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Abstract: This paper studies how the collaboration network structure of an 

innovation site (i.e., firm-location) affects the adoption and future use of its 

innovations. We investigate the effects of tie strength and network cohesion and more 

importantly the moderating effect of innovation radicalness. Prior studies have 

highlighted the advantages of strong ties and network cohesion for idea transfer and 

diffusion, due to their associated higher level of trust, fine-grained information 

exchange, and reciprocity norms. However, we argue that these effects are likely to 

be contingent on the radical nature of the innovation. More specifically, these effects 

might only hold for incremental innovation that consolidates existing technologies 

and aligned with reciprocity norms. These effects turn into negative when the 

innovation is radical and disrupts existing technologies, because the kind of impact 

that radical innovation brings to network partners is not aligned with reciprocity 

norms and therefore sanctioned by the network. In addition, the lack of information 

diversity also hinders the identification of new applications for radical innovations. 

Our empirical analysis is based on a unique panel dataset of 93 most innovative U.S. 

pharmaceuticals and biotechnology companies from 2001 to 2013, with a total 

number of 19,343 site-time observations. Our findings support our hypotheses and 

contribute to the literatures of social networks, creativity, and innovation. More 

specifically, the findings highlight that different types of innovations require 

different network conditions for diffusion, the reciprocity norms are not always 

beneficial but can become a burden, and non-redundant information is not only 

beneficial for generating novel ideas but also for identifying new applications for 

radical innovation. The findings also inform innovation management especially at 

geographically dispersed sites. 

 

Keywords: Collaboration networks, Tie strength, Network cohesion, Radical 

innovation, Creativity 

 

  



35 

 

3.1 Introduction 

Firms increasingly deploy their technological innovation activities in geographically 

dispersed sites, and the competitiveness of the firm relies on its ability to coordinate 

its R&D activities across the globe (Alcácer & Zhao, 2012; Almeida & Phene, 2004; 

Belderbos et al., 2021; Du et al., 2022; Kuemmerle, 1997). The structure of one site’s 

collaboration network not only shapes the nature of ideas that it generates but also 

influences how the initial ideas is being adopted by future users (Fleming et al., 2007; 

Lee et al., 2015; Wang, 2016). Furthermore, some studies have explored that network 

effect on innovation might be contingent on the type of innovation (Ozer & Zhang, 

2019; Vanhaverbeke et al., 2012). However, the contingency effects of innovation 

types are largely understudied and insufficiently understood. In this paper, we 

explore the moderating effect of innovation radicalness, considering the fundamental 

differences between radical and incrementation innovations. In other words, we 

study how the structure of the collaboration network for producing the idea affects 

diffusion of incremental and radical innovations differently. 

 

There are long-standing debates in the social network literature regarding which 

types of networks are more advantageous for creativity and innovation, in particular 

debates between strong and weak ties, and between network cohesion and structural 

holes (Burt, 1992; Coleman, 1988; Granovetter, 1982; Uzzi, 1996, 1997). Competing 

theories are developed and empirical evidence is also mixed. One fruitful direction 

to reconcile these competing theories and mixed empirical evidence is to examine 

different stages of the creative process, and the common wisdom is that information 

diversity provided by weak ties and structural holes are particularly beneficial for 

generating novel ideas, while reciprocity norms, trust, and fine-grained information 

exchange offered by strong ties and network cohesion are advantageous for idea 

implementation, transfer, and adoption (Burt, 2004; Fleming et al., 2007; Perry-

Smith & Mannucci; Reagans & McEvily, 2003; Tortoriello & Krackhardt, 2010). 

 

Building on this line of literature, we zoom in on how collaboration network for idea 

production affects the diffusion of the produced idea and explores how these effects 

are contingent on the radical nature of the innovation. In turn, we make two 

theoretical contributions. First, we explore the two-sided effect of reciprocity norms, 

which are usually considered as beneficial in the literature. Reciprocity norms 

promote cooperation but at the same time sanction behavior that is not aligned with 
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cooperation, and such “non-reciprocal” behavior might be more desirable for some 

agents in some contexts, for example, not providing information for an information 

provider (Gargiulo et al., 2009), and adapting their networks for a manager in a 

changing environment (Gargiulo & Benassi, 2000). We argue that incremental 

innovations consolidate existing technology and is aligned with reciprocity norms, 

and its diffusion is facilitated by strong ties and network cohesion. On the other hand, 

radical innovations bring a disruptive impact and are not aligned with reciprocity 

norms, and its diffusion is penalized by strong ties and network cohesion. Second, 

we question that non-redundant information is only relevant for idea generation but 

not so essential for idea diffusion. We argue that information diversity is beneficial 

for identifying new applications for an innovation in domains that are distant from 

the domain where the innovation originated. Accordingly, weak ties and structural 

holes that provide non-redundant information is beneficial for the adoption of radical 

innovations which usually have a broader use in foreign domains. 

