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Abstract: This paper studies how the collaboration network structure of an
innovation site (i.e., firm-location) affects the adoption and future use of its
innovations. We investigate the effects of tie strength and network cohesion and more
importantly the moderating effect of innovation radicalness. Prior studies have
highlighted the advantages of strong ties and network cohesion for idea transfer and
diffusion, due to their associated higher level of trust, fine-grained information
exchange, and reciprocity norms. However, we argue that these effects are likely to
be contingent on the radical nature of the innovation. More specifically, these effects
might only hold for incremental innovation that consolidates existing technologies
and aligned with reciprocity norms. These effects turn into negative when the
innovation is radical and disrupts existing technologies, because the kind of impact
that radical innovation brings to network partners is not aligned with reciprocity
norms and therefore sanctioned by the network. In addition, the lack of information
diversity also hinders the identification of new applications for radical innovations.
Our empirical analysis is based on a unique panel dataset of 93 most innovative U.S.
pharmaceuticals and biotechnology companies from 2001 to 2013, with a total
number of 19,343 site-time observations. Our findings support our hypotheses and
contribute to the literatures of social networks, creativity, and innovation. More
specifically, the findings highlight that different types of innovations require
different network conditions for diffusion, the reciprocity norms are not always
beneficial but can become a burden, and non-redundant information is not only
beneficial for generating novel ideas but also for identifying new applications for
radical innovation. The findings also inform innovation management especially at
geographically dispersed sites.

Keywords: Collaboration networks, Tie strength, Network cohesion, Radical

innovation, Creativity
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3.1 Introduction

Firms increasingly deploy their technological innovation activities in geographically
dispersed sites, and the competitiveness of the firm relies on its ability to coordinate
its R&D activities across the globe (Alcacer & Zhao, 2012; Almeida & Phene, 2004;
Belderbos et al., 2021; Du et al., 2022; Kuemmerle, 1997). The structure of one site’s
collaboration network not only shapes the nature of ideas that it generates but also
influences how the initial ideas is being adopted by future users (Fleming et al., 2007,
Leeetal., 2015; Wang, 2016). Furthermore, some studies have explored that network
effect on innovation might be contingent on the type of innovation (Ozer & Zhang,
2019; Vanhaverbeke et al., 2012). However, the contingency effects of innovation
types are largely understudied and insufficiently understood. In this paper, we
explore the moderating effect of innovation radicalness, considering the fundamental
differences between radical and incrementation innovations. In other words, we
study how the structure of the collaboration network for producing the idea affects
diffusion of incremental and radical innovations differently.

There are long-standing debates in the social network literature regarding which
types of networks are more advantageous for creativity and innovation, in particular
debates between strong and weak ties, and between network cohesion and structural
holes (Burt, 1992; Coleman, 1988; Granovetter, 1982; Uzzi, 1996, 1997). Competing
theories are developed and empirical evidence is also mixed. One fruitful direction
to reconcile these competing theories and mixed empirical evidence is to examine
different stages of the creative process, and the common wisdom is that information
diversity provided by weak ties and structural holes are particularly beneficial for
generating novel ideas, while reciprocity norms, trust, and fine-grained information
exchange offered by strong ties and network cohesion are advantageous for idea
implementation, transfer, and adoption (Burt, 2004; Fleming et al., 2007; Perry-
Smith & Mannucci; Reagans & McEvily, 2003; Tortoriello & Krackhardt, 2010).

Building on this line of literature, we zoom in on how collaboration network for idea
production affects the diffusion of the produced idea and explores how these effects
are contingent on the radical nature of the innovation. In turn, we make two
theoretical contributions. First, we explore the two-sided effect of reciprocity norms,
which are usually considered as beneficial in the literature. Reciprocity norms

promote cooperation but at the same time sanction behavior that is not aligned with
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cooperation, and such “non-reciprocal” behavior might be more desirable for some
agents in some contexts, for example, not providing information for an information
provider (Gargiulo et al., 2009), and adapting their networks for a manager in a
changing environment (Gargiulo & Benassi, 2000). We argue that incremental
innovations consolidate existing technology and is aligned with reciprocity norms,
and its diffusion is facilitated by strong ties and network cohesion. On the other hand,
radical innovations bring a disruptive impact and are not aligned with reciprocity
norms, and its diffusion is penalized by strong ties and network cohesion. Second,
we question that non-redundant information is only relevant for idea generation but
not so essential for idea diffusion. We argue that information diversity is beneficial
for identifying new applications for an innovation in domains that are distant from
the domain where the innovation originated. Accordingly, weak ties and structural
holes that provide non-redundant information is beneficial for the adoption of radical

innovations which usually have a broader use in foreign domains.

To test our hypotheses, we construct a panel dataset consisting of 16,011 unique sites
(i.e., firm-locations) belonging to the 93 most innovative U.S. pharmaceutical and
biotechnology companies according to the EU Industrial R&D Investment
Scoreboard. We find that tie strength and network cohesion is positively associated
with innovation success (based on the social definition of success in terms of being
adopted by future users and measured by patent citations) when innovation is
relatively incremental, but there is a negative association when innovation is

relatively radical, supporting our hypotheses.

