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Abstract 

Neuroanatomical findings on youth anxiety disorders are notoriously difficult to replicate, small in effect size, 

and have limited clinical relevance. These concerns have prompted a paradigm shift towards highly powered 

(i.e., big data) individual-level inferences, which are data-driven, transdiagnostic, and neurobiologically 

informed. Hence, we uniquely built/validated supervised neuroanatomical machine learning (ML) models for 

individual-level inferences, using the largest up to date neuroimaging database on youth anxiety disorders: 

ENIGMA Anxiety Consortium (N=3,343; Age: 10-25 years; Global Sites: 32). Modest, yet robust, brain-based 

classifications were achieved for specific anxiety disorders (Panic Disorder), but also transdiagnostically for all 

anxiety disorders when patients were subgrouped according to their sex, medication status, and symptom 

severity (AUC’s 0.59-0.63). Classifications were driven by neuroanatomical features (cortical thickness/surface 

area, subcortical volumes) in fronto-striato-limbic and temporo-parietal regions. This benchmark study provides 

estimates on individual-level classification performances that can be realistically achieved with ML using 

neuroanatomical data, within a large, heterogenous, and multi-site sample of youth with anxiety disorders.  
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Introduction  

Anxiety disorders are the most prevalent mental disorders among youth, with a life-time prevalence estimate of 

up to 30% (1,2). Most anxiety disorders develop during the critical transition from adolescence to young 

adulthood (10-25 years), affecting millions of youth worldwide and causing enormous emotional, societal, and 

economic burden (3,4). Critically, the COVID-19 pandemic has further exacerbated this alarming trend, with some 

experts now even talking about a “lost generation” of youth (5). Psychopathology is less differentiated in youth 

than in adults, and thus even less compatible with traditional diagnostic nosology, which further complicates the 

situation (6-8). Despite these concerns, the underlying neurobiology of anxiety disorders in youth remains 

elusive, making it difficult to pinpoint robust biomarkers, and formulate or test neurobiologically informed 

treatment/prevention strategies (4,9).  

Neuroimaging studies point to anomalies in fronto-striato-limbic brain circuits and additional sensory 

regions in youth with anxiety disorders (6,9,10), which collectively affect the perception, processing and 

modulation of emotionally salient information (see Figure S1). While promising, neurostructural findings are 

often difficult to replicate and small in effect size, with marginal clinical relevance (4,9,11-14). These issues may 

reflect limitations of our currently dominant analytic approach, which favors disorder-specific analyses rather 

than transdiagnostic ones, often within underpowered samples and with the use of traditional mass univariate 

analyses that preclude massively multivariate and individual-level analytics (11-15). These issues have prompted 

a shift in the field towards highly powered (i.e., big data) individual-level inferences that are data-driven, 

transdiagnostic, and informed by objective neurobiological measures (11,15). This shift is anticipated to provide 

mechanistic neurobiological insights, which would help pinpoint reliable biomarkers and potential therapeutic 

targets in single subjects (11,15). 

The application of machine learning (ML) may be particularly useful for this endeavor (11,15,16). ML is 

well-suited to dealing with high-dimensional data in a data-driven manner, extracting complex multivariate 

patterns that best predict individual-level clinical outcomes (11,15,16). Prior brain-based ML classification studies 

of anxiety disorders show that neuroimaging data can distinguish patients from controls with varying success 

and accuracies up to 90% (17-24). While encouraging, most of these studies are limited by their use of small 

single-site samples, so it is unclear whether results generalize to data from other sites with different demographic 

(i.e., age/sex distribution), clinical (i.e., medication, symptom severity, comorbidity) or technical (i.e., scanner, 

acquisition protocols, and diagnostic assessment) characteristics. To overcome this, large multi-site 

collaborations have begun to pool neuroimaging and clinical datasets for coordinated analyses, wherein all data 

are preprocessed and analyzed according to harmonized and standardized protocols. The Enhancing Neuro-

Imaging Genetics through Meta-Analysis (ENIGMA) consortium is such an initiative with a massive global reach 

(25,26), and hence used for the current study. The large-scale multi-site ENIGMA datasets offer ecologically valid 

and clinically representative information, which ML algorithms can exploit to identify multivariate patterns 

generalizable to the majority of patients, in a realistic fashion (27-29). While increasing sample size typically 

benefits ML performance and generalizability, the use of retrospectively pooled multi-site data may also 

complicate performance, due to the substantial heterogeneity (i.e., sample characteristics and methodology) 

that is inherently introduced (27-30). On the other hand, a multi-site design may give more realistic estimates of 

performance, and can be used to explicitly test the robustness of predictive models which is a necessary 

prerequisite for implementation into routine care. 
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Here, we built and validated structural magnetic-resonance imaging (MRI)-based ML models based on 

the largest multi-site sample of neuroimaging data from young anxiety patients and healthy controls (HC) 

worldwide (N=3,343 from 32 sites). The sample was aggregated from three subgroups of the ENIGMA-Anxiety 

Working Group, comprising the most prevalent youth anxiety disorders: Panic Disorder (PD), Generalized Anxiety 

Disorder (GAD) and Social Anxiety Disorder (SAD) (10). We focused on individuals between 10-25 years old, thus 

capturing the critical transition from adolescence to young adulthood, wherein these anxiety disorders first 

develop (3,4,31). ML classifiers were trained on brain MRI-derived cortical and subcortical gray matter features 

(regional cortical thickness/surface area, and subcortical volumes) to classify patients vs. HC for each anxiety 

disorder separately (disorder-specific), and across anxiety disorders (further referred to as transdiagnostic 

classification). Our hypothesis was that the classifiers would correctly classify patients vs. HC above chance-level. 