 

To test our hypotheses, we construct a panel dataset consisting of 16,011 unique sites 

(i.e., firm-locations) belonging to the 93 most innovative U.S. pharmaceutical and 

biotechnology companies according to the EU Industrial R&D Investment 

Scoreboard. We find that tie strength and network cohesion is positively associated 

with innovation success (based on the social definition of success in terms of being 

adopted by future users and measured by patent citations) when innovation is 

relatively incremental, but there is a negative association when innovation is 

relatively radical, supporting our hypotheses. 

 

The remainder of this paper is organized as follows. In section 2, we develop the 

theories that drive our arguments on the relationship between network structure and 

innovation success, and how this relationship is contingent on innovation radicalness. 

In section 3, we document our method and data. In section 4, we present and interpret 

data analysis results, in particular test our stated hypotheses. In section 5, we 

conclude with discussion of our findings and the contributions to current social 

network and innovation research. 

 

3.2 Theory and hypotheses 

Innovation starts from creative ideas, but not all creative ideas will turn into 
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successful innovation that is being adopted and used by others, and it takes multiple 

steps to develop a creative idea into a successful innovation (Anderson et al., 2014; 

Baer, 2012; Bharadwaj & Menon, 2000; Fleming et al., 2007; Lavie & Drori, 2012; 

Obstfeld, 2005; West, 2002). The prior literature has categorized various steps in the 

creative process (Csikszentmihalyi, 1997; Perry-Smith & Mannucci, 2017). One 

important separation is between an initial production stage where a creative idea is 

being generated and a latter diffusion stage where a creative idea is being adopted 

and used by others (Fleming et al., 2007; Lee et al., 2015; Wang, 2016). These studies 

have highlighted that the social structure for producing the idea not only shapes the 

inherent characteristics of the initial creative idea but also influences the diffusion of 

the initial creative idea beyond the social structure in which it was produced. More 

importantly, the same social structure that is conducive for producing a creative idea 

might hamper its diffusion. Therefore, exploring differential effects of network 

structure on idea production and diffusion provides valuable insights into the 

complex network effects. 

 

Building on this line of literature, in this paper we zoom in on how social structure 

for producing a creative idea influences its diffusion and make a novel contribution 

by exploring how this effect is contingent on the radical nature of the creative idea. 

More specifically, for an incremental idea that consolidates existing technology 

trajectories, collaboration networks with strong tie strength and network cohesion 

provide trust, fine-grained information exchange, and cooperation norms, which in 

turn facilitates its acceptance and use by future users. However, such network may 

hamper the diffusion of a radical idea that disrupts existing technology trajectories, 

because of the burden of reciprocity norms and the lack of nonredundant information. 

 

3.2.1 How tie strength affects innovation success, and how this is contingent on 

innovation radicalness 

According to Granovetter’s (1973) landmark paper, tie strength is defined as: “a 

(probably linear) combination of the amount of time, the emotional intensity, the 

intimacy (mutual confiding), and the reciprocal services which characterize the tie”. 

Building on Granovetter’s weak tie theory, studies on social networks have yielded 

a wealth of insight into how tie strength influences a variety of outcomes, such as 

job-related rewards (Barbulescu, 2015; Bian, 1997; Garg & Telang, 2018; Gee et al., 
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2017; Granovetter, 1995; Rajkumar et al., 2022), the generation of creative ideas 

(Perry-Smith, 2006; Perry-Smith & Shalley, 2014; Sosa, 2011) and innovation 

(Capaldo, 2007; Fredberg & Piller, 2011; Michelfelder & Kratzer, 2013; Rost, 2011), 

and effective knowledge transfer (Hansen, 1999; Levin & Cross, 2004; Reagans & 

McEvily, 2003; Su et al., 2020). In this study, we develop a theoretical understanding 

for how tie strength affects idea diffusion, that is, turning creative ideas into 

successful innovation that is being used by future users. More specifically, strong 

ties are beneficial due to their higher level of trust, willingness to help, and shared 

understanding. 

 

Previous literature has shown that strong ties facilitate the formation of trust 

(Krackhardt et al., 2003; Larson, 1992). Trust is a critical factor influencing the 

opportunity of knowledge transfer between actors. As trust develops over time, the 

willingness of knowledge exchange increases (Doz, 1996; Morrison, 2002; Reagans 

& McEvily, 2003) and the concerns over opportunistic behavior reduced (Jarillo, 

1988; Kachra & White, 2008; Levin & Cross, 2004). Via trust, strong interpersonal 

attachments decrease chances about creative ideas being ignored or rejected 

(McEvily et al., 2003; Tortoriello et al., 2012), which may increase chances of 

creative ideas being used. Second, strong ties are more likely to develop reciprocity 

norms that generate social pressure to provide needed support (Coleman, 1988; 

Granovetter, 1982). In other words, “strong ties have greater motivation to be of 

assistance and are typically more easily available [than weak ties]”(Granovetter, 

1982). The above argument about willingness suggests that the more emotional 

attachment involved between focal actors and their contacts, the contacts are more 

likely to spend time and effort to make creative ideas work and be useful. Third, 

shared vision and understanding play an important role in the process of ideas 

implementation (Perry-Smith & Mannucci, 2017). During this phase, a shared 

understanding can reduce the potential resistance. If knowledge receivers cannot 

fully understand the idea and recognize its value, they may discard it as nonsensical. 