The remainder of this paper is organized as follows. In section 2, we develop the
theories that drive our arguments on the relationship between network structure and
innovation success, and how this relationship is contingent on innovation radicalness.
In section 3, we document our method and data. In section 4, we present and interpret
data analysis results, in particular test our stated hypotheses. In section 5, we
conclude with discussion of our findings and the contributions to current social

network and innovation research.

3.2 Theory and hypotheses

Innovation starts from creative ideas, but not all creative ideas will turn into
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successful innovation that is being adopted and used by others, and it takes multiple
steps to develop a creative idea into a successful innovation (Anderson et al., 2014;
Baer, 2012; Bharadwaj & Menon, 2000; Fleming et al., 2007; Lavie & Drori, 2012;
Obstfeld, 2005; West, 2002). The prior literature has categorized various steps in the
creative process (Csikszentmihalyi, 1997; Perry-Smith & Mannucci, 2017). One
important separation is between an initial production stage where a creative idea is
being generated and a latter diffusion stage where a creative idea is being adopted
and used by others (Fleming et al., 2007; Lee et al., 2015; Wang, 2016). These studies
have highlighted that the social structure for producing the idea not only shapes the
inherent characteristics of the initial creative idea but also influences the diffusion of
the initial creative idea beyond the social structure in which it was produced. More
importantly, the same social structure that is conducive for producing a creative idea
might hamper its diffusion. Therefore, exploring differential effects of network
structure on idea production and diffusion provides valuable insights into the
complex network effects.

Building on this line of literature, in this paper we zoom in on how social structure
for producing a creative idea influences its diffusion and make a novel contribution
by exploring how this effect is contingent on the radical nature of the creative idea.
More specifically, for an incremental idea that consolidates existing technology
trajectories, collaboration networks with strong tie strength and network cohesion
provide trust, fine-grained information exchange, and cooperation norms, which in
turn facilitates its acceptance and use by future users. However, such network may
hamper the diffusion of a radical idea that disrupts existing technology trajectories,
because of the burden of reciprocity norms and the lack of nonredundant information.

3.2.1 How tie strength affects innovation success, and how this is contingent on
innovation radicalness

According to Granovetter’s (1973) landmark paper, tie strength is defined as: “a
(probably linear) combination of the amount of time, the emotional intensity, the
intimacy (mutual confiding), and the reciprocal services which characterize the tie”.
Building on Granovetter’s weak tie theory, studies on social networks have yielded
a wealth of insight into how tie strength influences a variety of outcomes, such as
job-related rewards (Barbulescu, 2015; Bian, 1997; Garg & Telang, 2018; Gee et al.,
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2017; Granovetter, 1995; Rajkumar et al., 2022), the generation of creative ideas
(Perry-Smith, 2006; Perry-Smith & Shalley, 2014; Sosa, 2011) and innovation
(Capaldo, 2007; Fredberg & Piller, 2011; Michelfelder & Kratzer, 2013; Rost, 2011),
and effective knowledge transfer (Hansen, 1999; Levin & Cross, 2004; Reagans &
McEvily, 2003; Su et al., 2020). In this study, we develop a theoretical understanding
for how tie strength affects idea diffusion, that is, turning creative ideas into
successful innovation that is being used by future users. More specifically, strong
ties are beneficial due to their higher level of trust, willingness to help, and shared

understanding.

Previous literature has shown that strong ties facilitate the formation of trust
(Krackhardt et al., 2003; Larson, 1992). Trust is a critical factor influencing the
opportunity of knowledge transfer between actors. As trust develops over time, the
willingness of knowledge exchange increases (Doz, 1996; Morrison, 2002; Reagans
& McEvily, 2003) and the concerns over opportunistic behavior reduced (Jarillo,
1988; Kachra & White, 2008; Levin & Cross, 2004). Via trust, strong interpersonal
attachments decrease chances about creative ideas being ignored or rejected
(McEvily et al., 2003; Tortoriello et al., 2012), which may increase chances of
creative ideas being used. Second, strong ties are more likely to develop reciprocity
norms that generate social pressure to provide needed support (Coleman, 1988;
Granovetter, 1982). In other words, “strong ties have greater motivation to be of
assistance and are typically more ecasily available [than weak ties]”(Granovetter,
1982). The above argument about willingness suggests that the more emotional
attachment involved between focal actors and their contacts, the contacts are more
likely to spend time and effort to make creative ideas work and be useful. Third,
shared vision and understanding play an important role in the process of ideas
implementation (Perry-Smith & Mannucci, 2017). During this phase, a shared
understanding can reduce the potential resistance. If knowledge receivers cannot
fully understand the idea and recognize its value, they may discard it as nonsensical.
Prior literature has indicated that common understanding facilitates the process by
which ideas are properly interpreted and accepted (Carlile, 2004; Carlile &
Rebentisch, 2003). Compared with weak ties, strong ties with a higher level of shared
understanding facilitates the further co-development of the creative idea and

adoption.