We aimed for entirely brain-based classifications, with additional exploratory analyses examining the influence 

of sex, medication usage, symptom severity and depression comorbidity subgroupings on brain-based 

classification performance. 

 

Results  

1. Primary Analyses 

Case-control classification performances are summarized in Figure_1A, and a complete overview of results (AUC, 

balanced accuracy, sensitivity, specificity, permutation p-values) is provided in Table_S2. The best classification 

performance was obtained for PD vs. HC (112 PD/813 HC/12 sites) with an average AUC=0.62 (p=.027). None of 

the other disorder-specific classification performances were significantly different from chance: GAD 

classification (465 GAD/1,084 HC/16 sites/average AUC=0.55, p=.605), SAD classification (259 SAD/610 HC/13 

sites/average AUC=0.57, p=.32), and transdiagnostic classification (823 any anxiety disorder/1,969 HC/32 

sites/average AUC=0.56, p=.093). Classification performances obtained using LOSO-CV were similar to those 

obtained with repeated 5-Fold CV, in which only PD classification performed significantly above chance-level 

(average AUC=0.63, p=.003), while the SAD, GAD, and transdiagnostic classifications failed to surpass chance-

level (Table_S3). 

 

2. Exploratory Subgroup Analyses  

2.1 Sex 

We assessed transdiagnostic case-control classification (across ENIGMA-Anxiety subgroups) separately for males 

and females. Performances obtained are summarized in Figure_1B/Table_S2. Whereas above chance-level 

performance was achieved for male patients with any anxiety disorder vs. male HC classification (167 

patients/678 HC/15 sites) (average AUC=0.63, p=.007), female patients with any anxiety disorder vs. female HC 

classification (524 patients/1,133 HC/24 sites) failed to surpass chance-level (average AUC=0.57, p=.218). 

Supplementary LOSO-CV classifications also did not surpass chance-level (Table S3). 

 

2.2 Psychotropic Medication 

Results for transdiagnostic classifications based on current psychotropic medication use are summarized in 

Figure_1C/Table_S2. Unmedicated patients vs. HC classification (641 patients/1,969 HC/32 sites) led to above 

chance-level performance (average AUC=0.59, p=.013), whereas medicated patients vs. HC classification (160 

patients/1,307 HC/17 sites) failed to surpass chance-level (average AUC=0.59, p=.22). Likewise, classification of 
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medicated patients vs unmedicated patients (251 medicated patients/160 unmedicated patients/17 sites) failed 

to surpass chance-level (average AUC=0.51, p=.38), as was the case for supplementary LOSO-CV classifications 

(Table S3). 

 

2.3 Severity 

Results for transdiagnostic classifications based on severity (STAI-T: low severity≤48, high severity>48) are 

summarized in Figure_1D/Table_S2. Low severity patient vs. HC classification (299 patients/1,422 HC/21 sites) 

performance was above chance-level (average AUC=0.59, p=.016), while high severity patients vs. HC 

classification (272 patients/1,449 HC/22 sites) failed to surpass chance-level (average AUC=0.57, p=.305). 

Likewise, classification of low vs. high severity patients (299 low severity patients/270 high severity patients/21 

sites) also failed to surpass chance-level (average AUC=0.52, p=.235), as was the case for supplementary LOSO-

CV classifications (Table S3). 

 

2.4 Comorbid Depression 

Finally, we performed case-control classifications separately for patients with and without comorbid MDD. 

Neither of these surpassed chance-level performance with either K-Fold or LOSO-CV (see Supplementary Results, 

section Comorbid Depression Subgroup Analyses, for more details). 

 

3. Feature Importance 

3.1 PD Classifier  

We investigated which brain regions contributed most to above chance-level classifications via sign-based 

consistency mapping. Four brain features emerged as most relevant for PD vs. HC classification 

(Figure_2/Table_S4). Consistent positive signs of weights were found for CT in the left middle temporal gyrus 

and right rostral anterior cingulate cortex, which would imply a tendency of the SVM for pushing the classification 

towards the PD class given increased CT in these regions. Consistent negative signs of weights were found for 

CSA of the left superior frontal gyrus and SCV of the left pallidum, which would imply the opposite tendency of 

the SVM to assign participants to HC class given increased SVC/CSA in these regions. Note that the derived sign 

consistency p-values do not correspond to a univariate group comparison, but represent the most important 

features of the multivariate pattern used by the SVM classifier, and should therefore be interpreted with caution 

(details in Supplementary Methods, section Feature Importance).  

 

3.2 Sex, Medication, Severity Classifiers  

The male patients vs. male HC transdiagnostic classification comprised seven significant features: positive signs 

of weights that pushed the classification towards the patient class were located in CT of right lateral occipital 

cortex and right superior frontal gyrus, and consistent negative signs of weights that pushed classification 

towards HC were found in both CT and CSA of the right superior temporal gyrus, and CSA in the pars orbitalis, 

parahippocampal gyrus and cuneus cortex in the right hemisphere (Figure_3/Table_S5).  