Prior literature has indicated that common understanding facilitates the process by 

which ideas are properly interpreted and accepted (Carlile, 2004; Carlile & 

Rebentisch, 2003). Compared with weak ties, strong ties with a higher level of shared 

understanding facilitates the further co-development of the creative idea and 

adoption. 

 

However, we expected that these abovementioned advantages of strong tie for idea 
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diffusion are contingent on the type of impact that the creative idea will bring to the 

network partners. More specifically, we expect that these advantages will weaken or 

even turn into obstacles when the creative idea is more radical as opposite to 

incremental. Studies of technological innovation has long highlighted the difference 

between radical and incremental innovation. For example, Henderson and Clark 

(1990) defined radical innovation as innovation that disrupts both existing 

components and architecture. Anderson and Tushman (1990) distinguished between 

competence-enhancing and competence-destroying technological discontinuities. 

Henderson (1993) viewed radical innovation as innovation that obsoletes a 

company’s existing information filters and organizational procedures. More recently, 

Funk and Owen-Smith (2017) and Chen et al. (2021) viewed radical innovations as 

those that destabilize existing technology trajectories or reshape the network of 

technology interlinkages. The core distinction emphasized in the literature between 

radical and incremental innovations pertains to their potential impact for the existing 

technology and work, while incremental innovations bring an additive, enhancing, 

or consolidating impact, radical innovation brings a disruptive, destroying, or 

destabilizing impact. Since trust, willingness to help, and shared understanding 

embodied in strong ties promote reciprocity and sanction destructive behavior, the 

kind of impact that incremental innovation brings is the kind that is being promoted 

by strong ties, while the kind of impact that radical innovation brings is the kind that 

is being sanctioned. Gargiulo et al. (2009) found that strong cooperation norms of a 

network are a blessing for information recipients but a burden to information 

providers. Gargiulo and Benassi (2000) observed that social networks that provide 

safety of cooperation at the same time constraint manager from adapting to the 

change. These findings provide insights into the complexity of network effects, in 

particular, norms of cooperation and reciprocity penalize behavior that is not aligned 

with them, even though such behavior might desirable for some agents in some 

contexts, such as not providing information for the information provider and 

adapting the network for a manager in a changing environment. Hence, we argue that 

reciprocity norms of a strong tie network may facilitate the diffusion of incremental 

innovation which is aligned with reciprocity norms but at the same time may hinder 

the diffusion of radical innovation that is not aligned with reciprocity norms. 

 

Furthermore, a key advantage of weak ties pertains to accessing non-redundant 

information (Granovetter, 1982; Granovetter, 1973; Uzzi, 1996; Uzzi & Spiro, 2005). 

Similar actors tend to be interconnected with one another by strong ties, and 
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therefore an actor is likely to acquire similar information from others through strong 

ties (Festinger et al., 1950; Granovetter, 1973; Katz & Lazarsfeld, 2017). Access to 

diverse information fosters creativity (Page, 2007; Simonton, 1999, 2003). Prior 

studies have also shown that the benefits of weak ties for generating novel ideas 

(Baer, 2010; Perry-Smith, 2006; Perry-Smith & Shalley, 2003; Perry-Smith & 

Shalley, 2014; Zhou et al., 2009). Prior literature has mainly investigated the 

advantage of weak tie for idea production, but we extend the literature by arguing 

that non-redundant information is especially important for the adoption of radical 

innovations, as non-redundant information facilitates the identification of new 

connections (Mednick, 1962; Nelson & Winter, 1982; Schumpeter, 1939), which is 

not only useful for generating novel ideas that makes new connection between pre-

existing components, but also for identifying new applications of a radical 

innovation in technological domains far away from the domain which the innovation 

originated. 

 

Taken together, we expect that weak ties are beneficial for the adoption of 

incremental innovation due to their higher level of trust, willingness to help, and 

shared understanding. However, such positive effect of weak ties weakens or event 

turn into negative effects when the focal innovation is radical, due to the burden of 

reciprocity norms and the lack of nonredundant information. In other words, we 

hypothesize that,  

 

Hypothesis 1. When innovation radicalness is low, an innovation is more likely to 

be successful if its innovator’s collaboration network has stronger tie strength. 

When innovation radicalness is high, an innovation is less likely to be successful 

if its innovator’s collaboration network has stronger tie strength. 