However, we expected that these abovementioned advantages of strong tie for idea
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diffusion are contingent on the type of impact that the creative idea will bring to the
network partners. More specifically, we expect that these advantages will weaken or
even turn into obstacles when the creative idea is more radical as opposite to
incremental. Studies of technological innovation has long highlighted the difference
between radical and incremental innovation. For example, Henderson and Clark
(1990) defined radical innovation as innovation that disrupts both existing
components and architecture. Anderson and Tushman (1990) distinguished between
competence-enhancing and competence-destroying technological discontinuities.
Henderson (1993) viewed radical innovation as innovation that obsoletes a
company’s existing information filters and organizational procedures. More recently,
Funk and Owen-Smith (2017) and Chen et al. (2021) viewed radical innovations as
those that destabilize existing technology trajectories or reshape the network of
technology interlinkages. The core distinction emphasized in the literature between
radical and incremental innovations pertains to their potential impact for the existing
technology and work, while incremental innovations bring an additive, enhancing,
or consolidating impact, radical innovation brings a disruptive, destroying, or
destabilizing impact. Since trust, willingness to help, and shared understanding
embodied in strong ties promote reciprocity and sanction destructive behavior, the
kind of impact that incremental innovation brings is the kind that is being promoted
by strong ties, while the kind of impact that radical innovation brings is the kind that
is being sanctioned. Gargiulo et al. (2009) found that strong cooperation norms of a
network are a blessing for information recipients but a burden to information
providers. Gargiulo and Benassi (2000) observed that social networks that provide
safety of cooperation at the same time constraint manager from adapting to the
change. These findings provide insights into the complexity of network effects, in
particular, norms of cooperation and reciprocity penalize behavior that is not aligned
with them, even though such behavior might desirable for some agents in some
contexts, such as not providing information for the information provider and
adapting the network for a manager in a changing environment. Hence, we argue that
reciprocity norms of a strong tie network may facilitate the diffusion of incremental
innovation which is aligned with reciprocity norms but at the same time may hinder

the diffusion of radical innovation that is not aligned with reciprocity norms.

Furthermore, a key advantage of weak ties pertains to accessing non-redundant
information (Granovetter, 1982; Granovetter, 1973; Uzzi, 1996; Uzzi & Spiro, 2005).
Similar actors tend to be interconnected with one another by strong ties, and
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therefore an actor is likely to acquire similar information from others through strong
ties (Festinger et al., 1950; Granovetter, 1973; Katz & Lazarsfeld, 2017). Access to
diverse information fosters creativity (Page, 2007; Simonton, 1999, 2003). Prior
studies have also shown that the benefits of weak ties for generating novel ideas
(Baer, 2010; Perry-Smith, 2006; Perry-Smith & Shalley, 2003; Perry-Smith &
Shalley, 2014; Zhou et al., 2009). Prior literature has mainly investigated the
advantage of weak tie for idea production, but we extend the literature by arguing
that non-redundant information is especially important for the adoption of radical
innovations, as non-redundant information facilitates the identification of new
connections (Mednick, 1962; Nelson & Winter, 1982; Schumpeter, 1939), which is
not only useful for generating novel ideas that makes new connection between pre-
existing components, but also for identifying new applications of a radical
innovation in technological domains far away from the domain which the innovation
originated.

Taken together, we expect that weak ties are beneficial for the adoption of
incremental innovation due to their higher level of trust, willingness to help, and
shared understanding. However, such positive effect of weak ties weakens or event
turn into negative effects when the focal innovation is radical, due to the burden of
reciprocity norms and the lack of nonredundant information. In other words, we
hypothesize that,

Hypothesis 1. When innovation radicalness is low, an innovation is more likely to
be successful if its innovators collaboration network has stronger tie strength.
When innovation radicalness is high, an innovation is less likely to be successful

if its innovator s collaboration network has stronger tie strength.

3.2.2 How network cohesion affects innovation success, and how this is
contingent on innovation radicalness

Coleman (1988) championed the theory that, compared with a sparse network (where
an individual’s contacts are not connected among themselves), a cohesive network
(where an individual’s contacts are also interconnected among themselves) brings a
higher level social capital through obligations and expectations, information
channels, and social norms. However, Burt (1992) developed a competing
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structural hole theory which highlights the benefits of a sparse network due to
information access and brokerage control advantages. While structural holes might
be more valuable for generating creative ideas or career success in a competitive
setting, network cohesion is particularly relevant for idea implementation,
knowledge transfer, and coordinated actions (Fleming et al., 2007; McEvily et al.,
2003; Obstfeld, 2005; Tortoriello et al., 2012). For example, Uzzi and Spiro (2005)
found a positive association between network closure and successful musical
production. Obstfeld (2005) found that the tertius iungens orientation (i.e.,
orientation towards connecting previously unconnected network members)
facilitates involvement in innovation. Ozer and Zhang (2022) found that the tertius
iungens orientation leads to high-quality interpersonal relations and in turn a high
level of creative performance. Building on this line of literature, we argue that
network cohesion is beneficial for turning a creative idea into a successful innovation,

due to its easier information exchange and higher inclination towards cooperation.

