1558 Shrinkage 0.57 0.02 0.95 2.10

Heart 1558 Shrinkage local 0.56 0.00 0.95 2.06

Lungs 1274 Unbiased 0.74 0.21 0.95 2.30

Lungs 1274 Shrinkage 0.53 −0.05 0.95 1.88

Lungs 1274 Shrinkage local 0.54 −0.03 0.95 1.91

Gastro 1194 Unbiased 0.80 0.21 0.95 2.60

Gastro 1194 Shrinkage 0.60 −0.08 0.94 2.15

Gastro 1194 Shrinkage local 0.63 −0.01 0.95 2.26

ET 1176 Unbiased 0.80 0.27 0.95 2.61

ET 1176 Shrinkage 0.57 −0.01 0.95 2.12

ET 1176 Shrinkage local 0.55 −0.05 0.95 2.04

Neuro 1152 Unbiased 0.64 0.21 0.95 2.01

Neuro 1152 Shrinkage 0.45 −0.01 0.95 1.63

Neuro 1152 Shrinkage local 0.42 −0.06 0.94 1.52

Pregnancy 1146 Unbiased 0.77 0.24 0.95 2.49

Pregnancy 1146 Shrinkage 0.56 −0.03 0.95 2.03

Pregnancy 1146 Shrinkage local 0.56 −0.03 0.95 2.03

Gynecology 870 Unbiased 0.69 0.19 0.95 2.27

Gynecology 870 Shrinkage 0.53 −0.07 0.94 1.88

Gynecology 870 Shrinkage local 0.54 −0.06 0.94 1.90

Onco 706 Unbiased 0.76 0.23 0.95 2.45

Onco 706 Shrinkage 0.56 −0.03 0.95 2.00

Onco 706 Shrinkage local 0.55 −0.06 0.95 1.95

(Continues)
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868 VAN ZWET et al.

T A B L E C1 (Continued)

Specialty n Estimator RMSE
Bias of the
magnitude Coverage

Width of the
full CI

Oral and ENT 647 Unbiased 0.68 0.13 0.95 2.12

Oral and ENT 647 Shrinkage 0.55 −0.13 0.93 1.79

Oral and ENT 647 Shrinkage local 0.57 −0.04 0.95 1.90

Kidney 630 Unbiased 0.89 0.31 0.95 2.98

Kidney 630 Shrinkage 0.63 −0.01 0.96 2.41

Kidney 630 Shrinkage local 0.61 −0.07 0.94 2.27

Infectious 621 Unbiased 0.77 0.20 0.95 2.45

Infectious 621 Shrinkage 0.61 −0.08 0.94 2.05

Infectious 621 Shrinkage local 0.62 −0.05 0.95 2.11

Neonatal 550 Unbiased 0.77 0.23 0.95 2.55

Neonatal 550 Shrinkage 0.57 −0.05 0.95 2.09

Neonatal 550 Shrinkage local 0.58 −0.03 0.95 2.12

Public Health 524 Unbiased 0.54 0.13 0.95 1.55

Public Health 524 Shrinkage 0.41 −0.05 0.93 1.30

Public Health 524 Shrinkage local 0.45 0.02 0.95 1.40

Hepato 517 Unbiased 0.98 0.41 0.95 3.45

Hepato 517 Shrinkage 0.69 0.05 0.96 2.78

Hepato 517 Shrinkage local 0.63 −0.11 0.93 2.37

Spine 512 Unbiased 0.40 0.09 0.95 1.27

Spine 512 Shrinkage 0.31 −0.06 0.94 1.06

Spine 512 Shrinkage local 0.32 −0.04 0.94 1.10

Genetics 423 Unbiased 0.46 0.11 0.95 1.38

Genetics 423 Shrinkage 0.35 −0.06 0.93 1.16

Genetics 423 Shrinkage local 0.35 −0.05 0.93 1.15

Wounds 360 Unbiased 0.79 0.19 0.95 2.55

Wounds 360 Shrinkage 0.60 −0.10 0.94 2.10

Wounds 360 Shrinkage local 0.62 −0.04 0.95 2.20

Abbreviations: ET, emergency and trauma; Gastro, gastroenterology; Genetics, genetics and endocrinology; Gynecology, gynecology and urology; Heart, heart
and hypertension; Hepato, hepato-biliary; Infectious, infectious diseases; kidney, kidney and transplant; Oral and ENT, oral health, Eyes and ENT; Pain,
anesthesia and pain; Pregnancy, pregnancy and childbirth; Psych, Psychiatry and Mental Health; Pub Health, public health and work; Spine, spine and
muscles; Wounds, skin and wounds.

 10970258, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9992 by C
ochrane N

etherlands, W
iley O

nline L
ibrary on [29/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


	Evaluating a shrinkage estimator for the treatment effect in clinical trials 
	1 INTRODUCTION
	2 DEFINING THE SHRINKAGE ESTIMATOR
	3 EVALUATION OF THE PERFORMANCE OF THE CONVENTIONAL AND SHRINKAGE ESTIMATORS
	3.1 Setup
	3.2 Comparison based on synthetic data
	3.3 Comparison based on cross-validation
	3.4 A visual explanation

	4 STRATIFICATION BY MEDICAL FIELD
	5 DISCUSSION

	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES
	Supporting Information
	APPENDIX A. COMPUTING THE SHRINKAGE ESTIMATOR
	APPENDIX B. EQUATION (13)
	APPENDIX C. STRATIFICATION BY MEDICAL FIELD