 

3.2.2 How network cohesion affects innovation success, and how this is 

contingent on innovation radicalness 

Coleman (1988) championed the theory that, compared with a sparse network (where 

an individual’s contacts are not connected among themselves), a cohesive network 

(where an individual’s contacts are also interconnected among themselves) brings a 

higher level social capital through obligations and expectations, information 

channels, and social norms. However,  Burt (1992) developed a competing 
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structural hole theory which highlights the benefits of a sparse network due to 

information access and brokerage control advantages. While structural holes might 

be more valuable for generating creative ideas or career success in a competitive 

setting, network cohesion is particularly relevant for idea implementation, 

knowledge transfer, and coordinated actions (Fleming et al., 2007; McEvily et al., 

2003; Obstfeld, 2005; Tortoriello et al., 2012). For example, Uzzi and Spiro (2005) 

found a positive association between network closure and successful musical 

production. Obstfeld (2005) found that the tertius iungens orientation (i.e., 

orientation towards connecting previously unconnected network members) 

facilitates involvement in innovation. Ozer and Zhang (2022) found that the tertius 

iungens orientation leads to high-quality interpersonal relations and in turn a high 

level of creative performance. Building on this line of literature, we argue that 

network cohesion is beneficial for turning a creative idea into a successful innovation, 

due to its easier information exchange and higher inclination towards cooperation. 

 

First, a cohesive structure facilitates information exchange within the network, 

which is essential for partners to comprehend a creative idea, use it, and co-develop 

it into a successful innovation. In a cohesive network, actors are well-interconnected 

and have a higher chance to expose to the same information (Coleman, 1988; 

Fleming et al., 2007; Hansen, 1999; McEvily et al., 2003), and consequently, actors 

share a higher level of common understanding and face a lower cognitive barrier to 

comprehend a creative idea from their partners. Furthermore, once a creative idea is 

developed, it is easy to be deiminated within a cohesive network due to dense 

information exchange channels. In contrast, information is likely to be disseminated 

unevenly in a network with many structural holes. While brokers have the advantage 

in accessing diverse information and control the information flow which is beneficial 

for generating creative ideas (Burt, 1992; Burt, 2004; Fleming et al., 2007), they may 

face obstacles in helping their partners to understand and adopt their creative idea 

due to the lack of shared understanding (Sorenson & Fleming, 2004). Second, 

network cohesion encourages cooperation, which provides a supportive environment 

for further developing a creative idea into a successful innovation. From a 

promotional perspective, network cohesion creates a social norm towards trust, 

reciprocity, mutual ownership, and collective problem-solving (Coleman, 1988; 

Fleming et al., 2007), all of which are conducive for innovation under uncertainty. 

From a preventive perspective, network cohesion makes it easier to identify and 

sanction undesirable behavior and imposes stronger obligation for cooperation 
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(Coleman, 1988). Inclination towards cooperation improves the quality of 

interpersonal relations and in turn innovation success (Ozer & Zhang, 2022). 

 

However, we also expect that these advantages depend on the radical nature of the 

innovation: they are particularly relevant for incremental innovations but turns into 

obstacles for radical innovations. In the same vein as discussed in the previous 

section, network cohesion provides strong reciprocity norms, which promote the 

adoption of incremental innovation which has an impact on network partners that is 

aligned with reciprocity norms but at the same sanctioned radical innovation which 

has an impact that is not aligned with reciprocity norms. In addition, a cohesive 

network also lacks non-redundant information (Burt, 1992; Burt, 2004), which in 

turn impedes identifying new applications of the radical innovation. Taken together, 

we hypothesize that: 

 

Hypothesis 2. When innovation radicalness is low, an innovation is more likely to 

be successful if its innovator’s collaboration network is more cohesive. When 

innovation radicalness is high, an innovation is less likely to be successful if its 

innovator’s collaboration network more cohesive. 

 

3.3 Method 

3.3.1 Data and sample 

To test our hypotheses, we constructed a unique panel dataset with information about 

firm R&D locations, their collaboration networks, and innovation outputs. We 

combined information from various sources. Our sampled firms are identified from 

the 2018 edition of the EU Industrial R&D Investment Scoreboard, which provides 

a list of companies with the largest R&D spending in the world. We restricted our 

analysis to firms from the U.S. pharmaceutical and biotechnology industry on this 

list for three reasons. First, innovation plays an essential role in the pharmaceutical 

and biotechnology industry since this industry is knowledge-intensive, which 

provides us an appropriate setting for this research. Previous research has shown that 

this industry is suitable and has already been used in many fields to study innovative 

activities (Dong & Yang, 2016; Hoang & Rothaermel, 2005; Tzabbar & Vestal, 2015). 

Second, one of the critical competitive strategies of pharmaceutical and 
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biotechnology companies is to forge connections across networks that span different 

social and geographic spheres (Al-Laham et al., 2011) in order to access diverse 

knowledge and resources. This feature provides us a higher chance to observe 

collaborations in this industry. In particular, corporate R&D networks that span 

different geographic locations enable multinational corporations to integrate local 

knowledge with complementary resources residing elsewhere in the world (Alcácer 

& Zhao, 2012), which means it provides us a good opportunity to study 

geographically dispersed corporate R&D networks. Third, focusing on a specific 

industry can control for variances across different industry fields (Audia & Goncalo, 

2007; Tzabbar & Vestal, 2015). Using a more homogeneous sample ensures that 

innovation outputs can be compared. 200 U.S. pharmaceutical and biotechnology 

firms from the Scoreboard have been included in the sample. 