First, a cohesive structure facilitates information exchange within the network,
which is essential for partners to comprehend a creative idea, use it, and co-develop
it into a successful innovation. In a cohesive network, actors are well-interconnected
and have a higher chance to expose to the same information (Coleman, 1988;
Fleming et al., 2007; Hansen, 1999; McEvily et al., 2003), and consequently, actors
share a higher level of common understanding and face a lower cognitive barrier to
comprehend a creative idea from their partners. Furthermore, once a creative idea is
developed, it is easy to be deiminated within a cohesive network due to dense
information exchange channels. In contrast, information is likely to be disseminated
unevenly in a network with many structural holes. While brokers have the advantage
in accessing diverse information and control the information flow which is beneficial
for generating creative ideas (Burt, 1992; Burt, 2004; Fleming et al., 2007), they may
face obstacles in helping their partners to understand and adopt their creative idea
due to the lack of shared understanding (Sorenson & Fleming, 2004). Second,
network cohesion encourages cooperation, which provides a supportive environment
for further developing a creative idea into a successful innovation. From a
promotional perspective, network cohesion creates a social norm towards trust,
reciprocity, mutual ownership, and collective problem-solving (Coleman, 1988;
Fleming et al., 2007), all of which are conducive for innovation under uncertainty.
From a preventive perspective, network cohesion makes it easier to identify and
sanction undesirable behavior and imposes stronger obligation for cooperation
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(Coleman, 1988). Inclination towards cooperation improves the quality of

interpersonal relations and in turn innovation success (Ozer & Zhang, 2022).

However, we also expect that these advantages depend on the radical nature of the
innovation: they are particularly relevant for incremental innovations but turns into
obstacles for radical innovations. In the same vein as discussed in the previous
section, network cohesion provides strong reciprocity norms, which promote the
adoption of incremental innovation which has an impact on network partners that is
aligned with reciprocity norms but at the same sanctioned radical innovation which
has an impact that is not aligned with reciprocity norms. In addition, a cohesive
network also lacks non-redundant information (Burt, 1992; Burt, 2004), which in
turn impedes identifying new applications of the radical innovation. Taken together,
we hypothesize that:

Hypothesis 2. When innovation radicalness is low, an innovation is more likely to
be successful if its innovator’s collaboration network is more cohesive. When
innovation radicalness is high, an innovation is less likely to be successful if its

innovator s collaboration network more cohesive.

3.3 Method
3.3.1 Data and sample

To test our hypotheses, we constructed a unique panel dataset with information about
firm R&D locations, their collaboration networks, and innovation outputs. We
combined information from various sources. Our sampled firms are identified from
the 2018 edition of the EU Industrial R&D Investment Scoreboard, which provides
a list of companies with the largest R&D spending in the world. We restricted our
analysis to firms from the U.S. pharmaceutical and biotechnology industry on this
list for three reasons. First, innovation plays an essential role in the pharmaceutical
and biotechnology industry since this industry is knowledge-intensive, which
provides us an appropriate setting for this research. Previous research has shown that
this industry is suitable and has already been used in many fields to study innovative
activities (Dong & Yang, 2016; Hoang & Rothaermel, 2005; Tzabbar & Vestal, 2015).
Second, one of the critical competitive strategies of pharmaceutical and
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biotechnology companies is to forge connections across networks that span different
social and geographic spheres (Al-Laham et al., 2011) in order to access diverse
knowledge and resources. This feature provides us a higher chance to observe
collaborations in this industry. In particular, corporate R&D networks that span
different geographic locations enable multinational corporations to integrate local
knowledge with complementary resources residing elsewhere in the world (Alcacer
& Zhao, 2012), which means it provides us a good opportunity to study
geographically dispersed corporate R&D networks. Third, focusing on a specific
industry can control for variances across different industry fields (Audia & Goncalo,
2007; Tzabbar & Vestal, 2015). Using a more homogeneous sample ensures that
innovation outputs can be compared. 200 U.S. pharmaceutical and biotechnology
firms from the Scoreboard have been included in the sample.

For measuring innovation success, innovation radicalness, as well as for
characterizing collaboration networks, we rely on patent information. However,
retrieving patents for each company is not a trivial task. There are diverse practices
in firm patenting policies. For example, some companies always use the headquarters
as the applicants (also known as assignees) even though the invention was developed
in a subsidiary, while others use the subsidiary as the applicant. Furthermore, the
name of a company’s subsidiary may not display any connection with the name of
the whole company. Therefore, identifying all the names of subsidiaries is critical
for retrieving all patents of a company and ensuring measurement quality. For our
200 sampled companies, we manually retrieved names of all subsidiaries listed in
Exhibit 21 of the annual report on Form 10-K filed by these firms from 2009 to 2018
with the U.S. Securities and Exchange Commission (SEC). According to the
Regulation S-K of the SEC, companies are required to report all of their subsidiaries,
unless the unnamed subsidiaries are viewed as a single subsidiary and do not make
up a significant subsidiary as of the end of the year covered by the report. Since our
study focuses on R&D collaboration networks across a firm’s locations, we excluded
107 firms without subsidiaries. After merging the data, our sample contains 16,011
unique subsidiaries belonging to 93 firms.