Unmedicated patient vs. HC transdiagnostic classification comprised 21 significant features 

(Figure_4/Table_S6). These included consistent positive signs of weights for the right caudate SCV, CT in the right 

cuneus, left lingual and left superior temporal gyrus, and CSA in the left middle temporal gyrus, left entorhinal, 

right superior parietal and right posterior-cingulate cortex (classification towards the patient class given 
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increased CT/CSA). Negative signs of weights were found for the SCV of the left caudate and amygdala, CT in the 

left inferior parietal cortex and right middle temporal gyrus, and CSA in right inferior temporal, supramarginal 

and left fusiform gyrus, bilateral temporal poles, right banks superior temporal sulcus, right paracentral lobule 

and left medial orbital frontal and inferior parietal cortex (classification towards HC class given increased 

CT/CSA/SCV). 

Low severity patients vs. HC transdiagnostic classification comprised six significant features 

(Figure_5/Table_S7). Positive signs of weights were found for CT in the right inferior parietal cortex and CSA in 

the right rostral anterior cingulate and left entorhinal cortex (classification towards patient class given increased 

CT/CSA). Consistent negative signs of weights were found for CT and CSA in the right inferior temporal gyrus, and 

CSA in the right pars triangularis (classification towards HC class given increased CT/CSA). 

 

Discussion 

In this study we benchmarked classification of youth with anxiety disorders based entirely on brain morphology, 

using structural MRI data from the large-scale multi-site ENIGMA-Anxiety Working Group, comprising a 

heterogeneous sample of 3,343 participants from 32 international sites. Modest classification performance was 

achieved for PD vs. HC (AUC=0.62), but classification performances of SAD, GAD, or any anxiety disorder 

(transdiagnostic) vs. HC failed to surpass chance-level significance. However, modest transdiagnostic 

classifications were obtained in exploratory subgroup analyses of male patients vs. male HC, unmedicated 

patients vs. HC, and patients with low anxiety severity vs. HC (AUC 0.59-0.63). These disorder-specific and 

transdiagnostic subgroup classifications were based on specific neuroanatomical features in fronto-striato-limbic 

and temporo-parietal regions. This study importantly shows that in a large, heterogeneous, and multi-site sample 

of youth with anxiety disorders, only modest classification performances can be realistically achieved based on 

neuroanatomical data. That said, the obtained classification accuracies do roughly translate into a medium effect 

size, with our results being on par with recent brain-based ML classifications of psychopathologies conducted in 

ENIGMA and other multi-site consortia. 

 

PD Classifier  

We identified several brain regions important for PD classification: CT of the left middle temporal gyrus and right 

rostral anterior cingulate cortex, along with the CSA of left superior frontal gyrus and SCV of the left pallidum. 

The middle temporal gyrus is involved in several cognitive processes including multimodal sensory integration, 

semantic processing and processing of emotions and feelings (32-34). It is embedded within the temporal lobe 

and the broader limbic system involved in emotional responding, and thought to play a role in PD 

pathophysiology (35,36). Perturbed temporal lobe GMV, specifically in the middle temporal gyrus and transverse 

temporal gyrus are reported in adult PD patients (36-38). The anterior cingulate cortex is a key region for PD, as 

it is implicated in the modulation of both normal and pathological anxiety, with VBM meta-analyses linking its 

disintegrity to PD diagnosis across age groups (37,39). Several studies also report alterations in task-based 

activation associated with treatment response towards cognitive-behavioral therapy (23,24). The superior 

frontal gyrus is involved in cognitive control and emotion regulatory processes and several studies link abnormal 

GMV in this region to PD pathophysiology (35,37,40). Finally, the pallidum is part of the lenticular nucleus residing 

in the basal ganglia, and is a convergence point for limbic reward signals and involved in diverse cognitive, 

affective and motor processes (41). Voxel-based morphometry (VBM) meta-analyses link gray matter volume 
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(GMV) anomalies within the lenticular nucleus to clinical anxiety in general (39), and specifically in adult PD 

patients (37). Altogether, these findings suggest that brain regions deemed important for PD classification are 

plausible and in line with previous literature. However, considering the fairly modest classification performance 

of the model, caution should be exercised in interpreting these identified brain regions. 

 

Sex, Medication, Severity Classifier  

We investigated transdiagnostic classifications for subgroups with particular demographic or clinical 

characteristics (sex, medication use, symptom severity and comorbid MDD), with the goal of reducing 

heterogeneity across sites and to potentially boost performance. Transdiagnostic case-control classifications 

were significantly above chance level for some of the specified subgroups (up to 0.63 AUC, p’s<.05) but not for 

the entire sample (AUC=0.56, p=.093). As depicted in Figures 2-5, the multivariate neurostructural pattern behind 

these transdiagnostic subgroup classifications comprised of fronto-parieto-limbic regions, previously linked to 

anxiety and its demographic (i.e., sex) and clinical (i.e., severity/medication use) and characteristics (6,9,42-46). 