 

For measuring innovation success, innovation radicalness, as well as for 

characterizing collaboration networks, we rely on patent information. However, 

retrieving patents for each company is not a trivial task. There are diverse practices 

in firm patenting policies. For example, some companies always use the headquarters 

as the applicants (also known as assignees) even though the invention was developed 

in a subsidiary, while others use the subsidiary as the applicant. Furthermore, the 

name of a company’s subsidiary may not display any connection with the name of 

the whole company. Therefore, identifying all the names of subsidiaries is critical 

for retrieving all patents of a company and ensuring measurement quality. For our 

200 sampled companies, we manually retrieved names of all subsidiaries listed in 

Exhibit 21 of the annual report on Form 10-K filed by these firms from 2009 to 2018 

with the U.S. Securities and Exchange Commission (SEC). According to the 

Regulation S-K of the SEC, companies are required to report all of their subsidiaries, 

unless the unnamed subsidiaries are viewed as a single subsidiary and do not make 

up a significant subsidiary as of the end of the year covered by the report. Since our 

study focuses on R&D collaboration networks across a firm’s locations, we excluded 

107 firms without subsidiaries. After merging the data, our sample contains 16,011 

unique subsidiaries belonging to 93 firms. 

 

To extract the patents of the firms in our sample from the patent database (PATSTAT), 

we tried to match the names of the companies presented in the SEC database with 

the names of patent applicants appearing in the PATSTAT database. The 2019 

Autumn version of PATSTAT was used. Name searching and cleaning strategies are 
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applied to standardize the names. To do so, we identified strings that start with 

harmonized names of a company’s subsidiary, strings containing the harmonized 

name of a subsidiary, and strings containing characteristics substrings that could 

identify a company’s subsidiary. All found strings were manually checked against 

the original applicant’s name and the three harmonized name versions 

(‘doc_std_name’, ‘psn_name’ and ‘han_name’) that are available in the PATSTAT 

database. In the next step we compared the names we found with the harmonized 

subsidiary names. The comparison was done using a 3-gram algorithm, that uses 

sliding windows of three-character strings. The algorithm provides an indicator that 

shows the similarity between the subsidiary or company name and an applicant’s 

name. Only strings with a matching percentage of over 70% were considered to be 

potential matches. As a final step the results of the matching process were manually 

checked, and only a few match errors were found. We were looking for granted 

patents held by the firms in our sample, for which the patent applications were filed 

between 2001 to 2013 at United States Patent and Trademark Office (USPTO), the 

European Patent Office (EPO), or the World Intellectual Property Organization 

(WIPO). 

 

We then aggregated patents at the location level, and inventor addresses were used 

to conjecture the locations of companies’ innovative activities. Considering that 

subsidiaries often use the headquarters’ address as the applicant address instead of 

the subsidiary’s address when applying for a patent, inventor addresses are more 

likely to represent the real geographic origin of the patented inventions than 

applicant addresses (Belderbos et al., 2017; Deyle & Grupp, 2005). Addresses in the 

patent database are messy, and we linked patent data to the geocoding of worldwide 

patent data developed by De Rassenfosse et al. (2019). De Rassenfosse et al. (2019) 

combined multiple data sources for identifying geographic coordinates for inventor 

and applicant locations and also provided clean information about corresponding 

countries, regions and cities. This dataset covers all PATSTAT patents in our studied 

time period. We used the fine-grained city level information for R&D locations of a 

firm’s R&D network. For example, these cities include London (UK) and Berlin 

(Germany). The city level in the United States corresponds to counties, for example, 

Middlesex in Massachusetts and Santa Clara in California. 

 

Furthermore, the same technological invention often is patented at multiple offices, 

therefore we used the definition of patent families according to the DOCDB 
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definition (Martínez, 2011), instead of single patents, following the field convention. 

Building on the data of patent families, we constructed our final dataset for analysis 

at the location-time level. For each location, we constructed our variables using 

patent families in a 3-year moving time window. In other words, the location i at 

time point t, the variables were constructed using patent families with the earliest 

filing date in the three years from year t-2 to year t. Our final dataset consists of 

16,011 unique locations belonging to 93 companies, with a total number of 19,343 

location-time observations. 

 

3.3.2 Variables 

Dependent variables 

Innovation success. We used the average number of patent family citations that a 

focal location received in a 5-year window to measure innovation success, following 

the social definition of success in terms of acceptance and adoption by future users 

(Amabile, 1983; Fleming et al., 2007). Although patent citation is not a perfect 

measure of innovation success, citation-based indicators have been found to be 

positively correlated with other measures of patent value or usefulness and have been 

widely used in innovation research (Fleming, 2001; Harhoff et al., 2003; Kelly et al., 

2021; Poege et al., 2019). Therefore, we followed the previous literature and used 

citation counts as a measure of innovation success. Considering that patents granted 

earlier have a longer time period to accumulate citations, we adopt a fixed five-year 

citation time window for counting citations. Prior literature has shown that a five-

year window is adequate for a focal patent to gain significant coverage of forward 

citations (Hall et al., 2001) and has been widely employed in constructing citation-

based measures (Hain et al., 2020; Poege et al., 2019). 