To extract the patents of the firms in our sample from the patent database (PATSTAT),
we tried to match the names of the companies presented in the SEC database with
the names of patent applicants appearing in the PATSTAT database. The 2019
Autumn version of PATSTAT was used. Name searching and cleaning strategies are
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applied to standardize the names. To do so, we identified strings that start with
harmonized names of a company’s subsidiary, strings containing the harmonized
name of a subsidiary, and strings containing characteristics substrings that could
identify a company’s subsidiary. All found strings were manually checked against
the original applicant’s name and the three harmonized name versions
(‘doc_std name’, ‘psn_name’ and ‘han_name’) that are available in the PATSTAT
database. In the next step we compared the names we found with the harmonized
subsidiary names. The comparison was done using a 3-gram algorithm, that uses
sliding windows of three-character strings. The algorithm provides an indicator that
shows the similarity between the subsidiary or company name and an applicant’s
name. Only strings with a matching percentage of over 70% were considered to be
potential matches. As a final step the results of the matching process were manually
checked, and only a few match errors were found. We were looking for granted
patents held by the firms in our sample, for which the patent applications were filed
between 2001 to 2013 at United States Patent and Trademark Office (USPTO), the
European Patent Office (EPO), or the World Intellectual Property Organization
(WIPO).

We then aggregated patents at the location level, and inventor addresses were used
to conjecture the locations of companies’ innovative activities. Considering that
subsidiaries often use the headquarters’ address as the applicant address instead of
the subsidiary’s address when applying for a patent, inventor addresses are more
likely to represent the real geographic origin of the patented inventions than
applicant addresses (Belderbos et al., 2017; Deyle & Grupp, 2005). Addresses in the
patent database are messy, and we linked patent data to the geocoding of worldwide
patent data developed by De Rassenfosse et al. (2019). De Rassenfosse et al. (2019)
combined multiple data sources for identifying geographic coordinates for inventor
and applicant locations and also provided clean information about corresponding
countries, regions and cities. This dataset covers all PATSTAT patents in our studied
time period. We used the fine-grained city level information for R&D locations of a
firm’s R&D network. For example, these cities include London (UK) and Berlin
(Germany). The city level in the United States corresponds to counties, for example,
Middlesex in Massachusetts and Santa Clara in California.

Furthermore, the same technological invention often is patented at multiple offices,
therefore we used the definition of patent families according to the DOCDB
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definition (Martinez, 2011), instead of single patents, following the field convention.
Building on the data of patent families, we constructed our final dataset for analysis
at the location-time level. For each location, we constructed our variables using
patent families in a 3-year moving time window. In other words, the location i at
time point ¢, the variables were constructed using patent families with the earliest
filing date in the three years from year 7-2 to year ¢. Our final dataset consists of
16,011 unique locations belonging to 93 companies, with a total number of 19,343

location-time observations.

3.3.2 Variables

Dependent variables

Innovation success. We used the average number of patent family citations that a
focal location received in a 5-year window to measure innovation success, following
the social definition of success in terms of acceptance and adoption by future users
(Amabile, 1983; Fleming et al., 2007). Although patent citation is not a perfect
measure of innovation success, citation-based indicators have been found to be
positively correlated with other measures of patent value or usefulness and have been
widely used in innovation research (Fleming, 2001; Harhoff et al., 2003; Kelly et al.,
2021; Poege et al., 2019). Therefore, we followed the previous literature and used
citation counts as a measure of innovation success. Considering that patents granted
earlier have a longer time period to accumulate citations, we adopt a fixed five-year
citation time window for counting citations. Prior literature has shown that a five-
year window is adequate for a focal patent to gain significant coverage of forward
citations (Hall et al., 2001) and has been widely employed in constructing citation-
based measures (Hain et al., 2020; Poege et al., 2019).

Independent variables

Tie strength. Tie strength was operationalized as the frequency of collaboration based
on a three-year window, including the current and preceding two years. Specifically,
we first measured the strength of a tie between a focal location and its collaborating
locations separately as the number of co-inventing patent families between them
from year -2 to ¢. Second, we calculated tie strength at the egocentric network level

as the average number of co-inventing patent families.
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Network cohesion. We adopted the network density measure. More specifically,
divide the number of existing collaboration ties between a location’s collaborators
by the number of possible ties between these collaborators, in the period from year
t-2 to t. Collaboration tie in this context means that there are co-inventing patent
families between two locations.

Innovation radicalness. To measure the radicalness of a patent family, we adopt the
consolidation-or-destabilization (CD) index developed by Funk and Owen-Smith
(2017). The CD index captures the degree to which the focal patent destabilizes
existing technology trajectories by examining whether patents citing a focal patent
also cite prior patent cited by the focal patent (i.e., its references). If patents citing
the focal patent do not cite its references, then the focal patent is considered to
reshape the network of technology interlinkages by shifting future inventors’
attention away from the knowledge on which the focal patent builds, thus
destabilizing existing technology trajectories. The CD index has been applied to
study innovation as well as science (Park et al., 2023; Wu et al., 2019). Balachandran
and Hernandez (2018) also adopted the CD index for measuring radicalness of

innovation at the firm level. We adopt the same approach.