Whereas transdiagnostic classification of male anxiety patients vs. male HC could be reliably achieved 

(AUC=0.63, p=.007), this was not the case for females. Such male-specific effects interestingly also emerged in a 

recent ENIGMA-Anxiety GAD case-control group comparison (42), while increased variability in female brain 

structure due to menarche, menstrual cycle and hormonal contraceptives is also suggested (47). We also found 

that unmedicated patients could be distinguished from HC (AUC=0.59, p=.013), which was not the case for 

classification of medicated patients vs. HC or medicated vs. unmedicated patients. One may speculate that 

heterogeneity in medication type, dosage, or duration among medicated patients could differentially influence 

brain structure and render classification more complicated. Alternatively, psychotropic medication usage may 

normalize some neurostructural alterations in anxiety patients (4,9), a phenomenon also seen in other 

psychopathologies (48,49), and hence complicate classification from HC and their unmedicated anxious peers. 

Longitudinal studies that incorporate more detailed medication information may provide better insight into the 

short- and long-term effects of medication on brain structure in each specific disorder and across anxiety 

disorders.  

Similarly, whereas low severity patients (as indexed by a below median STAI-trait score) could be 

distinguished from HC above chance-level (AUC=0.59, p=.016), this could not be achieved for classification of 

high severity patients vs. HC or high severity vs. low severity patients. While this result might be counterintuitive,  

it could be attributed to possible divergent brain abnormalities in high severity PD/SAD/GAD patients (e.g., larger 

or smaller CT/CSA/SCV depending on the disorder), or different variances in age (p<.001), sex (p=.02) and 

medication status (p<.001) we identified between low and high severity patients. The heterogeneity in the high 

severity patient group might be exacerbated by medication effects, as severity and medication status were found 

to be positively correlated (Phi=0.21, p<.001), which could further limit the ability of the classifier to find common 

brain abnormalities across these patients. Nonetheless, the significance (or lack of it, following permutation 

testing) for certain classifications could also reflect false positives or false negatives, and additional research is 

clearly needed to further explore, validate, and refine these subgroup findings. Ideally, we would have tested 

these subgroup classifications also for each anxiety disorder separately, but this was simply not feasible given 

the small number of patients who would have remained after selection.  

Finally, these subgroup classifications obtained with K-fold CV did not pass chance-level significance in 

our supplementary analyses using LOSO-CV. The discrepancy between the performances obtained with LOSO-CV 
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and K-fold CV may be attributed to the different levels of generalizability being assessed. LOSO-CV reflects a 

realistic clinical scenario in which a model must generalize to entirely new samples (50). On the other hand, K-

fold CV pools samples to identify common abnormalities that lead to optimal performance across all sites. 

Therefore, both CV approaches provide complementary sources of information to one another. The lower 

performances obtained with LOSO-CV compared to K-Fold were also found in similar multicenter classification 

studies on Bipolar Disorder, Autism, Schizophrenia and Obsessive-Compulsive Disorder (28,29,50,51), and are 

likely due to increased heterogeneity between the training and test samples. By leaving out an entire site, specific 

demographic, clinical, and scanner parameters from that site are not accounted for, whereas (site-stratified) K-

fold CV ensures equal representation of each site in both training and test sets. In addition, it is worth noting that 

our study included many small sites. Consequently, LOSO-CV generated numerous small test folds that can lead 

to high variance in estimated performance, and may result in biased classification rates (52,53). For these 

reasons, K-fold CV was incorporated in our main analyses, while LOSO-CV served as a supplementary method 

and complementary source of information. Nevertheless, given the discrepancies between the obtained 

performances with LOSO and K-fold CV for subgroup classifications, caution should be exercised in their 

interpretation.  

 

Classifier Performance and Site-Effects 

Our results are on par with other ENIGMA studies (obsessive-compulsive disorder (OCD), bipolar disorder (BP), 

major depression disorder (MDD)) that used FreeSurfer data for case-control classification in a multi-site setting, 

with AUCs ranging between 0.62-0.72 (27-29). Similar to our results, none of the obtained performances reached 

the clinical threshold of AUC>0.80 (54). These findings suggest that although there could be significant case-

control differences in CT/CSA/SCV on the group-level, parcellated structural MRI data may at the moment not 

fully allow for clinically relevant case-control distinctions at the individual-level. Notably, the classification 

performances obtained here (up to 0.63 AUC) translate to effect sizes (Cohen’s d=0.47; medium effect size, see 

(30) for AUC to effect size conversion) typically larger than those obtained in previous ENIGMA univariate case-

control analyses of FreeSurfer data among psychiatric populations, such as OCD (max Cohen’s d=−0.33 for CSA), 

BP (max Cohen’s d=-0.29 for SVC), schizophrenia (SZC) (max Cohen’s d=-0.46 for SVC), MDD (max Cohen’s d=-0.2 

for SCV, but up to −0.57 for CSA in adolescents vs matched controls), and attention deficit hyperactivity disorder 

(max Cohen’s d=-0.19 for SVC) (26,55-59). However, one should be cautious to directly compare the above effect 

sizes, as our AUC-converted effect size was based on a multivariate method estimated through CV (out-of-

sample) while the case-control effect sizes are in sample and univariate in nature. Future studies could apply 

more fine-grained neurostructural features (i.e., voxel-wise/vertex-wise maps), measures of brain connectivity 

and network function or multimodal data in combination with more sophisticated classification methods (i.e., 

Deep Neural Networks) (15,27). A combination of these options is postulated to improve classification 

performances compared to shallow ML algorithms applied to low-resolution data (15). 