 

Independent variables 

Tie strength. Tie strength was operationalized as the frequency of collaboration based 

on a three-year window, including the current and preceding two years. Specifically, 

we first measured the strength of a tie between a focal location and its collaborating 

locations separately as the number of co-inventing patent families between them 

from year t-2 to t. Second, we calculated tie strength at the egocentric network level 

as the average number of co-inventing patent families. 
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Network cohesion. We adopted the network density measure. More specifically, 

divide the number of existing collaboration ties between a location’s collaborators 

by the number of possible ties between these collaborators, in the period from year 

t-2 to t. Collaboration tie in this context means that there are co-inventing patent 

families between two locations. 

 

Innovation radicalness. To measure the radicalness of a patent family, we adopt the 

consolidation-or-destabilization (CD) index developed by Funk and Owen-Smith 

(2017). The CD index captures the degree to which the focal patent destabilizes 

existing technology trajectories by examining whether patents citing a focal patent 

also cite prior patent cited by the focal patent (i.e., its references). If patents citing 

the focal patent do not cite its references, then the focal patent is considered to 

reshape the network of technology interlinkages by shifting future inventors’ 

attention away from the knowledge on which the focal patent builds, thus 

destabilizing existing technology trajectories. The CD index has been applied to 

study innovation as well as science (Park et al., 2023; Wu et al., 2019). Balachandran 

and Hernandez (2018) also adopted the CD index for measuring radicalness of 

innovation at the firm level. We adopt the same approach. 

 

Innovation radicalness is calculated as follows for a focal patent: 

 

Radicalness =
1

𝑛
∑𝑓𝑖

𝑛

𝑖=1

 

 

Where i is the index of the future patent families that cite the focal patent family or 

its references, n is the total number of such future patent families. fi equals 1 if the 

future patent family i only cites the focal patent family but not any references of the 

focal patent family, fi equals -1 if the future patent family i cites not only the focal 

patent family but also at least one of its references, and fi equals 0 if the future patent 

family i only cites the focal patent family’ references but not the focal patent family. 

Hence, radicalness indicates the extent to which the focal patent family obsoletes 

prior arts that it builds on in a dynamic network. The range of radicalness index is 

from -1 to 1. For calculating radicalness, we adopt a fixed 5-year citation time 

window, that is, future citing patent families which have an earliest filing date within 

5 years after the focal patent family are considered. This allows patent families filed 
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in different years to have the same number of years for accumulating citations. 

Results are robust when we consider all future patents without the fixed time window. 

 

At the location level, we calculate the average radicalness in a 3-year moving time 

window to characterize the inclination towards radical innovation for the location in 

this time period. 

 

Control variables 

Our analyses control for possible confounding variables that may lead to spurious 

correlations between our focal independent and dependent variables. We use fixed 

effects models incorporating firm-location fixed effects, so that we can account for 

unobservable time-invariant location heterogeneity and test for variations within 

firm-location. Innovation productivity, measured as the number of patent families, is 

included, considering that a more productive location might also have a higher 

chance of forming certain types of networks and at the same having a higher chance 

of producing radical innovation (Fleming et al., 2007). To examine the effect of 

network properties net of network size, we control for network size, which is the 

number of co-inventing locations. Controlling for the number of co-inventing 

locations can help to exclude the possible alternative explanation that it was the 

network size that predicted variation in network properties and innovation success. 

To account for the general inclination towards collaborating, we also included the 

share of a location’s patent families that are co-invented with other locations 

(collaboration inclination). For innovation productivity, network size, and 

collaboration inclination, we used the same 3-year moving time window for 

constructing these variables. Time (i.e., one time period is three years) dummies are 

also included to control for general time differences applying to all sampled firm-

locations. 

3.4 Result 

3.4.1 Descriptive statistics 

Descriptive statistics and Spearman correlations are reported in Table 3.1. Our focal 

dependent variable, innovation success, that is the average number of family 

citations, has a mean of 14.79, standard deviation of 17.13, and a range from 0 to 

200. We take the natural logarithmic transformation for innovation success, as well 
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as all other count variables (i.e., innovation productivity and network size) in the 

regression analysis to accommodate the skewed nature of these variables. Innovation 

radicalness has a mean of -0.01, standard deviation of 0.06, and ranges from -0.47 

to 0.90. The slightly right-skewed distribution indicates that in general consolidating, 

incremental innovations are more common than radical innovations, as expected. 

The distribution of tie strength is highly right-skewed with a mean of 1.86 and 

standard deviation of 2.16, and ranging from 1 to 69.60. Network cohesion has mean 

0.20 and ranges from 0 to 1. This suggest that most locations operate in relatively 

sparse networks that are rich in structural holes. Moreover, there is considerable 

heterogeneity among locations. On average, the number of patent families (i.e., 

innovation productivity) is 6.72, the number of co-inventing locations (i.e., network 

size) is 7.91, and 97% patents involves collaboration with other locations (i.e., 

collaboration inclination), indicating that sole-production of innovation is rare. 