Innovation radicalness is calculated as follows for a focal patent:

n
1
Radicalness = ;Zfl
i=1

Where i is the index of the future patent families that cite the focal patent family or
its references, # is the total number of such future patent families. f; equals 1 if the
future patent family i only cites the focal patent family but not any references of the
focal patent family, f; equals -1 if the future patent family i cites not only the focal
patent family but also at least one of its references, and f; equals 0 if the future patent
family 7 only cites the focal patent family’ references but not the focal patent family.
Hence, radicalness indicates the extent to which the focal patent family obsoletes
prior arts that it builds on in a dynamic network. The range of radicalness index is
from -1 to 1. For calculating radicalness, we adopt a fixed 5-year citation time
window, that is, future citing patent families which have an earliest filing date within

5 years after the focal patent family are considered. This allows patent families filed
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in different years to have the same number of years for accumulating citations.

Results are robust when we consider all future patents without the fixed time window.

At the location level, we calculate the average radicalness in a 3-year moving time
window to characterize the inclination towards radical innovation for the location in

this time period.

Control variables

Our analyses control for possible confounding variables that may lead to spurious
correlations between our focal independent and dependent variables. We use fixed
effects models incorporating firm-location fixed effects, so that we can account for
unobservable time-invariant location heterogeneity and test for variations within
firm-location. Innovation productivity, measured as the number of patent families, is
included, considering that a more productive location might also have a higher
chance of forming certain types of networks and at the same having a higher chance
of producing radical innovation (Fleming et al., 2007). To examine the effect of
network properties net of network size, we control for network size, which is the
number of co-inventing locations. Controlling for the number of co-inventing
locations can help to exclude the possible alternative explanation that it was the
network size that predicted variation in network properties and innovation success.
To account for the general inclination towards collaborating, we also included the
share of a location’s patent families that are co-invented with other locations
(collaboration inclination). For innovation productivity, network size, and
collaboration inclination, we used the same 3-year moving time window for
constructing these variables. Time (i.e., one time period is three years) dummies are
also included to control for general time differences applying to all sampled firm-

locations.
3.4 Result
3.4.1 Descriptive statistics

Descriptive statistics and Spearman correlations are reported in Table 3.1. Our focal
dependent variable, innovation success, that is the average number of family
citations, has a mean of 14.79, standard deviation of 17.13, and a range from 0 to
200. We take the natural logarithmic transformation for innovation success, as well
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as all other count variables (i.e., innovation productivity and network size) in the
regression analysis to accommodate the skewed nature of these variables. Innovation
radicalness has a mean of -0.01, standard deviation of 0.06, and ranges from -0.47
to 0.90. The slightly right-skewed distribution indicates that in general consolidating,
incremental innovations are more common than radical innovations, as expected.
The distribution of tie strength is highly right-skewed with a mean of 1.86 and
standard deviation of 2.16, and ranging from 1 to 69.60. Network cohesion has mean
0.20 and ranges from 0 to 1. This suggest that most locations operate in relatively
sparse networks that are rich in structural holes. Moreover, there is considerable
heterogeneity among locations. On average, the number of patent families (i.e.,
innovation productivity) is 6.72, the number of co-inventing locations (i.e., network
size) is 7.91, and 97% patents involves collaboration with other locations (i.e.,
collaboration inclination), indicating that sole-production of innovation is rare.
Correlations show that both tie strength (r = 0.19) and network cohesion (r = 0.13)
are positively correlated with innovation success. It is important to interpret these
correlations with caution as they do not account for any confounding variables. The
correlation between innovation radicalness and tie strength is small (r = -0.04), as
well as between innovation radicalness and network cohesion (r = 0.02). The
correlations between our focal independent variables and control variables
(especially innovation productivity) are fairly high: innovation productivity has a
correlation of 0.86 with tie strength and 0.79 with network cohesion. While for the
reasons discussed in the section on control variables, we report results with
controlling these potential confounders in this paper and test the robustness of our
results by dropping out control variables.
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3.4.2 Regression results

Table 3.2 presents the results of the fixed effect linear regression models testing our
hypotheses. For all regression models, we incorporate firm-location fixed effect to
examine the relationship between network structure and innovation success within
the same firm-location. Column 1 in Table 3.2 reports the results of a baseline model
only with control variables. The effect of the number of patent family is not
significant, suggesting no significant correlation between innovation productivity
and success. On the other hand, network size (i.e., the number of co-inventing
locations) and collaboration inclination (i.e., the share of co-inventing patent
families) are positively correlated with innovation success, which suggests that firm-
locations that have a larger collaboration network and more inclined towards
collaborating with others are more likely to produce innovation that is successful in

terms of patent citations.