To our knowledge, this is the largest multi-site brain-based classification analysis of anxiety disorders 

among youth. Previous structural and functional MRI-based classification studies on anxiety disorders have 

claimed to distinguish patients from HC, with AUCs reaching over 0.80 (17-24). However, these studies relied on 

small samples (N<100) susceptible to unstable performance estimations during cross-validation (53,60), in which 

inflated performances are likely to be overrepresented through publication bias or insufficient testing (61-63). In 

addition, studies typically used data from a single research site, and performance typically drops when models 
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are tested on unseen data from other sites. The large-scale multi-site ENIGMA database employed here provides 

clinically representative information, which may be used by ML algorithms to identify multivariate patterns 

generalizable to patients across different sites (27-29). Having a large sample size and thus more data for model 

training and testing is typically beneficial for ML, and leads to more reliable performance estimates (50,51,64). 

However, pooling existing data in a multi-site context like ENIGMA may also reveal that methods have poorer 

true performance in reality, due to the realistic heterogeneity (in sample characteristics, hardware and 

methodology) that is actually represented (27,28,30). These global between-site differences, referred to as “site-

effects”, can hamper the ability of the classifier to find common brain abnormalities between patients and HC 

across different sites in the performed classification tasks (i.e., disorder-specific and transdiagnostic 

classifications, as well as exploratory subgroup classifications. Site-effects can also leave confounds in the data 

that obscure interpretations, impair the generalizability and reproducibility of classification models, and lead to 

biased performance (27,65).  

We addressed site-effects by standardizing neuroimaging data from each site according to their HC 

reference group. Without site-wise scaling, the SVM was able to accurately predict which site a given participant 

belongs to, but not when site-wise scaling was applied (Table_S8). Performances obtained for our main 

classifications using K-Fold CV were comparable to LOSO-CV, further indicating that our standardization approach 

effectively harmonized data across sites. Although this was not the case for our exploratory subgroup analyses, 

in which none of the classification performances obtained with LOSO-CV surpassed chance-level. However, we 

also accounted for site-effects in our permutation testing framework by restricting the exchangeability of class-

labels to each site, so that remaining site-effects would be incorporated in the obtained null-distribution (see 

Supplementary Discussion, section Site Effects) (66). There are other methods available to handle site-effects, 

such as ComBat and normative modeling, but the assumptions for these techniques (i.e., N>25 subjects per site, 

balanced samples and overlapping distribution of covariates across sites) are violated here, rendering them 

unsuitable for this study (65,67). Future classification studies on data from the ENIGMA-Anxiety Working Group 

using larger samples could investigate the feasibility of other site-harmonization techniques.  

 

Strengths & Limitations 

The key advantages of this study include the large worldwide sample (N=3,343 from 32 sites), access to 

individual-level data, and the conservative nature of the analyses wherein possible site-effects/data 

leakage/overfitting were stringently confronted. The international heterogeneity and multi-site nature allowed 

us to test ML classifications on a wide range of participants, more closely resembling the real-world clinical 

situation. Notwithstanding these strengths, there are several limitations to consider. We used a global and 

retrospectively pooled data sample, where no harmonization of scanning acquisition or sample inclusion was 

performed. These sources of heterogeneity may have limiting effects on classification performance, but also 

provide an opportunity for a more realistic evaluation across samples that better represent the wide range of 

characteristics seen in the real-world population. This would be considered a strength, as it is necessary to 

evaluate whether results are reliable across a variety of hardware and protocols.  

Since we specifically focused on youth (10-25 years), we had to exclude participants from each sample 

outside this age range and ended up with a relatively large number of sites with small sample sizes. This limited 

our options for site-effect harmonization, and led to insufficient sample sizes per site to investigate subgroup 

classifications for each anxiety disorder separately. Also, whereas developmentally-driven heterogeneity may 



11 
 

have been at play, the sample size (especially patients) made it practically impossible to formally test this, as we 

lacked sufficient data for training/testing folds per meaningful age grouping. However, supplementary analyses 

were run to assess the link between age and classification performance within the transdiagnostic sample among 

different age groups (10-14 early adolescence; 15-17 middle adolescence; 18-25 late adolescence and young 

adults, (31,68,69). As seen in Figure_S2, there was no statistically significant association between the obtained 

performances and age groups (r=-0.50, p=.667), suggesting that the model performed equally well across the age 

spectrum investigated. Also, we only had access to regional brain measures (FreeSurfer features), not raw/voxel-

wise data or other brain-imaging modalities (i.e., function/connectivity). Incorporation of these additional data 

forms, and use of more sophisticated ML algorithms (i.e., deep learning) better apt in handling massively multi-

modal data, might further improve classification performances reported here (15). On top of this, we would have 

ideally also run subgroup classifications for each anxiety disorder separately, so to gain deeper insights into 

disorder-specific heterogeneity, as a function of clinical/sociodemographic characteristics. However, meaningful 

and consistent subgroup classifications for each anxiety disorder proved infeasible, given the small number of 

patients who would have remained after selection (See Table_S9). This precluded us from effectively probing 

disorder-specific heterogeneity in each anxiety disorder, something that future work should consider.	 

Finally, while brain data was available for every single participant, this was not the case for clinical or 

sociodemographic data, making it difficult to test the added value of brain-based classifiers compared to 

conventional clinical or sociodemographic information. This is especially relevant for ML classifications of 

clinically anxious youth, as these types of data have been shown to produce comparable performances (44). 