Correlations show that both tie strength (r = 0.19) and network cohesion (r = 0.13) 

are positively correlated with innovation success. It is important to interpret these 

correlations with caution as they do not account for any confounding variables. The 

correlation between innovation radicalness and tie strength is small (r = -0.04), as 

well as between innovation radicalness and network cohesion (r = 0.02). The 

correlations between our focal independent variables and control variables 

(especially innovation productivity) are fairly high: innovation productivity has a 

correlation of 0.86 with tie strength and 0.79 with network cohesion. While for the 

reasons discussed in the section on control variables, we report results with 

controlling these potential confounders in this paper and test the robustness of our 

results by dropping out control variables.  
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3.4.2 Regression results 

Table 3.2 presents the results of the fixed effect linear regression models testing our 

hypotheses. For all regression models, we incorporate firm-location fixed effect to 

examine the relationship between network structure and innovation success within 

the same firm-location. Column 1 in Table 3.2 reports the results of a baseline model 

only with control variables. The effect of the number of patent family is not 

significant, suggesting no significant correlation between innovation productivity 

and success. On the other hand, network size (i.e., the number of co-inventing 

locations) and collaboration inclination (i.e., the share of co-inventing patent 

families) are positively correlated with innovation success, which suggests that firm-

locations that have a larger collaboration network and more inclined towards 

collaborating with others are more likely to produce innovation that is successful in 

terms of patent citations.  
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Column 2 adds tie strength and network cohesion into the model. While there is a 

significantly positively effect of tie strength (b = 0.244, p < 0.01), the effect of 

network cohesion is insignificant (b = 0.028, p > 0.10). Column 3 further adds 

innovation radicalness as an independent variable and finds a significantly negative 

effect of innovation radicalness (b = -2.060, p < 0.01). 

 

To test our hypotheses about the moderating effect of innovation radicalness, 

Column 4 and 5 interact innovation radicalness with tie strength and network 

cohesion, respectively. Note that the coefficient on tie strength in Column 4 (b = 

0.198, p < 0.01) estimates the marginal effect of tie strength on innovation success 

when innovation radicalness equals to 0 (the middle point theoretically). More 

importantly, we observe a significantly negative interaction effect between 

innovation radicalness and tie strength (b = -2.289, p < 0.01). This suggest that when 

radicalness is low (closer to -1), the effect of tie strength becomes insignificant or 

might even turn into positive, while when radicalness is high (closer to 1), the effect 

of tie strength turns into negative. In column 5, we observe an insignificant effect of 

network cohesion on innovation success when innovation radicalness is 0 (b = 0.035, 

p > 0.10). We also observe a significantly negative interaction effect between 

innovation radicalness and network cohesion (b = -1.766, p < 0.01), indicating a 

positive effect of network cohesion when radicalness is low but a negative effect of 

network cohesion when radicalness is high. 

 

To better illustrate the moderating effect of innovation radicalness, as well as 

examining the significance of tie strength and network cohesion effects at various 

levels of innovation radicalness (for example, to test whether tie strength has a 

positive effect or just an insignificant effect when radicalness is low), Figure 3.1 

plots the marginal effects (i.e., regression coefficients) of tie strength and network 

cohesion at varying degrees of innovation radicalness. The figure confirms that when 

innovation radicalness is low, both tie strength and network cohesion have a positive 

effect on innovation success, while when radicalness is high, both have a negative 

effect, supporting our Hypotheses. 
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Figure 3.1: Tie strength, network cohesion, and innovation success. Points represent the 

regression coefficients, and vertical bars represent 90% confidence interval. 

 

3.4.3 Additional analysis: Separating adoption by network partners and 

outsiders 

In this paper, we study how the structure of the collaboration network (i.e., tie 

strength and network cohesion) for producing a creative idea affects the diffusion of 

the produced idea. One important question is, whether these effects are restricted to 

network partners or go beyond them. To answer this question, we examine patent 

citations received from network partners’ future patents and patent citations received 

from others outside the egocentric network of the focal firm-location. Regression 

results are reported in Table 3.3 and marginal effects of tie strength and network 

cohesion at different levels of innovation radicalness are plotted in Figure 3.2. At 

low levels of radicalness, marginal effects (i.e., regression coefficients) of tie 

strength and network cohesion on citations from network partners are comparable to 

their marginal effects on citations from outsiders. When radicalness is high, the 

marginal effects are larger for citations from network partners than their marginal 

effects on citations from outsiders. This is understandable as network structures we 

are investigating concerns the egocentric network but not beyond, and much of our 

theoretical discussion is within the egocentric network. However, the findings that 

there are similar effects beyond the egocentric network is an important finding, 
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which confirms prior studies’ assumption that the influence of production network 

on knowledge diffusion goes beyond the production network itself (Fleming et al., 

2007; Lee et al., 2015; Wang, 2016). One possible explanation is that network effects 

shape the collective behavior of the egocentric network regarding how they further 

develop the initial creative idea and follow-on innovation, and such behavior affects 

the social process where the initial creative idea evolves and connects with future 

innovation, and in turn gain acceptance by outsiders. 
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Figure 3.2: Separating adoption by network partners and outsiders. Points represent the 

regression coefficients, and vertical bars represent 90% confidence interval. 