50



[00>4,,, ‘c00>d,, ‘[ 0>d, sasaypuaind ul 10412 pLOPUDIS ISNQOY :2JON

6099 e £6°€9 e 7E89 ST 70765 e £5°79 onsnels g
8SL°0 LSL0 8SL°0 LSL0 1SL°0 6YL°0 arenbs-y
€re6l €re6l €re6l €rE61l €rE61l €rE6l SUONBAIISO

SOA SOA SOA SOA SO SO HA QoumooA
SO SOX SO SOX SOX SOX HA 183 X

(LL0O0) (LLO0) (LL0O0) (LL0O0) (6L0°0) (L90°0)

ZL00 890°0 9L0°0 9L0°0 6L0°0 wxx1LE0 UOTJBUI[OUT UONEIOQR[[0)
(120°0) (120°0) (120°0) (120°0) (120°0) (810°0)

#3379C0  #xx€9T0  sxx¥9T0  sxxP9T0  #xxS8T0  #xx[1T0 (uy) az1s Sp0MIIN
(0£0°0) (0£0°0) (0£0°0) (0£0°0) (1€0°0) (¥10°0)

#3xEET°0"  #x#8E1°0"  sx#EET°0"  #x%8ET°0-  #xx191°0" L00°0 (ug) Ay1anonpoid uonesouuy
(5L5°0) (L95°0)
{98°0- %xxx99L° [~ SSaujedIpel uoneAouu] 4, UOISAYOd JIOMION
(L€ 0) (ot€°0)

wxx61 T #%%687 T SSOUEDIPEI UOHBAOUU] 4 (U[) SUnS LT,
(€02°0) (L61°0) (L81°0) (691°0)

*%xxL8V - #3181~ #xx9LG - x%xx090°C- SsaufedIpelr uoneAouuy
(150°0) (150°0) (150°0) (150°0) (zs0°0)

L20°0 S€0°0 820°0 8€0°0 820°0 UOIS3Y0D JI0MION
(¥£€0°0) (€£0°0) (¥£€0°0) (€£0°0) (¥£0°0)
#£2661°0  #x4TCT0  #xx861°0  #xxTCTO  ##xbPT0 (ug) WSuons a1y,
) () () (©) (@) (D

$§3291S uoneAouu]

$S3JJNS UOIBAOUUI PUE ‘UOISIYOD YA0MIU ‘Y)SUdL)S T, :7°€ d[qEL



Column 2 adds tie strength and network cohesion into the model. While there is a
significantly positively effect of tie strength (b = 0.244, p < 0.01), the effect of
network cohesion is insignificant (b = 0.028, p > 0.10). Column 3 further adds
innovation radicalness as an independent variable and finds a significantly negative
effect of innovation radicalness (b =-2.060, p <0.01).

To test our hypotheses about the moderating effect of innovation radicalness,
Column 4 and 5 interact innovation radicalness with tie strength and network
cohesion, respectively. Note that the coefficient on tie strength in Column 4 (b =
0.198, p < 0.01) estimates the marginal effect of tie strength on innovation success
when innovation radicalness equals to 0 (the middle point theoretically). More
importantly, we observe a significantly negative interaction effect between
innovation radicalness and tie strength (b =-2.289, p <0.01). This suggest that when
radicalness is low (closer to -1), the effect of tie strength becomes insignificant or
might even turn into positive, while when radicalness is high (closer to 1), the effect
of tie strength turns into negative. In column 5, we observe an insignificant effect of
network cohesion on innovation success when innovation radicalness is 0 (b = 0.035,
p > 0.10). We also observe a significantly negative interaction effect between
innovation radicalness and network cohesion (b = -1.766, p < 0.01), indicating a
positive effect of network cohesion when radicalness is low but a negative effect of
network cohesion when radicalness is high.

To better illustrate the moderating effect of innovation radicalness, as well as
examining the significance of tie strength and network cohesion effects at various
levels of innovation radicalness (for example, to test whether tie strength has a
positive effect or just an insignificant effect when radicalness is low), Figure 3.1
plots the marginal effects (i.e., regression coefficients) of tie strength and network
cohesion at varying degrees of innovation radicalness. The figure confirms that when
innovation radicalness is low, both tie strength and network cohesion have a positive
effect on innovation success, while when radicalness is high, both have a negative
effect, supporting our Hypotheses.
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Figure 3.1: Tie strength, network cohesion, and innovation success. Points represent the
regression coefficients, and vertical bars represent 90% confidence interval.

3.4.3 Additional analysis: Separating adoption by network partners and
outsiders

In this paper, we study how the structure of the collaboration network (i.e., tie
strength and network cohesion) for producing a creative idea affects the diffusion of
the produced idea. One important question is, whether these effects are restricted to
network partners or go beyond them. To answer this question, we examine patent
citations received from network partners’ future patents and patent citations received
from others outside the egocentric network of the focal firm-location. Regression
results are reported in Table 3.3 and marginal effects of tie strength and network
cohesion at different levels of innovation radicalness are plotted in Figure 3.2. At
low levels of radicalness, marginal effects (i.e., regression coefficients) of tie
strength and network cohesion on citations from network partners are comparable to
their marginal effects on citations from outsiders. When radicalness is high, the
marginal effects are larger for citations from network partners than their marginal
effects on citations from outsiders. This is understandable as network structures we
are investigating concerns the egocentric network but not beyond, and much of our
theoretical discussion is within the egocentric network. However, the findings that
there are similar effects beyond the egocentric network is an important finding,
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which confirms prior studies’ assumption that the influence of production network
on knowledge diffusion goes beyond the production network itself (Fleming et al.,
2007; Lee et al., 2015; Wang, 2016). One possible explanation is that network effects
shape the collective behavior of the egocentric network regarding how they further
develop the initial creative idea and follow-on innovation, and such behavior affects
the social process where the initial creative idea evolves and connects with future
innovation, and in turn gain acceptance by outsiders.
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Figure 3.2: Separating adoption by network partners and outsiders. Points represent the
regression coefficients, and vertical bars represent 90% confidence interval.