While purely brain-based classifications as reported here may serve as a benchmark, the potential added value 

of routine clinical data (predictive, inexpensive and easy-to-collect compared to neuroimaging data) should be 

acknowledged, and ideally incorporated in future classification studies (44). Recent studies in psychiatric youth 

have shown that using a multimodal approach that combines MRI with other data modalities (i.e. questionnaires, 

cognitive tests, and genetics) can lead to better diagnostic classifications (44). Moreover, the only data-driven, 

computational diagnostic tool currently approved by the FDA for child and adolescent psychiatry is one that 

actually combines neuro-bio-behavioral data (44,70). Future directions for clinical utility could also involve 

assessments that are specifically tailored to youth (e.g., smart phones, social media, virtual reality, gaming), along 

with net-benefit analyses (44). An exciting new approach within the field is one that entails multiple sequential 

steps informed by big data analyses with machine learning algorithms, which implement cost-effective 

sequences of clinical and neuro-bio-behavioral assessments to maximize predictive power and clinical utility 

(44,71). Further research in this area could help move the field towards true translational impact. 

 

Conclusion 

This study shows that in a large, heterogeneous, and multi-site sample of youth with anxiety disorders, only 

modest classification performances can be realistically achieved based on neuroanatomical data. That said, the 

obtained classification accuracies do roughly translate into a medium effect size (Cohen’s d=0.47; medium effect 

size, see (30) for AUC to effect size conversion), with our results being on par with recent brain-based ML 

classifications of psychopathologies conducted in ENIGMA and other multi-site consortia (27-29). This 

classification study sets a baseline for the ENIGMA-Anxiety Working Group, and is an important step towards the 

development of models that could ultimately inform early detection, prevention, and care among clinically 
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anxious youth. Future work should probe and evaluate the added value compared to more conventional 

diagnostic tools, such as structured clinical interviews and questionnaires. 

 

Methods  

Study Sample 

Participants were included from three ENIGMA-Anxiety Working Groups: Panic Disorder (PD/12 sites): 112 

patients/813 controls; Generalized Anxiety Disorder (GAD/16 sites): 465 patients/1,084 controls; and Social 

Anxiety Disorder (SAD/13 sites): 259 patients/610 controls (STROBE statement-flowchart provided in 

Supplement). All participants included in the analysis were between 10-25 years of age. HC were free of past and 

present psychopathology and psychotropic medication use at the time of scan. Comorbid anxiety disorders 

(PD/GAD/SAD) were present in some patients, and their assigned primary (DSM-IV/5 anxiety disorder) diagnosis 

corresponds to their respective working group. Participants’ demographic and clinical characteristics are 

summarized in Table_1. For an overview per site, see Table_S1. Data on ethnicity was not collected by majority 

of sites and could therefore not robustly be analyzed, although the global nature of our dataset seems to afford 

adequate ethnic representation. This study was conducted in accordance with the Declaration of Helsinki. 

Individual studies were previously approved by relevant local ethical review boards, with the current study falling 

under the guidelines of those ethical review boards for secondary use of collected data. All participants or 

caretakers provided written informed consent. Further information on research design is available in the Nature 

Research Reporting Summary linked to this article. 

 

Image Acquisition and Processing 

Structural T1-weighted 3D brain magnetic resonance imaging (MRI) scans were acquired, and processed either 

locally at each site (PD and SAD data) or centrally (GAD data) using standardized protocols for harmonized 

analysis and quality control. Images were acquired at different field strengths (1.5T/3.0T); sample-specific 

acquisition parameters are listed elsewhere (10). Regional mean cortical thickness (CT), cortical surface area (SA) 

and subcortical volumes (SCV), were extracted from the brain images using FreeSurfer (version 5.3/6.0) (72). 

Parcellations/segmentations were visually inspected and statistically evaluated for outliers. For each subject, SA 

and CT were calculated for 68 cortical Desikan-Killiany atlas-based regions (34 per hemisphere) (73). In addition, 

gray matter SCVs were extracted for seven structures per hemisphere (nucleus accumbens, putamen, pallidum, 

caudate, thalamus, amygdala, hippocampus), along with lateral ventricle volume. This yielded a total of 152 

FreeSurfer features per subject for classification.  

 

Multivariate Brain-Based Classification  

1. Primary Analyses  

As shown in Figure_6, fully brain-based classification tasks were performed with linear support vector machines 

(SVM), one of the most commonly and successfully used algorithms in the field (15,44,74). We performed 

disorder-specific case-control classification for each working group separately (PD vs. HC, GAD vs. HC, SAD vs. 

HC). We also performed a transdiagnostic classification for patients with any anxiety disorder (PD/GAD/SAD) vs. 

HC using pooled samples across the three working groups. 561 participants (545 HC, 5 GAD and 11 SAD patients) 

whose data were present in more than one working group were included only once in transdiagnostic 
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classifications to avoid the use of duplicated data. Participants with missing data that had less than 75% of 

combined cortical and subcortical FreeSurfer features were excluded (14 HC and 3 PD).  