 

3.4.4 Robustness tests 

We test the sensitivity of our results with respect to control variables. We drop control 

variables one by one as well as drop them all together. Correlation analysis shows 

that our control variables has relatively high correlations with focal independent 

variables, which indicates there is potential risk of multilinearity. For a robustness 

test, we drop control variables to check whether our results are sensitive to these 

controls. Results are robust except for network cohesion (Appendix Table B1, Figure 

B1). 

 

3.5 Discussion and conclusion 

In this paper, we investigated how tie strength and network cohesion of an innovation 

site’s collaboration network shapes the success of its innovation, adopting a social 

definition of success in terms of adoption and future use and measured by patent 

citations. More importantly, we examine how these effects are contingent on the 

radical nature of innovation. We argued that trust, fine-grained information exchange, 

and reciprocity norms associated with strong tie and network cohesion facilitate 
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innovation diffusion. However, this only holds for incremental innovation, which 

consolidates existing technologies and confirms the reciprocity norms. However, the 

opposite is true for radical innovation that disrupts existing technologies and has an 

impact on network partners that is not aligned with reciprocity norms. In addition, 

the lack of diverse information hinders the identification of new applications for the 

radical innovation. Therefore, we hypothesized that a network with strong ties and 

cohesion facilitates the diffusion of incremental innovation but hinders the diffusion 

of radical innovation. To test our hypotheses, we retrieved 93 the most innovative 

U.S. pharmaceuticals and biotechnology firms from EU Industrial R&D Investment 

Scoreboard. Using this distinctive panel dataset consisting of 19,343 site-time 

observations, we found empirical results supporting our hypotheses. 

 

There are several limitations of this study. First, although patent data avoid response 

bias and capture a more complete collaboration network than surveys and interviews, 

it is important to acknowledge that our study suffers from the unavoidable limitations 

of patent data for studying innovation, such as the file drawer problem and noise in 

the citation data. For example, For example, many unimportant inventions are failed 

to be patented, and some breakthroughs may be missed due to firms’ strategic reasons 

(Fleming, 2001). While granted patents are not a perfect archive of technological 

innovations, the data still represent a considerable share of invention outputs. Future 

research adopting a broader set of innovation outputs would be valuable to extend 

from patents to other innovative outputs. In addition, this study retrieved data from 

companies with high R&D investment in pharmaceuticals and biotechnology 

industry in the United States, which may limit the generalizability of our findings to 

other industries or other countries. Future research should collect data from broader 

industry contexts as well as a larger and more diverse sample. 

 

In spite of these limitations, our study contributes to and extends the existing 

literatures of social networks, innovation, and creativity in several ways. First, this 

paper explored how network effect depends on the radical nature of innovation. 

While there is an extensive literature about network effect on idea diffusion, less 

studied and understood is that these effects might depend on the type of the 

innovation (Ozer & Zhang, 2019; Vanhaverbeke et al., 2012). Different types of 

innovation might need different network conditions for diffusion. In particular, we 

found opposite network effects for incremental and radical innovations. 
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Second, we contribute to the long-standing debated about which kinds of networks 

are more advantageous: strong tie vs. weak tie, and network cohesion vs. structural 

hole. One promising direction to reconcile competing theories and empirical 

evidence is to separate different stages of the creative process, and the consensus 

seems to be that non-redundant information provided by weak ties and structural 

holes are necessary or beneficial for generating novel ideas, while reciprocity norms, 

trust, and fine-grained information exchange associated with strong ties and network 

cohesion facilitate idea implementation, transfer, and adoption (Burt, 2004; Fleming 

et al., 2007; Perry-Smith & Mannucci; Reagans & McEvily, 2003; Tortoriello & 

Krackhardt, 2010). However, our findings extend this literature and shed further 

insights into the complexity of network effects, by showing that reciprocity norms 

are not always beneficial but can become a burden for some agents in some contexts, 

where the desirable behavior misaligns with reciprocity norms. In particular, the 

adoption of radical innovation is hinder because of its destructive impact on existing 

technologies and the collaboration network. 

 

Third, we also highlight the complexity that there might not be clean separation in 

the network effect between the idea production and diffusion stages. More specially, 

non-redundant information is beneficial not only for generating ideas that makes new 

combinations of pre-existing components, but also for identifying new applications 

for radical innovations outsides of the field where they were generated. 

 

Our findings also have important implications for innovation management, 

especially across geographically dispersed sites. It takes several steps to turn a 

creative idea into a successful innovation, and the structure of collaboration network 

plays an important role in this process. Our findings inform what types of network 

structure are more beneficial for the adoption and future use of incremental versus 

radical innovations. When restructuring the network is not feasible, then the 

managers should pay attentions to how to bring other management interventions to 

magnify desirable underlying mechanisms and mitigate undesirable ones. 

  