3.4.4 Robustness tests

We test the sensitivity of our results with respect to control variables. We drop control
variables one by one as well as drop them all together. Correlation analysis shows
that our control variables has relatively high correlations with focal independent
variables, which indicates there is potential risk of multilinearity. For a robustness
test, we drop control variables to check whether our results are sensitive to these
controls. Results are robust except for network cohesion (Appendix Table B1, Figure
B1).

3.5 Discussion and conclusion

In this paper, we investigated how tie strength and network cohesion of an innovation
site’s collaboration network shapes the success of its innovation, adopting a social
definition of success in terms of adoption and future use and measured by patent
citations. More importantly, we examine how these effects are contingent on the
radical nature of innovation. We argued that trust, fine-grained information exchange,

and reciprocity norms associated with strong tie and network cohesion facilitate
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innovation diffusion. However, this only holds for incremental innovation, which
consolidates existing technologies and confirms the reciprocity norms. However, the
opposite is true for radical innovation that disrupts existing technologies and has an
impact on network partners that is not aligned with reciprocity norms. In addition,
the lack of diverse information hinders the identification of new applications for the
radical innovation. Therefore, we hypothesized that a network with strong ties and
cohesion facilitates the diffusion of incremental innovation but hinders the diffusion
of radical innovation. To test our hypotheses, we retrieved 93 the most innovative
U.S. pharmaceuticals and biotechnology firms from EU Industrial R&D Investment
Scoreboard. Using this distinctive panel dataset consisting of 19,343 site-time
observations, we found empirical results supporting our hypotheses.

There are several limitations of this study. First, although patent data avoid response
bias and capture a more complete collaboration network than surveys and interviews,
it is important to acknowledge that our study suffers from the unavoidable limitations
of patent data for studying innovation, such as the file drawer problem and noise in
the citation data. For example, For example, many unimportant inventions are failed
to be patented, and some breakthroughs may be missed due to firms’ strategic reasons
(Fleming, 2001). While granted patents are not a perfect archive of technological
innovations, the data still represent a considerable share of invention outputs. Future
research adopting a broader set of innovation outputs would be valuable to extend
from patents to other innovative outputs. In addition, this study retrieved data from
companies with high R&D investment in pharmaceuticals and biotechnology
industry in the United States, which may limit the generalizability of our findings to
other industries or other countries. Future research should collect data from broader

industry contexts as well as a larger and more diverse sample.

In spite of these limitations, our study contributes to and extends the existing
literatures of social networks, innovation, and creativity in several ways. First, this
paper explored how network effect depends on the radical nature of innovation.
While there is an extensive literature about network effect on idea diffusion, less
studied and understood is that these effects might depend on the type of the
innovation (Ozer & Zhang, 2019; Vanhaverbeke et al., 2012). Different types of
innovation might need different network conditions for diffusion. In particular, we

found opposite network effects for incremental and radical innovations.
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Second, we contribute to the long-standing debated about which kinds of networks
are more advantageous: strong tie vs. weak tie, and network cohesion vs. structural
hole. One promising direction to reconcile competing theories and empirical
evidence is to separate different stages of the creative process, and the consensus
seems to be that non-redundant information provided by weak ties and structural
holes are necessary or beneficial for generating novel ideas, while reciprocity norms,
trust, and fine-grained information exchange associated with strong ties and network
cohesion facilitate idea implementation, transfer, and adoption (Burt, 2004; Fleming
et al., 2007; Perry-Smith & Mannucci; Reagans & McEvily, 2003; Tortoriello &
Krackhardt, 2010). However, our findings extend this literature and shed further
insights into the complexity of network effects, by showing that reciprocity norms
are not always beneficial but can become a burden for some agents in some contexts,
where the desirable behavior misaligns with reciprocity norms. In particular, the
adoption of radical innovation is hinder because of its destructive impact on existing
technologies and the collaboration network.

Third, we also highlight the complexity that there might not be clean separation in
the network effect between the idea production and diffusion stages. More specially,
non-redundant information is beneficial not only for generating ideas that makes new
combinations of pre-existing components, but also for identifying new applications
for radical innovations outsides of the field where they were generated.

Our findings also have important implications for innovation management,
especially across geographically dispersed sites. It takes several steps to turn a
creative idea into a successful innovation, and the structure of collaboration network
plays an important role in this process. Our findings inform what types of network
structure are more beneficial for the adoption and future use of incremental versus
radical innovations. When restructuring the network is not feasible, then the
managers should pay attentions to how to bring other management interventions to
magnify desirable underlying mechanisms and mitigate undesirable ones.
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