Classification performance was evaluated using stratified 5-times-repeated-5-fold cross-validation (CV) 

following guidelines for the field (52,75). The proportion of patients and controls from each site was 

(approximately) maintained for each fold. We also evaluated to what extent the aforementioned classifiers were 

able to generalize to unseen sites using leave-one-site-out (LOSO) CV, utilizing this supplementary validation 

strategy to provide complementary information to K-Fold (See Supplement for results). In each LOSO-CV fold, 

one site is left out for model testing and remaining sites are used for training, and this is repeated so that each 

site is used as a test set once. Classification performance was measured using the area-under-the-receiver-

operating-characteristic-curve (AUC), balanced accuracy, sensitivity, and specificity, which were calculated for 

each CV iteration on the testing set and averaged across CV iterations.  

Features were standardized using the training set in a site-wise manner by calculating the mean and 

standard deviation of each feature on the HC from each site separately, and applied to standardize test and 

training data for both patients and HC of the same site to obtain harmonized and comparably interpretable 

features. Sites that collected MRI data across different scanners were handled as individual sites in our analyses. 

Standardization was thus performed in a normative manner, where brain measures from HC of each site are used 

as a reference point against which patients can be compared. This was done to account for site-effects (i.e., 

differences in data acquisition protocols and inclusion criteria) that could affect classification performance 

(27,65). There are alternative methods to handle site-effects, such as ComBat and normative modeling (65), 

however, the assumptions for these techniques are violated here, rendering them unsuitable for this study (this 

is further addressed in the discussion). Only participants from sites that had data for both HC and patients, and 

at least ten HC were included for each classification task to ensure sufficient data for standardization. Missing 

features were mean-imputed using the full training set. Site-wise undersampling was applied on the training set 

to account for class imbalance for each site separately so that an equal number of samples was used from both 

classes. The undersampling procedure was repeated ten times for each training set within the CV procedure, 

resulting in ten SVM models trained using different (balanced) training sets and evaluated on the same test set 

(no undersampling). Classifications across the resulting SVM models were combined using an ensemble approach 

by taking the median across the decision values obtained for the predictions of the test set. We applied the SVM 

classification with the regularization parameter (C) set to 1, following general recommendations from the field 

(52). SVM class weights for C were set to “balanced” mode to automatically adjust weights inversely proportional 

to class frequencies in the input data. More details on the classification procedure are provided in the 

Supplementary Methods (section Full Dataset Case-Control Analysis). Label permutation testing with 1000 

iterations (76) was used to test whether classification performance (AUC) was significantly above chance-level 

(α=0.05), with our hypothesis being above chance-level classification of patients vs. HC. To assess which brain 

regions contributed most to the classification model, we applied sign-based consistency mapping as per Gomez-

Verdejo et al., 2019 (see details in Supplementary Methods, section Feature Importance) (77). We only report 

sign-based feature importance for classifications that passed label permutation testing.  

 

2. Exploratory Subgroup Analyses  

To explore the effects of demographic and clinical heterogeneity on brain-based classification performance, we 

performed subgroup analyses on sex, current psychotropic medication use, anxiety severity at time of scanning 
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(State-Trait Anxiety Inventory–Trait Index: STAI-T (78); median-split on patients’ scores (median=48) produced 

high/low severity groups) and current or lifetime comorbid major depressive disorder (MDD). Subgroup analyses 

were restricted to the transdiagnostic sample (any anxiety disorder vs. HC across working groups), as limited data 

would remain when investigating these subgroups in each disorder group separately. The classification 

procedure itself (i.e., site-wise scaling, imputation, undersampling and ensemble learning) was as described 

above. Classifications included: female patients vs. female HC, male patients vs. male HC, medicated patients vs. 

HC, unmedicated patients vs. HC, unmedicated patients vs. medicated patients, low severity patients (STAI-T≤48) 

vs. HC, high severity patients (STAI-T>48) vs. HC, low severity patients vs. high severity patients, patients with 

comorbid MDD vs HC, and patients without comorbid MDD vs HC. 

 

Data availability 

All data used in the current study are in principle publicly available within the ENIGMA Consortium. For this study, 

all site-level data was first transferred to a secure data environment (Amsterdam UMC) and subsequently 

subjected to the final mega-analyses, all with permission from individual sites. Some data sharing restrictions are 

in place though. These include restrictions imposed by (a) site-specific consent documentation, ethical review 

boards, and institutional processes, (b) along with national/international data-sharing legislations (e.g., GDPR). 

Some of these may require a signed MTA for limited and predefined data use. Data sharing might still be possible 

though, requiring submission of a detailed analysis plan to ENIGMA-ANXIETY consortium. If approved, access to 

relevant data is provided, depending on data availability, local PI approval, and compliance with all supervening 

regulations. Requests or questions regarding data availability/sharing should be sent to ENIGMA-ANXIETY liaison 

Dr. M. Aghajani (m.aghajani@fsw.leidenuniv.nl). 

 

Code availability 

Relevant analysis codes can be found at https://github.com/WillemB2104 
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Figure Legends 

Figure 1. Classification performances for each working group separately (1.A) and for transdiagnostic 

classification across working groups (1.B-1.D). Boxplots summarize scores obtained across the repeated stratified 

K-Fold cross-validation folds; yellow diamonds indicate mean scores, circles indicate outliers, asterisks depict 

significance as assessed by label permutation tests and the dashed line represents chance-level performance. 

Bounds of upper whiskers represent maxima; bounds of lower whiskers represent minima; center box represents 

interquartile range, with mean represented by middle horizontal lines. Exact P-values, along with all classification 

metrics are provided in Table S2. PD = Panic Disorder, GAD = General Anxiety Disorder, SAD = Social Anxiety 

Disorder, HC = Healthy Control. 

Sample size per classification task: 

PD vs. HC: N= 112/813  

GAD vs. HC: N= 465/1084  

SAD vs. HC: N= 259 SAD/610  

Any anxiety disorder vs. HC: N= 823/1969  

Male patients vs. male HC: N= 167/678  

Female patients vs. female HC: N= 524/1133  

Unmedicated vs. HC: N= 641/1969 

Medicated vs. HC: N= 160/1307  

Unmedicated vs medicated: N= 251/160  

Low severity vs. HC: N= 299/1422  

High severity vs. HC: N= 272/1449  

Low vs. high severity: N= 299/270  

 
Figure 2. The -log(p) value maps characterizing significant brain regions contributing the most to panic disorder 

patients versus healthy controls classification as determined by sign-based consistency mapping (77). Hot colors 

indicate consistently assigned positive weights by the SVM that drive classification towards the patients class, 

and cold colors indicate negative weights that drive classification towards controls. Panel A relates to subcortical 

volumes, panel B to cortical surface area, and panel C to cortical thickness. Z-statistic estimates from p̂-values 

(Importance scoring) were extracted following a T-test distribution, and used to compute two-tailed -log(p). The 
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figure was made with the ENIGMA Toolbox package (https://enigma-toolbox.readthedocs.io/en/latest/). Full 

region names and associated statistics Z, p̂, -log (p) can be found in Supplementary Table S4. LH = Left 

Hemisphere, RH = Right Hemisphere. 

 
Figure 3. The -log(p) value maps characterizing significant brain regions contributing the most to male patients 

versus male healthy controls classification across working groups as determined by sign-based consistency 

mapping (77). Hot colors indicate consistently assigned positive weights by the SVM that drive classification 

towards the patients class, and cold colors indicate negative weights that drive classification towards controls. 

Panel A relates to subcortical volumes, panel B to cortical surface area, and panel C to cortical thickness. Z-

statistic estimates from p̂-values (Importance scoring) were extracted following a T-test distribution, and used to 

compute two-tailed -log(p). The figure was made with the ENIGMA Toolbox package (https://enigma-

toolbox.readthedocs.io/en/latest/). Full region names and associated statistics Z, p̂, -log (p) can be found in 

Supplementary Table S5. LH = Left Hemisphere, RH = Right Hemisphere. 

 
Figure 4. The -log(p) value maps characterizing significant brain regions contributing the most to unmedicated 

patients versus healthy controls classification across working groups as determined by sign-based consistency 

mapping (77). Hot colors indicate consistently assigned positive weights by the SVM that drive classification 

towards the patients class, and cold colors indicate negative weights that drive classification towards controls. 

Panel A relates to subcortical volumes, panel B to cortical surface area, and panel C to cortical thickness. Z-

statistic estimates from p̂-values (Importance scoring) were extracted following a T-test distribution, and used to 

compute two-tailed -log(p). The figure was made with the ENIGMA Toolbox package (https://enigma-

toolbox.readthedocs.io/en/latest/). Full region names and associated statistics Z, p̂, -log (p) can be found in 

Supplementary Table S6. LH = Left Hemisphere, RH = Right Hemisphere. 

 
Figure 5. The -log(p) value maps characterizing significant brain regions contributing the most to low severity 

patients versus healthy controls classification across working groups as determined by sign-based consistency 

mapping (77). Hot colors indicate consistently assigned positive weights by the SVM that drive classification 

towards the patients class, and cold colors indicate negative weights that drive classification towards controls. 

Panel A relates to subcortical volumes, panel B to cortical surface area, and panel C to cortical thickness. Z-

statistic estimates from p̂-values (Importance scoring) were extracted following a T-test distribution, and used to 

compute two-tailed -log(p). The figure was made with the ENIGMA Toolbox package (https://enigma-

toolbox.readthedocs.io/en/latest/). Full region names and associated statistics Z, p̂, -log (p) can be found in 

Supplementary Table S7. LH = Left Hemisphere, RH = Right Hemisphere. 

 
Figure 6. Simplified visual representation of the ML pipeline. 1) ML algorithm training based on labeled Freesurfer 

features (cortical thickness/surface area & subcortical volumes). 2) This results in a model M that utilizes a 

discriminative subset of these features (feature vector) to classify patients vs. controls (Schnack & Kahn, 2016), 

via an optimum separating hyperplane within the entire feature space (Schnack & Kahn, 2016). Output value y 

(distance to hyperplane) indicates how precise/accurate the model performs when applied to a participant’s 

feature vector (blue=HC | red=Patients) (Schnack & Kahn, 2016). 3) False negative and false positive 

classifications are enclosed within overlapping parts of the separating hyperplane distribution (Schnack & Kahn, 

2016). Adapted and reprinted with permission from Frontiers Media SA: Frontiers Psychiatry (Schnack & Kahn, 

2016). 

https://enigma-toolbox.readthedocs.io/en/latest/
https://enigma-toolbox.readthedocs.io/en/latest/
https://enigma-toolbox.readthedocs.io/en/latest/
https://enigma-toolbox.readthedocs.io/en/latest/
https://enigma-toolbox.readthedocs.io/en/latest/
https://enigma-toolbox.readthedocs.io/en/latest/
https://enigma-toolbox.readthedocs.io/en/latest/
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